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Exploiting Symbolic Locations for Abnormal Execution Paths

Student : Meng-Wei Lin Advisors : Dr. Shin-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

The vulnerability caused by the negligence of the programmer is unavoidable.
Software security is an important issue today. Concolic testing is a typical technique
in automatic software testing. It-achieves- high coverage and precise analysis by
combining concrete and symbolic execution in a co-operative way. But it cannot
handle the situation when the address is symbolic in the path condition, so concolic
executer may not find a concrete value which represents the test case of another
negated path. This thesis proposes symbolic address module for enhancing the
coverage of concolic testing. We use a substitute method to ensure symbolic executor
running correctly and construct a symbolic address map to record symbolic address
information. According to map information and path conditions, we generate a
possible answer for symbolic addresses. We aim to find symbolic address solutions to
enter abnormal paths we had never executed before. Then we can find more bugs by

improving the code coverage.
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1. Introduction

Software testing is the process that assuring program quality is identical with our
expectation. In the development of complicated software, humanly programmer may
miss some requirement or implement redundant functions. Both behaviors will lead to
bugs or security problems.

The process of software testing is tedious and labor-consuming so manual testing
is unfeasible. In recent years automatic software testing technique is mature gradually,
there are many researches proposed to resolve the issues [17, 24, 23, 6, 16]. A typical
testing technique named concolic testing [15, 20, 7]; it tests the software by
combining concrete and symbolic execution[12] in a co-operative way. This method
is feasibility on real program unit. But if the path constraint has the address which is
symbolic, concolic executor cannot find the suitable real address solution for negated
path constraint and it will abort this negated-path.

Our work is base on concolic testing; we propose a new testing feature named
symbolic address module. We aim to exploit symbolic address solutions and improve
the path coverage. Then we can enter abnormal paths that we had never entered
before.

1.1 Background

In the recent years, software security is a serious issue. Because of humanly
software testing is not efficient, it’s important to use the automatic tool to inspect
software for vulnerability likes buffer overflow[10, 14, 22]. We focus on tainted base
vulnerability; the overwritten data may cause unexpected behaviors. We describe

major researches about our work below.



1.1.1 Common Vulnerabilities
®  Stack-based Overflow
A buffer overflow occurring in the stack memory is referred to as a stack
overflow. A common case is that a local variable near the buffer but the program
doesn’t exam the buffer size. When we manipulate the buffer memory out of
range, the local variable will be covered by our input. Not only local variable but
we also possibly overwrite function pointer, exception handler or return address.
Attacker may use those overwritten data to crash program or executing an
unexpected instruction.
® Heap-based Overflow
A buffer overflow occurring in the heap data area is heap overflow. Heap
memory is dynamically allocated by program at run-time. Exploitation is to
cause the program overwrite the memory management information which
associated with heap memory such as dynamic memory allocation linkage. For
example in BSD Phkmalloc, we can overflow metadata of malloc and then
overwrite GOT entries or return address.
® Uninitialized Variables
Uninitialized variable is a new declared variable which the program didn’t
set an initial value before using it. The value of uninitialized variable cannot be
expected but it may tainted by other variable when two variable allocated in the
same address range. Attacker can find a specific path to control the
uninitialized variable and it may cause the vulnerability.
1.1.2 Program analysis policy
@ Static analysis

Static analysis is performed without actually executing programs. Instead,



static analysis just scans the source code to gather information about the
possible set of values, parses execution states of the program. It is usually
implemented in formal methods such as data-flow analysis, model checking.

Static analysis tool used to detect vulnerability such as buffer overflow. We
can check if there are dangerous standard library functions in source code such
as strcpy and fgets. Unfortunately, the drawback of static analysis is high false
positive; it cannot promise that all the found vulnerability will occur in actually
executing programs.

® Dynamic analysis

Dynamic analysis actually executes the program and detects vulnerabilities
at run-time. Such as valgrind[18], a tool for memory debugging and memory
leaking analysis tool. It usually needs a large number of test cases and a
software testing technique: code coverage observer to explore paths.

Dynamic analysis can pramise that all the found vulnerability will occur
during executing program. It is more precise than static analysis, but it also
needs more time in executing analysis.

1.1.3 Program testing mechanism
® Random testing
Random testing is also named fuzzing; it is commonly used to test program
security. It selects random inputs for target program and monitors if there is
exceptions such as crashes occurred.
Fuzzing explores random paths very fast, but it wastes a large amount of
time to enter the same path. The tool zzuf perform fuzzing testing on target
program.

® Symbolic execution



Symbolic execution is useful for software validation because it can prove if
the errors may occur. The main idea is to use the tracking symbolic for the input
variable. It executes the program symbolically on symbolic variable. It collect
symbolic path constrains and then uses constraint solver to explore execution
paths. In the result, the explored paths represent by mathematical expressions.
The drawback of symbolic execution is it does not scale for large programs
because of there is too many execution paths.

® Concolic testing

Concolic testing combines random testing and symbolic execution in a
co-operative way. It initializes the input variable with the symbolic variable. As
program runs, it first chooses a random value to determine a path and collect the
path constraints. In the next run, it'negates the last path condition and feeds this
new path conditions to the-solver, and gets another concrete value which
represent the test case of new path. This counterexample technique can be used
to find next path conditions and available test case until all the paths is explored.

Concolic testing is focus on finding bugs in the real program. It has higher
branch coverage than random testing and has no false positives or scalability
problem like in symbolic execution.

1.1.4 Control the branch by symbolic address

In normal concolic execution, the symbolic variable refers to the tainted
value. We explore paths with branch conditions which including symbolic
variable.

Considering about the path condition has the tainted address, following are
two specific types:

i. Constant_buf[symbolic index]=constant_value



ii. Symbolic_pointer[constant value] = constant_value
In type i, the base address is constant, but the array index is symbolic. The left of
equation is a symbolic array index dereference. If we want to satisfy the
condition, we have to find a specific address which it’s dereference value is exact
equal to right equation constant_value. In type ii, the pointer is symbolic. The
left of equation is a symbolic pointer dereference. We can also find a specific
address which it’s dereference value is equal to right equation constant_value.

Above the first type we called symbolic array index, the second type we
called symbolic pointer. Because of their address are symbolic variable, we say
that’s the symbolic address. Our thesis interest in symbolic address solution, we
try to exploit symbolic locations for abnormal execution paths.

1.2 Motivation

Concolic testing is a popular software verification technique, it explore
program paths as many as possible and find bugs. In figure 1, the buffer overflow
occurs at Line 6. The address of pointer p is tainted by the standard input. In
cocolic testing, the address of pointer p became a symbolic variable and it cannot
determine the value of p[0]. In the situation we may miss the true path and we

cannot find the vulnerability at Line 8.

1 #include <stdio.h>

2 void main()
3{
4 int *p;

5 char buf[4];

6 fgets(buf,10,stdin);
7 if(p[0]==5)

8 vulnerability;
9

return 0;

. ________________ 1



Figure 1 the address of pointer p is tainded by stdin
If we can find a address for p that let the dereference of pointer p is properly

5, then we can enter an abnormal execution path and find the vulnerability.
1.3 Problem Description
For concolic testing, if the pointer or the array index is symbolic in branch
condition, the executor doesn’t know where to get the proper value from memory.
The executor will execute incorrectly and then give up the path. But in some
cases if we choose a suitable address for symbolic pointer or symbolic array
index, the condition will be satisfied. Then we can enter this execution path.
In order to perform better coverage, we should construct a Symbolic Address
Map for recording information of symbolic pointer and symbolic array index; we
should add relation constraints into_branch condition for exploring abnormal
paths.
1.4 Objective
We focus on handling symbolic address to enter abnormal paths, and we can
trigger more vulnerability in those paths which we had never entered before. To
achieve these goals, we will try to implement two major objects on S?E[5, 4]:
1. Symbolic Address Map: A table records symbolic addresses information
and relationship between each symbolic address.
2. Symbolic Address constraints generator: A generator which generates
relation constrains base on Symbolic Address Map for satisfying the

abnormal path condition.

2. Related Work

Following tools specify and track symbolic variables and constraints; they fully
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explore program paths and find bugs. CRED[19, 11] (C Range Error Detector)
directly checks the bound of memory accesses; it’s just a bound checking tool.
DARTI[9] (Directed Automated Random Testing) dynamic analysis of how the
program behaves under random testing and automatic generation of new test inputs. It
mainly handles the integer constraints and invokes random testing with symbolic
pointer. CUTE[21] is the first concolic testing tool which splintered from DART. It
simulates the pointer into array, it can handle some symbolic pointer cases, but it
cannot handle symbolic array index. CREST[1] is a concolic testing tool for C, it
combine concolic testing with heuristic search strategies to perform high coverage on
large software systems. It doesn’t handle symbolic array index or symbolic pointer.
EXE[3] can handle the more complex pointer access than CUTE. But it cannot handle
multi-dimension dereference. It can handle symbolic array index but just in-bound
related. SAGE[8] implements a new memory model for handling symbolic array
index but just a bound checking tool. Catchconv is a symbolic execution and run-time
integer conversion testing tool. It is a module of Valgrind and only focus on testing
integer conversion error. SecTAC[25] is Trace-based security testing tool. Each trace
is symbolically executed to produce program constrains and security constraints. Its
trace can handle neither symbolic array index nor symbolic pointer. KLEE[2] is
redesigned from EXE. It is a symbolic virtual machine built on LLVM[13] compiler
infrastructure and uses search heuristics to reach high coverage in program. KLEE
cannot handle symbolic array index or symbolic pointer. S2E is redesigned from
KLEE, it provides the illusion of symbolic execution of an entire software stack,
including applications, libraries, OS kernel, device drivers, and even firmware. It has
guessing steps for symbolic address but not enough. Alert is developed by our

laboratory; it used the memory model of EXE and the execution model of CUTE. It



handles both symbolic array index and symbolic pointer, but it cannot handle
out-of-bounds array index.
Our research base on S2E executor, we implement a plug-in for handling

symbolic address. The comparison of above tools is shown as table 1.

Table 1 remaining symbolic variable

Tool Symbolic  Single-dimension Multi-dimension Out-of-bounds
array symbolic pointer symbolic pointer checking
index

DART X X X X

Crest X X X X

Cute X O O X

Exe O O X X

Sage O ) @) X

KLEE X X X X

Alert O ) X X

Hsin O X X @)

Wei @) ) @) @)

3. Method and Steps

We provide a plugin out of box for enhancing path coverage by handling
symbolic address problem, including symbolic array index dereference and symbolic
pointer dereference.

S’E executor inherited KLEE symbolic executor. In the original edition, when
S°E executor found an address is symbolic in constraints, it didn’t know where to get

8



symbolic pointer:

the suitable value in the memory.

Figure 2 shows actual examples for symbolic array index and symbolic pointer

for S’E. S°E executor will transfer the concrete value to the symbolic variable at line 5.

At Line 7, because of the buf’s address is symbolic, S?E executor will try to assign
concrete values to buf’s address and fork states to solve the constraints. But in the
most of the cases, the number of forking states always reached the maximum number
of states to fork when concretizing symbolic value. Unfortunately the original edition

failed to solve the symbolic address problem and can’t reach line 8.

symbolic array index:

10 s2e_kill_state(0, "program terminated™);

10 s2e Kkill_state(0, "program terminated™);

11  return O; 11

return 0;

|

|

|

:

L Lint main() 1 int main()

|

L2 2{

|

: 3 int a=5; 3 int i, a=5;

. 4 int*buf; 4 intbuf[3]1={0,0,1};

|

: 5 s2e_make_symbolic(&buf, 4, "buf"); 5 s2e_make_symbolic(&i, 4, "i");
. 6 s2e_enable_forking(); 6 s2e_enable_forking();
|

L7 if(buf[0]==5) 7 if(buf[i]==5)

i s2e_warning("GOAL"); 8 s2e_warning("GOAL");
|

19 s2e_disable_forking(); 9 s2e_disable_forking();
|

|

|

|

|

|

|

|

Figure 2 symbolic pointer and symbolic array index

But in the left half side of figure 2, if we assign the address of buf[0] equal to
address of a, we can pass the true branch and reach line 8: "GOAL ”. In the right half
side of figure 2, if address of buf[i] equal to address of a (i=4), the program can also
reach line 8: "GOAL "

In our research, we add a new plug-in named SymbolicAddress for S?E. We use a

substitute method to ensure S?E running correctly and construct a symbolic address

9



map to record every symbolic address. When SE executor state terminating, we will
check the state constraints and symbolic address map and then generate a possible
answer. The following is detailed conception.

3.1 Symbolic Address classifications

Before solving the symbolic address problem, we have to define what is
symbolic address? In our thesis, Symbolic address is classed as two main parts:
symbolic pointer and symbolic array index.

Figure 3 shows the possible symbolic pointer classifications.

Example i shows a trivial symbolic pointer. Address of pointer p is symbolic and
“p[0] == concrete value ” is a condition in branch.

Example ii shows multiple symbolic pointers. We have to consider those
different symbolic pointers dereference are adding together in a condition.

Example iii shows the pointer may have offset. The same pointer but different
offset can be bind to different addresses in the memory. It means two different offset
of the same pointer have different dereference values, but they have a fixed distance
between them in the memory.

Example iv shows the pointer to pointer case. Of course, not only pointer to
pointer, but also we have to consider triple or more. ex. ***p, *****p

i. trivial symbolic pointer

— int *p and p = symbolic value

— if( p[0] == concrete value )
ii. extended from trivial

— int*p, *q, *r... and p, g, r... = symbolic value

— if( p[0] + q[O] + r[0]... == concrete value )
iii. multiple offsets of the same pointer address

— int *p and p = symbolic value

—if( p[0] + p[1] + p[2]... == concrete value )
iv. pointer to pointer

— int **p and p = symbolic value

— if( p[0][1] == concrete value )



Figure 3 symbolic pointer classifications

Figure 4 shows the possible symbolic array index.

Example i shows a trivial symbolic array index. Because of integer i is symbolic,
then address of buf[i] is also symbolic. “buf[i] == concrete value” is a condition in
branch.

Example ii shows multiple symbolic array indexes, different symbolic array
indexes dereference are adding together in a condition.

Example iii shows two different base addresses have the same symbolic array
index. They bind to different addresses in the memory and may have different values,
but they have a fixed distance between them in the memory. Furthermore, The case
maybe (bufAl[i] + bufB[i] + bufC[i])or more.

Example iv shows the multi-level symbolic array index. The entire size of buf is
(i xj x k). It means the different (i,.J, k) may cause the buf[i][j][K] have the same

address in the memory.

i. trivial symbolic array index
— intiand i = symbolic value
— if( buf[i] == concrete value )
ii. extended from trivial
— inti, j, k... and i, j, k... = symbolic value
— if( bufA[i] + bufB[j] + bufC[K] ... == concrete value )
iii. multiple base addresses have the same symbolic array index
— intiand i = symbolic value
— if( bufA[i] + bufB[i] == concrete value )
iv. multi-level symbolic array index
— inti, j, k... and i, j, k... = symbolic value
— if( buf[i]l[i1[k] ... == concrete value )

11



Figure 4 symbolic array index classifications

3.2 Symbolic Address variable Substituting
S?E executor should fork a new state and add a negate constraint to it when
execute a branch condition. According to left half side of figure 2, we can get a state

constraints diagram figure 5.

if(buf[0]==5) ‘ @

Constraints:
null

Constraints: Constraints:
buf[0]== buf[0]!=5

Figure 5 origin state constrains diagram

In the fact, KLEE executor cannot execute correctly when the branch condition
has the symbolic address. Although S°E executor inherited KLEE symbolic executor
and has guessing steps to handle symbolic address, it still cannot allocate appropriate
address in most of case. In this case, S°E executor will fork states until reached the
maximum number of states to fork when concretizing symbolic value, then fail to find
a available address for buf[0].

We have an idea for S’E executor when found a symbolic address in state

condition. We declare a new symbolic variable and then substitute the symbolic

12



address dereference value. Figure 6 shows the state constraints diagram after the

substitution. S’E executor now can execute successfully.

Constraints:

Constraints: Constraints:
::5 X|=5

Figure 6 state constrains diagram-after substituting

In addition, if Line 4 in left half.side of figure 2 is “int ***buf” and Line 7 is

“if(buf[0][0]1[0]==5) ”, we have to operator the substitution three times.

if(buf[0][0][0)==5) mmEp if(X1[0][0]==5) mmmEp if(x2[0]==5) mEEEp if(X3==5)

Only substitution is not enough, we have to construct the relation sheep between our
new made symbolic variables. We will explain the symbolic address map structure in
next section.
3.3 Symbolic Address Map

Symbolic address map contains four basic elements: Origin Expression,
Substituted Expression, Related Address and Target Address.
i.  Origin Expression is a symbolic address expression, symbolic executor doesn’t

know where to read it in the memory.

13



ii.  Substituted Expression is a new declared expression used to substitute Origin
Expression. In addition, we add it to Symbolic Table and then Symbolic
executor believes it is a symbolic variable. Now symbolic executor can execute it
continually.

iii. Related Address is the same with the address of Origin Expression’s symbolic
variable in symbolic table. If two symbolic addresses have the same Related
Address, one of them may another one’s dereference.

iv. Target Address is a blank space now. It used to store a concrete address which
suits with state constraints.

Figure 7 shows how to construct the symbolic address map. If the branch conditions

still have symbolic addresses, it adds symbolic address into the map recursively until

there is no symbolic address.

Branch
Conditions

Symbolic
Address Map

no

yes Add new symbolic
address

Symbolic

e Address Exist

Symbolics Table
Add new
symbolic
variable

Figure 7 Flowchart of Constructing symbolic address map

Figure 8 is a symbolic address map example. Symbolic executor found a
symbolic address in branch condition (Line 13). We declared a new expression named
bufl, its origin expression was buf, and the related address was the same with the
address of buf in Symbolic Table. Besides, we added bufl into Symbolic Table. Until

now, bufl represented the value at address buf[1] in memory. Because of buf[1] was

14



symbolic, we had to declared a new expression named buf2 and substitute bufl. In the
end, buf3 represented a concrete value at address buf[1][3][5] in memory. We

finished substituting all the symbolic address in branch condition.

. . Oxbffff918: (Read w8 .

1 #include <stdio.h> B SaaatICIRGE LR Symbolics Table
oxbffffola: (Read w8
2 #include "s2e.h" Oxbffff9lb: (Read w8
exbffff9lc: (Read ws

3 oxbffffold: (Read w8 Array->name___MemoryObject->address
Oxbffff9le: (Read w8

4 int main() exbffff91f: (Read w8 1. a Oxbffffo20
Oxbffff920: (Read w8

5{ x 21: (Read w8 2. b Oxbffff91c
: : (Read w8

6 inta; X 23: (Read w8 3. buf Oxbffff918

7 int b; ' 4. bufl Oxbffffo18

8 int***buf; | 5. buf2 Oxbffff918

9 s2e_make_symbolic(&a, 4, "a"); | 6. buf3 Oxbffff918

10 s2e_make_symbolic(&b, 4, "b"); S bolic Add M
11 s2e_make_symbolic(&buf, 4, "buf"); ymbofic ress Map
12 s2e_enable_forking();

) Related Origin _Substituted  Target
13 if( buf[1][3][5]==5)

|
:
_ | 1. Oxbffffo18  buf bufl
14 s2e_warning("GOAL"); I
_ ] ' 2. Oxbffff918 bufl buf2
15 s2e_disable_forking(); :
16 1 3. Oxbffffo18 buf2 buf3
17 s2e_kill_state(0, "program terminated"); |
18 return 0; i
19} l
I

______________________________________

Figure 8 symbolic address map example

3.4 Symbolic Address Constrains Generator

Our goal is finding Target Address for symbolic address map. We could use
Target Address stored in symbolic address map to generate symbolic address
constrains. In the end, we add symbolic address constrains into symbolic execution
state, and then symbolic executor will automatically generate a test case for every
symbolic address.

Figure 9 shows how to generate symbolic address solutions. If state constraints
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have any symbolic addresses before symbolic execution state terminated, we choose a
combination of addresses from Symbolics Table and pass them into symbolic address
map Target Address field. We use STP solver to identify if the relationships in
Symbolic Address Map is satisfy all constrains in symbolic execution state. If answer
is yes then we obtain a solution, otherwise we choose next combination addresses
from Symbolic Table and use STP solver to identify again.

If all combination of addresses in Symbolic Table is not the solution, then we try
to find it in the actual memory. As before, but we choose a combination of addresses
from actual memory. If there is no solution in Symbolics Table or actual memory, we

say that this path maybe is impossible in the program.

State
constraints

Symbolic
Address map
exist

Symbolics Table, Memory,

Symbolic Address Map Symbolic Address Map
yes Chose next no Chose next
addresses addresses

yes

yes
Stp Solver Stp Solver

no
Satisfy All
constrains

yes yes

Find a solution in Find a solution in No symbolic
Symbolics Table Memory address solution

Figure 9 Flowchart of symbolic address solution

no

End no

4 Implementation

S°E provides the core symbolic execution engine. All the analysis is done by

16



various plug-in. In this thesis, we write a plug-in named SymbolicAddress that uses
features of the S’E plug-in infrastructure.

We substitute symbolic pointer dereference and symbolic array index
dereference during symbolic execution, and we add them into Symbolic Address Map.
Symbolic Address Map describes what expression to be substitute and where address
to be substitute.

Before S?E execution state terminated, according to Symbolic Address Map we
search available addresses in Symbolics Table or actual memory for every symbolic
address. Finally, we add those available address relation constrains into S°E execution
state conditions, and the S°E plug-in named TestCaseGenerater will generate an
available test case for every symbolic variable automatically.

4.1 Symbolic Address Map & Class
As Figure 10 shows, Symbolic Address Map construct from symbolic addresses

during symbolic executing.

Struct SApoint{
uint64_t tempAddress;
ref<Expr> tempExpr;

const Array* tempArray;

const Array* targetArray;
uint64_t targetAddress;

! 1
! |
! 1
! |
! 1
! 1
! 1
! |
! 1
! |
! 1
: ref<Expr> targetExpr; :
|
. I
! |
! 1
! 1
! 1
: ref<Expr> targetValueExpr; :
! |
! 1
! 1

Figure 10 Symbolic Address structure
tempAddress : Related Address.

tempExpr : Substituted Expression.

tempArray : the Aarray object used to store major variable name of tempExpr.
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targetExpr : Origin Expression.
targetArray : the Aarray object used to store major variable name of targetExpr.
targetAddress : Target Address.

targetValueExpr : the content of targetaddress in actual memory.

Class SymbolicAddress {
Private:
int SAcounter;

std::vector<SApoint> SAmap;

public:
void adjust(S2EExecutionState* state,
ref<Expr> expr);
void solutionGEN(S2EExecutionState* state);
Private:
bool searchSymbolicMap(S2EExecutionState* state,
vector<SApoint>& map);
bool searchMemoryMap(S2EExecutionState* state,
std::vector<SApoint>& map,
uinté4_t beginMap,
uinté4_t endMap);
bool chooseNextSymbolicAddress(S2EExecutionState* state,
std::vector<SApoint>& map);
bool chooseNextTargetAddress(std::vector<SApoint>& map,
uinté4_t beginMap,
uinté4_t endMap);

Figure 11 shows our implementation. SAcounter used to calculate how many
symbolic addresses in SAmap. Function adjust doing the substitute stage when
symbolic executor found the symbolic address. Function solutionGEN doing the

solution searching stage and constrains generating stage at symbolic execution state

terminating.
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4.2 Symbolic Address Plug-in for S2E

S’E symbolic executor will call the function handleForkAndConcretize when
instructions have expression. If the expression is constant or state->forkDisabled is on,
it will simply pick one possible value and return. Otherwise, if the expression has
symbolic address, it will run the guessing steps.

As figure 12, we instrument our function adjust to Instead the guessing steps. We
pick the moment to substitute symbolic address when handleForkAndConcretize find
the symbolic address.

S I the current Execution State pointer

T : the current Expr in the branch

1 S2EExecutor::handleForkAndConcretize (S, £, ...){
If £is NOT a symbolic address{

return

guessing-steps
adjust( S, €)

O © 0O N o U B~ W N
(]

Figure 12 instrumenting function adjust

Before every symbolic execution state terminating, S?E handler will call the
function processTestCase. This function will call the original author plug-in named
TestCaseGenerator, it will generate an available value for each symbolic variable.

As figure 13, we instrument our function solutionGEN before calling the plug-in
TestCaseGenerator. We search available address for each symbolic address and add

related constrains between each other into S?E state constrains. In the end, plug-in
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TestCaseGenerator will also generate an available value for each origin symbolic

variable and our new made symbolic variable.

S  the current Execution State pointer

1 S2EHandler::processTestCase ( S ){
2

3 solutionGEN ( S) /[ add constrains before running s2e::plugins:: TestCaseGenerator

5 getPlugin("TestCaseGenerator™)

Figure 13 instrumenting function solutionGEN

4.3 Symbolic Address adjust function

Figure 14 shows the pseudo code of function adjust. We use integer N to count
how many symbolic addresses now. We also use the String “SA”+ IntToStr( N ) as the
new name for our new declared expression. Line 8 to Line 12 will fill the new
symbolic address with the substitute information. Now the struct member
P.targetAddress and P. targetValueExpr will be blank, we will use them in other

steps.
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P oy

. the current Execution State pointer

. the current Expr in the branch

S

t

N :the number of symbolic addresses

A !the origin symbolic variable’s address in memory
P

. a SApoint struct used to store symbolic address information
NAME :anew symbolic variable used to Substitute symbolic address value

SAMAP :the vector used to store every SApoint information in the program

1 SymbolicAddress:: adjust(S , £ ){

2 N<N=+1

3 A < symbolic variable’s address in £

4  NAME < String“SA” + IntToStr( N)

5  S->createSymbolicArray( A , 4 , NAME)

6

7 P < new SApoint

8 PtempAddress < A

9 PtargetArray < findSymbolicObjects( £ )->second

10 PtargetExpr < E

11  P.tempArray < findSymbolicObjects( NAME )->second
12 P.tempExpr < Expr:: createTempRead( £.tempArray , 32 )
13

14  SAMAP.push_back( P)

15}

Figure 14 function adjust

Figure 15 is a Symbolic Address Map example of figure 2. Both programs we

only consider State 0 when executing true branch, and each state has one symbolic

address.
C ST T TS TSt TTTTTTTTTTTTTTTTTTTT T T T
: Left figure, State O right figure, State 0 :
| tempAddress Oxbffffalc Oxbffffolc :
! 1
| tempExpr ReadL.SB w32 0 SA1 ReadLSB w32 0 SA1 |
i tempArray SAl SAl :
I
| targetExpr ReadlLSB w32 0 buf ReadL.SB w32 0 i :
|
: targetArray buf i i
| targetAddress null null :
| |
I 1

targetValueExpr null null

]



Figure 15 example of Symbolic Address Map after adjusting
4.4 Symbolic Address solution generator function

Figure 16 shows the pseudo code of function solutionGEN. We have two
searching algorithm: searchSymbolicMap and searchMemoryMap. First we search the
Symbolics Table for symbolic address solution. If we didn’t find an available solution,
then we search the entire memory from address BM to address EM. In our research,
we define the region from BM to £M as addresses near the symbolic address in stack
memory.

When we get an available solution for Symbolic Address Map, we add two
constrains (line 13 ~ 16) into S’E execution state. At Line 13, symbolic address
expression P ->targetExpr should equal to concrete address P ->targetAddress. At
Line 14 ~ 15, our new declared expression P ->tempExpr should equal to expression

P ->targetValueExpr which address’is P ->targetAddress.

22



S !the current Execution State pointer

B :aboolean variable will be TRUE if the state have a symbolic solution
SAMARP :the vector used to store every SApoint information in the program
BM :the begin of the memory

EM :the end of the memory

P : a SApoint pointer used to store symbolic address information

€ ! the current symbolic address constrains that should be add to the state

1 SymbolicAddress:: solutionGEN ( S ){

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
2 If searchSymbolicMap( S , SAMAP ) is true{ i
3 B < True :
4 lelse if searchMemoryMap(S , SAMAP , BM , EM) is true{ i
5 B < True i
6 Jelse{ :
7 No solution!! i
8 B < false I
9} i
10 l
11 If Bis true{ i
12 foreach P € SAMAP / i
13 £ < EqExpr::create(P ->targetExpr, ConstantExpr::create(P ->targetAddress , 32) ) :
14 T < =AndExpr::create(E , i
15 EqExpr::create(P ->tempExpr, P ->targetValueExpr)) :
16 S ->constraints.addConstraint(T ) i
17 Y :
18 i
19} i

Figure 16 function solutionGEN
4.4.1 Searching solutions from Symbolics Table

Figure 18 shows the pseudo code of function searchSymbolicMap. At Line 2,
function chooseNextSymbolicAddress chooses a combination of addresses from
Symbolics Table, and those addresses are set in each object SApoint member
targetValueExpr where in Symbolic Address Map. We loop the function until found

an available combination or all the combinations are unavailable.
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At Line 9~13, we handle the case which object SApoint member targetArray is
the same. We have two major cases:
I.  Symbolic pointer: multiple offsets of the same pointer address.
if( p[0] + p[1] == concrete value ), p is a symbolic pointer.
ii. Symbolic array index: the same symbolic array index with multiple bases.
if( bufA[i] + bufB[i] == concrete value ), i ,j are symbolic array index
We can solve the problem by adding a constraint: the offset between two object
SApoint member targetArray should equal to offset between two object SApoint
member targetExpr.
At Line 14~18, we add a constraint to handle the pointer to pointer problem:
int **p, p is a symbolic pointer, if( p[1][2] == concrete value )
If X and Y are both the symbolic addresses and Y adjust from X. Figure 17 shows the
dereference relationship between X and Y. The value at X->targetAddress in memory
should equal to which subtract the offset of Y->targetExpr from Y->targetAddress.
Moreover, this method can handle not only the pointer to pointer, but also ***p,

****p... or more situation.

X Y
P+1 X->targetAddress X[1] L Y[1]
P+2 Y->targetAddress Y[z]

Figure 17 p[1][2] == concrete value
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S : the current Execution State pointer
SAMARP :the vector used to store every SApoint information in the program
P . a SApoint pointer used to store symbolic address information
P’ : a SApoint pointer used to store symbolic address information
T . the current address constraints used for solver
SUC :aBoolean variable used to determin
1 searchSymbolicMap( S , SAMAP ){
2 while chooseNextSymbolicAddress( S , SAMAP ) is true{

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

l

3 E - NuLL

i 4 foreach P € SAMAP [

. 5 Et <-AndExpr::create (E ,

i 6 EqExpr::create(P ->targetExpr, ConstantExpr::create(P ->targetAddress , 32) ))
L7 E < AndExpr::create(E ,

i 8 EqExpr::create(P ->tempExpr, P ->targetValueExpr))

L9 foreach P° € SAMAP && P’ ->targetArray->name is equal P ->targetArray->name{
i 10 €t < AndExpr::create(E ,

i 11 EqExpr::create(ConstantExpr::create((P ->targetAddress)-( P’ ->targetAddress) , 32),
12 SubExpr::create(P ->targetExpr, P’ ->targetExpr)))

13 }

L 14 foreach P° € SAMAP && P’ is adjust from P’ {

i 15 £ < AndExpr::create(E ,

| 16 EqExpr::create( S ->readMemory( P->targetAddress , 32),

i 17 ConstantExpr::create( (P ->targetAddress)-(offset of P’ ->targetExpr), 32))
| 18 }

19 }

i 20 solver->mayBeTrue(Query( S ->constraints, £ ), SUC)

21 if SUC is true{

i 22 foreach P € SAMAP

i 23 P ->targetValueExpr < S->readMemory( P ->targetAddress , 32)

' 24 )

i 25 return TRUE

| 26 }

27}

. 28 return FALSE

| 20}

Figure 18 function searchSymbolicMap
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4.4.2 Searching solutions from actual Memory

The function searchMemoryMap is almost the same with searchSymbolicMap.
The only different is Line 2 in figure 18; instead of chooseNextSymbolicAddress we
use the function chooseNextTargetAddress. We search a range of actual memory,
including concrete value and symbolic variable. In the fact, if we define the region as
entire memory including text, data, heap and stack, it will take a large amount of
searching time. In our implement, we search near the memory region in stack which
near the symbolic address. We have the best opportunity to find available addresses in
this region.

In addition, if the number of origin symbolic variables is more than the number of
symbolic address we new declared. We do not need to search anywhere. We set each
origin symbolic variable address to each:SApointer member targetAddress. It will be a

symbolic address solution.

5 Result and Experiment

We present results of experiments and prove symbolic address module in this
section. We use the example of SAGE and our made programs to illustrate the
solution of symbolic array index and symbolic pointer. Next, we discuss the
efficiency of two searching algorisms when execution state has remaining symbolic
variables. In the end, we illustrate the enhancement on path coverage with real
programs.

5.1 Asimple Example of SAGE

As shown in figure 19, we test the example of SAGE. The program has two

symbolic variable x and y. Our goal is to reach the Line 15.

When reached line 14, we executed the true branch first. We found 2 symbolic
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array indexes in the state constraint. Then we new declared symbolic variables x1 and
y2, X1 is the dereference value of buf[x], y2 is the dereference value of buf[y]. We
updated our symbolic address map and adjusted the state constraint to
(Eq (ReadLSB w32 0 x1)
(Add w32 2 (ReadLSB w32 0 y2)))

For generating symbolic address solution, we searched a combination of addresses in
stack memory. Later, we discovered when x equal 3 and y equal 1, then x1 equal 2
and y2 equal 0, and this was a combination of addresses solution which satisfied the
state condition. According to symbolic address map, we added related constrains into
the state constraint. In the end, plug-in TestCaseGenerater automatically generated a
test case for symbolic variables which including our new declared. The false branch

symbolic address solution is also generated in the same way.

1 #include <stdio.h> compared 23 Lines
Found a solution in memory.
q state constraint:
2 #include "s2e.h" (Eq (ReadLSB w32 8 x1)
(Add w32 2
A g (ReadLSB w32 © y2)))
3int mam() Symbolic address solution:
TestCaseGenerator: processTestCase of state @ at address 0x8048477
4 { X: 83 @0 00 @8
y: 61 00 00 0
1 © x1: 82 00 00 60
5 Int Xy, y2: 66 €6 €0 @6
1 LIFA LA
6 s2e_make_symbolic(&x, 4, "x"); —
) Found a solution in memory.
7 s2e_make_symbolic(&y, 4, "y"); P
. (Eq (ReadLSB w32 @ x1)
8 int buf[4]; (Add w32 2
(ReadLSB w32 @ y2))))
. Symbolic address solution:
9 bUf[O]—X, TestCaseGenerator: processTestCase of state 1 at address 8x8848477
—N- Xx: 08 00 00 08
10 bUf[l]_Oi y: 68 00 80 0@
x1: 66 00 @8 ee
11 buf[2]=1 y2: 66 @0 00 @0
’

12 buf[3]=2;

13 s2e_enable_forking();

14 if( buf[x]==bufly]+2)

15 s2e_warning("GOAL");

16 s2e_disable_forking();

17 s2e_kill_state(0, "program terminated");
18 return O;

19}
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Figure 19 SAGE
5.1.1 More Complicated Symbolic Array Index

In this sub section, we evaluate the test case as shown in figure 20, which has
more complicated symbolic array index. This experiment focus on two major
classifications for branch condition:

if (bufA[i][G]1[K] + bufB[k] + bufC[I] ==10)

1. Multi-dimension symbolic array index

— bufA[i][j][K] is a 3-dimension symbolic array index
2. Different base addresses have the same symbolic array index
— bufA[i][j]1[K] and bufB[k] have the same symbolic array index k
The program has four symbolic variable i, j, k and I. Our goal is to reach the Line 16.
As our expectation, the true branch symbaolic address solution:
bufA[1][0][2] + bufB[2] + bufC[1] =11+ k2+13=5+2+3 =10
In the false branch, because of bufA[O][0][0] is an uninitialed value, so its value is

Oxb7ffhf68.
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1 #include <stdio.h>
2 #include "s2e.h"

3 int main()

compared 1312 times

Found a solution in memory.
state constraint:
(Eq 10
(Add w32 (ReadLSB w32 @ 13)
(Add w32 (ReadLSB w32 @ k2)
(ReadLSB w32 0 i1))))
Symbolic address solution:

4 { TestCaseGenerator: processTestCase of state @ at address 8x80484f@
. i: 81 e0 00 00
5 |nt|,J,k,|; j: 80 00 ©0 €0
k: 82 80 ©0 0B
. . - 1: 81 08 08 08
6 s2e_make_symbolic(&i, 4, "i"); il: @5 00 60 00
k2: 82 @0 €8 @8
. . - 13: 63 00 00 00
7 s2e_make_symbolic(&j, 4, "j");
8 s2e_make_symbolic(&k, 4, "k"); LRI 0 T
Found a solution in memory.
R - state constraint:
9 s2e_make_symbolic(&l, 4, "I"); =
(Eq
- (Add w32 (ReadlLSB w32 @ 13)
10 int bufA[2][3][4]; T s w32 (ReadLse w3z 6 k2)
. _ . Symbelic address solution:
11 int bUfB[3]_{01012}1 TestCaseGenerator: processTestCase of state 1 at address ©x80484f0
12 intbufC[2l={03}; RO G0 C
k: 88 00 00 00
=05 1: 60 60 8@ 060
13 bufA[1][0][2]=5; il: 68 hf6 GFf Gb7 &

k2: 8@ 0@ 00 @@
13: 68 80 80 08

14 s2e_enable_forking();
15 if(bufA[i][j]1[k]+bufB[k]+bufC[l]==10)
16 s2e_warning("GOAL");

17 s2e_disable_forking();

18 s2e_kill_state(0, "program terminated");
19 return O;

20}

Figure 20 program 1
5.1.2 Symbolic Pointer classifications

We evaluate the test case as shown in figure 21, which includes all symbolic
pointer classifications. This experiment focus on two major classifications for branch
condition:

if (pA[3] + pA[4] + pB[O][1][2] == 10)

1. Multi-dimension symbolicpointer

— pBJ0][1][2] is a 3-dimension symbolic pointer
2. different offsets of the same pointer address
— pA[3] and pA[4] is the same pointer but different with offset

The program has a single-dimension pointer pA and a 3-dimention pointer pB. Our
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goal is to reach the Line 14.

In the true branch, pAl is the dereference value of pA[3] and pA2 is the
dereference value of pA[4]. Because of pB[0][1][2] is a 3-dimension symbolic pointer,
pB3 is the first-dimension dereference value, pB34 is the second-dimension
dereference value which adjust from pB3, pB345 is the third-dimension dereference
value which adjust from pB34, so pB includes three symbolic addresses. There are
total five symbolic addresses in the path condition. The final state constraint is:

(Eq 10

(Add w32 (ReadLSB w32 0 pB345)
(Add w32 (ReadLSB w32 0 pA2)
(ReadLSB w32 0 pAl))))
Figure 22 shows the multi-dimension graph for symbolic pointer pA and pB. The true
branch symbolic address solution:
pA[3] + pA[4] + pB[0][1][2] = pAl+ pA2 A+ pB345=3+5+2=10

In the end, we exploit this abnormal path success.

1 #include <stdio.h> compared 12476 times

Found a solution in memory.
. " " state constraint:
2 #include "s2e.h (Eq 10
(Add w32 (ReadLSB w32 © pB345)
(Add w32 (ReadLSB w32 & pA2)

3 int main() (ReadLSE w32 @ pAl))))
Symbelic address solution:
4{ TestCaseGenerator: processTestCase of state © at address 0x8848485

pA: 10 9 Gff 6bf &

q —o. pB: 10 f9 &ff &bf &

5 int a=2; pAl: 83 00 00 08
pA2: 85 60 08 00

i =3: pB3: 10 9 &ff Gbf @
6 intb 3’ pB34: 18 Tf9 &ff &bT &
. pB345: 82 00 ©88 00
7 int c=5;
. compared 1640 times
8 Int *pA, Found a solution in memory.
state constraint:
- (Eq false
9 int ***pB; (Eq 10

(Add w32 (ReadLSB w32 @ pB345)
(Add w32 (ReadLSB w32 © pA2)

10 s2e_make_symbolic(&pA, 4, "pA");

Symbolic address solution:

11 528 make Symbollc(&pB 4 ann). TestCaseGenerator: processTestCase of state 1 at address ©x8848485
- B pA: 08 9 GFF Gbf
i . pB: 10 f9 &ff &bf &
12 s2e_enable_forking(); 2 A

pA2: B2 €0 08 08

13 if(pA[3]+pA[4]+pB[0][1][2]==10) Egg;:lga fgg@;ﬁf‘fﬁggf@ﬁ
14 s2e_warning("GOAL");

pB345: 10 9 &ff 6bf &
15 s2e_disable_forking();

16 s2e_kill_state(0, "program terminated");
17 return O;
18}



Figure 21 program 2

Oxbffff910

Oxbffffo14

Oxbffffa18

Oxbffff91c

Oxbffff920

PA[3]- - pA[4]- -
owrriono | Oxbffff910 [ owmow | Oxbffffo10 |\
oxbffffora | Oxbffff910 "‘ oxbffffors | Oxbffff910 \‘\
Oxbffffo18 2 /.’4 Oxbffffo18 2 :
Oxbffffo1c pA1=3 b oxbffffolc 3 F."']
0xbffffa20 5 Oxbffffa20 pA2=5 o
pB[O] - - . pB[O][1] - pBIO][1][2]-.
pB3=0xbffff910 Le Oxbffff910 Oxbffffo10
Oxbffff910 pB34=0xbffff910 / Oxbffff910
2 2 pB345=2 [
3 3 3
5 5 5

Figure 22 multi-dimension graph for symbolic pointer

5.2 Searching Algorisms analysis

In our thesis, we had implemented 2 algorisms for symbolic address solution

generator: searching memory and searching Symbolic Table. Searching memory is a

basic searching algorism; we search for the solution in memory. If searching range is

too large, it may get stuck in searching step for a long time; if the range is too small, it

may miss possible solutions. According to our experiment, we usually set the range to

near the symbolic address location. Searching Symbolics Table is an opportunistic

algorism. We map the address solutions to Symbolics Table and check if it is a

solution. This algorism is useful when remaining symbolic variables which have no
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relationship with symbolic address exist.

Table 2 shows the number of compares on two algorisms; we test 3 programs

which in previous section. N/A means it has no solution in Symbolics Table. Because

of there is no any remaining symbolic variable, searching Symbolics Table only

improve the program1’s false branch.

Table 2 analysis of searching algorism

Num. of symbolic

Searching memory

Searching Symbolics Table

Program address true branch | false branch | true branch | false branch
SAGE 2 23 1 N/A 1

Programl 3 1312 74 N/A 34

Program?2 5 12476 1640 N/A N/A

In the fact, when the buffer overflow happened, it always not only covers the
symbolic address. It also covers other-variable in most of case. Table 3 shows the
situations when remaining symbolic variables are exist. Searching Symbolic Table is
a powerful method to reduce the number-of ‘compares; in progam2 it reduces the
number of compares from 12476 to 92 when remaining variable when there are two
remaining symbolic variables. In addition, the compares will increase a little when
there are more than 3 remaining symbolic variables. It’s because of the Symbolics
Table size will increase with remaining symbolic variables. It has to waste some

compares on initialization.

Table 3 remaining symbolic variable

1 remaining 2 remaining 3 remaining 4 remaining
true false true false true false true false
Program
branch branch branch branch branch branch branch branch
SAGE 2 1 2 1 2 1 2 1
Programl 34 34 48 48 64 64 82 82
Program?2 8274 N/A 92 83 103 102 124 123

32




6 Conclusion

We propose a new symbolic address module in this thesis. We construct a new
symbolic address map on S?E. We trace and adjust the symbolic address during the
symbolic execution step, and then we handle the concrete execution step by our
symbolic address solution generator. Two execution steps work in a co-operative way
and exploit abnormal paths.

Our objective is to exploit the path condition which has the symbolic address like
(*tainted-pointer == concret-value). If the program has another remaining tainted
variable, we can directly assign concret-value to this tainted variable and assign
tainted variable address to tainted-pointer, and the branch is always be true. In other
words, if there is a symbolic address with remaining tainted variable, we can say this
branch is completely controllable. Jf there is no remaining tainted variable, we still
possibly find a solution in concrete memory; in the situation we say this branch is
possibly controllable.

In future works, it is possibly find the statement (*tainted-pointer = tainted-value)
in the program. If found the situation then we can modify any memory content and

fully control the target program followed my inclination.
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