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摘要 

本研究提出了一個利用有視覺的自動車在戶外人行道上作機器導盲犬應用

的系統，該系統利用一部搭載雙鏡面環場攝影機的自動車當作實驗平台，能在環

場影像中直接求出實際物體的立體資訊。首先，利用環境學習的技術建立導航地

圖，此地圖包含自動車導航路徑、沿途路標的位置，以及相關的導航參數。接著，

利用人行道上特定的路標(人行道路緣、消防栓和電線杆)作定位來輔助導航，本

研究整合上述兩項技術提出一個擁有自動定位和自動導航功能的自動車系統。 

此外，本研究亦利用空間映射的方法提出新的直線偵測技術，能夠在環場影

像上直接偵測出直線特徵，並計算出人行道上垂直形狀路標的位置，進而提出偵

測以及定位消防栓和電線杆的方法。最後利用已定位的路標位置，來校正機械誤

差，並算出正確的自動車位置。接著，本研究也提出自動跟隨人行道路緣線的技

術，以及一項新的動態障礙物偵測技術，利用一「地板配對表」定出障礙物位置，

讓自動車穩定且不間斷地完成導航，並在導航路徑中閃避障礙物。此外，本研究

亦提出動態調整曝光值以及動態調整門檻值的技術，讓系統適應戶外環境的各種

光影變化。實驗結果顯示本研究所提方法完整可行。 
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ABSTRACT 

A vision-based autonomous vehicle system for use as a machine guide dog in 

outdoor sidewalk environments is proposed. A vehicle equipped with a two-mirror 

omni-camera system, which can compute 3D information from acquired omni-images, 

is used as a test bed. First, an environment learning technique is proposed to construct 

a navigation map, including a navigation path, along-path landmark locations, and 

relevant vehicle guidance parameters. Next, a vehicle navigation system with 

self-localization and automatic guidance capabilities using landmarks on sidewalks 

including curb lines, hydrants, and light poles is proposed. Based on a space-mapping 

technique, a new space line detection technique for use on the omni-image directly is 

proposed, which can compute the 3D position of a vertical space line in the shape of a 

sidewalk landmark. 

Moreover, based on the vertical space line detection technique just mentioned, 

hydrant and light pole detection and localization techniques are proposed. Also 

proposed accordingly is a method for vehicle self-localization, which can adjust an 

imprecise vehicle position caused by incremental mechanic errors to a correct one. In 

addition, for the purpose to conduct stable and continuous navigation, a curb line 

following technique is proposed to guide the vehicle along a sidewalk. To avoid 
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obstacles on the navigation path, a new dynamic obstacle detection technique, which 

uses a ground matching table to localize an obstacle and then avoid it, is proposed. 

Furthermore, dynamic techniques for exposure and threshold adjustments are 

proposed for adapting the system’s capability to varying lighting conditions in 

navigation environments. 

Good experimental results showing the flexibility and feasibility of the proposed 

methods for real applications are also included. 
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Chapter 1  
Introduction 

1.1 Motivation 

Guide dogs provide special services to blind people. Formally training methods 

for guide dogs have been adopted for over seventy years. Besides leading blind people 

to correct destinations, guide dogs can assist them to avoid obstacles and negotiate 

street crossings, public transportations, and unexpected events when navigating on the 

road. For blind people, guide dogs not only strongly enhance their mobility and 

independence, but also improve the quality of their lives. 

However, according to the information provided by Taiwan Foundation for the 

Blind [13] and Taiwan Guide Dog Association [14], there are more than fifty thousand 

blind people and just thirty trained guide dogs in Taiwan. Therefore, not all of the 

blind people have opportunities to adopt their own guide dogs, and so they have to 

utilize some other mobility aids likes blind canes instead. At least the following 

problems cause difficulties in training more guide dogs for the blind:  

1. it costs at least one million NT dollars to train one guide dog; 

2. only certain breeds of dogs can be trained as guide dogs; 

3. after carefully bred for over one year, they still need be trained for four to six 

months before navigation tasks can be assigned to them for specific blind 

persons; 

4. personality and individual differences between the master and a guide dog are 

problems which should be solved; 
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In order to overcome the problem of insufficient guide dogs, it is desirable to 

employ a machine guide dog in replacement of traditional one for each blind person. 

A vision-based autonomous vehicle with high mobility and being equipped with an 

omni-camera can assume this task if it can be designed to automatically navigate in 

outdoor environments by monitoring the camera’s field of view (FOV) automatically. 

When the vehicle detects the existence of a risk area, it must safely bring the blind 

person through the dangerous condition by itself; and when the vehicle arrivals at the 

goal according to the instruction, it should give him/her a notice immediately. This 

study aims to design a machine guide dog with these functions using autonomous 

vehicle guidance techniques. 

For this purpose, the most important issue is how to construct the autonomous 

vehicle to navigate successfully and securely in complicated conditions in outdoor 

environments. Usually, an autonomous vehicle is equipped with an odometer, and we 

could obtain the current position with respect to the initial position. However, the 

location of the autonomous vehicle could become imprecise because the vehicle 

might suffer from incremental mechanic errors. One solution is to continually localize 

the vehicle by monitoring obvious natural or artificial landmarks in the environment 

using computer vision techniques.  

Usually, there must be some regular scenes like sidewalks that a blind person has 

to pass frequently, so we may train the autonomous vehicle in advance just like 

training a guide dog in these places. Simply speaking, we may design the autonomous 

vehicle to “memorize” along-path landmarks in advance, and instruct the vehicle 

system during navigation to retrieve the current location information by the use of the 

learned landmarks and set foot on the expected destination in the end. 

In general, a visual sensor could yield undesired effects in acquired images under 

varying lighting conditions in outdoor environments, and to solve this problem we 
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might also train the vehicle to adapt to these different conditions. Moreover, the 

autonomous vehicle should also be required to prevent itself and the blind people 

from dangerous events in the guide process. Some suitable strategies like following a 

line and avoiding obstacles should be adopted in the navigation sessions.  

In summary, the goal of this study is to develop an autonomous vehicle for use as 

a machine dog with the following abilities: 

1. learning the path on sidewalks; 

2. navigating to the goal successfully in a learned path; 

3. detecting obstacles and avoiding them; 

4. adapting itself to different weather conditions in outdoor environments. 

1.2 Survey of Related Works 

In recent years, more and more research results about developing walking aids 

for the blind have emerged, and some of them are reviewed here. As an improvement 

of the blind cane, a simple aid is to install a sensor device on a blind cane in order to 

detect obstacles at a certain distance. Other aids may also be designed to be worn by 

the blind like the NavBelt [1], which has the function of continually detecting front 

obstacles automatically. In general, we call these devices electronic travel aids (ETA) 

which cannot automatically guidance the blind but only help them to find obstacles. 

Therefore, some more helpful navigation systems were proposed. Borenstein and 

Ulrich [2] developed the “GuideCane” which has a shape similar to widely used blind 

canes and can find obstacles by ultrasonic sensors to help blind people to pass them 

automatically. A guide dog robot called Harunobu-5 [3] was proposed by Mori and 

Sano which can follow a person using a visual sensor. Also, Hsieh [4] utilized two 

cameras installed on a cap to find accessible regions and obstacles in unknown 
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environments and alert the blind by auditory outputs. In addition, Lisa et al. [5] 

utilized a DGPS (differential GPS) device to localize a blind person in indoor and 

outdoor environments. 

On the above-mentioned autonomous vehicle systems used for navigation, 

usually installed are some visual sensors or other equipments in order to give 

assistance to the blind. An autonomous vehicle system mounted with a tri-aural sensor 

and an infrared range scanner was proposed by Kam et al. [6]. Also, Chen and Tsai [7] 

proposed an indoor autonomous vehicle navigation system using ultrasonic sensors. 

In outdoors, the GPS can be used as a localization system for the vehicle [8]. 

Likewise, visual sensors have also been used widely for vehicle navigation. Chen and 

Tsai [9] proposed a vehicle localization method which modifies the position of the 

vehicle by monitoring learned objects. Another technique of vehicle localization by 

recognizing house corners was proposed by Chiang and Tsai [10]. Besides, in some 

other applications, cameras with other devices were combined as the sensing device. 

Tsai and Tsai [11] used a PTZ camera and an ultrasonic sensor to conduct vehicle 

patrolling and people following successfully. What is more is the use of cameras and 

laser range finders together for environment sensing, like Pagnottelli et al. [12] who 

performed data fusion for autonomous vehicle localization. 

In contrast with a traditional CCD camera, an omni-camera has the advantage of 

having a larger FOV, and so they can monitor a larger environment area. Because of 

this advantage, in this study we exploit the use of a stereo omni-camera which is also 

useful for acquiring omni-images to retrieve range information. In the following, we 

review some studies about vehicle navigation systems using omni-cameras. One way 

of localizing a vehicle is to detect landmarks in environments. Yu and Kim [15] 

detected particular landmarks in home environments and localized the vehicle by the 

distance between the vehicle and each landmark. The technique proposed by Tasaki et 
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al. [16] conducted vehicle self-localization by tracking space points with scale- and 

rotation-invariant features. Wu and Tsai [17] detected circular landmarks on ceilings 

to accomplish vehicle indoor navigation. Siemiątkowska and Chojecki [18] used the 

wall-plane landmarks to localize a vehicle. Another method proposed by Courbon et 

al. [19] conducted vehicle localization by memorizing key views in order along a path 

and compared the current image with them in navigation. The vehicle system 

proposed by Merke et al. [20] used omni-cameras to recognize lines on the ground to 

conduct self-localization in a Robocup contest environment. 

Except for self-localization, the autonomous vehicle has to own more 

capabilities when navigating in more complicated environments. Obstacle avoidance 

is an essential ability for vehicle navigation [21]. In outdoor environments, estimation 

of traversability of a terrain is another important topic. Fernandez and Price [22] 

proposed a method which can find traversable routes on a dirty road using color 

vision. By training a classifier with autonomous training data, Kim et al. [23] could 

estimate the traversability of complex terrains. A mobile robot proposed by Quirin et 

al. [24] not only can navigate by sidewalk following in the urban area, but also can 

interact with the people. 

1.3 Overview of Proposed System 

In this study, our goal is to conduct the autonomous vehicle to navigate in 

outdoor environments. As discussed previously, vehicle localization is one of the 

important works we have to complete to implement a machine guide dog. The 

method of vehicle localization we propose is to detect landmarks along the path and 

to localize a vehicle’s position by these landmarks. Also, some other strategies for 

reliable navigation are proposed in this system. In this section, we will roughly 
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introduce the proposed vision-based autonomous vehicle system. The system process 

may be into two stages: the learning stage and the navigation stage. What is done in 

the learning stage is mainly training of the autonomous vehicle before navigation. 

Then, in the navigation stage we conduct vehicle navigation along the pre-selected 

path using the learned information. More details of the two stages are illustrated in 

Figure 1.1 and Figure 1.2, respectively, and discussed in the following. 

 

Calibration of 
camera system

Navigation by 
sidewalk following

Navigation by 
manual

Landmarks 
detection and 
localization

Environment 
information Landmarks 

locations 
information

Vehicle pose 
information

Path 
information 

Start path learning

End path learning

 
Figure 1.1 Flowchart of learning stage 
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A. The learning stage 

First, the learning stage consists of two steps. The first step, as a prior work, is to 

train the camera system equipped on the vehicle. The system operator conducting 

this step is called the trainer of the system subsequently. In general, a camera system 

has to be calibrated for the purpose of knowing the relation between the image and 

the real space. In this system, we use a two-mirror omni-camera as a visual sensor. 

Because of the difficulty in retrieving intrinsic and extrinsic parameters of the 

omni-camera, we adopt a space mapping technique [25], called pano-mapping, to 

calibrate our camera system instead. After the calibration work is done, we construct 

a space mapping table, called pano-table. Then, we can obtain range data from an 

omni-image directly using the pano-table and continue the navigation process. 

 

Figure 1.2 Flowchart of navigation stage 
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The second step of the learning stage is to guide the autonomous vehicle to learn 

path information, including vehicle poses in the navigation path, the location of each 

landmark, and some other environment information. After brining the vehicle to a 

chosen scene spot, a path learning work is started. Two autonomous navigation 

modes are designed in this study, which are applied alternatively in the navigation 

process. One mode is navigation by following the sidewalk, and the other is manual 

control by the trainer. After being assigned the first mode, the vehicle starts to 

navigate toward the goal and the information of the vehicle pose is continually 

recorded. If a specific landmark need be memorized in the path, the trainer may 

guide manually the vehicle using the second mode to an appropriate position and 

record the location of the landmark after the landmark is detected by the camera. In 

addition, other information about the outdoor environment is also recorded 

constantly when navigating. Finally, all of these data are integrated into the path 

information, which is stored in the memory and can be retrieved during the 

navigation stage. 

B. The navigation stage 

In the navigation stage, with the path information learned in advance, an 

automatic navigation process is started. Three major works are conducted by the 

vehicle in the navigation process  moving forward, obstacle detection, and vehicle 

location modification. 

In principle, the autonomous vehicle constantly move forward toward the goal 

node by node based on the learned path information. In the movement between any 

two nodes in the path, the vehicle chooses one of two navigation modes  navigation 

by following the sidewalk or navigation just by the use of an odometer (called the 

blind navigation mode). When navigating in the first mode, the sidewalk curb with a 
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prominent color is detected continuously and the line following technique is adopted 

to guide the vehicle. When no curb can be used for line-following guidance as often 

encountered on sidewalks, the second mode is adopted in which the vehicle navigates 

blindly according to the information of the odometer reading and the learned path. 

Also, as a rule, the autonomous vehicle tries to find obstacles at any time and can 

take a proper obstacle avoidance strategy when desired. By the use of a stereo 

omni-camera, we develop a new method to detect obstacles on the ground using 

computer vision techniques. Moreover, when reaching a particular location in the 

learned path, the autonomous vehicle will detect the appointed landmark to localize 

itself automatically. 

Furthermore, in this study we use some objects such as hydrants and light poles, 

which often can be found on sidewalks, as landmarks for vehicle localization. That is, 

we modify the vehicle position with respect to each located landmark to eliminate 

cumulated mechanical or vision-processing errors during the navigation process. 

Specifically, we propose a new space line detection technique to detect the along-path 

hydrant and the light pole and then calculate the locations of them. By these 

techniques, the autonomous vehicle can navigate safely and smoothly to the 

destination at the end of the navigation stage. 

1.4 Contributions of This Study 

Some contributions of this study are described as follows. 

1. A method of training an autonomous vehicle for outdoor navigation using 

commonly-seen objects on sidewalks is proposed. 

2. A new space line detection and localization technique using the pano-mapping 

table is proposed. 
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3. Techniques for detecting hydrants and light poles as landmarks for vehicle 

localization are proposed. 

4. A technique of following sidewalk curbs for vehicle navigation is proposed. 

5. A new obstacle avoidance technique and a new camera calibration method for it 

are proposed. 

6. Dynamic camera exposure adjustment and dynamic thresholding methods for use 

in outdoor environments are proposed. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we introduce 

the configuration of the proposed system and the system process in detail. In Chapter 

3, the proposed training methods for vehicle to learn the guidance parameters and the 

navigation path are described. In Chapter 4, we introduce the navigation strategies 

including the ideas, the proposed guidance techniques, and detailed navigation 

algorithms. In Chapter 5, a new space line technique is proposed and the proposed 

techniques of hydrant and light pole detections are described. In Chapter 6, the 

navigation techniques of line following and obstacle avoidance are introduced. In 

Chapter 7, some experimental results to show the feasibility of the proposed 

techniques for vehicle navigation are shown. At last, conclusions and some 

suggestions for future works are given in Chapter 8. 
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Chapter 2  
System Design and Processes 

2.1 Idea of System Design 

For a blind person to walk safely on a sidewalk, a vision-based autonomous 

vehicle system is a good substitute for a guide dog, as mentioned previously. Because 

of the advantages of possessing good mobility and long-time navigation capabilities, 

autonomous vehicles have become more and more popular in recent years for many 

applications. Equipped with cameras, an autonomous vehicle is able to “see” like a 

human being. Moreover, both the autonomous vehicle and the cameras may be 

connected to a main control system, which have the capabilities to integrate 

information, analyze data, and make decisions. In this study, we have designed an 

autonomous vehicle system of this kind for use as a machine guide dog. The entire 

configuration of the system will be introduced in detail in Section 2.2, and 3D data 

acquisition using the camera will be described in Section 2.3. 

In an unknown environment, the autonomous vehicle system still has to be 

“trained” before it can navigate by itself. Specifically, it should be “taught” to know 

the information of the navigation path; how to navigate in this path; and how to 

handle different conditions on the way. Moreover, secure navigation strategies should 

also be established for the vehicle to protect the blind and itself. In the end, the 

vehicle should be able to navigate in the same path repetitively with the learned data 

and the navigation strategies. The system processes designed to achieve these 

functions on the proposed autonomous vehicle system will be described in Section 2.3, 
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including the learning process described in Section 2.3.1 and the navigation process in 

Section 2.3.2. 

2.2 System Configuration 

In this section, we will introduce the configuration of the proposed system. We 

use Pioneer 3, an intelligent mobile vehicle made by MobileRobots Inc. as shown in 

Figure 2.1, as a test bed for this study. The autonomous vehicle and other associated 

hardware devices will be introduced in more detail in Section 2.2.1. In addition, a 

particularly-designed stereo omni-camera is employed in this study and equipped on 

the autonomous vehicle. We will describe the structure of the camera system in 

Section 2.2.2. Finally, the configuration of the software we use as the development 

tool will be introduced in Section 2.2.3. 

 

 

Figure. 2.1 Autonomous vehicle, Pioneer 3 produced by MobileRobots Inc., used in this study. 

2.2.1 Hardware configuration 

The hardware architecture of the proposed autonomous vehicle system can be 

divided into three parts. The first is the vehicle system; the second the camera system, 
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and the third the control system. The latter two are installed on the first, the vehicle 

system, as shown in Figure 2.2. We will introduce these systems one by one 

subsequently. 

 

 

(b) 

 

(a) 
 

(c) 

Figure. 2.2 Three different views of the used autonomous vehicle, which includes a vehicle, a 

stereo camera, and a notebook PC for use as the control unit. (a) A 45o view. (b) A front view. 

(c) A side view. 

The vehicle, Pioneer 3, has an aluminum body with the size of 44cm×38cm×

22cm, two wheels of the same diameter of 16.5cm, and one caster. Also, 16 ultrasonic 

sensors are installed on the vehicle, half of them in front of the body and the other half 

behind. When navigating on flat floors, Pioneer 3 can reach its maximum speed 1.6 

meters per second. Also, it has the maximum rotation speed of 300 degrees per second, 

and can climb up a ramp with the largest slope of 30 degrees. The vehicle is able to 
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carry payloads up to 23kg at a slower speed. It has three 12V rechargeable lead-acid 

batteries and can run constantly for 18 to 24 hours if all of the batteries are fully 

charged initially. The vehicle also provides the user some parameter information of 

the system, such as the vehicle speed, the battery voltage, etc. 

The camera system, called a two-mirror omni-camera, consists of one 

perspective camera, one lens, and two reflective mirrors of different sizes. The 

perspective camera, ARCAM-200SO, is produced by the ARTRAY company with a 

size of 33mm×33mm×50mm and the maximum resolution of 2.0M pixels. With the 

maximum resolution, the frame rate can reach 8 fps. The CMOS visual sensor in the 

camera has a size of 1/2 inches (33mm×33mm). The lens is produced by Sakai Co. 

and has a variable focal length of 6-15mm. The two reflective mirrors are produced by 

Micro-Star International Co. A detailed view of the entire camera system is shown in 

Figure. 2.3, and the camera and the lens are shown in Figures 2.3(a) and 2.4(b), 

respectively. Other details about the camera structure will be described in the next 

section. 

 

  
(a) (b) 

Figure. 2.3 The two-mirror omni-camera used in this study. (a) A full view of the camera equipped 

on the vehicle. (b) A closer view. 
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About the final part, we use a laptop computer as the control system. It is of the 

model of ASUS W7J produced by ASUSTek Computer Inc. as shown in Figure. 2.5. 

For the computer to communicate with the other parts, we connected it with the 

autonomous vehicle by an RS-232, and with the camera system by a USB. 

 

 

 
(a) (b) 

Figure. 2.4 The used camera and lens. (a) The camera of model Arcam 200so produced by ARTRAY 

Co. (b) The lens produced by Sakai Co. 

 

 
Figure. 2.5 The laptop computer of model ASUS W7J used in this study. 

2.2.2 Structure of used two-mirror omni-camera 

The structure of the two-mirror omni-camera used in this study and the 

projection of a space point P onto the system are illustrated in Figure 2.6. We call the 
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bigger and higher mirror Mirror A, and the smaller and lower one Mirror B 

subsequently, and both of them are made to be of the shape of a hyperboloid with 

parameters shown in Table 2.1. One of the focal points of Mirror A is on fa and one of 

the focal points of Mirror B is on fb. Both mirrors have another focal point on the 

same position fc which is the center of the lens. In addition, the line segment , 

which we call the baseline, has a length in 20cm. 

a bf f


 

Table 2.1 Specifications of the used two hyperboloidal-shaped mirrors. 

 radius Parameter a Parameter b 

Mirror A 12 cm 11.46cm 9.68cm 

Mirror B 2cm 2.41cm 4.38cm 

 

An important optical property of the hyperboloidal-shaped mirror is: if a light ray 

goes through one focal point, it must be reflected by the mirror to the other focal point. 

As illustrated in Figure 2.7, two light rays which go through fa and fa are both 

reflected to the same focal point fc by the specially-designed mirrors, Mirrors A and B, 

respectively. Based on these property of the omni-camera and as illustrated in Figure 

2.6, a space point P will be projected onto two different positions in the CMOS sensor 

in the camera along the blue light ray and the red light ray reflected by Mirrors A and 

B, respectively, so that the range data of P can be computed according to the two 

resulting distinct image points. 

Furthermore, the way of placement of the two-mirror omni-camera on the 

vehicle has been carefully considered. The camera was originally placed in such a 

way that the optical axis going through Mirrors A and B is parallel to the ground as 

shown in Figure 2.8(a). In the omni-image acquired by the two-mirror omni-camera, 
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because of the existence of the image region caused by Mirror B, the image region of 

the field of view (FOV) reflected by Mirror A became smaller. We can see that the 

overlapping region on the ground where range data can be computed was not large 

enough in this situation (as shown in the green dotted region in the figure). However, 

for a navigation system, the front FOV is very important for the vehicle to avoid 

collisions. Moreover, it is desired that the vehicle can find obstacles at distances as 

large as possible in the navigation process. Due to these reasons, the camera was later 

slanted up for an angle of  as shown in Figure 2.8(b). We can see in the figure that 

the region of overlapping is now bigger than before. 

 

 
Figure 2.6 The prototype of the two-mirror omni-camera and a space point projected on the CMOS 

sensor of the camera. 

  17



 
Figure 2.7 The reflection property of the two hyperboloidal-shaped mirrors in the camera system. 

 

 

(a) 

Mirror A

Mirror B

 

(b) 

Figure 2.8 Two different placements of the two-mirror omni-camera on the vehicle and the region of 

overlapping. (a) The optical axis going through the two mirrors is parallel to the ground. (b) The 

optical axis through the two mirrors is slanted up for an angle of 　. 

2.2.3 Software configuration 

The producer, MobileRobots Inc., of the autonomous vehicle used in this study 

provides an application interface, called ARIA (Advanced Robotics Interface 

Application), for the user to control the vehicle. The ARIA is an object-oriented 
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interface which can be used under the Win32 or Linux operating system using the C++ 

language. Therefore, we can utilize the ARIA to communicate with the embedded 

sensor system in the vehicle and obtain the vehicle state to control the pose of the 

vehicle. 

For the camera system, the ARTAY provides a development tool called Capture 

Module Software Developer Kit (SDK). This SDK is an object-oriented interface and 

its application interface is written in several computer languages like C, C++, VB.net, 

C#.net and Delphi. We use the SDK to capture image frames with the camera and can 

change many parameters of the camera, such as the exposure. In the control system, 

we use Borland C++ Builder 6, which is a GUI-based interface development 

environment, to develop our system processes on the Windows XP operating system. 

2.3 3D Data Acquisition by the 

Two–mirror Omni-camera 

2.3.1 Review of imaging principle of the two-mirror 

omni-camera 

Before derivation of the formulas for range data computation by the use of the 

two-mirror omni-camera, we review first the imaging principle of a simple 

omni-camera consisting of a hyperboloidal-shaped mirror and a projective camera. 

First of all, we introduce two coordinate systems as shown in Figure 2.9 where the 

image coordinate system (ICS) is a two-dimensional coordinate system coincident 

with the omni-image plane with its origin being the center of the omni-image. The 

camera coordinate system (CCS) in Figure 2.9 is a three-dimensional coordinate 

system with the origin being located at a focal point of the mirror. 
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According to the optical property of the hyperboloidal-shaped mirror, a space 

point P at coordinates (x, y, z) in the CCS is projected onto an omni-image point I at 

coordinates (u, v) in the ICS as shown in Figure 2.9. In more detail, assume that a 

light ray from P goes through a focal point in the mirror center Om. Then, reflected by 

the hyperboloidal-shaped mirror, the light ray goes through another focal point at the 

lens center Oc. It is finally projected onto an image point I at coordinates (u, v) on the 

image plane. In this way of imaging space points, therefore, for each image point I, 

we can find a corresponding light ray with a specific elevation angle  and a specific 

azimuth angle θ (shown in the figure by the red and the green characters, respectively) 

to represent the image point I. 

 

 

Figure 2.9 Imaging principle of a space point P using an omni-camera. 

2.3.2 3D data computation for used two-mirror 

omni-camera 

Before deriving the 3D data from the omni-image acquired by the two-mirror 
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omni-camera, we define a camera coordinate system (CCS)  as shown in 

Figure 2.10. The origin of is the focal point of Mirror A, and the Z-axis 

coincident with the optical axis going through the two mirrors. As shown in the figure, 

there is a space point Q at coordinates (X, Y, Z) in CCS  which is projected 

respectively by the two mirrors onto two image points, Is at coordinates (u1, v1) and Ib 

at coordinates (u2, v2), in the omni-image. By the geometry of the camera oprtics, we 

may compute the 3D position of Q by the following way. 

localCCS

cal

localCCS

lo

 

Oa

Q(X, Y, Z)

Omni-image

Mirror A

Mirror B

Lens center Oc

Ob

Is(u1, v1)

Ib(u2, v2)

CCSlocal

Oa (0,0,0)

Z

X

Y

 

Figure 2.10 The cameras coordinate system , and a space point Q projected on the 

omni-image acquired by the two-mirror omni-camera. 

localCCS

 

Firstly, following the two light rays which go through Mirror A’s center and Mirror 

B’s center, respectively, we obtain two different elevation angles a and b as shown 

in Figure 2.11(a). Also, the points Oa, Ob, and Q form a triangle OaObQ which we 

especially illustrate in Figure 2.11(b). The distance between Oa and Ob, which is the 

length of the baseline defined previously, is known to b, while the distance d between 

Oa and Q is an unknown parameter. By the law of sines based on geometry, we can 

compute d as follows: 
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(a) (b) 

Figure 2.11 An illustration of the relation between a space point Q and the two mirrors in the used 

Secondly, we may compute the azimuth angles of the two light rays. According to the 

s

1 1

camera. (a) A side view of Q projected onto the two mirrors. (b) A triangle OaObQ used in deriving 

3D data. 

property of rotational invariance of the omni-image, these two azimuth angles actually 

are equal, which we denote by . From Figure 2.12, by the use of the image point I  at 

coordinates (u , v ), we can derive θ by the following equations: 
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Thirdly, with the distance d derived by Equation (2.2) and the azimuth angle θ 

obtained by Equation (2.3), we can compute the position of Q in  according 

to geometry illustrated in Figure 2.12 as follows: 

localCCS

 X ＝ d × cosαa × sinθ, 

 Y ＝ d × cosαa × cosθ, 

 Z ＝ d × sinαa. (2.4) 

 

Figure 2.12 An illustration of a space point Q at coordinates (X, Y, Z) in . localCCS

However, as mentioned previously, the optical axis going through the two 

mirrors is slanted up so that it is not parallel to the ground. It is desired that the Z-axis 

of  could be parallel to the ground. As shown in Figure 2.13, we define 

another camera coordinate system CCS, which coincidences w localS  except 

that the Z-axis is slanted for an angle of  toward the Y-axis along the X-axis. Finally, 

the coordinates of Q is translated to a new coordinates (X’, Y’, Z’), which we want to 

obtain, in the CCS by the use of a rotation matrix R by following equations: 

localCCS

ith CC
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Figure 2.13 The relation between the two camera coordinate systems CCS and . localCCS

2.4 System Processes 

2.4.1 Learning process 

The goal in the learning process is to “teach” the autonomous vehicle to know 

how to navigate automatically in a pre-specified path. The entire learning process 

proposed in this study is shown in Figure 2.14. Discussed in the following is some 

information which the vehicle should “memorize.” First, as mentioned in Chapter 1, 

the autonomous vehicle has to conduct self-localization by some pre-selected 

landmarks in the specified path, so the first type of information the vehicle have to 

record is the landmark locations along the path. Next, for our study, the experimental 
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environment is on the sidewalk, and this has an advantage that the vehicle may 

navigate along the curb of the sidewalk. For this reason, line following along the 

sidewalk curb, called sidewalk following, is a proper navigation method instead of 

using the odometer only. Thus, the second type of information which has to be 

recorded is the vehicle navigation information along the path (path nodes, the 

navigation distance between two nodes, etc.). Finally, the environment information at 

different locations on the navigation path also has to be recorded. 

For the purpose of training an autonomous vehicle easily, a user learning 

interface is constructed for the trainer and can be used to control the autonomous 

vehicle as well as construct learning navigation information. First, at the beginning of 

each section of the navigation path, the trainer should establish a set of corresponding 

navigation rules in advance, and the vehicle will follow them and conduct navigation 

in the learning process as well as in the navigation process. Then, the current vehicle 

pose obtained from the odometer and some current environment information like the 

illumination are also recorded. Next, when the mode, navigation by following the 

sidewalk, is selected, a semi-automatic learning process will proceed until reaching 

the next node assigned by the trainer. Otherwise, the trainer is required to guide the 

vehicle manually to the next path node by the use of the learning interface. 

In addition, the trainer can decide where to localize the vehicle by a selected 

landmark in the learning process. After guiding the vehicle to a proper pose for 

detecting the landmark (close enough to the landmark, “looking” at the landmark 

from the right direction, etc.), the trainer then has to establish relevant rules for 

landmark detection. Some parameters for landmark detection can be appropriately 

adjusted by the trainer before the detection work is started. Next, landmark 

localization is conducted by a space line detection technique described in Chapter 5. 

After possibly multiple times of detecting and collecting adequate information of the 
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landmark, its position is finally computed automatically and recorded. 

At last, after bringing the autonomous vehicle to the destination, the learning 

process is finished, and the learned information is organized into a learned path 

composed of several path nodes with guidance parameters. Combining it with 

landmark information and environment information, we obtained an integrated path 

map which finally is stored in the memory of the vehicle navigation system. 

2.4.2 Navigation process 

With the map information obtained in the learned process, the autonomous 

vehicle can continually analyze the current location using various stored information 

and navigate to an assigned goal node on the learned path in the navigation process. 

The entire navigation process proposed in this study is shown in Figure 2.15.  

According to the learned information data retrieved from the storage, the 

autonomous vehicle continually analyzes the current environment node by node to 

navigate to the goal. At first, before starting to navigate to the next node, the 

autonomous vehicle checks if the image frame is too dark or too bright according to 

the learned environment parameter data, and then dynamically adjusts the exposure of 

the camera if necessary. 

After that, the autonomous vehicle always checks if any obstacle exists in front 

of the vehicle. As soon as an obstacle is found and checked to be too close to the 

vehicle, a procedure of collision avoidance is started automatically to perform 

collision avoidance. Then, based on the learned navigation rules, the autonomous 

vehicle checks the corresponding navigation mode and follows it to navigate forward. 

In the meantime, the vehicle checks whether it has arrived at the next node; whether 

the node is the destination; or whether the vehicle has to localize its current position. 
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Figure 2.14 Learning process. 

 

In addition, if a self-localization node is expected, the autonomous vehicle will 

adjust its pose and relevant parameters into an appropriate condition and conduct 

landmark detection. For landmark detection, the autonomous vehicle uses the 

corresponding technique in accordance with the property of the landmark. If a 

desired landmark is found and localized successfully, its location then is used to 

modify the position of the vehicle; if not, some remedy for recovering the landmark 

will be conducted, such as changing the pose of the vehicle to detect the landmark 

again. 
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Figure 2.15 Navigation process. 
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Chapter 3

3.1.1

3.1.2

  
Learning Guidance Parameters and 

Navigation Paths 

3.1 Introduction 

Before the autonomous vehicle can navigate, some works has to be conducted in 

the learning process. First, the camera system should be calibrated. Then, a path and a 

set of landmarks should be selected, and each landmark location should be recorded 

into the path, resulting in a learned path. Finally, adopted guidance parameters have 

to be “trained” and then recorded.  

 Camera calibration 

As mentioned in Chapter 1, instead of calibrating the camera’s intrinsic and 

extrinsic parameters, we adopt a space-mapping technique [25], called pano-mapping, 

to calibrate the two-mirror omni-camera used in this study. We will describe the 

adopted technique in Section 3.2. 

 Selection of landmarks for navigation guidance 

For the purpose to localize the position of the vehicle during the navigation 

process, some objects should be selected as landmarks to conduct vehicle localization. 

Two types of objects, hydrant and light pole, as shown in Fig 3.1 are selected in this 

study as landmarks for vehicle localization during sidewalk navigation. By the use of 

proposed hydrant and light pole localization techniques, introduced later in Chapter 5, 
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we can guide the vehicle to learn the positions of pre-selected hydrants and light poles 

in the learning process. 

 

 

Figure 3.1 The hydrant (left) and the light pole (right) used as landmarks in this study. 

3.1.3 Learning of guidance parameters 

For complicated outdoor environments, the trainer should train some parameters 

for use in vehicle guidance, such as environment parameters and image segmentation 

thresholds, in the learning process. We will introduce the proposed techniques for 

learning environment parameters in Sections 3.4. Also, some image segmentation 

parameters for landmark image analysis and the techniques proposed to learn them 

will be introduced in Sections 3.5. Finally, a scheme proposed to create the learned 

navigation path will be described in Section 3.6. 

3.2 Camera Calibration by 

Space-mapping Approach 

We utilize the pano-mapping technique proposed by Jeng and Tsai [25] for image 

unwarping to calibrate the camera system used in this study. The main idea is to 

establish a so-called pano-mapping table to record the relation between image points 

and corresponding real-world points. More specifically, as illustrated in Figure 3.2, a 
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light ray going through a world-space point P with the elevation angle α and the 

azimuth angle θ is projected onto a specific point p at coordinates (u, v) in the 

omni-image. The pano-mapping table specifies the relation between the coordinates 

(u, v) of the image point p and the azimuth-elevation angle pair ( of the 

corresponding world-space point P. The table is established in advance and can be 

looked up to retrieve 3D information forever. Accordingly, we construct two 

pano-mapping tables for Mirrors A and B, respectively, by the following steps, 

assuming an omni-image I has been taken as the input. 

Algorithm 3.1 Construction of pano-mapping tables. 

Step 1. Manually select in advance six known image points pi at coordinates (ui, vi,) 

on the Mirror A region in omni-image I and the six corresponding known 

world-space points Pi at coordinates (xi, yi, zi), where i is 1 through 6. 

Step 2. Select similarly six known image points qj at coordinates (Uj, Vj,) on the 

Mirror B region in omni-image I and the six corresponding known 

world-space points Qj at coordinates (Xj, Yj, Zj), where j is 1 through 6. 

Step 3. For image points pi and qj, compute the radial distances ri and Rj in the 

image plane with respect to the image center respectively by the following 

equations: 

 2 2 2 2;i i i i i ir u v R U V    .  (3.1) 

Step 4. Compute the elevation angles αi and βi for the corresponding world-space 

points Pj and Qj by the following equations: 

 2 2 2 21 1tan ( / ); tan ( / )i i i i i i iz x y Z X Y     i  (3.2) 

resulting in six pairs of radial distances and corresponding elevation angles 
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for Mirrors A and B, respectively. 

Step 5. Under the assumption that the surface geometries of Mirrors A and B are 

radially symmetric in the range of 360 degrees, use two radial stretching 

functions, denoted as fA and fB, to describe the relationship between the 

radial distances ri and the elevation angles αi as well as that between Rj and 

βj, respectively, by the following equations: 

 
1 2 3 4

0 1 2 3 4 5( )i A i i i i ir f a a a a a a
5

i               

5

i

;  

 
1 2 3 4

0 1 2 3 4 5( )i B i i i i iR f b b b b b b                . (3.3) 

Step 6. Solve the above 6-th degree polynomial equations fA and fB by the use of the 

six radial-distance pairs for Mirrors A and B, respectively, obtained in Step 

4 using a numerical method to obtain the coefficients a0 through a5 and b0 

through b5. 

Step 7. By the use of the function fA with the known coefficients a0 through a5, 

construct the pano-mapping table for Mirror A in a form as that shown in 

Figure 3.3(a) according to the following rule: 

for each world-space point Pij with the azimuth-elevation pair (θi, αj), 

compute the corresponding image coordinates (uij, vij) by the following 

equations: 

 cos ; sinij j i ij j iu r v r     . (3.4) 

Step 8. In a similar way, construct the pano-mapping table for Mirror B by the use 

of the function fB with the known coefficients b0 through b5 in a form as that 

shown in Figure 3.3(b). 
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Figure 3.2 The relation between a space point P and the relevant elevation angle and azimuth. 

 
 

 1 2 3 4 … M 
1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1)
2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2)
3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3)
4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4)
 … … … … … … 
N (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN)

(a)  
 1 2 3 4 … S 
1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uS1, vS1)
 2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uS2, vS2)
 3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uS3, vS3)
 4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uS4, vS4)
 … … … … … … 
 T (u1T, v1T) (u2T, v2T) (u3T, v3T) (u4T, v4T) … (uST, vST)

(b) 

Figure 3.3 Two pano-mapping tables used for the two-mirror omni-camera used in this study. (a) 

Pano-mapping table used for Mirror A. (b) Pano-mapping used for Mirror B. 

 

3.3 Coordinate Systems 

In this section, we will introduce the coordinate systems used in this study, which 

describe the relations between the used devices and concerned landmarks in the 

navigation environment. Furthermore, the used odometer and some involved 

coordinate transformations are introduced also. The following are four coordinate 

systems used in this study. 

(1). Image coordinate system (ICS): denoted as (u, v). The u-v plane coincides with 
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(2). Vehicle coordinate system (VCS): denoted as (VX, VY). The VX-VY plane 

coincides with the ground and the origin OV of the VCS is located at the center 

of the autonomous vehicle. 

(3). Global coordinate system (GCS): denoted as (MX, MY). The MX-MY plane 

coincides with the ground. The origin OG of this system is always placed at the 

start position of the vehicle in the navigation path. 

(4). Camera coordinated system (CCS): denoted as (X, Y, Z). The origin OC of the 

CCS is placed at the focal point of Mirror A. The X-Z plane is parallel to the 

ground and the Y-axis is perpendicular to the ground. 

 

 

Navigation 
Environment

MXOG

MY

 

(a) (b) 

Figure 3.4 Two coordinate systems used in this study. (a) The ICS. (b) The GCS. 

In this study, the navigation path is specified by the GCS as shown in Figure 

3.4(b). The relationship between the GCS and the VCS is illustrated in Figure 3.5. At 

the beginning of the navigation, the VCS coincides with the GCS, and then the VCS 

follows the movement of the current vehicle position as well as the CCS. In addition, 

it is emphasized that the vehicle uses an odometer to localize its position in the GCS. 

As illustrated in the figure, the reading of the vehicle odometer is denoted as (Px, Py, 

Pth) where Px and Py represent the current vehicle position with respect to its original 
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position on the ground, and Pth represents the rotation angle of the vehicle axis with 

respect to the GCS.  

As shown in Figure 3.6, assume that the vehicle is at a position V at world 

coordinates (Cx, Cy) with a rotation angle θ. We can derive the coordinate 

transformation between the coordinates (MX, MY) of the VCS and the coordinates (VX, 

VY) of the GCS by the following equations: 

 cos sinX X Y xM V V C      ; 

 sin cosY X Y yM V V C      . (3.5) 

In addition, the relationship between the CCS and the VCS is illustrated in 

Figure 3.7. As shown in the figure, the projection of the origin of the CCS onto the 

ground does not coincident with the origin of the VCS, and there is a horizontal 

distance between the two origins, which we denote as Sy. Thus, the coordinate 

transformation between the CCS and the VCS can be derived in the following way: 

 ;  XV X Y yV Z S  . (3.6) 

 

 

jiFigure 3.5 An illustration of the relation between the GCS and the VCS. 
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Figure 3.6 A vehicle at coordinates (Cx, Cy) with a rotation angle θ with respect to the GCS. 

 

 

Figure 3.7 An illustration of the relation between the GCS and the VCS. 

 

3.4 Learning of Environment 

Parameters 

3.4.1 Definition of environment windows on images 

In the process of navigation, the vehicle conducts several works including 

following sidewalk curbs, finding landmarks, obstacle detection, etc. In general, each 

desired landmark is projected onto a specific region in the image. By this property, we 

can consider only the region of interest in the image instead of the whole image, and 

two advantages can be obtained from this approach as follows: 

1. reducing computation time for each navigation cycle; 
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2. the environment appearing within the image region is similar in each navigation 

cycle so that we can analyze the environment information in this region with a 

fixed scheme. 

To be more specific, an environment window, as we call hereafter, is predefined 

by the trainer, which specifies a rectangular region in the image. Two environment 

windows including a small one in the region of Mirror B and a big one in the region of 

Mirror A, denoted as winS and winB, respectively, are considered to form a set for use 

in conducting specific image analysis works when the vehicle is navigating. For 

instance, a set of environment windows is defined for the hydrant detection work, as 

shown is Figure 3.8 (the blue rectangles). Besides, it is pointed out that this scheme of 

defining a pair of search windows for use in this study follows the property of 

rotational invariance of the omni-image, which is useful to reduce the redundancy 

region where we cannot get relevant 3D information, as will be elaborated later in this 

section. 

 

 
Figure 3.8 An example of a pair of environment windows for hydrant detection 
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3.4.2 Learning of environment intensity by 

environment windows 

In outdoor environments, varying lighting conditions influence the results of our 

navigation environment analysis work, according to our experimental experience. For 

example, as shown in Figure 3.9(a), the feature of the curb is not obvious enough to 

be recognized because of the overexposure due to the lighting condition. Also, using a 

fixed value of the exposure, some landmark detection works cannot be completed 

successfully. For example, the hydrant and the light pole become undetectable in 

images because of the overexposure and underexposure, as shown the examples in 

Figures 3.10(a) and 3.11(a), respectively. 

 

  

(a) (b) 

Figure 3.9 Two different illuminations in the image for curb detection and the environment windows. (a) 

An instance of overexposure. (B) A suitable case. 

 

  
(a) (b) 

Figure 3.10 Two different illuminations in the image for hydrant detection and the environment windows. 

(a) An unclear case. (B) An appropriate case. 
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(a) (b) 

Figure 3.11 Two different illuminations in the image for light pole detection and the environment windows. 

(a) A blurred case. (B) A proper case. 

 

For this reason, in this study we design the system in such a way to allow the 

trainer in the learning phase to determine a suitable illumination parameter by 

manually adjusting the exposure of the camera for the purpose to detect desired 

objects successfully. By adjusting the illumination parameter to a suitable value, we 

mean that the desired landmark feature can be extracted well in the same illumination 

afterward. Then, this image illumination parameter is recorded into the path 

information as part of the learning result. To be more specific, for each environment 

analysis work using a landmark, we learn a value of suitable image intensity, called 

environment intensity hereafter, on the image in relevant environment windows during 

the path learning process. The detail of this scheme of getting proper environment 

intensity parameters is described in the following algorithm. 

Algorithm 3.2  Learning of the environment intensity parameter at a path node. 

Input: a relevant set of environment windows Winen for a certain path node with a 

pre-selected landmark under the assumption that the vehicle reaches this node 

currently. 

Output: an environment intensity parameter Ien. 

Steps. 
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Step 1. Adjust the exposure of the camera and acquire an appropriate image Icur. 

Step 2. Check if the desired landmark feature is well imaged in the resulting 

illumination. If not, go to Step 1. 

Step 3. For each pixel Ii in Icur with color (R, G, B) in winB of Winen, calculate its 

intensity value Yi by the following equation and record Yi into a set SY: 

 . (3.7) 0.299 0.587 0.114iY R G     B

Step 4. Compute the value Ien as output by the use of the data in SY in the following 

way where N is the size of winB of Winen: 

 
1

1 N

en i
i

I Y
N 

  . (3.8) 

 

Some examples of suitable illuminations for navigation tasks are shown in Figures 

3.9(b), 3.10(b), and 3.11(b), and the environment intensity parameters learned in the 

above way for them will be recorded as part of the learning result of landmark 

detection described later. 

 

3.5 Learning of Landmark 

Segmentation Parameters 

In this study, we utilize some segmentation methods for image analysis in 

landmark detection which we describe in detail later in Chapters 5 and 6. In this 

section, we introduce the process for learning the parameters used in landmark 

segmentation. Firstly, we introduce three sets of segmentation parameters for 

landmark segmentation which we propose for use in this study as follows. 
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(1) In sidewalk curb segmentation, we use the color information (hue and saturation) 

and the image thresholding technique to find the curb feature in the image 

utilizing the HSI color model. The thresholds for hue and saturation values are 

collected as a set of curb segmentation parameters. 

(2) In hydrant segmentation, just like what we do in sidewalk curb detection, we use 

the HSI color model to extract the hydrant shape. The threshold values for hue 

and saturation and also the contour of the hydrant described by the principal 

components obtained from principal component analysis is collected as a set of 

hydrant segmentation parameters. 

(3) In light pole segmentation, we adopt the Canny edge detection technique to 

extract the light pole shape. The threshold values used to detect the light pole in 

the image are collected as a set of light pole segmentation parameters. 

Next, as shown in Figure 3.12, when conducting landmark learning, the trainer 

can detect a desired landmark by the use of a user interface of the system, and adjust 

the values of the related set of segmentation parameters. After obtaining a proper 

result from the landmark detection process, the used set of segmentation parameters 

and the learned landmark information are recoded together as part of the learned path. 

 

 

Figure 3.12 The process for learning landmark segmentation parameters. 
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3.6 Learning Processes for Creating a 

Navigation Path 

In this section, we introduce the proposed method for learning a navigation path 

in the learning process. As usual, we use the odometer to localize the vehicle position 

and estimate the position of a detected landmark in the learning process. The proposed 

strategy for learning landmarks for vehicle localization is introduced in Section 3.6.1. 

In addition, in the navigation path, some obstacles on the sidewalk, which may not be 

recognized easily by the camera system, could also block the vehicle. An example of 

obstacles, a sewer cover with uprising handles, which might hinder autonomous 

vehicle navigation, is shown in Figure 3.13. Thus, we propose in this study a method 

to learn the positions of such obstacles, called fixed obstacles hereafter. The method is 

described in Section 3.6.2. Finally, the entire proposed procedure to learn a navigation 

path is described in Section 3.6.3. 

 

Figure 3.13 A fixed obstacle in a navigation path which may block the autonomous vehicle. 

3.6.1 Strategy for learning landmark positions and 

related vehicle poses 

In this section, we introduce the proposed strategy for learning a landmark and 

its position. Simply speaking, for a landmark to be learned well, we guide the vehicle 
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to appropriate positions to detect it. To increase the accuracy of the learned landmark 

position, we take images of the landmark a number of times from a number of 

different directions after guiding the vehicle to a number of different locations. The 

reason why we take multiple images from a fixed direction at a fixed position is that 

the weather condition might cause the taken images to be all different, especially 

when there are clouds floating across the sun in the sky during the noon time. After 

analyzing the collected multiple images, a more precise landmark position can be 

obtained, which, together with the corresponding vehicle pose (including the vehicle 

position and orientation on the path), is recorded as part of the learned navigation 

path. 

To be more specific, after detecting the landmark in acquired omni-images for a 

multiple times with the vehicle in a number of poses, we calculate the mean of all the 

detected landmark positions as an estimated landmark position, denoted as Plandmark. 

Furthermore, we choose the vehicle pose among the multiple ones, which is closest to 

the one to yield the estimated Plandmark, for use as the learned pose, denoted as Pvehicle, 

corresponding to the estimated Plandmark. The detailed algorithm for the above process 

is described in the following. 

Algorithm 3.2 Learning of the landmark position and related vehicle pose. 

Input: A landmark type of the appointed landmark to be learned. 

Output: an estimated landmark position Plandmark and a corresponding vehicle pose 

Pvehicle. 

Steps. 

Step 1. Initialize three parameters i, j and k to be all zero, where i, j and k represent 

the k-th landmark detection, the j-th vehicle orientation, and the i-th vehicle 

position, respectively. 
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Step 2. Guide the vehicle to a position Vi = (Pxi, Pyi) and record this vehicle position 

Vi into a set SV. 

Step 3. Turn the vehicle into an orientation Thij and record this orientation into a set 

STh. 

Step 4. According to the landmark type, localize the landmark by the use of the 

corresponding localization technique (described in subsequent chapters) to 

obtain the landmark position pijk = (xijk, yijk), and record this landmark 

position pijk into a set SL. 

Step 5. Go to Step 4 for K times as needed, and record the number of recoded 

landmark positions in the j-th vehicle orientation and the i-th vehicle 

position, denoted as Nij = K. 

Step 6. Go to Step 3 for J times as needed, and record the number of different 

vehicle orientations in the i-th vehicle position, denoted as Ni = J. 

Step 7. Go to Step 2 for I times as needed, and record the number of the different 

vehicle position, denoted as N = I. 

Step 8. Compute the desired landmark position Plandmark using the set SL by the 

following equation: 
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Step 9. In SV, select the c-th vehicle pose vc = (Pxc, Pyc), where vc has the minimum 

landmark

Step 10. c ca Th

c vehicle vehicle c c c

 

. (3.9) 

distance to P  computed in terms of the Euclidean distance. 

 Choose a median orientation Th  from all Th  in S , where a is 1 through 

N , and set the desired vehicle pose P  as P = (Px , Py , Th ). 
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3.6.2 Learning of fixed obstacles in a navigation path 

In this study, we propose a function in the learning interface which can be used 

to learn fixed obstacles. After guiding the vehicle to a proper location where a fixed 

obstacle is projected onto the image region of both Mirrors A and B, we utilize this 

function to learn the fixed obstacle. As shown in Figure 3.14, we can select the fixed 

obstacle in the image by using the mouse to click two corresponding fixed obstacle 

positions on the regions of Mirrors A and B. In the mean time, a pair of selected 

mutually-corresponding image points is recorded into a set for use later to analyze the 

learned position of the fixed obstacle. Finally, after selecting sufficient obstacle points 

in the image, the fixed obstacle position Wobs is computed automatically. This fixed 

obstacle position Wobs and some parameters for avoiding it are recorded together as 

part of the learned path information. The detailed algorithm for learning a fixed 

obstacle’s position Wobs is described in the following. 

Algorithm 3.3  Computation of fixed obstacle positions. 

Input: an image Iinput, and a set Sobs of N pairs of corresponding image points, denoted 

as ai = (u1i, v1i) and bi = (u2i, v2i), where i = 1 through N. 

Output: a fixed obstacle position Wobs. 

Steps. 

Step 1. Select manually a fixed obstacle point ai at coordinates (u1i, v1i) in the region 

of Mirror A in Iinput and record ai. 

Step 2. Manually select the corresponding fixed obstacle point bi at coordinates (u2i, 

v2i) in the region of Mirror B in Iinput and record bi. 

Step 3. Repeat Steps 1 and 2 for N times. 

Step 4. For a pair of the corresponding points ai and bi, compute the 3D position (cxi, 

cyi, czi) of the corresponding point Ci in the CCS by the derivations 
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Step 5. Compute the position (xi, yi) of the corresponding point Vi on the ground in 

the WCS by the camera coordinates (cxi, cyi, czi) of point Ci and the 

coordinate transformation from the CCS to the WCS described by Equations 

(3.4) and (3.5), and record Vi into a set Vobs. 

Step 6. Repeat Steps 4 and 5 for N times. 

Step 7. Derive the position (obsx, obsy) of point Wobs in the WCS as the location of 

the obstacle by the following equations: 

 
1

1 N

x i
i

obs x
N 
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1

1 N

y
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obs y
N 

 i . (3.10) 

 

 
Figure 3.14 A learning interface for the trainer to learn the position of a fixed obstacle by clicking the 

mouse on a pair of corresponding obstacle points in the image regions of Mirrors A and B. 

 

3.6.3 Learning procedure for navigation path 

creation  

In this section, we describe how we establish a navigation path in the learning 

process. Firstly, we define eight types of navigation nodes as listed in Table 3.1, 

where each navigation node includes a set of different appointed works which have to 
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be conducted by the vehicle, or a set of data representing a landmark position in the 

navigation path. We guide the vehicle to learn a pre-selected navigation path as well 

as some pre-selected landmarks by the use of these navigation nodes to construct a 

learned navigation path. In addition, while each navigation node is recorded, some 

relevant guidance parameters are also recorded into the learning result. At the end of 

the learning process, a navigation path consisting of a series of navigation nodes and 

relevant guidance parameters is recorded, which then can be utilized for vehicle 

navigation in the navigation process. A flowchart of the process for navigation path 

creation is shown in Figure 3.15, and the detailed algorithm to implement it is 

described in the following. 

Table 3.1 Eight different types of navigation path nodes. 

Type of number Type of node  

Type 0 Start / Terminal node  

Type 1 Curb-following navigation node

Type 2 Blind navigation node 

Type 3 Curb-line calibration node 

Type 4 Localization node 

Type 5 Light-pole landmark node 

Type 6 Hydrant landmark node 

Type 7 Fixed obstacle node 

Algorithm 3.4  Creation of a navigation path. 
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Input: Odometer readings of vehicle poses, denoted as (Px, Py, Pth), where Px and Py 

represent the vehicle location and Pth represents the vehicle direction, in the 

WCS. 

Output: A set of navigation nodes denoted as Npath. 

Steps. 

Step 1. Record into Npath the start node Nbegin of Type 0 with the odometer readings 

(Px, Py, Pth) = (0, 0, 0). 

Step 2. Set the navigation mode, and guide the vehicle to navigate forward until 

arriving at a desired destination and stop the vehicle. 

Step 3. According to the appointed navigation mode, record into Npath the current 

vehicle pose, denoted as Ncur = (Px, Py, Pth) obtained from the odometer 

readings in Type 1 or Type 2; and select one of the four following additional 

learning tasks. 

(1) Learn a hydrant landmark by the method mentioned in Section 3.3, 

obtain a hydrant position Nhyd and the related vehicle pose Ncar, and 

record Ncar in Type 4 and Nhyd in Type 6 into Npath. 

(2) Learn a light pole landmark by the method mentioned in Section 3.3 

and obtain a light pole position Nlp and the related vehicle poses Ncar, 

and record Ncar in Type 4 and Nlp in Type 5 into Npath. 

(3) Learn a fixed obstacle Nobs using the proposed function discussed in 

Section 3.4, and record Nobs in Type 7 into Npath. 

(4) Learn a curb line calibration node Ncali, where the vehicle can “see” a 

complete curb line segment without occlusion and will calibrate its 

pose by the “seen” curb line information in the navigation process 

(with the detail introduced in Section 4.2.2), and record Ncali in Type 3 

into Npath. 
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Step 4. Go to Step 2 if the destination is not reached yet, where the destination 

position is selected by the trainer. 

Step 5. Record the terminal node Nend, denoted as (Px, Py, Pth), according to the 

current odometer readings, in Type 0 into Npath. 

Set navigation 
mode

Arriving at a new 
position and read 

odometer

Start to learn a navigation path

Navigation starts

Vehicle stops

Record blind 
navigation 

node

Record curb-
following 

navigation node

End of
Learning

Select one of four 
additional learning 

works

End of learning a navigation 
path

     Selected additional learning work

Learn a hydrant landmark 
and a related vehicle pose

Learn a light pole landmark 
and a related vehicle pose

Learn a sidewalk curb 
landmark

Learn a fixed obstacle＇
position

No

No

Yes

Vehicle navigates

According mode

Yes

 
Figure 3.15 The process for navigation path creation. 
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Chapter 4

4.1.1

  
Navigation Strategy in Outdoor 

Environments 

4.1 Idea of Proposed Navigation 

Strategy 

After successfully learning the navigation environment, we acquire the learned 

environment information including a navigation path and other guidance parameters. 

In this chapter, we introduce the proposed strategies for vehicle navigation in 

complicated outdoor environments by use of this information. The proposed 

principles to conduct the navigation work are introduced in Section 4.2.1. The process 

for navigation is described in Section 4.2.3. In addition, three main ideas to guide the 

vehicle to navigate on the learned path in this study follows. 

 Vehicle localization by alone-path objects 

As mentioned previously, the vehicle navigation process usually suffers from 

incremental mechanic errors, resulting in imprecise computations of vehicle positions, 

so the vehicle should be guided to constantly localize its position by the learned 

landmark position. After localizing a landmark by the use of proposed localization  

techniques introduced later in Chapter 5 and obtaining the relative vehicle position 

with respect to the landmark, we can adjust the vehicle posture by changing its 

position and orientation using vehicle commands and correcting the odometer 
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readings. In addition, we also used the learned straight curb line segment on the 

sidewalk to calibrate the vehicle posture. Theses proposed techniques to adjust the 

vehicle posture in the navigation path are introduced in Section 4.2.2. 

4.1.2

4.1.3

 Dynamic adjustment of guidance parameters 

In complicated outdoor environments, we cannot only adopt fixed guidance 

parameters recorded in the learning process to conduct image analysis works, 

resulting in varying lighting. Thus, we taught the vehicle in the learning process to 

analyze environment data and then utilize learned methods to adjust guidance 

parameters. Some techniques for dynamic guidance parameters adjustment are 

proposed in this study. First, the learned contour of the hydrant helps the vehicle to 

adjust the segmentation parameters by principal component analysis (PCA). Also, by 

estimating the result of curb contour extraction, we can adjust the curb segmentation 

parameters. The above two techniques of dynamic adjustment of thresholds for 

hydrant and curb detection are introduced later in Chapters 5 and 6, respectively.  

In addition, we use a dynamic exposure adjustment scheme to deal with the 

varying lighting condition in the outdoor environment during the vehicle navigation 

process. An advantage of dynamic exposure is the possibility to preserve more usable 

color information of the object in the image. According to the environment intensity 

parameter learned in the learning process for each work, we can determine whether 

the current luminance of the image frame is suitable, and the technique will be 

automatically enforced if necessary. The proposed technique for dynamic exposure 

adjustment is introduced in Section 4.2.3. 

 Obstacle avoidance by 3D information 

For vehicle navigation in outdoor environments, encountering an obstacle is 
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unavoidable and must be found to dodge it. By using a stereo camera in this study, we 

propose a dynamic obstacle detection technique via the use of 3D information. We use 

this technique to conduct secure navigation. The detail about this technique is 

described later in Chapter 6. 

 

4.2 Guidance Technique in Navigation 

Process 

4.2.1 Principle of navigation process 

In this section, we introduce the principles of the proposed vehicle navigation 

method on the learned path. At the beginning, the vehicle retrieves a navigation path 

and related guidance parameters which were recorded in the vehicle system in the 

learning process. The obtained navigation path consists of several navigation nodes 

labeled in a sequential order. The vehicle is guided to visit each node sequentially in 

the navigation process. Four principles are proposed in this study to guide the vehicle 

to navigate to a desired destination. They are described as follows. 

(1) The vehicle always keeps its navigation safe by avoiding collusions along the 

navigation path. By the use of the proposed obstacle detecting method, the 

vehicles always check if there is any dynamic obstacle in front and dodge it if 

necessary. In addition, by localizing a nearby light pole and the learned position 

of fixed obstacles, the vehicle conducts a specific procedure to dodge these static 

obstacles. 

(2) The vehicle always adjusts guidance parameters based on the learned rules when 

detecting a landmark using techniques such as dynamic thresholding and 
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(3) The vehicle always follows the sidewalk curb if possible. After detecting and 

localizing the curb line, the vehicle modifies its direction to maintain a safe 

distance and orientation with respect to the curb on the sidewalk. 

(4) The vehicle localizes its position and corrects the odometer readings at a constant 

time interval along the navigation path. According to the learned landmark 

information, the vehicle detects and then localizes an appointed landmark by the 

use of the proposed techniques. Then, calibration of the vehicle pose is 

conducted. 

As a rule, the vehicle always localizes itself by the odometer readings to conduct 

node-base navigation. With the learned path information, we establish two principles 

to judge whether the vehicle has arrived at the next node in node-based navigation. 

The principles are described in the following. 

(1) As shown in Figure 4.1(a), the distance distA between the current vehicle position 

V and the position of the next node Nodei+1 is smaller than a threshold thr1. 

(2) As shown in Figure 4.1(b), if the distance distB between the next node Nodei+1 

and the position of the projection of the vehicle on the vector formed by Nodei 

and Nodei+1, is smaller than a threshold thr2. 

By the mentioned navigation principles, the vehicle can be expected to navigate 

to the goal in the end. A flowchart illustrating the proposed node-based navigation is 

shown in Figure 4.2. 

4.2.2 Calibration of vehicle odometer readings by 

sidewalk curb and particular landmarks 
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(a) 

 
(b) 

Figure. 4.1 Two proposed principles to judge if the vehicle arrives at the next node in the navigation 

process. (a) According to the distance between the vehicle position and the next node position. (b) 

According to the distance between the next node position and the position of the projection of the 

vehicle on the vector connecting the current node and the next node. 
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Figure 4.2 Proposed node-based navigation process 
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As mentioned in Chapter 3, the odometer readings provide three values Px, Py, 

and Pth for the vehicle to know its position (Px, Py) and moving direction Pth. 

Unfortunately, all of them become imprecise owing to incremental mechanic errors 

after the vehicle navigates for a period of time. In this section, we describe the 

proposed schemes to calibrate the odometer readings. The process of odometer 

reading calibration is illustrated in Figure 4.3. At first, we use recorded curb line 

segment information to calibrate the orientation reading Pth of the odometer. Second, 

by the recoded hydrant and light pole positions, we use the proposed hydrant and light 

pole detection method to obtain its position and then calibrate the position readings 

(Px, Py) of the vehicle. The reason why we have to combine a hydrant or light pole 

position with the curb information is that in the odometer reading calibration method 

we propose in this study, we have to calibrate the orientation odometer reading in 

advance using the detected curb line before the computed position of the hydrant and 

light pole can be used to localize the vehicle position. 

(A) Odometer calibration by the hydrant and the sidewalk curb line 

Two different positions of the vehicle at two nodes in the navigation path and 

the relation between the vehicle, the curb, and the hydrant are illustrated in Figure 

4.4. The calibration process consists of two steps. Firstly, after adjusting the vehicle 

to the direction specified by the current odometer readings, we detect the nearby 

straight curb line segment seen in the omni-image, and obtain the slope angle with 

respect to the vehicle. From the learned navigation path, we can obtain the recorded 

slope angle of the curb line, and then analyze the two different slope angles to 

estimate the correct direction of the vehicle. Second, we conduct the vehicle to 

detect the hydrant and obtain its location. According to the recorded hydrant position 

from the learned navigation path, we use the correct vehicle orientation to compute 

  55



the correct vehicle position by the relation between the hydrant position and the 

vehicle position in the GCS as shown in Figure 4.5. We describe the proposed 

method to calibrate the odometer readings in detail in the following algorithm. 
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Figure 4.3 Proposed odometer reading calibration process. 
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Figure 4.4 A recoded vehicle position V and the current vehicle position V in the GCS. 

 

 

(a) (b) 

Figure. 4.5 Hydrant detection for vehicle localization at position L. (a) At coordinates (lx, ly) in VCS. 

(b) At coordinates (Cx, Cy) in GCS. 
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Algorithm 4.1 Odometer readings calibration by a hydrant and a curb line segment. 

Input: a recoded vehicle pose VL (Px, PY, Pth), a recorded slope angle θ of the curb line, 

a recorded hydrant position Lrecord, and the odometer readings of the vehicle 

pose. 

Output: None. 

Step. 

Step 1. Turn the vehicle to the recorded direction Pth, conduct the curb line detection 

process described in Chapter 6, and compute the slope angle θ of the curb line 

relative to the vehicle direction. 

Step 2. Compute an adjustment angle θadj by the following equation: 

 adj =  ′ –  (4.1) 

and modify the orientation odometer reading to be θadj which is then taken as 

the correct vehicle orientation Pth′. 

Step 3. Detect the hydrant and compute its position at Lccs in the CCS (using the 

method described in Chapter 5); and by the coordinate transformation between 

the CCS and the VCS as described in Equation (3.6) with Lccs in the CCS as 

input, compute the landmark position LVCS and describe it with coordinates (lx, 

ly) in the VCS. 

Step 4. From the learned navigation path, obtain the recorded landmark position Lrecord 

at coordinates (Cx, Cy) in the GCS, and use the calibrated orientation Pth′ to 

compute the current vehicle position (Xcali, Ycali) in the GCS by the following 

equations: 

 
cos sin

sin cos
x xcali th th

y ycali th th

C lX P '

C lY P '

      
             

P '

P '
. (4.2) 
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Step 5. Replace imprecise position readings of the odometer, (PX′, PY′), by the 

computed vehicle position (Xcali, Ycali).  

(B) Odometer calibration by the light pole and the sidewalk curb line 

The process for calibration by the light pole and the sidewalk curb is similar to 

the above-mentioned method for odometer calibration by a hydrant and a sidewalk 

curb line segment. First, we detect and localize a nearby curb line segment for the 

purpose to calibrate the orientation reading in a similar way as described previously at 

a node V1 in the learned path. Next, we conduct a slight difference task, i.e., we 

navigate the vehicle a step further to another node V2, which is a location recoded in 

the navigation path with a light pole nearby, in order to detect the light pole at a closer 

location. The process is shown in Figure 4.4. It is noted that here the mechanical error 

of the orientation reading is assumed slight after the movement of the vehicle from 

node V1 to node V2. Then, after detecting and localizing the light pole position, we use 

the same method to compute the current vehicle position and modify the position 

odometer as that used for the calibration work using the hydrant described previously. 

4.2.3 Dynamic exposure adjustment for different 

tasks 

In the navigation process, by the recorded relevant environment intensity 

information in the learned navigation path, we can adjust the luminance into an 

appropriate value for different works. According to the experimental result as shown 

in Figure 4.7, we find that there exits a specific range of exposure values in which the 

exposure value has an approximate linear relation with the image intensity in a 

specific area in the image. Thus, we can estimate an appropriate exposure value Exp 

using the following polynomial function fexp: 
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 Exp = fexp (Y) = m × Y + b, (4.3) 

where Y is the average intensity in a specific region in the image, and a and b 

are two parameters. 

Light Pole
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Figure. 4.6 Process of odometer calibration by the light pole and curb line. The vehicle detects the 

curb line at V1 to calibrate the orientation and then navigates to V2 to calibrate the position reading 

by a detecting light pole. 
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Figure. 4.7 A relationship between the exposure value and intensity in an experimental result. 

 

However, under different light sources in outdoor environments, the specific 

range will be different, so is the linear function, fexp. Thus, we propose an efficient 

method consisting of two stages to automatically obtain an appropriate exposure value 

which can be utilized to obtain an appointed illumination in an appointed region in an 

omni-image. First, we use a bisection scheme to adjust the exposure to find the 

specific range. It is desired to obtain two approximate bounds of the exposure value 

between which we can get proper intensities. Next, by the two bounds, we utilize 

linear interpolation to adjust the exposure value and then obtain the desired 

illumination. An algorithm to describe the proposed method is as follows. 

Algorithm 4.2 Dynamic exposure adjustment. 

Input: an input image Iinput; desired environment intensity Ybase and relevant 

environment window Winen; and the minimum lower bound Exp1 and the 

maximum upper bound Exp2 of the camera exposure value. 

Output: None. 

Step. 

Step 1. Initialize two parameters Y1 = －1 and Y2 = －1. 

Step 2. Compute an exposure value Expbi by the following equation: 

 1(

2bi
2 )Exp Exp

Exp


 . (4.4) 
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Step 3. Use Expbi to acquire an image Iinput with the system camera, and compute 

the average intensity Ycur in Winen in Iinput. 

Step 4. Compare Ycur with Ybase: 

(1). if Ybase ＜ Ycur, set Exp2 = Expbi and Y2 = Ycur; 

(2). if Ybase ≧ Ycur, set Exp1 = Expbi and Y1 = Ycur. 

If Y1 and Y2 are between 10 and 245, go to Step 5; else, go to Step 2. 

Step 5. Compute the exposure value Explinear by the following equation: 

 1
2 1

2 1

( )linear

Y Y
Exp Exp Exp Exp

Y Y 1


   


. (4.5) 

Step 6. Use Explinear to acquire an image Iinput and compute the average intensity 

Ycur of Iinput in Winen. If |Ycur－Ybase| is smaller than a threshold ThrY, then 

exit. 

Step 7. Compare Ycur with Ybase: 

(1). if Ybase ＜ Ycur, set Exp2 = Explinear and Y2 = Ycur; 

(2). if Ybase ≧ Ycur, set Exp1 = Explinear and Y1 = Ycur, 

and then go to Step 6. 

 

An experimental result for dynamically adjusting the exposure in the sidewalk 

curb detection task in the outdoor environment is illustrated in Figure 4.8. By the use 

of the leaned environment window for curb detection as illustrated by a red 

rectangular shape on the image in each figure, we compute the average intensity in 

this region. In the first stage, for the purpose to finding the exposure bounds, we 

conduct the bi-section scheme to adjust the exposure value as shown in Figures 4.8(a) 

through 4.8(d). After that, using the obtained exposure lower bound 50 and upper 

bound 100, we can use a linear interpolation scheme to obtain a suitable intensity on 

the image as illustrated in Figures 4.8(e).  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4.8 Process of the proposed method to dynamically adjust the exposure for the sidewalk detection 

task. (a) With exposure value 400. (b) With exposure value 200. (c) With exposure value 100. (d) With 

exposure value 50. (e) A suitable illumination for sidewalk detection with exposure value 79. 
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4.3 Detail Algorithm of Navigation 

Process 

In this section, we describe the detail process for vehicle navigation in the 

navigation process. The flowchart of the entire navigation process is shown in Figure 

4.8. With the learned information, the vehicle navigates along the learned path by the 

way of visiting each recorded node consecutively and conducts appointed works at 

specific positions until reaching the destination of the learned path. The entire 

navigation process is described in the following algorithm. 

Algorithm 4.3  Navigation Process. 

Input: a learned navigation path Npath with relevant guidance parameters, and learned 

data of camera calibration. 

Output: Navigation process. 

Step. 

Step 1. Read from Npath a navigation node Nnext and relevant guidance parameters. 

Step 2. Turn the vehicle toward the next node Nnext. 

Step 3. Check the illumination by the recoded environment intensity and conduct 

the dynamic exposure adjustment procedure if necessary, and then conduct 

the vehicle to navigate forward. 

Step 4. Try to find obstacles; and if an obstacle is founded and located at a position 

which is too close to the vehicle, stop the vehicle and insert avoidance nodes 

(see Section 6.2 for the detail) into the navigation path for the purpose of 

obstacle avoidance and go to Step 1. 

Step 5. If a sidewalk following mode is adopted, modify the vehicle direction after 

localizing the curb landmark by the curb detection method using the 
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Step 6. Check whether the next node Nnext is reached by the mentioned two 

principles in Section 4.2.1; and if not, go to Step 4. 

Step 7. If a fixed obstacle is read from Npath, insert dodging nodes into the 

navigation path and go to Step 10. 

Step 8. If a hydrant or light pole landmark is read from Npath, take the following 

steps and then go to Step 10. 

8.1 Check the illumination in the relevant environment windows in the 

image for the appointed landmark by the recoded environment 

intensity, and then dynamically adjust the exposure if necessary. 

8.2 Detect the appointed landmark, a light pole or a hydrant, and obtain the 

landmark position as illustration in Sections 5.3 and 5.4, respectively. 

8.3 Use the landmark position to localize the vehicle position and modify 

the odometer position as described in Section 4.2. 

Step 9. If a curb line calibration node is read from Npath, modify the orientation 

reading of the odometer by detecting and localizing a curb line segment, as 

illustrate as described in Section 4.2. 

Step 10. Repeat Steps 1 through 9 until there exists no remaining nodes in Npath. 
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Figure 4.9 Flowchart of detailed proposed navigation process. 
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Chapter 5  

Light Pole and Hydrant Detection in 

Images Using a New Space Line 

Detection Technique 

5.1 Idea of Proposed Space Line 

Detection Technique 

In this study, it is desired to develop a space line detection technique to localize 

each light pole or hydrant landmark on the navigation path for vehicle navigation. 

However, in contrast to the function of a traditional projective camera, the projection 

of a space line on an omni-image using an omni-camera is not a line shape any more 

but a conic-section curve [26]. Some techniques have been proposed for line detection 

in an omni-image, among which is Wu and Tsai’s method [26] which detects lines in 

an H-shaped landmark for use in automatic helicopter landing, as illustrated in Figure 

5.1. By the use of the parameters of a hyperboloidal mirror and some geometric 

relationship, they proved that the projection of a space line onto an omni-image is a 

conic section curve. Then, by the use of a simple technique using the 2D Hough 

transform, they extracted the conic section curve in the omni-image and localized the 

boundary lines of the H shape for conducting helicopter localization. 

However, the above-mentioned method is based on the condition that the 

parameters of the hyperboloidal mirror are known, but in fact retrieving the 

parameters of a hyperboloidal mirror is not an easy work. Hence, by the use of the 
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pano-mapping method which is a more convenient omni-camera calibration method, 

we propose a new space line detection technique in this study. Instead of directly 

obtaining the projected conic section cure of a space line in the omni-image, we 

obtain the space plane which goes through the desired space line and the mirror center. 

The detail of the proposed line detection method by the use of the two-mirror 

omni-camera is introduced in Section 5.2.1. Furthermore, for the specific space line 

which is perpendicular to the ground, we derive in this study a method to obtain its 

3D information directly based on the results of the proposed line detection method. 

 

(a) (b) 

Figure 5.1 Wu and Tsai [26] proposed a line detection method for the omni-image to conduct 

automatic helicopter landing. (a) Illustration of automatic helicopter landing on a helipad with a 

circled H shape. (b) An omni-image of a simulated helipad. 

 

Finally, by the use of the proposed space line detection technique, the light pole 

and hydrant localization works can be completed for vehicle navigation in both the 

learning and the navigation processes. We introduce the proposed hydrant and light 

pole detection and localization techniques in Sections 5.3 and 5.4, respectively. 
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5.2 Proposed Technique for Space Line 

Detection 

5.2.1 Line detection using pano-mapping table  

In this section, we introduce the proposed space line detection technique for use 

on omni-images taken by the two-mirror omni-camera. As mentioned previously, it is 

desired to detect the space plane, which goes through a specified space line and the 

mirror center, instead of detecting a space line projected on an omni-image in other 

methods. The process is described in the following. It is emphasized that the 

pano-mapping table has be established in advance for the use in this process. 

Suppose that the space line L to be detected is projected by Mirror A onto the 

omni-image, and that P is an arbitrary space point on L. Firstly, we consider a way to 

represent a vector which goes through P and the mirror center in the camera system 

used in this study. As shown in Figure 5.2, a light ray going through the space point P 

is projected by Mirror A onto an image point I. The mirror center OA and P together 

form a vector Vp, denoted as (Px, Py, Pz) in the CCS CCSlocal. This vector Vp can be 

described using the elevation and azimuth angles α and  by the following equations: 

 cos cosxP'    ; cos sinyP '    ; sinzP'  . (5.1) 

Next, owing to the slant-up placement of Mirror A discussed previously in 

Chapter 2, we rotate the camera coordinate system CCSlocal by a specific slant angle, 

denoted as . By the use of the rotation matrix described in Equation (2.5), the 

transformation between the coordinates (X′, Y′, Z′) of the original CCS CCSlocal and 

the coordinates (X, Y, Z) of the rotated CCS can be described as follows: 
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. (5.2) 

 

 

Figure 5.2 A space point with a elevation angle α and an azimuth . 

 

By the above coordinate transformation described by Equation (5.2), we can convert 

vector Vp into a new one Vp, which represents the vector with an azimuth angle  and 

an elevation angle α going through the mirror center in the rotated CCS and may be 

described by the following equations: 
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x

p y

z
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P

 
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   

   
           
         

 . (5.3) 

Next, considering the space line L projected onto the omni-image the one IL as 

shown in Figure 5.3, we can find a space plane Q which goes through L and the 

mirror center OA. For this, suppose that the normal vector of Q is denoted as NQ = (l, 

m, n). Then, we can derive the following equation to describe the coordinates (X, Y, Z) 

of a pixel on the space plane Q: 

 0lX mY nZ   . (5.4) 

On the other hand, it is noted that vector VP is perpendicular to NQ, so that the 
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inner product between VP and NQ becomes zero, leading to the following equation: 

 NQVP = (l, m, n)(Px, Py, Pz) = lPx + mPy + nPz = 0. (5.5) 

 

omni-image

Q

IL

P

OA

L
(a space line)

OC
 

Figure 5.3 A space line L projected on IL in an omni-image. 

 

By Equation (5.3), we can transform Equation (5.5) into an alternative form as 

follows: 

cos sin cos sin sin cos sin sin cos
0

cos cos cos cos
l m n

        
   

       
    

 
. 

  (5.6) 

From Equation (5.6), it is desired to obtain the three unknown parameters l, m, and n 

which represent the normal of the space plane Q. For this purpose, we divide Equation 

(5.6) by n to get the following form: 

cos sin cos sin sin cos sin sin cos
0

cos cos cos cos
B A

        
   

       
   

 
 

  (5.7) 
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where A = m/n, B = l/n. We may rewrite the above equation further to obtain 

 B + A a0+ a1 = 0 (5.8) 

where A = m/n, B = l/n, and 

0
cos sin cos sin sin

cos cos
a

    
 

   


 , 1
cos sin sin cos

cos cos
a

  
 

   





. 

In the above equation, we use two parameters A and B to represent the original 

three ones l, m, n. By this form, we can use a simple 2D Hough transform technique 

to obtain the parameters A and B, as described in detail in the following algorithm. 

Algorithm 5.1  Space line detection. 

Input: an input edge-point image Iedge which includes the points of the projection IL of 

a space line L, and the pano-mapping table for Mirror A. 

Output: two parameters, Amax and Bmax, representing a normal vector of the space 

plane described by Equation (5.8). 

Steps. 

Step 1. Set a 2D Hough space S with the parameters A and B, and initialize all cell 

counts to be zero. 

Step 2. For an edge point I at coordinates (u, v) in Iedge, look up the pano-mapping 

table and obtain a corresponding azimuth-elevation angle pair ( α). 

Step 3. Compute the parameter values A and B by Equation (5.7) using  and α, and 

increment the count in the cell (A, B) of the Hough space S by one. 

Step 4. Repeat Steps 2 and 3 until all the edge points in Iedge are computed. 

Step 5. Take the cell (Amax, Bmax) with a maximum count in S as output. 

After the algorithm is conducted, we can obtain the normal vector (l, m, n) of the 

desired space plane Q in another form represented by the two parameters A = m/n and 
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B = l/n. 

Furthermore, if L is a vertical space line which means that the normal vector of 

the space plane Q is parallel to the ground, then it is easy to figure out that m is equal 

to zero. Thus Equation (5.8) can be reduced to the following equation: 

 B = －a1 (5.9) 

where B = l/n and 

1
cos sin sin cos

cos cos
a

  
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


5.2.2

. 

In a similar way as described in Algorithm 5.1, we can use a 1D Hough transform to 

find the parameter B, which represents a normal vector of the specific space plane 

through a vertical space line and the mirror center.  

 3D data computation using a vertical space line 

In this section, based on the proposed space line detection technique described 

above, we can derive the 3D data of a vertical space line (such as the boundary lines 

of a light pole or the vertical axis of a hydrant) from the omni-image, as described 

subsequently. 

As shown in Figure 5.4, a vertical space line L is projected onto IL1 and IL2 on the 

regions of Mirrors A and B, respectively. The center OA of Mirror A is located at 

coordinates (0, 0, 0) in the CCS as we previously assumed. Thus, with the slant angle 

denoted as  and the length of the baseline denoted as b as shown in Figure 5.4, we 

can derive the position of the center OB of Mirror B to be at coordinates (0, bsin, 

bcos). Next, according to Equation (5.4), the equations of the two space planes Q1 

and Q2 going through L and the mirror centers, OA and O, respectively, can be 

described in the following: 
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 l1X + m1Y + n1Z = 0; (5.10) 

 l2X + m2(Y － bsin + n2(Z － bcos) = 0 (5.11) 

where (l1 , m1 , n1) represents the normal vector of Q1 and (l2 , m2 , n2) represents that 

of Q2. 

In addition, by the reason that the space line L is perpendicular to the ground, we 

know that m1 and m2 are both zero. Thus, the above two space plane equations can be 

reduced into the following forms: 

 l1X + n1Z = 0; (5.12) 

 l2X + n2(Z － bcos) = 0 (5.13) 

which are equivalent to 

 B1X + Z = 0; (5.14) 

 B2X + (Z － bcos) = 0 (5.15) 

where B1 = l1/n1 and B1 = l2/n2. 

 

 
Figure 5.4 A space line projected onto IL1 and IL2 on two mirrors in the used two-mirror omni-camera.

By solving Equations (5.14) and (5.15), we can obtain the following equations to 

describe the position of the vertical space line L: 
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where B1 = l1/n1, B1 = l2/n2. It is noted that Equation (5.15) cannot be solved when B1 

is equal to B2, resulting in the parallelism between the two space planes Q1 and Q2. 

In conclusion, for a vertical space line projected on both of the regions of 

Mirrors A and B in the omni-image, after conducting the proposed line detection on 

the regions of Mirrors A and B in the omni-image and finding a pair of the 

corresponding space planes using Algorithm 5.1, we can use Equation (5.16) to 

compute the location of the vertical space line directly. 

 

5.3 Method of Light Pole Detection 

The idea of the proposed method for light pole localization is to use two vertical 

boundary lines of the light pole to estimate the position of the light pole. The entire 

process for light pole position computation is shown in Figure 5.5. Firstly, the 

proposed technique to detect two boundary lines of the light pole is introduced in 

Section 5.3.1. Then, the computation of the light pole location is described in Section 

5.3.2. Finally, some experimental results for light pole detection are given in Section 

5.3.3. 

5.3.1 Light pole boundary detection 

In this section, we describe how to detect the two boundary lines of a light pole 

in an omni-image. The proposed method consists of two steps. Firstly, we conduct 

light pole segmentation by the Canny edge detection technique to obtain the boundary 
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points of the light pole. Then, by the resulting edge-point image, we use the 

above-mentioned space line detection technique to find the two vertical boundary 

lines based on a 1D Hough transform technique. Finally, we can obtain two specific 

space planes which go through one of the two light pole boundary lines as well as two 

other space planes which go through the other of the two light pole boundary lines; 

and use these results to compute the light pole location, as described in the next 

section. The detailed algorithm for the just-mentioned idea of light pole detection is 

described as follows. 

 

Figure 5.5 Proposed method of light pole localization. 

 

Algorithm 5.2  Light pole boundary line detection. 

Input: an input image Iinput, two pano-mapping tables for Mirrors A and B, and a set of 

environment windows Winlp. 

Output: two parameters BA1 and BB1 representing the parameters of two space planes 

through one of the two boundary lines of the light pole and then through the 

Mirror A center and the Mirror B center, respectively; and two other 

parameters BA2 and BB2 representing the parameters of two space planes 

through the other one of the two boundary lines of the light pole and then 

through the Mirror A center and the Mirror B center, respectively. 

Steps. 

Step 1. For Iinput, use the Canny edge detector to conduct edge detection to extract 

the feature points of the boundary lines of the light pole, and obtain an 
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Step 2. Set a 1D space S with parameter B and initialize all cell counts to be zero. 

Step 3. For each edge point I at coordinates (u, v) in winB of Winlp, look up the 

pano-mapping table to obtain an azimuth  and an elevation angle α. 

Step 4. Compute B by Equation (5.9) using  and α, and increment by 1 the value 

of the cell with parameter B in S. 

Step 5. Repeat Steps 2 and 3 until all edge points in winB of Winlp are computed. 

Step 6. Find two cells, denoted as B1 and B2, with the two maximum values in space 

S 

Step 7. If B1 > B2, set BA1 = B1 and BA2 = B2; else, set BA1 = B2 and BA2 = B1. 

Step 8. Take BA1 and BA2 as outputs. 

Step 9. In the same way, repeat Steps 2 through 8 in winS of Winlp for Mirror B and 

take the obtained two corresponding parameters B 1 and B 2 as outputs. B B

5.3.2 Light pole position computation 

After successfully detecting two boundary lines of a light pole, we can use them 

to compute the light pole location. The proposed technique for this is described in this 

section. At first, by the use of two known corresponding space planes obtained in the 

previous section, we compute the locations of the two light pole boundary lines, 

denoted as Lin and Lout, respectively, in the CCS as illustrated in Figure 5.6. Then, two 

corresponding points, Gin and Gout, on the ground can be obtained by the obtained 

equations of Lin and Lout. Next, we check whether the distance between Gin and Gout is 

close to the known diameter of the light pole. If not, we assume that the detected two 

vertical space lines are not the boundary lines of the light pole. Finally, we compute 

the center position between Gin and Gout for use as the light pole position Glp. The 

detailed algorithm to estimate the light pole position is described in the following 
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algorithm. 

 

 

Figure 5.6 Two obtained boundary lines Lin and Lout of the light pole in the CCS. 

Algorithm 5.3  Light pole position computation. 

Input: two corresponding space plane parameters BA1 and BB1, and two other 

corresponding parameters BA2 and BB2 obtained from Algorithm 5.2, of a light 

pole appearing in an omni-image. 

Output: a light pole position Glp in the CCS. 

Steps. 

Step 1. By BA1 and B 1, compute one boundary space line L1 of the light pole by 

Equation (5.16) and obtain its equation as follows: 

B

 X = X1;  Z= Z1. (5.17) 

Step 2. By BA2 and B 2, compute another boundary space line L2 of the light pole by 

Equation (5.16) and derive its equation as follows: 

B

  78



 X = X2;  Z = Z2. (5.18) 

Step 3. Compute the distance d between the two lines by the following equation: 

 2
1 2 1 2( ) (d X X Z Z    2)

5.3.3

. (5.19) 

Step 4. If |d – Ddiameter| ≦  ThD where Ddiameter represents the pre-measured 

diameter of the light pole and ThD is a pre-defined threshold, then go to Step 

5; else, show the message that there is no light pole and exit. 

Step 5. Compute the coordinates (xlp, ylp, zlp) of the light pole position Glp in the 

CCS as follows: 

 xlp = (X2+ X1)/2;  ylp = －H;  zlp = (Z1 +Z2)/2 (5.20) 

where H is the height of the camera center, and take Glp as output. 

 

 Experimental results for light pole detection 

An input image with the projection of a light pole on the regions of Mirrors A 

and B is shown in Figure 5.7(a). After conducting Canny edge detection, we obtain an 

edge-point image as shown in Figure 5.7(b). By this edge image, we use the proposed 

line detection method to extract two light pole boundary lines, and the two 1D Hough 

spaces of the parameter B for Mirrors A and B are shown in Figures 5.8(a) and 5.8(b), 

respectively. The result of light pole detection is shown in Figure 5.9 and the relative 

light pole position with respect to the vehicle is shown in Figure 5.10. 

5.4 Method of Hydrant Detection 

In this section, we introduce the proposed method to localize a hydrant. At first, 

we introduce the used method to describe a hydrant contour and the learning of the 

hydrant contour in Section 5.4.1. Next, by the use of dynamic threshold adjustment 
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and vertical line localization techniques, we can extract a representative structural 

feature of the hydrant, namely, its axis, and then estimate the position of the axis, as 

described in Section 5.4.2. Also, some experimental results for hydrant detection by 

the proposed method are given in Section 5.4.3. 

 

(a) (b) 

Figure 5.7 Two omni-images with the projection of the light pole. (a) The input image. (b) The result 

edge image after doing Canny edge detection. 

 

 

(a) 

(b) 

Figure 5.8 Two 1D accumulator spaces with parameters B. (a) For Mirror A. (b) For Mirror B. 
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Figure 5.9 The result image of light pole detection. Two boundary lines are illustrated as the red 

and blue curves. 

 

 

Figure 5.10 A computed light pole position, the yellow point, with respect to the vehicle 

position, the blue point, in the VCS. Two boundary lines are located at the blue and red 

positions. 

 

5.4.1 Hydrant contour description 

In hydrant detection, for the purpose to inspect the results of hydrant 

segmentation on the image, we use a simple description with two specific parameters 
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obtained by principal component analysis. Specifically, after obtaining the hydrant 

segmentation results, we compute the covariance matrix Cx by the feature point 

positions in the image. After obtaining the two eigenvalues and the two corresponding 

eigenvectors of the matrix Cx, we compute the length ratio  of the two eigenvalues of 

Cx and the rotational angle  between the ICS and the principal component, 

respectively. Then, we use  and  to describe the hydrant contour as shown in Figure 

5.11. The detail to obtain these two parameters is described in the following 

algorithm. 

Algorithm 5.4  Hydrant contour parameter computation. 

Input: an input bi-level image Iinput which includes the feature points of a hydrant 

appearing in an omni-image. 

Output: two hydrant contour parameters, a rotational angle , and a length ratio . 

Steps. 

Step 1. Scan each feature point p with coordinates (u, v) in Iinput, compute the center 

mx = (ux, vx) of all the feature points using their coordinates, and calculate 

the covariance matrix Cx of these feature points using their coordinates and 

mx. 

Step 2. Compute the eigenvectors e1 = (u1, v1) and e2 = (u2, v2) and the two 

corresponding eigenvalues1 and 2 of matrix Cx, where e1 represents the 

first principal component and e2 the second. 

Step 3. By the two eigenvectors e1 and e2, and the two eigenvalues 1 and , 

compute two parameters, the rotational angle  of the first principle 

component e1 with respect to the v-axis in the ICS and the ratio  of 1 to 2 

by the following equations: 
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Step 4. Take  and as outputs. 

 

e1( u1, v1)

e2( u2, v2)

 
 

(a) (b) 

Figure 5.11 Principal component analysis for the hydrant contour. (a) Illustrated principal 

components, e1 and e2, on the omni-image. (b) A rotation angle   between the ICS and the 

computed principal components. 

 

In addition, because different projections of the same hydrant on omni-images 

taken at different positions are usually similar, we can record as many different 

hydrant contours as possible in the learning process in order to “learn” the hydrant 

contour more precisely. More specifically, for the learning of a specific hydrant 

contour in the navigation path, we guide the vehicle to take a number of omni-images 

from different directions at different positions. For each obtained image, we compute 

two parameters i and i by the above-described algorithm after extracting the 

hydrant feature points. Then, from all i and i, we select a minimum angle min and 

a maximum angle max as well as a minimum ratio min and a maximum ratio max to 

compose the ranges of the hydrant contour parameters. Then, we record the four 

parameters min, max, min, and max as the hydrant contour thresholds. After this 

learning process, if the computed rotational angle  and the ratio  in hydrant 
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detection are not in the learned ranges, we decide that the result of detection is not a 

hydrant. 

5.4.2 Hydrant detection and localization 

By the symmetric shape of a common hydrant, the idea of the proposed method 

for hydrant localization is to detect the vertical axis line of the hydrant using principal 

component analysis, and localize the hydrant by this line. The entire process to 

localize a hydrant in this way is shown in Figure 5.12, and two stages of works 

conducted in this process are described in the following. 

 

 

Figure 5.12 Proposed method of light pole localization. 

 

(A) Hydrant feature extraction by dynamic color thresholding 

Due to the special color of the hydrant, we utilize the color information to extract 

the hydrant contour from an image. Specifically, by the use of the HSI color space, we 

use only the hue and saturation values to classify the hydrant feature in order to ignore 

the influence of the varying image intensity caused by the time-changing lighting 

condition in the outdoor environment. The conversion of color values from the RGB 

color space to the HSI color space is as follows: 
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According to our experimental experience, we define two hue values, denoted as 

Hmin and Hmax, as the hue threshold values of the upper and lower bounds for 

extracting the red feature of the hydrant. Similarly, we define two saturation values, 

denoted as Smin and Smax, as the saturation threshold values of the upper and lower 

bounds for extracting the surface feature of the hydrant. These threshold values are 

used together to classify the hydrant feature points. 

Furthermore, varying lighting conditions will influence the hue and saturation 

features. Based on the learned hydrant contour, we conduct dynamic color 

thresholding to adjust the recorded saturation threshold value of Smin in a fixed range 

[S0, S1], where S0 and S1 are learned in advance in different lighting conditions in the 

learning stage. We describe the overall method to extract the feature points of the 

hydrant in detail in the following algorithm. 

Algorithm 5.4  Hydrant detection by dynamic thresholding. 

Input: an input image Iinput including a hydrant; the learned four hydrant contour 

parameters, min, max, min, and max; two hue threshold values Hmin and Hmax; 

two saturation thresholds Smin and Smax; and a set of environment windows 

Winhyd. 

Output: a bi-level image Ibi with feature points of the hydrant, and an adjusted 

saturation threshold Smin. 

Steps. 
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Step 1. Initialize an empty bi-level image Ibi for labeling feature points and set all 

pixel values as zero. 

Step 2. Scan each pixel Iuv with coordinates (u, v) in Winhyd, compute its hue value 

huv and saturation value suv by Equation (5.22), and if huv is between Hmin 

and Hmax and suv is between Smin and Smax, then label Iuv by “1” in Ibi. 

Step 3. Apply erosion and dilation operations to the bi-level image Ibi. 

Step 4. Conduct image connected component labeling, and find a maximum 

connected component M in Ibi. 

Step 5. Apply Algorithm 5.3 to M in Ibi to obtain two contour parameters, the 

rotational angle  and the length ratio  of M. 

Step 6. If min <  < max and min <  < max, then take M in Ibi and Smin as outputs; 

else, adjust the threshold Smin in the range [S0, S1] and go to Step 1. 

 

(B) Hydrant position computation by the vertical axis line of the hydrant 

By using the results obtained by the hydrant contour extraction process described 

above, it is desired further to find the vertical axis line of the hydrant to localize the 

hydrant. We assume that the desired vertical axis line goes through both centers of the 

hydrant appearing in the regions of Mirrors A and B in the omni-image. After 

extracting the two center positions of the hydrant in regions of Mirrors A and B, we 

can obtain further the two space planes which go through the axis line and the two 

mirror centers, respectively, by the use of the proposed vertical line detection method. 

Finally, we can obtain the hydrant position by the located axis line using the 

information of the two space planes. The detailed process is described as follows. 

Algorithm 5.5  Hydrant location computation. 

Input: an input bi-level image Ibi which includes hydrant feature points, and an 
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environment window Winhyd. 

Output: a hydrant position Ghyd in the CCS. 

Steps. 

Step 1. Compute the center CB with coordinates (uB, uB) of the hydrant feature 

points in winB of Winhyd and the center CS with coordinates (uS, uS) of the 

hydrant feature points in winS of Winhyd. 

Step 2. Look up the pano-mapping table to obtain the corresponding elevation angle 

αB and azimuth angle  of CB and the corresponding elevation angle αS and 

azimuth angle S of CS. 

Step 3. By Equation (5.9), compute the parameter value B  corresponding to CB 

using  and αB as well as the parameter value BS corresponding to CS using 

S and αS. 

B

5.4.3

Step 4. By the use of BA and BB, compute the position coordinates X and Z of the 

axis line L of the hydrant by Equation (5.16). 

Step 5. Compute the hydrant position Ghyd with coordinates (xhyd, yhyd, zhyd) in the 

CCS as follows: 

 xhyd = X;  yhyd = －H;  zhyd = Z (5.23) 

where H is the height of the camera center. 

Step 6. Take Ghyd as output. 

 Experimental results for hydrant detection 

Some experimental results for hydrant detection are shown in this section. The 

input image with a hydrant on the regions of Mirrors A and B, respectively, is shown 

in Figure 5.13. The result of hydrant segmentation using the initial threshold values is 

shown in Figure 5.14(a). Next, the result of hydrant segmentation by dynamic 

thresholding is shown in Figure 5.14(b). We can see that the extracted contour in 
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Figure 5.14(b) is more similar to the real shape of the hydrant. Finally, the result of 

detecting the vertical axis line of the hydrant and the obtained hydrant position are 

shown in Figure 5.15. 

Figure 5.13 The input omni-image with a hydrant. 

 

 
(a) 

 
(b) 

Figure 5.14 Two result images of hydrant segmentation with different threshold values (a) The result 

of hydrant segmentation with original threshold values. (b) The result image of hydrant segmentation 

by dynamic thresholding. 
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(a) 

 

(b) 

Figure 5.15 The result of hydrant detection and obtained hydrant position. (a) The result image of 

extracting the vertical axis line of the hydrant (b) The related hydrant position with respect to the 

vehicle position. 
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Chapter 6  

Curb Line Following and Obstacle 

Avoidance in Navigation  

6.1 Proposed Technique of Curb Line 

Following 

To conduct vehicle navigation on sidewalks, we propose a technique to detect a 

curb line and compute its location with respect to the vehicle. Then, by a localized 

curb line, we can guide the vehicle to follow the curb and also calibrate the orientation 

odometer reading in the navigation process. In this system, we detect the curb line by 

the use of the projection of a curb line on the region of Mirror A in the omni-image. 

We know that the detected curb image points are on the floor in the real world, so the 

position of the curb line can be computed directly by the use of a single camera, i.e., 

the one with Mirror A in the proposed camera system. 

In the remainder of this chapter, the proposed method to extract curb boundary 

points is introduced in Section 6.1.1. By the use of the method for curb boundary 

extraction, we conduct curb line localization by the proposed dynamic threshold 

adjustment technique described in Section 6.1.2. Finally, after deriving the location of 

the curb line, we propose a method for the vehicle to navigate by following the curb 

line in the navigation process as introduced in detail in Section 6.1.3. Some 

experimental results for curb detection are shown in Section 6.1.4. 

  90



6.1.1 Curb line boundary points extraction  

For curb line detection on an omni-image, we define an environment window, 

denoted as Wincurb, to specify a specific region of Mirror A on the image. By an input 

omni-image obtained from the omni-camera, we perform the following four steps to 

compute the relative position of a detected curb boundary point with respect to the 

vehicle. 

(1) Curb feature detection by the use of color information  

Because of the special color of the curb (which is red in our experimental 

environment), we use the color information to extract the curb feature using the HSI 

color model. Like the method for hydrant feature extraction as discussed previously in 

Section 5.4.2, we classify the curb feature in the image by the use of two hue 

threshold values, denoted as Hmin and Hmax, and two saturation threshold values, 

denoted as Smin and Smax, as the lower and upper bounds for thresholding the hue and 

saturation value, respectively. Then, by thresholding the hue and saturation values for 

each point on the image, we can obtain a set of curb feature points and then label their 

positions on a bi-level image Ibi for the use in the next step. 

 

(2) Curb boundary point detection 

With the bi-level image Ibi which includes the curb feature points, we can start to 

find the inner boundary points of the curb line. In image Ibi, we scan each pixel from 

top to down and from right to left in Wincurb as illustrated in Figure 6.1, and record the 

first found feature point as a curb boundary point. After scanning each row, we derive 

the curb boundary point position in the image and label them as red points, as shown 

in Figure 6.1. 
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(3) Computation of curb boundary point positions 

After deriving the curb boundary points in the omni-image, we compute the 

boundary positions in the CCS. Suppose that a curb point is found on the ground, such 

as the point P illustrated in Figure 6.2. By the use of Mirror A, point P at coordinates 

(X, Y, Z) is projected onto the omni-image with an elevation angle α and an azimuth 

angle . As described previously in Section 5.2.1, we can represent the vector from 

the mirror center OA to a space point P using the related elevation and azimuth angles 

by the use of Equation (5.3) which is repeated in the following: 
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In other words, we can represent the position of P in the CCS with the form described 

by Equation (5.3). Besides, by the reason that the height H of the center of Mirror A is 

known in advance, we can further derive Y = －H. Hence, by the proportions among 

Px, PY, and PZ and known parameter Y, the position of the ground point P can be 

computed by dividing Equation (5.3) by Py and then multiplying the result by －H, 

leading to the following equations which describe the position of P: 
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Finally, the details of the above three major steps for curb line boundary 

extraction is described in the following algorithm, and the obtained curb boundary 

points positions in the VCS will be used to estimate the location of the curb line, as 
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introduced in the next section. 

 

 

Figure 6.1 A detected curb line and the inner boundary points of the curb line on the omni-image. 
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Figure 6.2 A ground point P projected onto Mirror A 

 

Algorithm 6.1  Extraction of curb boundary points. 

Input: an input image Iinput, two hue threshold values Hmin and Hmax, two saturation 

threshold values Smin and Smax, and an environment window Wincurb. 

Output: a set Scurb of the positions of the curb boundary points in Iinput in the VCS. 

Steps. 

Step 1. Initialize a bi-level image Ibi. 

Step 2. Scan each point Iuv at coordinates (u, v) in Wincurb in Iinput, and by Equation 

(5.22) compute its hue value huv and saturation value suv. If huv is between 
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Step 3. Conduct the erosion and dilation processes to the bi-level image Ibi. 

Step 4. Scan each row from right to left in Wincurb in Ibi and find the first labeled 

point Bj at coordinates (u, v).  

Step 5. Look up the pano-table to obtain the corresponding elevation and azimuth 

angle pair (α,), and compute the boundary point position BCCS in the CCS 

by the use of Equation (6.1). 

Step 6. Calculate the corresponding position BVCS of the point in the VCS by the 

coordinate transformation described by Equation (3.6) with BCCS as input, 

and record BVCS into the set Scurb. 

Step 7. Repeat Steps 4 through 6 until all rows in Wincurb have been scanned. 

6.1.2 Curb line localization by dynamic color 

thresholding 

To localize a detected curb line segment, firstly assume that the curb line 

segment in the image is a straight line. This is reasonable because the projection of the 

curb line on the omni-image is a small part of the whole curb line. Thus, we may 

approximate the detected curb line using a liner function by a line fitting technique. 

Specifically, using the boundary point positions by the method discussed previously in 

the last section, we can fit the data to a line L and obtain the equation of L as follows: 

 Y = ax + b, (6.5) 

where the two parameters, a and b, are calculated by the following equations: 
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with (xi, yi) being the position coordinates of a boundary point. 

Furthermore, by the use of this model, we can estimate a more precise position of 

the curb line using the proposed dynamic color thresholding technique mentioned 

previously. To be more specific, we conduct dynamic threshold adjustment for curb 

detection by adjusting the saturation threshold Smin in a pre-defined fixed range [S0, 

S1]. After using all possible pre-selected threshold values in this range to extract curb 

boundary points, we select the saturation threshold value with the minimum sum of 

errors in the result of fitting the curb boundary points with the computed line. The 

entire process for curb line location computation is shown in Figure 6.3 and the 

detailed algorithm is described in the following. 

 

 

Figure 6.3 Process of curb line location computation 

 

Algorithm 6.2  Curb line detection by dynamic color thresholding. 

Input: an input image Iinput, and an environment window Wincurb. 

Output: a slope angle  of the curb line, and the distance d of the vehicle to the curb 

line. 

Steps. 
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Step 1. Conduct curb boundary point extraction by the use of Algorithm 6.1 with 

Iinput, Wincurb, two hue threshold values Hmin and Hmax and two saturation 

threshold values Smin and Smax as inputs to obtain a set Scurb of N boundary 

points, each denoted as ci with coordinates (xi, yi) in the VCS. 

Step 2. Use the line regression scheme to compute a line L by Equation (6.6) with ci 

as inputs, where i is 1 through N and derive the equation of the best-fit line L 

as follows: 

 Y = aX + b (6.4) 

where the coefficients a and b are as described by Eqs. (6.6). 

Step 3. Compute the sum of the errors Se of fitting the boundary points ci with L by 

the following equation: 

  
1

n

e i i
i

S y ax


b      (6.5) 

 

Step 4. Adjust the threshold value Smin in the range [S0, S1] and repeat Steps 1 

through 3 until all possible pre-selected threshold values in [S0, S1] have been 

computed. 

Step 5. Select the fitting line Lbest with the minimum sum of errors from the 

computed fitting lines obtained in Step 4. 

Step 6. Compute the slope angle of Lbest and the distance d to the vehicle by the 

following equation: 
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Step 7. Take  and d as outputs. 
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6.1.3 Line following in navigation 

By the obtained curb line location, the vehicle can conduct line following on 

sidewalks in the navigation process. The proposed scheme for line following aims to 

keep the navigation path at an appreciate distance to the curb line. As shown in Figure 

6.4, we define the range [Dist1, Dist2] as the safe limits between the vehicle and the 

curb line. When the vehicle is at a position with a safe distance to the curb, we guide 

the vehicle to adjust its direction to be parallel to the curb. However, if the distance to 

the curb line is not in this range, we slow down the speed of the vehicle and turn the 

vehicle forward to get into the safe region progressively. The proposed line following 

process for vehicle navigation is described in the following algorithm. 

 

 

Figure 6.4 Illustration of line following strategy. 

Algorithm 6.3  Curb Line following. 

Input: an input image Iinput. 

Output: none. 

Steps. 

Step 1. By the use of Algorithm 6.2, obtain the slope angle  of the curb line and a 

distance d to the curb line. 
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Step 2. According to the distance d between the vehicle and the curb line, perform 

the following steps. 

(1) If d > Dist2, slow down the speed of the vehicle; and if the current 

vehicle direction is toward the safe region, exit; else, turn to the right 

for an angle of 5o toward the safe region. 

(2) If d < Dist1, slow down the speed of the vehicle; and if the current 

vehicle direction is toward the safe region, exit; else, turn to the left for 

an angle of 5o forward the safe region. 

(3) If Dist1 ≦ d ≦ Dist2, modify the vehicle direction by the use of  to 

make it parallel to the curb line. 

6.1.4 Experimental results of curb detection 

Some experimental results of curb detection using the proposed method are 

given in this section. An input omni-image with curb line is shown in Figure 6.5. By 

the proposed method, the curb segmentation result with original threshold parameters 

is shown in Figure 6.6(a). In addition, a better curb segmentation result adopting the 

dynamic threshold adjustment technique is shown in Figure 6.6(b). Finally, the 

extracted curb boundary points and computed best-fit line from Figure 6.6(b) are 

shown in Figure 6.7. 
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Figure 6.5 An input omni-image with curb line landmark. 

 

(a) (b) 

Figure 6.6 Two result images of curb segmentation with different threshold values (a) The segmentation 

result with original threshold values. (b) The segmentation result image by dynamic thresholding. 

 

 

Figure 6.7 Illustration of extracted curb boundary points and a bet fitting line (the yellow dots). 
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6.2 Proposed Technique of Obstacle 

Avoidance 

The idea of the proposed obstacle detection technique is based on the use of the 

disparity resulting from the separation of Mirrors A and B. Because the used 

two-mirror omni-camera is placed at a fixed position and slanted up for a fixed angle 

on the autonomous vehicle, a ground point P will be projected by the two mirrors onto 

the camera at two specific different image positions as shown in Figure 6.8(a). In 

other words, we can find the same space point P at these two image positions 

simultaneously. Thus, we can record in advance the relation between two 

corresponding ground points in the two mirrors and use them to inspect an object 

which is not flat on the ground. More specifically, if an object with a height is 

projected by the two mirrors onto the omni-images, we can detect it by looking up 

recoded corresponding ground positions on the two mirrors. As shown in Figure 

6.8(b), instead of the ground point G we find out another space point F on the obstacle 

which is projected by Mirror A onto the image. 

Simply speaking, for obstacle detection in this study, our purpose is to construct 

a specific table, we call ground matching table, which records the relationship 

between the ground points on the image region of Mirror A and the corresponding 

ground points on the image region of Mirror B in the omni-image as shown in Figure 

6.9. The proposed method for creating a ground matching table is introduced in 

Section 6.2.1. Next, by the use of the established ground matching table, we can 

conduct obstacle detection and localization conveniently for vehicle navigation, as 

described in Section 6.2.2. Finally, the procedure of obstacle avoidance is introduced 

in Section 6.2.3. 
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(a) (b) 

Figure 6.8 Two side view of the vehicle system and a ground G. (a) Without obstacles. (b) With an obstacle 

in front of the vehicle. 

 

 

Figure 6.9 Illustration of the ground matching table. 

 

6.2.1 Calibration process for obtaining 

corresponding ground points in two mirrors 

At the beginning of the calibration process, we specify a set of environment 

windows Winobs for use in the calibration process as well as in the obstacle detection 

process in the navigation process. The purpose of the calibration process is to 

construct a ground matching table for the use in winB of Winobs and the entry in the 

table records the image point position of a corresponding ground point in the image 

region of Mirror B. In this study, we propose a semi-automatic calibration method for 

obtaining corresponding ground points in Mirrors A and B.  
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To be more specific, a specific line, which we call a calibration line, with a 

special color is placed on the ground in front of the vehicle as shown in Figure 6.10 

and can be seen on both regions of the two mirrors in the omni-image. Next, by the 

property of rotational invariance of omni-imaging, we can obtain the corresponding 

ground points in the two mirror regions from an input omni-image automatically as 

illustrated in Figure 6.11, and record them on the relevant entries in the ground 

matching table by the following algorithm. 

 

Calibration line

 
Figure 6.10 A calibration line used to creating the ground matching table in this study. 

 

 

Figure 6.11 Illustration of detecting corresponding ground points on a calibration line by 

the use of rotational property on the omni-image. 
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Algorithm 6.4  Ground matching table recording. 

Input: an input omni-image Iinput, and a ground matching table. 

Output: Updated ground matching table. 

Steps. 

Step 1. By the use of the previously-mentioned HSI classification method, classify 

the feature points of the calibration line on Winobs in Iinput and label the 

feature points in a bi-level image Ibi. 

Step 2. Scan each pixel from bottom to top for all columns on winB of Winobs in Ibi to 

find the first feature point fBi at coordinates (ui, vi); and record fBi into a set 

SB. 

Step 3. For each point fBi in SB, compute its azimuth angle  by Equation (2.3); scan 

accordingly on the same radial direction from far to near in the region of 

Mirror B to find the first feature point fSi. 

Step 4. Record the image position of fSi into the relevant entire in the ground 

matching table; and go to Step 3 if the elements in SB have not been 

exhausted. 

By conducting the above algorithm continually while the vehicle is moving 

around, we can gradually create the ground matching table. With sufficient input 

images taken at different positions by manually moving the vehicle, a complete 

ground matching table can be obtained at the end of the calibration process. 

6.2.2 Obstacle detection process 

For obstacle detection during vehicle navigation, it is assumed that each obstacle 

which blocks the vehicle has a surface with a single color. Also, the vehicle should be 

close enough to “see” it on the two regions of Mirrors A and B in the image. The idea 
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of the proposed method to detect an obstacle is to “learn” the color information of the 

obstacle points which are detected by the use of the ground matching table. Then, by 

analyzing the color information of these points, we can derive the color of the 

obstacle and extract the entire obstacle contour. Finally, we can localize the detected 

obstacle position by extracting the boundary points on the bottom of the obstacle on 

the floor. The above-mentioned obstacle detection process consisting of four major 

steps are described in the following, and a flow chart illustrating the process is shown 

in Figure 6.12.  

 

Figure 6.12 Proposed process for obstacle detection. 

 

(1) Obstacle point extraction by the use of the ground matching table 

By the use of the ground match table, we can obtain the corresponding ground 

points on the two mirror regions in the omni-image. By the difference of the intensity, 

we can find out a space point like F on the obstacle surface projected on the region of 

Mirror A in the omni-image as shown in Figure 6.13. We collect all detected obstacle 

points on winB of Winobs and label them in a bi-level image Ibi. After reducing noise by 

conducting some image processing on Ibi, we record all remaining obstacle points in 

Ibi into a set Sobs. 

(2) Obstacle color information learning 

By RGB-to-HSI conversion, we compute the average hue value Hobs and a hue 

variance varobs from all image points in Sobs. We record Hobs and varobs as the color 

information of the obstacle. 
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Figure 6.13 An obstacle point F found dun to the difference of the intensity. 

 

 (3) Obstacle detection by the learned color information 

By the use of the HSI color model, we classify the obstacle feature points by the 

learned color information of the obstacle. After that, we obtain the obstacle feature 

points in the omni-image. 

(4) Obstacle location computation 

With the image which includes the detected obstacle points, we detect outlier 

feature points on the bottom of the obstacle by a method which scans each radial line 

in winB of Winobs, and takes the first found feature point as the outlier point as shown 

in Figure 6.14. By the reason that these bottom boundary points are on the ground, we 

use the previously-mentioned method using Equation (6.1) to compute their positions. 

Finally, we calculate the average position of the found bottom boundary points as the 

obstacle location Gobs. 

The detailed algorithm of the above four steps for conducting obstacle 

localization is described in the following. At the end of the algorithm, we can obtain 

the obstacle location and guide the vehicle to dodge the found obstacle as discussed in 

the next section. 
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Figure 6.14 Illustration of the method to find boundary points on the bottom of obstacle. 

 

Algorithm 6.5  Obstacle detection and localization. 

Input: an input omni-image Iinput, a set of environment windows Winobs, and a ground 

match table. 

Output: an obstacle location Gobs in the CCS. 

Steps. 

Step 1. Scan each point IB at coordinates (uB, vB) in winB of Winobs in Iinput, and look 

up the ground matching table to find the corresponding ground point IS at 

coordinates (uS, vS). 

Step 2. (Detecting obstacle points) Compute the intensity YB of IB and YS of IS; if |YB 

－ YS| is larger than a threshold, label IB in a bi-level image Ibi which keeps 

obstacle pixels; go to Step 1 until all points in winB of Winobs are scanned. 

Step 3. Apply the operations of erosion, dilation, and connected component labeling 

to the bi-level image Ibi. 

Step 4. (Deciding whether an obstacle has been found) If the number of all labeled 

points in Ibi is larger than a threshold, then regard the points as an obstacle 

and record them into a set SB. 
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Step 5. By the image points in SB, compute the mean hue value Hobs and the hue 

variance value varobs by the use of the conversion described by Equation 

(5.22). 

Step 6. (Finding obstacle points more precisely) For each pixel on winB of Winobs in 

the original input image Iinput, classify the obstacle feature points by the 

following rule:  

if the computed hue value of a pixel is between the range [Hobs － 2×

varobs, Hobs ＋ 2×varobs], then take the pixel as an obstacle point; 

and label all obstacle points in another bi-level image IHue. 

Step 7. Scan each radial line in winB of Winobs from far to near in IHue, and record the 

first found obstacle point as a bottom boundary point Iobs into a set Sobs. 

Step 8. For all points Iobs in Sobs, look up the pano-mapping table to find 

corresponding elevation and azimuth pair (α, ). 

Step 9. Compute the related boundary point position Cobs in the CCS by Equation 

(6.1). 

Step 10. Calculate the average position of the bottom boundary points as the obstacle 

position Gobs and take Gobs as output. 

6.2.3 Obstacle avoidance process 

In this section, we introduce the method of obstacle avoidance for vehicle 

navigation. The obstacle avoidance process is conducted in the cases of finding a 

localized light pole, reading a fixed obstacle position from the navigation path, or 

detecting a dynamic obstacle in the navigation process. The proposed strategy of the 

obstacle avoidance is to insert additional path nodes for obstacle avoidance into the 

navigation path to guide the vehicle to change its path to pass the obstacle. As shown 

in Figure 6.15, after obtaining the obstacle location, the path node Nodeavoid is placed 
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at the left-hand side with a pre-defined distance Dist with respect to the obstacle 

position as shown in the figure. Finally, the vehicle will navigate to Nodeavoid firstly 

and then the original destination node Nodei+1. 

 

Figure 6.15 Illustration of inserting a path node Nodeavoid for obstacle avoidance in the original 

navigation path. 
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Chapter 7  

Experimental Results and 

Discussions 

7.1 Experimental Results 

In this section, we will show some experimental results of the proposed vehicle 

navigation system in the learning and navigation processes. The experimental 

environment was an outdoor sidewalks in National Chiao Tung University as shown 

in Figure 7.1(a). An illustration of the environment consisting of a gray sidewalk, a 

red curb line, and some landmarks is shown in Figure 7.1(b). The portion to the right 

of the red curb line is part of an around-campus road. 

 

 

(a) (b) 

Figure 7.1. The experimental environment. (a) A side view. (b) Illustration of the 

environment. 

 

In the learning process, a trainer guided the vehicle by the use of the learning 
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interface as shown in Figure 7.2 to construct unknown navigation environment. The 

vehicle navigated forward along the detected curb line, and the trainer followed the 

vehicle to conduct learning tasks on the vehicle system. After arriving at appropriate 

locations on the sidewalk, the vehicle was instructed to learn the positions of specific 

landmarks such hydrants and light poles. Some landmark detection results are shown 

in Figure 7.3. In addition, the position of a fixed obstacle, a cover of an underground 

sewer, has also been recorded by the method of manually localizing its position on the 

omni-image as shown in Figure 7.4. At the end of the learning process, a navigation 

map with a navigation path and other environment landmarks was created, as 

illustrated in Figure 7.5. 

 

 

Figure 7.2 The Learning interface of the proposed vehicle system. 

 

In the navigation process, the vehicle started from the same origin like that in the 

learning process and navigated alone the recorded navigation path nodes with the 

method of curb line following. By conducting curb detection, the vehicle kept its path 

to be parallel to the curb. An example of curb detection results is given in Figure 7.6. 
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Next, by the use of the dynamic exposure adjustment technique, the vehicle detected 

the appointed landmarks with a suitable illumination and localized its position. Some 

results of hydrant and light pole landmark detection are shown in Figure 7.7. In 

addition, for a detected light pole and a recoded fixed obstacle, the vehicle adopted 

the obstacle avoidance procedure to dodge them as shown in Figures 7.8 and 7.9, 

respectively. Also, after detecting a dynamic obstacle in the navigation path as shown 

in Figures 7.10, the vehicle created a new path with avoidance nodes to pass through 

the obstacle as illustrated in Figure 7.11. Finally, the vehicle reached the appointed 

terminal node successfully, and the path map with a record of each vehicle position in 

the navigation process is illustrated in Figure 7.12. 

 

(a) (b) 

Figure 7.3 Images of some results of landmark detection in the learning process. (a) A hydrant 

detection result with axes of the hydrant drawn in red. (b) A light pole detection result with pole 

boundaries drawn in blue. 
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(a) (b) 

Figure 7.4 Learning of the fixed obstacle. (a) The fixed obstacle position on the omni-image (Lime 

points clicked by the trainer). (b) Computed fixed obstacle positions in the real world. 

 

 

Figure 7.5 Illustration of the learned navigation map. 

 

Figure 7.6 Image of a result of curb line detection. 
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(a) (b) 
Figure 7.7 Images of results of landmark detection for vehicle localization in the navigation process. 

(a) Hydrant detection results. (b) Light pole detection results. 

 

 

 

  

(a) (b) 

  

(c) (d) 
Figure 7.8 The vehicle detects the light pole and conduct avoidance procedure in the navigation 

process. (a) ~ (d) show the process of light pole avoidance. 
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(a) (b) 

  

(c) (d) 
Figure 7.9 The vehicle reads the fixed obstacle position from the navigation path and change the path 

to avoid it. (a) ~ (d) show the process of fixed obstacle avoidance. 

 

 

Figure 7.10 Image of a result of dynamic obstacle detection. 
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(a) (b) 

  

(c) (d) 
Figure 7.11 The process of dynamic obstacle avoidance in the navigation path. (a) Starting to conduct 

obstacle detection. (b) Turn left to dodge the localized obstacle. (c) A side view of the avoidance 

process. (d) Completing the avoidance process. 

 

 

Figure 7.12 The recorded path map in the navigation process. (Blue points represent the vehicle path 

and other points with different color represent different localized landmark position in different 

detecting) 
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7.2 Discussions 

By analyzing the experimental results of the vehicle navigation, we find some 

problems. Firstly, for sidewalk curb detection, we detect the specific curb with a red 

surface in the campus of National Chiao Tung University. More kinds of curb lines 

with different colors should be learned for the line following technique. Also, when 

dynamically adjusting the exposure to obtain an appropriate exposure value for 

conducting different landmark detection works, it may take some time to wait the 

camera system to adjust to the appointed exposure value. A possible way to solve this 

problem is to use another camera with quicker response time in the camera parameter 

adjustment process. Furthermore, the light reflection caused by the plastic camera 

enclosure creates in the omni-image also causes ill effects in image analysis. A 

possible solution is to learn these specific regions in advance and ignore them when 

conducting image processing. Finally, more experiments in different environments 

should also be conducted to test our system more thoroughly.  
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Chapter 8  

Conclusions and Suggestions for 

Future Works 

8.1 Conclusions 

A vision-based autonomous vehicle navigation system for use as a machine 

guide dog in outdoor environments has been proposed in this study. To implement 

such as a system, several techniques has been proposed. 

At first, a method to train the vehicle system for the purpose of learning 

environment information has been proposed. By the pano-mapping technique 

proposed by Jeng and Tsai [25], we calibrate the two-mirror omni-camera used in this 

study by recoding the relationship between image pixels and real-world elevation and 

azimuth angles. Next, by a learning interface designed in this study, a trainer of the 

vehicle system can guide the vehicle to navigate on a sidewalk and construct a 

navigation map conveniently including the path nodes, alone-path landmarks, and 

relevant guidance parameters. 

Next, a new space line detection technique based on the pano-mapping technique 

has been proposed. The space line with a curve projection on the omni-image can be 

detected by the use of analytic formulas and the Hough transform technique. In 

addition, for the vertical space line which exists in landmarks like light poles and 

hydrants, we can further compute its position directly according to omni-imaging and 

pan-mapping techniques. 

Also, several landmark detection techniques have been proposed for conducting 
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vehicle navigation. Firstly, a curb line detection technique has been proposed for use 

to guide the vehicle on a safe path as well as to calibrate the odometer reading of the 

vehicle orientation. Next, hydrant and light pole detection techniques have been 

proposed. The vertical space lines found in these landmarks using the techniques can 

be used to localize the vehicle in the navigation process. Furthermore, to conduct the 

landmark detection works more effectively in outdoor environments, techniques for 

dynamic exposure and threshold adjustments have also been proposed, which can be 

employed to adjust the system’s parameters to meet different lighting conditions. Also 

have been proposed is a new obstacle detection technique, which can be used to find 

dynamic obstacles on the sidewalk for safer vehicle navigation. Specifically, by the 

use of a ground matching table, the vehicle can detect obstacles on the path and 

localize its position for realtime path planning to conduct an obstacle avoidance 

process automatically. 

Good landmark detection results and successful navigation sessions on a 

sidewalk in a university campus show the feasibility of the proposed methods. 

8.2 Suggestions for Future Works 

According to our experience obtained in this study, in the following we point out 

some related interesting issues worth further investigation in the future: 

(1) the proposed line detection may be adopted to detect and localize other kinds of 

landmarks with vertical line features; 

(2) it is interesting to use different artificial or nature landmarks, such as a tree, a 

signboard, a pillar, or a building, to conduct vehicle navigation in outdoor 

environments; 

(3) the curb line detection technique may be improved by learning features of other 
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(4) it is a challenge to develop additional techniques to guide the vehicle to pass 

crossroads, like recognizing traffic signals and following zebra crossings, etc.; 

(5) it seems necessary to add the capability of warning the user in danger conditions; 

(6) dynamic obstacles detection technique may be improved using other techniques 

such as template matching; 

(7) it is desired to design a new camera system which owns a smaller size. 
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