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ABSTRACT

Optical transitions in molecular iodine often provide stable references for precision
spectroscopy and their hyperfine structure components have also been widely used in laser
frequency stabilization. The molecular iodine lines near 532 nm have stronger absorption than
red transitions and readily are carried outrbyrdiode-pumped, frequency-doubled solid-state
Nd:YAG lasers. Moreover, the 2001 meeting of Consultative Committee for Length led the a,
component of R(56) 32-0 transition of '*'I, at 532 nm for the optical frequency standard.

Its pressure shift and power shift has been reported. However, the characteristics of the
a;ocomponent including linewidth, pressure broadening, and power broadening have not been
investigated systematically. To further investigate the above-mentioned characteristics, we use
the dependence of the peak amplitude of the third-derivative signal on the modulation width
to determine the linewidth of the hyperfine structure a,,component of R(56) 32-0 transition.
We also use the same method to investigate pressure broadening and power broadening of the

a,ocomponent.

In general, the hyperfine splitting is measured by heterodyne technique. However, not

every laboratory could set up two iodine-stabilized lasers for measuring hyperfine splitting.

il



Therefore, we study a method in which uses only one laser with a double-passed
acousto-optic modulator frequency shifter replacing heterodyne technique. We use the R(56)
32-0 transition of '*"I, at 532 nm as an example. We have successfully measured the hyperfine
splitting. Using the a,,component as a reference, the difference of the hyperfine splitting

between Consultative Committee for Length and our results is within 20 kHz.

Besides the diode-pumped, frequency doubled Nd:YAG laser at 532 nm, we are also
interesting in using diode lasers for frequency stabilization because of their smaller size,
larger tuning range, higher power, and compactness. Frequency stabilization of the external
cavity diode laser to the iodine hyperfine structure components using extra-cavity iodine cell
has been extensively studied and reported.

The diode laser at 657 nm has the characteristics of lower cost and higher power than
that at 633 nm. Therefore, we use the 657 nm ECDL. to investigate the saturation spectrum of
the hyperfine structure componentssof. P(84)-5-5 fransition of '*’I, at 657.483 nm for
frequency stabilization of our ECDL. laser..-We have obtained the hyperfine structure
components of P(84) 5-5 transition with a SNR of 1000 at 1 s time constant. The diode laser is
frequency stabilized to the hyperfine component o of the saturated absorption signal. The
frequency stability better than 10 kHz is achieved. Our scheme can be applied to ECDL at

other wavelengths.
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