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操 作 符 號 位 址 以 產 生 異 常 執 行 路 徑 

學生：林孟緯                     指導教授：黃世昆 老師 

 

國立交通大學資訊科學與工程學系﹙研究所﹚碩士班 

摘要 

 

程式開發者不能完全避免因疏忽造成的漏洞，因而如今軟體安全是一個重要

的議題。擬真測試是一項典型的自動化軟體測試技術，藉由實體測試與符號測試

之間的結合交互作用，擬真測試可以達到較高且較精確的程式碼檢測率。但在擬

真執行時，若發現路徑條件表示式含有符號型態的位址，它將無法掌握在相反路

徑條件下所代表的實體數值，因而無法找到該相反路徑。本論文針對擬真符號測

試，提出一個能增加程式碼檢測率的擬真位址模組，為了確保符號測試正常執行，

我們暫時將含有符號位址的部分取代掉，並將替換的資訊記錄在符號位址表，最

後我們透過路徑條件和符號位址表找出可能的位址解。我們目的為透過求解出來

的符號位址，進入我們之前無法執行的路徑，如此一來我們將能提升程式碼檢測

率，並找到更多程式錯誤。 
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Exploiting Symbolic Locations for Abnormal Execution Paths 

 

   Student：Meng-Wei Lin             Advisors：Dr. Shin-Kun Huang 

 

Department of Computer Science and Engineering 

National Chiao Tung University 

ABSTRACT 

 

The vulnerability caused by the negligence of the programmer is unavoidable. 

Software security is an important issue today. Concolic testing is a typical technique 

in automatic software testing. It achieves high coverage and precise analysis by 

combining concrete and symbolic execution in a co-operative way. But it cannot 

handle the situation when the address is symbolic in the path condition, so concolic 

executer may not find a concrete value which represents the test case of another 

negated path. This thesis proposes symbolic address module for enhancing the 

coverage of concolic testing. We use a substitute method to ensure symbolic executor 

running correctly and construct a symbolic address map to record symbolic address 

information. According to map information and path conditions, we generate a 

possible answer for symbolic addresses. We aim to find symbolic address solutions to 

enter abnormal paths we had never executed before. Then we can find more bugs by 

improving the code coverage. 
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1. Introduction 

Software testing is the process that assuring program quality is identical with our 

expectation. In the development of complicated software, humanly programmer may 

miss some requirement or implement redundant functions. Both behaviors will lead to 

bugs or security problems.  

The process of software testing is tedious and labor-consuming so manual testing 

is unfeasible. In recent years automatic software testing technique is mature gradually, 

there are many researches proposed to resolve the issues [17, 24, 23, 6, 16]. A typical 

testing technique named concolic testing [15, 20, 7]; it tests the software by 

combining concrete and symbolic execution[12] in a co-operative way. This method 

is feasibility on real program unit. But if the path constraint has the address which is 

symbolic, concolic executor cannot find the suitable real address solution for negated 

path constraint and it will abort this negated path. 

Our work is base on concolic testing; we propose a new testing feature named 

symbolic address module. We aim to exploit symbolic address solutions and improve 

the path coverage. Then we can enter abnormal paths that we had never entered 

before. 

1.1 Background 

In the recent years, software security is a serious issue. Because of humanly 

software testing is not efficient, it’s important to use the automatic tool to inspect 

software for vulnerability likes buffer overflow[10, 14, 22]. We focus on tainted base 

vulnerability; the overwritten data may cause unexpected behaviors. We describe 

major researches about our work below. 
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1.1.1 Common Vulnerabilities 

 Stack-based Overflow 

A buffer overflow occurring in the stack memory is referred to as a stack 

overflow. A common case is that a local variable near the buffer but the program 

doesn’t exam the buffer size. When we manipulate the buffer memory out of 

range, the local variable will be covered by our input. Not only local variable but 

we also possibly overwrite function pointer, exception handler or return address. 

Attacker may use those overwritten data to crash program or executing an 

unexpected instruction. 

 Heap-based Overflow 

A buffer overflow occurring in the heap data area is heap overflow. Heap 

memory is dynamically allocated by program at run-time. Exploitation is to 

cause the program overwrite the memory management information which 

associated with heap memory such as dynamic memory allocation linkage. For 

example in BSD Phkmalloc, we can overflow metadata of malloc and then 

overwrite GOT entries or return address. 

 Uninitialized Variables 

Uninitialized variable is a new declared variable which the program didn’t 

set an initial value before using it. The value of uninitialized variable cannot be 

expected but it may tainted by other variable when two variable allocated in the 

same address range. Attacker can find a specific path to control the 

uninitialized variable and it may cause the vulnerability. 

1.1.2 Program analysis policy 

 Static analysis 

Static analysis is performed without actually executing programs. Instead, 
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static analysis just scans the source code to gather information about the 

possible set of values, parses execution states of the program. It is usually 

implemented in formal methods such as data-flow analysis, model checking. 

Static analysis tool used to detect vulnerability such as buffer overflow. We 

can check if there are dangerous standard library functions in source code such 

as strcpy and fgets. Unfortunately, the drawback of static analysis is high false 

positive; it cannot promise that all the found vulnerability will occur in actually 

executing programs. 

 Dynamic analysis 

Dynamic analysis actually executes the program and detects vulnerabilities 

at run-time. Such as valgrind[18], a tool for memory debugging and memory 

leaking analysis tool. It usually needs a large number of test cases and a 

software testing technique: code coverage observer to explore paths. 

Dynamic analysis can promise that all the found vulnerability will occur 

during executing program. It is more precise than static analysis, but it also 

needs more time in executing analysis. 

1.1.3 Program testing mechanism 

 Random testing 

Random testing is also named fuzzing; it is commonly used to test program 

security. It selects random inputs for target program and monitors if there is 

exceptions such as crashes occurred.  

Fuzzing explores random paths very fast, but it wastes a large amount of 

time to enter the same path. The tool zzuf perform fuzzing testing on target 

program. 

 Symbolic execution 
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Symbolic execution is useful for software validation because it can prove if 

the errors may occur. The main idea is to use the tracking symbolic for the input 

variable. It executes the program symbolically on symbolic variable. It collect 

symbolic path constrains and then uses constraint solver to explore execution 

paths. In the result, the explored paths represent by mathematical expressions. 

The drawback of symbolic execution is it does not scale for large programs 

because of there is too many execution paths. 

 Concolic testing 

Concolic testing combines random testing and symbolic execution in a 

co-operative way. It initializes the input variable with the symbolic variable. As 

program runs, it first chooses a random value to determine a path and collect the 

path constraints. In the next run, it negates the last path condition and feeds this 

new path conditions to the solver, and gets another concrete value which 

represent the test case of new path. This counterexample technique can be used 

to find next path conditions and available test case until all the paths is explored. 

Concolic testing is focus on finding bugs in the real program. It has higher 

branch coverage than random testing and has no false positives or scalability 

problem like in symbolic execution. 

1.1.4 Control the branch by symbolic address 

In normal concolic execution, the symbolic variable refers to the tainted 

value. We explore paths with branch conditions which including symbolic 

variable. 

Considering about the path condition has the tainted address, following are 

two specific types: 

i. Constant_buf[symbolic index]=constant_value 



5 

 

ii. Symbolic_pointer[constant value] = constant_value 

In type i, the base address is constant, but the array index is symbolic. The left of 

equation is a symbolic array index dereference. If we want to satisfy the 

condition, we have to find a specific address which it’s dereference value is exact 

equal to right equation constant_value. In type ii, the pointer is symbolic. The 

left of equation is a symbolic pointer dereference. We can also find a specific 

address which it’s dereference value is equal to right equation constant_value. 

Above the first type we called symbolic array index, the second type we 

called symbolic pointer. Because of their address are symbolic variable, we say 

that’s the symbolic address. Our thesis interest in symbolic address solution, we 

try to exploit symbolic locations for abnormal execution paths. 

1.2 Motivation 

Concolic testing is a popular software verification technique, it explore 

program paths as many as possible and find bugs. In figure 1, the buffer overflow 

occurs at Line 6. The address of pointer p is tainted by the standard input. In 

cocolic testing, the address of pointer p became a symbolic variable and it cannot 

determine the value of p[0]. In the situation we may miss the true path and we 

cannot find the vulnerability at Line 8. 

 

 

 

 

 

 

 

1 #include <stdio.h> 

2 void main() 

3 { 

4 int *p; 

5 char buf[4]; 

6 fgets(buf,10,stdin); 

7 if(p[0]==5) 

8  vulnerability; 

9 return 0; 

10 } 
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Figure 1 the address of pointer p is tainded by stdin 

If we can find a address for p that let the dereference of pointer p is properly 

5, then we can enter an abnormal execution path and find the vulnerability. 

1.3 Problem Description 

For concolic testing, if the pointer or the array index is symbolic in branch 

condition, the executor doesn’t know where to get the proper value from memory. 

The executor will execute incorrectly and then give up the path. But in some 

cases if we choose a suitable address for symbolic pointer or symbolic array 

index, the condition will be satisfied. Then we can enter this execution path. 

In order to perform better coverage, we should construct a Symbolic Address 

Map for recording information of symbolic pointer and symbolic array index; we 

should add relation constraints into branch condition for exploring abnormal 

paths. 

1.4 Objective 

We focus on handling symbolic address to enter abnormal paths, and we can 

trigger more vulnerability in those paths which we had never entered before. To 

achieve these goals, we will try to implement two major objects on S
2
E[5, 4]: 

1. Symbolic Address Map: A table records symbolic addresses information 

and relationship between each symbolic address. 

2. Symbolic Address constraints generator: A generator which generates 

relation constrains base on Symbolic Address Map for satisfying the 

abnormal path condition. 

2. Related Work 

Following tools specify and track symbolic variables and constraints; they fully 
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explore program paths and find bugs. CRED[19, 11] (C Range Error Detector) 

directly checks the bound of memory accesses; it’s just a bound checking tool. 

DART[9] (Directed Automated Random Testing) dynamic analysis of how the 

program behaves under random testing and automatic generation of new test inputs. It 

mainly handles the integer constraints and invokes random testing with symbolic 

pointer. CUTE[21] is the first concolic testing tool which splintered from DART. It 

simulates the pointer into array, it can handle some symbolic pointer cases, but it 

cannot handle symbolic array index. CREST[1] is a concolic testing tool for C, it 

combine concolic testing with heuristic search strategies to perform high coverage on 

large software systems. It doesn’t handle symbolic array index or symbolic pointer. 

EXE[3] can handle the more complex pointer access than CUTE. But it cannot handle 

multi-dimension dereference. It can handle symbolic array index but just in-bound 

related. SAGE[8] implements a new memory model for handling symbolic array 

index but just a bound checking tool. Catchconv is a symbolic execution and run-time 

integer conversion testing tool. It is a module of Valgrind and only focus on testing 

integer conversion error. SecTAC[25] is Trace-based security testing tool. Each trace 

is symbolically executed to produce program constrains and security constraints. Its 

trace can handle neither symbolic array index nor symbolic pointer. KLEE[2] is 

redesigned from EXE. It is a symbolic virtual machine built on LLVM[13] compiler 

infrastructure and uses search heuristics to reach high coverage in program. KLEE 

cannot handle symbolic array index or symbolic pointer. S2E is redesigned from 

KLEE, it provides the illusion of symbolic execution of an entire software stack, 

including applications, libraries, OS kernel, device drivers, and even firmware. It has 

guessing steps for symbolic address but not enough. Alert is developed by our 

laboratory; it used the memory model of EXE and the execution model of CUTE. It 
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handles both symbolic array index and symbolic pointer, but it cannot handle 

out-of-bounds array index. 

Our research base on S2E executor, we implement a plug-in for handling 

symbolic address. The comparison of above tools is shown as table 1. 

 

Table 1 remaining symbolic variable 
Tool Symbolic 

array 

index 

Single-dimension 

symbolic pointer 

Multi-dimension 

symbolic pointer 

Out-of-bounds 

checking 

DART X X X X 

Crest X X X X 

Cute X O O X 

Exe O O X X 

Sage O O O X 

KLEE X X X X 

Alert O O X X 

Hsin O X X O 

Wei O O O O 

3. Method and Steps 

We provide a plugin out of box for enhancing path coverage by handling 

symbolic address problem, including symbolic array index dereference and symbolic 

pointer dereference. 

S
2
E executor inherited KLEE symbolic executor. In the original edition, when 

S
2
E executor found an address is symbolic in constraints, it didn’t know where to get 
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the suitable value in the memory.  

Figure 2 shows actual examples for symbolic array index and symbolic pointer 

for S
2
E. S

2
E executor will transfer the concrete value to the symbolic variable at line 5. 

At Line 7, because of the buf’s address is symbolic, S
2
E executor will try to assign 

concrete values to buf’s address and fork states to solve the constraints. But in the 

most of the cases, the number of forking states always reached the maximum number 

of states to fork when concretizing symbolic value. Unfortunately the original edition 

failed to solve the symbolic address problem and can’t reach line 8. 

 

 

 

 

 

 

 

 

 

 

Figure 2 symbolic pointer and symbolic array index 

But in the left half side of figure 2, if we assign the address of buf[0] equal to 

address of a, we can pass the true branch and reach line 8:”GOAL”. In the right half 

side of figure 2, if address of buf[i] equal to address of a (i=4), the program can also 

reach line 8:”GOAL”. 

In our research, we add a new plug-in named SymbolicAddress for S
2
E. We use a 

substitute method to ensure S
2
E running correctly and construct a symbolic address 

symbolic pointer: 

 

1 int main() 

2 { 

3 int a=5; 

4 int *buf; 

5 s2e_make_symbolic(&buf, 4, "buf"); 

6 s2e_enable_forking(); 

7 if(buf[0]==5) 

8  s2e_warning("GOAL"); 

9 s2e_disable_forking(); 

10 s2e_kill_state(0, "program terminated"); 

11 return 0; 

12 } 

symbolic array index: 

 

1 int main() 

2 { 

3 int i, a=5; 

4 int buf[3]={0,0,1}; 

5 s2e_make_symbolic(&i, 4, "i"); 

6 s2e_enable_forking(); 

7 if(buf[i]==5) 

8  s2e_warning("GOAL"); 

9 s2e_disable_forking(); 

10 s2e_kill_state(0, "program terminated"); 

11 return 0; 

12 } 
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map to record every symbolic address. When S
2
E executor state terminating, we will 

check the state constraints and symbolic address map and then generate a possible 

answer. The following is detailed conception. 

3.1 Symbolic Address classifications 

Before solving the symbolic address problem, we have to define what is 

symbolic address? In our thesis, Symbolic address is classed as two main parts: 

symbolic pointer and symbolic array index. 

Figure 3 shows the possible symbolic pointer classifications. 

Example i shows a trivial symbolic pointer. Address of pointer p is symbolic and 

“p[0] == concrete value” is a condition in branch. 

Example ii shows multiple symbolic pointers. We have to consider those 

different symbolic pointers dereference are adding together in a condition. 

Example iii shows the pointer may have offset. The same pointer but different 

offset can be bind to different addresses in the memory. It means two different offset 

of the same pointer have different dereference values, but they have a fixed distance 

between them in the memory.  

Example iv shows the pointer to pointer case. Of course, not only pointer to 

pointer, but also we have to consider triple or more. ex. ***p, *****p… 

 

 

 

 

 

 

 

i. trivial symbolic pointer 

→ int *p and p = symbolic value 

→ if( p[0] == concrete value ) 

ii. extended from trivial 

→ int *p, *q, *r… and p, q, r… = symbolic value 

→ if( p[0] + q[0] + r[0]… == concrete value ) 

iii. multiple offsets of the same pointer address 

→ int *p and p = symbolic value 

→if( p[0] + p[1] + p[2]… == concrete value ) 

iv. pointer to pointer 

→ int **p and p = symbolic value 

→ if( p[0][1] == concrete value ) 
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Figure 3 symbolic pointer classifications 

 

Figure 4 shows the possible symbolic array index. 

Example i shows a trivial symbolic array index. Because of integer i is symbolic, 

then address of buf[i] is also symbolic. “buf[i] == concrete value” is a condition in 

branch. 

Example ii shows multiple symbolic array indexes, different symbolic array 

indexes dereference are adding together in a condition. 

Example iii shows two different base addresses have the same symbolic array 

index. They bind to different addresses in the memory and may have different values, 

but they have a fixed distance between them in the memory. Furthermore, The case 

maybe (bufA[i] + bufB[i] + bufC[i]) or more. 

Example iv shows the multi-level symbolic array index. The entire size of buf is 

(i × j × k). It means the different (i, j, k) may cause the buf[i][j][k] have the same 

address in the memory. 

 

 

 

 

 

 

 

 

i. trivial symbolic array index 

→ int i and i = symbolic value 

→ if( buf[i] == concrete value ) 

ii. extended from trivial 

→ int i, j, k… and i, j, k… = symbolic value 

→ if( bufA[i] + bufB[j] + bufC[k] … == concrete value ) 

iii. multiple base addresses have the same symbolic array index 

→ int i and i = symbolic value 

→ if( bufA[i] + bufB[i] == concrete value ) 

iv. multi-level symbolic array index 

→ int i, j, k… and i, j, k… = symbolic value 

→ if( buf[i][j][k]… == concrete value ) 
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Figure 4 symbolic array index classifications 

 

3.2 Symbolic Address variable Substituting 

S
2
E executor should fork a new state and add a negate constraint to it when 

execute a branch condition. According to left half side of figure 2, we can get a state 

constraints diagram figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5 origin state constrains diagram 

In the fact, KLEE executor cannot execute correctly when the branch condition 

has the symbolic address. Although S
2
E executor inherited KLEE symbolic executor 

and has guessing steps to handle symbolic address, it still cannot allocate appropriate 

address in most of case. In this case, S
2
E executor will fork states until reached the 

maximum number of states to fork when concretizing symbolic value, then fail to find 

a available address for buf[0]. 

We have an idea for S
2
E executor when found a symbolic address in state 

condition. We declare a new symbolic variable and then substitute the symbolic 
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address dereference value. Figure 6 shows the state constraints diagram after the 

substitution. S
2
E executor now can execute successfully. 

 

 

 

 

 

 

 

 

 

 

Figure 6 state constrains diagram after substituting 

In addition, if Line 4 in left half side of figure 2 is “int ***buf” and Line 7 is 

“if(buf[0][0][0]==5)”, we have to operator the substitution three times.  

 

Only substitution is not enough, we have to construct the relation sheep between our 

new made symbolic variables. We will explain the symbolic address map structure in 

next section. 

3.3 Symbolic Address Map 

Symbolic address map contains four basic elements: Origin Expression, 

Substituted Expression, Related Address and Target Address. 

i. Origin Expression is a symbolic address expression, symbolic executor doesn’t 

know where to read it in the memory. 
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ii. Substituted Expression is a new declared expression used to substitute Origin 

Expression. In addition, we add it to Symbolic Table and then Symbolic 

executor believes it is a symbolic variable. Now symbolic executor can execute it 

continually. 

iii. Related Address is the same with the address of Origin Expression’s symbolic 

variable in symbolic table. If two symbolic addresses have the same Related 

Address, one of them may another one’s dereference. 

iv. Target Address is a blank space now. It used to store a concrete address which 

suits with state constraints. 

Figure 7 shows how to construct the symbolic address map. If the branch conditions 

still have symbolic addresses, it adds symbolic address into the map recursively until 

there is no symbolic address. 

  

 

 

 

 

 

 

Figure 7 Flowchart of Constructing symbolic address map  

Figure 8 is a symbolic address map example. Symbolic executor found a 

symbolic address in branch condition (Line 13). We declared a new expression named 

buf1, its origin expression was buf, and the related address was the same with the 

address of buf in Symbolic Table. Besides, we added buf1 into Symbolic Table. Until 

now, buf1 represented the value at address buf[1] in memory. Because of buf[1] was 
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symbolic, we had to declared a new expression named buf2 and substitute buf1. In the 

end, buf3 represented a concrete value at address buf[1][3][5] in memory. We 

finished substituting all the symbolic address in branch condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 symbolic address map example 

 

3.4 Symbolic Address Constrains Generator 

Our goal is finding Target Address for symbolic address map. We could use 

Target Address stored in symbolic address map to generate symbolic address 

constrains. In the end, we add symbolic address constrains into symbolic execution 

state, and then symbolic executor will automatically generate a test case for every 

symbolic address. 

Figure 9 shows how to generate symbolic address solutions. If state constraints 

  1 #include <stdio.h> 

  2 #include "s2e.h" 

  3  

  4 int main() 

  5 { 

  6     int a; 

  7     int b; 

  8     int ***buf; 

  9     s2e_make_symbolic(&a, 4, "a"); 

 10     s2e_make_symbolic(&b, 4, "b"); 

 11     s2e_make_symbolic(&buf, 4, "buf"); 

 12     s2e_enable_forking(); 

 13     if( buf[1][3][5]==5 ) 

 14         s2e_warning("GOAL"); 

 15     s2e_disable_forking(); 

 16  

 17     s2e_kill_state(0, "program terminated"); 

 18     return 0; 

 19 } 

Symbolic Address Map 

 

   Related     Origin  Substituted   Target    

1. 0xbffff918    buf     buf1      buf[1] 

2. 0xbffff918    buf1     buf2     buf[1][3] 

3. 0xbffff918    buf2     buf3   buf[1][3][5] 

Symbolics Table 

 

   Array->name MemoryObject->address      

1.      a    0xbffff920 

2.      b    0xbffff91c 

3.     buf    0xbffff918 

4.     buf1    0xbffff918 

5.   buf2    0xbffff918 

6.   buf3    0xbffff918 
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have any symbolic addresses before symbolic execution state terminated, we choose a 

combination of addresses from Symbolics Table and pass them into symbolic address 

map Target Address field. We use STP solver to identify if the relationships in 

Symbolic Address Map is satisfy all constrains in symbolic execution state. If answer 

is yes then we obtain a solution, otherwise we choose next combination addresses 

from Symbolic Table and use STP solver to identify again. 

If all combination of addresses in Symbolic Table is not the solution, then we try 

to find it in the actual memory. As before, but we choose a combination of addresses 

from actual memory. If there is no solution in Symbolics Table or actual memory, we 

say that this path maybe is impossible in the program. 

 

 

 

 

 

 

 

 

 

 

Figure 9 Flowchart of symbolic address solution 

 

4 Implementation 

S
2
E provides the core symbolic execution engine. All the analysis is done by 



17 

 

various plug-in. In this thesis, we write a plug-in named SymbolicAddress that uses 

features of the S
2
E plug-in infrastructure. 

We substitute symbolic pointer dereference and symbolic array index 

dereference during symbolic execution, and we add them into Symbolic Address Map. 

Symbolic Address Map describes what expression to be substitute and where address 

to be substitute. 

Before S
2
E execution state terminated, according to Symbolic Address Map we 

search available addresses in Symbolics Table or actual memory for every symbolic 

address. Finally, we add those available address relation constrains into S
2
E execution 

state conditions, and the S
2
E plug-in named TestCaseGenerater will generate an 

available test case for every symbolic variable automatically. 

4.1 Symbolic Address Map & Class 

As Figure 10 shows, Symbolic Address Map construct from symbolic addresses 

during symbolic executing. 

 

 

 

 

 

 

 

Figure 10 Symbolic Address structure 

tempAddress : Related Address. 

tempExpr : Substituted Expression. 

tempArray : the Aarray object used to store major variable name of tempExpr. 

Struct SApoint{ 

    uint64_t tempAddress; 

    ref<Expr> tempExpr; 

    const Array* tempArray; 

ref<Expr> targetExpr; 

const Array* targetArray; 

uint64_t targetAddress; 

ref<Expr> targetValueExpr; 

}; 
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targetExpr : Origin Expression. 

targetArray : the Aarray object used to store major variable name of targetExpr. 

targetAddress : Target Address. 

targetValueExpr : the content of targetaddress in actual memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 SymbolicAddress Class 

Figure 11 shows our implementation. SAcounter used to calculate how many 

symbolic addresses in SAmap. Function adjust doing the substitute stage when 

symbolic executor found the symbolic address. Function solutionGEN doing the 

solution searching stage and constrains generating stage at symbolic execution state 

terminating. 

Class SymbolicAddress { 

Private: 

    int SAcounter; 

    std::vector<SApoint> SAmap; 

 

public: 

    void adjust(S2EExecutionState* state,  

ref<Expr> expr); 

    void solutionGEN(S2EExecutionState* state); 

Private: 

    bool searchSymbolicMap(S2EExecutionState* state,  

vector<SApoint>& map); 

    bool searchMemoryMap(S2EExecutionState* state,  

std::vector<SApoint>& map,  

uint64_t beginMap,  

uint64_t endMap); 

bool chooseNextSymbolicAddress(S2EExecutionState* state,  

          std::vector<SApoint>& map); 

 bool chooseNextTargetAddress(std::vector<SApoint>& map,  

        uint64_t beginMap, 

         uint64_t endMap); 

} 
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4.2 Symbolic Address Plug-in for S2E 

S
2
E symbolic executor will call the function handleForkAndConcretize when 

instructions have expression. If the expression is constant or state->forkDisabled is on, 

it will simply pick one possible value and return. Otherwise, if the expression has 

symbolic address, it will run the guessing steps. 

As figure 12, we instrument our function adjust to Instead the guessing steps. We 

pick the moment to substitute symbolic address when handleForkAndConcretize find 

the symbolic address. 

 

 

 

 

 

 

 

 

 

Figure 12 instrumenting function adjust 

 

Before every symbolic execution state terminating, S
2
E handler will call the 

function processTestCase. This function will call the original author plug-in named 

TestCaseGenerator, it will generate an available value for each symbolic variable. 

As figure 13, we instrument our function solutionGEN before calling the plug-in 

TestCaseGenerator. We search available address for each symbolic address and add 

related constrains between each other into S
2
E state constrains. In the end, plug-in 

S : the current Execution State pointer 

E : the current Expr in the branch 

 

1 S2EExecutor::handleForkAndConcretize ( S , E , …){ 

2 … 

3    If E is NOT a symbolic address{ 

4    … 

5       return 

6    } 

7 … 

8 guessing steps 

9 adjust( S , E ) 

6 } 
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TestCaseGenerator will also generate an available value for each origin symbolic 

variable and our new made symbolic variable. 

 

 

 

 

 

 

 

Figure 13 instrumenting function solutionGEN 

4.3 Symbolic Address adjust function 

Figure 14 shows the pseudo code of function adjust. We use integer N to count 

how many symbolic addresses now. We also use the String“SA”+ IntToStr( N ) as the 

new name for our new declared expression. Line 8 to Line 12 will fill the new 

symbolic address with the substitute information. Now the struct member 

P.targetAddress and P. targetValueExpr will be blank, we will use them in other 

steps. 

 

 

 

 

 

 

 

 

S : the current Execution State pointer 

 

1 S2EHandler::processTestCase ( S ){ 

2 … 

3    solutionGEN ( S ) // add constrains before running s2e::plugins::TestCaseGenerator  

4 … 

5 getPlugin("TestCaseGenerator") 

6 } 
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Figure 14 function adjust 

Figure 15 is a Symbolic Address Map example of figure 2. Both programs we 

only consider State 0 when executing true branch, and each state has one symbolic 

address. 

 

 

 

 

 

S : the current Execution State pointer 

E : the current Expr in the branch 

N : the number of symbolic addresses 

A : the origin symbolic variable’s address in memory 

P : a SApoint struct used to store symbolic address information 

NAME : a new symbolic variable used to Substitute symbolic address value 

SAMAP : the vector used to store every SApoint information in the program 

 

1 SymbolicAddress:: adjust(S , E ){ 

2 N ← N + 1 

3 A ← symbolic variable’s address in E 

4 NAME ← String“SA”+  IntToStr( N ) 

5 S->createSymbolicArray( A , 4 , NAME ) 

6 

7 P ← new SApoint 

8 P.tempAddress ← A 

9 P.targetArray ← findSymbolicObjects( E )->second 

10 P.targetExpr ← E  

11 P.tempArray ← findSymbolicObjects( NAME )->second 

12 P.tempExpr ← Expr:: createTempRead( P.tempArray , 32 ) 

13 

14 SAMAP.push_back( P ) 

15 } 

       Left figure, State 0  right figure, State 0 

tempAddress  0xbffff91c       0xbffff91c 

tempExpr   ReadLSB w32 0 SA1  ReadLSB w32 0 SA1 

tempArray   SA1     SA1 

targetExpr   ReadLSB w32 0 buf  ReadLSB w32 0 i 

targetArray   buf     i 

targetAddress  null     null 

targetValueExpr  null     null 
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Figure 15 example of Symbolic Address Map after adjusting  

4.4 Symbolic Address solution generator function 

Figure 16 shows the pseudo code of function solutionGEN. We have two 

searching algorithm: searchSymbolicMap and searchMemoryMap. First we search the 

Symbolics Table for symbolic address solution. If we didn’t find an available solution, 

then we search the entire memory from address BM to address EM. In our research, 

we define the region from BM to EM as addresses near the symbolic address in stack 

memory. 

 When we get an available solution for Symbolic Address Map, we add two 

constrains (line 13 ~ 16) into S
2
E execution state. At Line 13, symbolic address 

expression P ->targetExpr should equal to concrete address P ->targetAddress. At 

Line 14 ~ 15, our new declared expression P ->tempExpr should equal to expression 

P ->targetValueExpr which address is P ->targetAddress. 
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Figure 16 function solutionGEN 

4.4.1 Searching solutions from Symbolics Table 

Figure 18 shows the pseudo code of function searchSymbolicMap. At Line 2, 

function chooseNextSymbolicAddress chooses a combination of addresses from 

Symbolics Table, and those addresses are set in each object SApoint member 

targetValueExpr where in Symbolic Address Map. We loop the function until found 

an available combination or all the combinations are unavailable. 

S : the current Execution State pointer 

B : a boolean variable will be TRUE if the state have a symbolic solution 

SAMAP : the vector used to store every SApoint information in the program 

BM : the begin of the memory 

EM : the end of the memory 

P : a SApoint pointer used to store symbolic address information 

E : the current symbolic address constrains that should be add to the state 

 

1 SymbolicAddress:: solutionGEN ( S ){ 

2 If searchSymbolicMap( S , SAMAP ) is true{ 

3  B ← True 

4 }else if searchMemoryMap(S , SAMAP , BM , EM) is true{ 

5  B ← True 

6 }else{ 

7  No solution!! 

8  B ← false 

9 } 

10 

11 If B is true{ 

12  for each P ∈ SAMAP { 

13   E ← EqExpr::create(P ->targetExpr, ConstantExpr::create(P ->targetAddress , 32) ) 

14   E ← =AndExpr::create(E ,  

15         EqExpr::create(P ->tempExpr, P ->targetValueExpr)) 

16   S ->constraints.addConstraint(E ) 

17  } 

18 } 

19 } 
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At Line 9~13, we handle the case which object SApoint member targetArray is 

the same. We have two major cases: 

i. Symbolic pointer: multiple offsets of the same pointer address. 

if( p[0] + p[1] == concrete value ), p is a symbolic pointer. 

ii. Symbolic array index: the same symbolic array index with multiple bases. 

if( bufA[i] + bufB[i] == concrete value ), i ,j are symbolic array index 

We can solve the problem by adding a constraint: the offset between two object 

SApoint member targetArray should equal to offset between two object SApoint 

member targetExpr. 

 At Line 14~18, we add a constraint to handle the pointer to pointer problem: 

  int **p, p is a symbolic pointer, if( p[1][2] == concrete value ) 

If X and Y are both the symbolic addresses and Y adjust from X. Figure 17 shows the 

dereference relationship between X and Y. The value at X->targetAddress in memory 

should equal to which subtract the offset of Y->targetExpr from Y->targetAddress. 

Moreover, this method can handle not only the pointer to pointer, but also ***p, 

****p… or more situation. 

 

 

 

 

Figure 17 p[1][2] == concrete value 
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Figure 18 function searchSymbolicMap 

 

S : the current Execution State pointer 

SAMAP : the vector used to store every SApoint information in the program 

P : a SApoint pointer used to store symbolic address information 

P’ : a SApoint pointer used to store symbolic address information 

E : the current address constraints used for solver 

SUC : a Boolean variable used to determin  

1 searchSymbolicMap( S , SAMAP ){ 

2 while chooseNextSymbolicAddress( S , SAMAP ) is true{ 

3  E ← NULL 

4  for each P ∈ SAMAP { 

5   E ←AndExpr::create (E ,  

6     EqExpr::create(P ->targetExpr, ConstantExpr::create(P ->targetAddress , 32) )) 

7   E ← AndExpr::create(E ,  

8     EqExpr::create(P ->tempExpr, P ->targetValueExpr)) 

9   for each P’ ∈ SAMAP && P’ ->targetArray->name is equal P ->targetArray->name{ 

10    E ← AndExpr::create(E ,  

11         EqExpr::create(ConstantExpr::create((P ->targetAddress)-( P’ ->targetAddress) , 32), 

12         SubExpr::create(P ->targetExpr, P’ ->targetExpr))) 

13   } 

14   for each P’ ∈ SAMAP && P’’ is adjust from P’ { 

15      E ← AndExpr::create(E , 

16         EqExpr::create( S ->readMemory( P’->targetAddress , 32 ),  

17         ConstantExpr::create( (P’’ ->targetAddress)-(offset of P’’ ->targetExpr), 32)) 

18      } 

19  } 

20  solver->mayBeTrue(Query( S ->constraints , E ) , SUC ) 

21  if SUC is true{ 

22   for each P ∈  SAMAP { 

23    P ->targetValueExpr ← S->readMemory( P ->targetAddress , 32 ) 

24   } 

25   return TRUE 

26  } 

27 } 

28 return FALSE 

29 } 
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4.4.2 Searching solutions from actual Memory 

The function searchMemoryMap is almost the same with searchSymbolicMap. 

The only different is Line 2 in figure 18; instead of chooseNextSymbolicAddress we 

use the function chooseNextTargetAddress. We search a range of actual memory, 

including concrete value and symbolic variable. In the fact, if we define the region as 

entire memory including text, data, heap and stack, it will take a large amount of 

searching time. In our implement, we search near the memory region in stack which 

near the symbolic address. We have the best opportunity to find available addresses in 

this region. 

In addition, if the number of origin symbolic variables is more than the number of 

symbolic address we new declared. We do not need to search anywhere. We set each 

origin symbolic variable address to each SApointer member targetAddress. It will be a 

symbolic address solution. 

5 Result and Experiment 

We present results of experiments and prove symbolic address module in this 

section. We use the example of SAGE and our made programs to illustrate the 

solution of symbolic array index and symbolic pointer. Next, we discuss the 

efficiency of two searching algorisms when execution state has remaining symbolic 

variables. In the end, we illustrate the enhancement on path coverage with real 

programs. 

5.1 A simple Example of SAGE 

As shown in figure 19, we test the example of SAGE. The program has two 

symbolic variable x and y. Our goal is to reach the Line 15.  

When reached line 14, we executed the true branch first. We found 2 symbolic 
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array indexes in the state constraint. Then we new declared symbolic variables x1 and 

y2, x1 is the dereference value of buf[x], y2 is the dereference value of buf[y]. We 

updated our symbolic address map and adjusted the state constraint to 

(Eq (ReadLSB w32 0 x1)  

(Add w32 2 (ReadLSB w32 0 y2))) 

For generating symbolic address solution, we searched a combination of addresses in 

stack memory. Later, we discovered when x equal 3 and y equal 1, then x1 equal 2 

and y2 equal 0, and this was a combination of addresses solution which satisfied the 

state condition. According to symbolic address map, we added related constrains into 

the state constraint. In the end, plug-in TestCaseGenerater automatically generated a 

test case for symbolic variables which including our new declared. The false branch 

symbolic address solution is also generated in the same way. 

 

 

 

 

 

 

 

 

 

 

 

 

  1 #include <stdio.h> 

  2 #include "s2e.h" 

  3 int main() 

  4 { 

  5     int x,y; 

  6     s2e_make_symbolic(&x, 4, "x"); 

  7     s2e_make_symbolic(&y, 4, "y"); 

  8     int buf[4]; 

  9     buf[0]=x; 

 10     buf[1]=0; 

 11     buf[2]=1; 

 12     buf[3]=2; 

 13     s2e_enable_forking(); 

 14     if( buf[x]==buf[y]+2 ) 

 15         s2e_warning("GOAL"); 

 16     s2e_disable_forking(); 

 17     s2e_kill_state(0, "program terminated"); 

 18     return 0; 

 19 } 
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Figure 19 SAGE 

5.1.1 More Complicated Symbolic Array Index 

In this sub section, we evaluate the test case as shown in figure 20, which has 

more complicated symbolic array index. This experiment focus on two major 

classifications for branch condition: 

if ( bufA[i][j][k] + bufB[k] + bufC[l] == 10 ) 

1. Multi-dimension symbolic array index 

→ bufA[i][j][k] is a 3-dimension symbolic array index 

2. Different base addresses have the same symbolic array index 

→ bufA[i][j][k] and bufB[k] have the same symbolic array index k 

The program has four symbolic variable i, j, k and l. Our goal is to reach the Line 16. 

As our expectation, the true branch symbolic address solution:  

bufA[1][0][2] + bufB[2] + bufC[1] = i1+ k2 + l3 = 5 + 2 + 3 = 10 

In the false branch, because of bufA[0][0][0] is an uninitialed value, so its value is 

0xb7ffhf68. 
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Figure 20 program 1 

5.1.2 Symbolic Pointer classifications 

We evaluate the test case as shown in figure 21, which includes all symbolic 

pointer classifications. This experiment focus on two major classifications for branch 

condition: 

if ( pA[3] + pA[4] + pB[0][1][2] == 10 ) 

1. Multi-dimension symbolicpointer 

→ pB[0][1][2] is a 3-dimension symbolic pointer 

2. different offsets of the same pointer address 

→ pA[3] and pA[4] is the same pointer but different with offset 

The program has a single-dimension pointer pA and a 3-dimention pointer pB. Our 

  1 #include <stdio.h> 

  2 #include "s2e.h" 

  3 int main() 

  4 { 

  5     int i,j,k,l; 

  6     s2e_make_symbolic(&i, 4, "i"); 

  7     s2e_make_symbolic(&j, 4, "j"); 

  8     s2e_make_symbolic(&k, 4, "k"); 

  9     s2e_make_symbolic(&l, 4, "l"); 

 10     int bufA[2][3][4]; 

 11     int bufB[3]={0,0,2}; 

 12     int bufC[2]={0,3}; 

 13     bufA[1][0][2]=5; 

 14     s2e_enable_forking(); 

 15     if(bufA[i][j][k]+bufB[k]+bufC[l]==10) 

 16         s2e_warning("GOAL"); 

 17     s2e_disable_forking(); 

 18     s2e_kill_state(0, "program terminated"); 

 19     return 0; 

 20 } 
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goal is to reach the Line 14.  

In the true branch, pA1 is the dereference value of pA[3] and pA2 is the 

dereference value of pA[4]. Because of pB[0][1][2] is a 3-dimension symbolic pointer, 

pB3 is the first-dimension dereference value, pB34 is the second-dimension 

dereference value which adjust from pB3, pB345 is the third-dimension dereference 

value which adjust from pB34, so pB includes three symbolic addresses. There are 

total five symbolic addresses in the path condition. The final state constraint is: 

(Eq 10 

    (Add w32 (ReadLSB w32 0 pB345) 

            (Add w32 (ReadLSB w32 0 pA2) 

                    (ReadLSB w32 0 pA1)))) 

Figure 22 shows the multi-dimension graph for symbolic pointer pA and pB. The true 

branch symbolic address solution: 

pA[3] + pA[4] + pB[0][1][2] = pA1+ pA2 + pB345 = 3 + 5 + 2 = 10 

In the end, we exploit this abnormal path success. 

 

 

 

 

 

 

 

 

 

 

  1 #include <stdio.h> 

  2 #include "s2e.h" 

  3 int main() 

  4 { 

  5     int a=2; 

  6     int b=3; 

  7     int c=5; 

  8     int *pA; 

  9     int ***pB; 

 10     s2e_make_symbolic(&pA, 4, "pA"); 

 11     s2e_make_symbolic(&pB, 4, "pB"); 

 12     s2e_enable_forking(); 

 13     if(pA[3]+pA[4]+pB[0][1][2]==10) 

 14         s2e_warning("GOAL"); 

 15     s2e_disable_forking(); 

 16     s2e_kill_state(0, "program terminated"); 

 17     return 0; 

 18 } 
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Figure 21 program 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 multi-dimension graph for symbolic pointer 

 

5.2 Searching Algorisms analysis 

In our thesis, we had implemented 2 algorisms for symbolic address solution 

generator: searching memory and searching Symbolic Table. Searching memory is a 

basic searching algorism; we search for the solution in memory. If searching range is 

too large, it may get stuck in searching step for a long time; if the range is too small, it 

may miss possible solutions. According to our experiment, we usually set the range to 

near the symbolic address location. Searching Symbolics Table is an opportunistic 

algorism. We map the address solutions to Symbolics Table and check if it is a 

solution. This algorism is useful when remaining symbolic variables which have no 
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relationship with symbolic address exist.  

Table 2 shows the number of compares on two algorisms; we test 3 programs 

which in previous section. N/A means it has no solution in Symbolics Table. Because 

of there is no any remaining symbolic variable, searching Symbolics Table only 

improve the program1’s false branch. 

Table 2 analysis of searching algorism 

 

Program 

 

Num. of symbolic 

address 

Searching memory  Searching Symbolics Table 

true branch false branch  true branch  false branch  

SAGE 2 23 1 N/A 1 

Program1 3 1312 74 N/A 34 

Program2 5 12476 1640 N/A N/A 

In the fact, when the buffer overflow happened, it always not only covers the 

symbolic address. It also covers other variable in most of case. Table 3 shows the 

situations when remaining symbolic variables are exist. Searching Symbolic Table is 

a powerful method to reduce the number of compares; in progam2 it reduces the 

number of compares from 12476 to 92 when remaining variable when there are two 

remaining symbolic variables. In addition, the compares will increase a little when 

there are more than 3 remaining symbolic variables. It’s because of the Symbolics 

Table size will increase with remaining symbolic variables. It has to waste some 

compares on initialization. 

Table 3 remaining symbolic variable 

 

Program 

1 remaining 2 remaining 3 remaining 4 remaining 

true 

branch 

false 

branch  

true 

branch  

false 

branch  

true 

branch  

false 

branch  

true 

branch  

false 

branch  

SAGE 2 1 2 1 2 1 2 1 

Program1 34 34 48 48 64 64 82 82 

Program2 8274 N/A 92 83 103 102 124 123 
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6 Conclusion 

We propose a new symbolic address module in this thesis. We construct a new 

symbolic address map on S
2
E. We trace and adjust the symbolic address during the 

symbolic execution step, and then we handle the concrete execution step by our 

symbolic address solution generator. Two execution steps work in a co-operative way 

and exploit abnormal paths. 

 Our objective is to exploit the path condition which has the symbolic address like 

(*tainted-pointer == concret-value). If the program has another remaining tainted 

variable, we can directly assign concret-value to this tainted variable and assign 

tainted variable address to tainted-pointer, and the branch is always be true. In other 

words, if there is a symbolic address with remaining tainted variable, we can say this 

branch is completely controllable. If there is no remaining tainted variable, we still 

possibly find a solution in concrete memory; in the situation we say this branch is 

possibly controllable. 

In future works, it is possibly find the statement (*tainted-pointer = tainted-value) 

in the program. If found the situation then we can modify any memory content and 

fully control the target program followed my inclination. 
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