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A Study on Guidance of a Vision-based Autonomous

Vehicle on Sidewalks for Use as a Machine Guide Dog

Student: Yen-Han Chou Advisor: Wen-Hsiang Tsai

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

A vision-based autonomous vehicle system for use as a machine guide dog in
outdoor sidewalk environments is proposed. A vehicle equipped with a two-mirror
omni-camera system, which can compute 3D mformation from acquired omni-images,
is used as a test bed. First, an‘environment learning technique is proposed to construct
a navigation map, including-a navigation path, along-path landmark locations, and
relevant vehicle guidance parameters. Next, -a vehicle navigation system with
self-localization and automatic guidance.capabilities using landmarks on sidewalks
including curb lines, hydrants, and light poles is proposed. Based on a space-mapping
technique, a new space line detection technique for use on the omni-image directly is
proposed, which can compute the 3D position of a vertical space line in the shape of a
sidewalk landmark.

Moreover, based on the vertical space line detection technique just mentioned,
hydrant and light pole detection and localization techniques are proposed. Also
proposed accordingly is a method for vehicle self-localization, which can adjust an
imprecise vehicle position caused by incremental mechanic errors to a correct one. In
addition, for the purpose to conduct stable and continuous navigation, a curb line

following technique is proposed to guide the vehicle along a sidewalk. To avoid



obstacles on the navigation path, a new dynamic obstacle detection technique, which
uses a ground matching table to localize an obstacle and then avoid it, is proposed.
Furthermore, dynamic techniques for exposure and threshold adjustments are
proposed for adapting the system’s capability to varying lighting conditions in
navigation environments.

Good experimental results showing the flexibility and feasibility of the proposed

methods for real applications are also included.
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Chapter 1
Introduction

1.1 Motivation

Guide dogs provide special services to blind people. Formally training methods
for guide dogs have been adopted for over seventy years. Besides leading blind people
to correct destinations, guide dogs can assist them to avoid obstacles and negotiate
street crossings, public transportations, and unexpected events when navigating on the
road. For blind people, guide ‘dogs not only strongly enhance their mobility and
independence, but also improve the quality of their lives.

However, according to'the information provided by Taiwan Foundation for the
Blind [13] and Taiwan Guide Dog Association [14], there are more than fifty thousand
blind people and just thirty trained ‘guide dogs in Taiwan. Therefore, not all of the
blind people have opportunities to adopt their own guide dogs, and so they have to
utilize some other mobility aids likes blind canes instead. At least the following
problems cause difficulties in training more guide dogs for the blind:

1. it costs at least one million NT dollars to train one guide dog;

2. only certain breeds of dogs can be trained as guide dogs;

3. after carefully bred for over one year, they still need be trained for four to six
months before navigation tasks can be assigned to them for specific blind
persons;

4. personality and individual differences between the master and a guide dog are

problems which should be solved;



In order to overcome the problem of insufficient guide dogs, it is desirable to
employ a machine guide dog in replacement of traditional one for each blind person.
A vision-based autonomous vehicle with high mobility and being equipped with an
omni-camera can assume this task if it can be designed to automatically navigate in
outdoor environments by monitoring the camera’s field of view (FOV) automatically.
When the vehicle detects the existence of a risk area, it must safely bring the blind
person through the dangerous condition by itself; and when the vehicle arrivals at the
goal according to the instruction, it should give him/her a notice immediately. This
study aims to design a machine guide dog with these functions using autonomous
vehicle guidance techniques.

For this purpose, the most impoftant issue is how to construct the autonomous
vehicle to navigate successfully and securely in complicated conditions in outdoor
environments. Usually, an autonomous vehicle is equipped with an odometer, and we
could obtain the current position with respect to the initial position. However, the
location of the autonomous vehicle could become imprecise because the vehicle
might suffer from incremental mechanic errors. One solution is to continually localize
the vehicle by monitoring obvious natural or artificial landmarks in the environment
using computer vision techniques.

Usually, there must be some regular scenes like sidewalks that a blind person has
to pass frequently, so we may train the autonomous vehicle in advance just like
training a guide dog in these places. Simply speaking, we may design the autonomous
vehicle to “memorize” along-path landmarks in advance, and instruct the vehicle
system during navigation to retrieve the current location information by the use of the
learned landmarks and set foot on the expected destination in the end.

In general, a visual sensor could yield undesired effects in acquired images under

varying lighting conditions in outdoor environments, and to solve this problem we



might also train the vehicle to adapt to these different conditions. Moreover, the
autonomous vehicle should also be required to prevent itself and the blind people
from dangerous events in the guide process. Some suitable strategies like following a
line and avoiding obstacles should be adopted in the navigation sessions.

In summary, the goal of this study is to develop an autonomous vehicle for use as
a machine dog with the following abilities:

1. learning the path on sidewalks;

2. navigating to the goal successfully in a learned path;

3. detecting obstacles and avoiding them;

4. adapting itself to different weather conditions in outdoor environments.

1.2 Survey of Related \WWorks

In recent years, more and more research results about developing walking aids
for the blind have emerged, and some of them are reviewed here. As an improvement
of the blind cane, a simple aid is to install a sensor device on a blind cane in order to
detect obstacles at a certain distance. Other aids may also be designed to be worn by
the blind like the NavBelt [1], which has the function of continually detecting front
obstacles automatically. In general, we call these devices electronic travel aids (ETA)
which cannot automatically guidance the blind but only help them to find obstacles.
Therefore, some more helpful navigation systems were proposed. Borenstein and
Ulrich [2] developed the “GuideCane” which has a shape similar to widely used blind
canes and can find obstacles by ultrasonic sensors to help blind people to pass them
automatically. A guide dog robot called Harunobu-5 [3] was proposed by Mori and
Sano which can follow a person using a visual sensor. Also, Hsieh [4] utilized two

cameras installed on a cap to find accessible regions and obstacles in unknown



environments and alert the blind by auditory outputs. In addition, Lisa et al. [5]
utilized a DGPS (differential GPS) device to localize a blind person in indoor and
outdoor environments.

On the above-mentioned autonomous vehicle systems used for navigation,
usually installed are some visual sensors or other equipments in order to give
assistance to the blind. An autonomous vehicle system mounted with a tri-aural sensor
and an infrared range scanner was proposed by Kam et al. [6]. Also, Chen and Tsai [7]
proposed an indoor autonomous vehicle navigation system using ultrasonic sensors.
In outdoors, the GPS can be used as a localization system for the vehicle [8].
Likewise, visual sensors have also been used widely for vehicle navigation. Chen and
Tsai [9] proposed a vehicle localization method which modifies the position of the
vehicle by monitoring learned objects. Another technique of vehicle localization by
recognizing house corners was proposed by Chiang and Tsai [10]. Besides, in some
other applications, cameras with other devices were combined as the sensing device.
Tsai and Tsai [11] used a PTZ<camera and an ultrasonic sensor to conduct vehicle
patrolling and people following successfully. What is more is the use of cameras and
laser range finders together for environment sensing, like Pagnottelli et al. [12] who
performed data fusion for autonomous vehicle localization.

In contrast with a traditional CCD camera, an omni-camera has the advantage of
having a larger FOV, and so they can monitor a larger environment area. Because of
this advantage, in this study we exploit the use of a stereo omni-camera which is also
useful for acquiring omni-images to retrieve range information. In the following, we
review some studies about vehicle navigation systems using omni-cameras. One way
of localizing a vehicle is to detect landmarks in environments. Yu and Kim [15]
detected particular landmarks in home environments and localized the vehicle by the

distance between the vehicle and each landmark. The technique proposed by Tasaki et



al. [16] conducted vehicle self-localization by tracking space points with scale- and
rotation-invariant features. Wu and Tsai [17] detected circular landmarks on ceilings
to accomplish vehicle indoor navigation. Siemiatkowska and Chojecki [18] used the
wall-plane landmarks to localize a vehicle. Another method proposed by Courbon et
al. [19] conducted vehicle localization by memorizing key views in order along a path
and compared the current image with them in navigation. The vehicle system
proposed by Merke et al. [20] used omni-cameras to recognize lines on the ground to
conduct self-localization in a Robocup contest environment.

Except for self-localization, the autonomous vehicle has to own more
capabilities when navigating in more complicated environments. Obstacle avoidance
is an essential ability for vehicle nayigation [21]: In outdoor environments, estimation
of traversability of a terrain is another important topic. Fernandez and Price [22]
proposed a method which can find traversable routes.on a dirty road using color
vision. By training a classifier with autonomous training data, Kim et al. [23] could
estimate the traversability of complex terrains. A.mobile robot proposed by Quirin et
al. [24] not only can navigate by sidewalk following in the urban area, but also can

interact with the people.

1.3 Overview of Proposed System

In this study, our goal is to conduct the autonomous vehicle to navigate in
outdoor environments. As discussed previously, vehicle localization is one of the
important works we have to complete to implement a machine guide dog. The
method of vehicle localization we propose is to detect landmarks along the path and
to localize a vehicle’s position by these landmarks. Also, some other strategies for

reliable navigation are proposed in this system. In this section, we will roughly



introduce the proposed vision-based autonomous vehicle system. The system process
may be into two stages: the learning stage and the navigation stage. What is done in
the learning stage is mainly training of the autonomous vehicle before navigation.
Then, in the navigation stage we conduct vehicle navigation along the pre-selected
path using the learned information. More details of the two stages are illustrated in

Figure 1.1 and Figure 1.2, respectively, and discussed in the following.
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Figure 1.1 Flowchart of learning stage



A. The learning stage

First, the learning stage consists of two steps. The first step, as a prior work, is to
train the camera system equipped on the vehicle. The system operator conducting
this step is called the trainer of the system subsequently. In general, a camera system
has to be calibrated for the purpose of knowing the relation between the image and
the real space. In this system, we use a two-mirror omni-camera as a visual sensor.
Because of the difficulty in retrieving intrinsic and extrinsic parameters of the
omni-camera, we adopt a space mapping technique [25], called pano-mapping, to
calibrate our camera system instead. After the calibration work is done, we construct
a space mapping table, called pano-table. Then, we can obtain range data from an

omni-image directly using the pano-table and continue the navigation process.
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The second step of the learning stage is to guide the autonomous vehicle to learn
path information, including vehicle poses in the navigation path, the location of each
landmark, and some other environment information. After brining the vehicle to a
chosen scene spot, a path learning work is started. Two autonomous navigation
modes are designed in this study, which are applied alternatively in the navigation
process. One mode is navigation by following the sidewalk, and the other is manual
control by the trainer. After being assigned the first mode, the vehicle starts to
navigate toward the goal and the information of the vehicle pose is continually
recorded. If a specific landmark need be memorized in the path, the trainer may
guide manually the vehicle using the second mode to an appropriate position and
record the location of the landmark after the landmark is detected by the camera. In
addition, other information ‘about the outdoor environment is also recorded
constantly when navigating. Finally, all of these data“are integrated into the path
information, which is stored in the memory and can be retrieved during the
navigation stage.

B. The navigation stage

In the navigation stage, with the path information learned in advance, an
automatic navigation process is started. Three major works are conducted by the
vehicle in the navigation process — moving forward, obstacle detection, and vehicle
location modification.

In principle, the autonomous vehicle constantly move forward toward the goal
node by node based on the learned path information. In the movement between any
two nodes in the path, the vehicle chooses one of two navigation modes — navigation
by following the sidewalk or navigation just by the use of an odometer (called the

blind navigation mode). When navigating in the first mode, the sidewalk curb with a



prominent color is detected continuously and the line following technique is adopted
to guide the vehicle. When no curb can be used for line-following guidance as often
encountered on sidewalks, the second mode is adopted in which the vehicle navigates
blindly according to the information of the odometer reading and the learned path.

Also, as a rule, the autonomous vehicle tries to find obstacles at any time and can
take a proper obstacle avoidance strategy when desired. By the use of a stereo
omni-camera, we develop a new method to detect obstacles on the ground using
computer vision techniques. Moreover, when reaching a particular location in the
learned path, the autonomous vehicle will detect the appointed landmark to localize
itself automatically.

Furthermore, in this study we use some objects such as hydrants and light poles,
which often can be found on sidewalks, as landmarks for vehicle localization. That is,
we modify the vehicle position with respect to each located landmark to eliminate
cumulated mechanical or vision-processing errors during the navigation process.
Specifically, we propose a new space line detection technique to detect the along-path
hydrant and the light pole and then calculate the locations of them. By these
techniques, the autonomous vehicle can navigate safely and smoothly to the

destination at the end of the navigation stage.

1.4 Contributions of This Study

Some contributions of this study are described as follows.

I. A method of training an autonomous vehicle for outdoor navigation using
commonly-seen objects on sidewalks is proposed.

2. A new space line detection and localization technique using the pano-mapping

table is proposed.



3. Techniques for detecting hydrants and light poles as landmarks for vehicle
localization are proposed.

4.  Atechnique of following sidewalk curbs for vehicle navigation is proposed.

5. A new obstacle avoidance technique and a new camera calibration method for it
are proposed.

6. Dynamic camera exposure adjustment and dynamic thresholding methods for use

in outdoor environments are proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce
the configuration of the proposed system and the system process in detail. In Chapter
3, the proposed training methods for vehicle to learn the guidance parameters and the
navigation path are described. In Chapter 4, we introduce the navigation strategies
including the ideas, the proposed -guidance techniques, and detailed navigation
algorithms. In Chapter 5, a new space line technique is proposed and the proposed
techniques of hydrant and light pole detections are described. In Chapter 6, the
navigation techniques of line following and obstacle avoidance are introduced. In
Chapter 7, some experimental results to show the feasibility of the proposed
techniques for vehicle navigation are shown. At last, conclusions and some

suggestions for future works are given in Chapter 8.
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Chapter 2
System Design and Processes

2.1 ldea of System Design

For a blind person to walk safely on a sidewalk, a vision-based autonomous
vehicle system is a good substitute for a guide dog, as mentioned previously. Because
of the advantages of possessing good mobility and long-time navigation capabilities,
autonomous vehicles have become more_and more popular in recent years for many
applications. Equipped with cameras, an autonomous. vehicle is able to “see” like a
human being. Moreover, both the autonomous ‘vehicle and the cameras may be
connected to a main control system, which have the capabilities to integrate
information, analyze data, and make decisions. In this study, we have designed an
autonomous vehicle system of this kind for use as a machine guide dog. The entire
configuration of the system will be introduced in detail in Section 2.2, and 3D data
acquisition using the camera will be described in Section 2.3.

In an unknown environment, the autonomous vehicle system still has to be
“trained” before it can navigate by itself. Specifically, it should be “taught” to know
the information of the navigation path; how to navigate in this path; and how to
handle different conditions on the way. Moreover, secure navigation strategies should
also be established for the vehicle to protect the blind and itself. In the end, the
vehicle should be able to navigate in the same path repetitively with the learned data
and the navigation strategies. The system processes designed to achieve these

functions on the proposed autonomous vehicle system will be described in Section 2.3,
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including the learning process described in Section 2.3.1 and the navigation process in

Section 2.3.2.

2.2 System Configuration

In this section, we will introduce the configuration of the proposed system. We
use Pioneer 3, an intelligent mobile vehicle made by MobileRobots Inc. as shown in
Figure 2.1, as a test bed for this study. The autonomous vehicle and other associated
hardware devices will be introduced in more detail in Section 2.2.1. In addition, a
particularly-designed stereo omni-camera is employed in this study and equipped on
the autonomous vehicle. We will describe the structure of the camera system in
Section 2.2.2. Finally, the configuration of the software we use as the development

tool will be introduced in Section 2.2.3-

Figure. 2.1 Autonomous vehicle, Pioneer 3 produced by MobileRobots Inc., used in this study.

2.2.1 Hardware configuration

The hardware architecture of the proposed autonomous vehicle system can be

divided into three parts. The first is the vehicle system; the second the camera system,
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and the third the control system. The latter two are installed on the first, the vehicle
system, as shown in Figure 2.2. We will introduce these systems one by one

subsequently.

-

(a)
(©)

Figure. 2.2 Three different views of the used autonomous vehicle, which includes a vehicle, a

stereo camera, and a notebook PC for use as the control unit. (a) A 45°view. (b) A front view.

(c) A side view.

The vehicle, Pioneer 3, has an aluminum body with the size of 44cmx38cmx
22cm, two wheels of the same diameter of 16.5¢cm, and one caster. Also, 16 ultrasonic
sensors are installed on the vehicle, half of them in front of the body and the other half
behind. When navigating on flat floors, Pioneer 3 can reach its maximum speed 1.6
meters per second. Also, it has the maximum rotation speed of 300 degrees per second,

and can climb up a ramp with the largest slope of 30 degrees. The vehicle is able to
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carry payloads up to 23kg at a slower speed. It has three 12V rechargeable lead-acid
batteries and can run constantly for 18 to 24 hours if all of the batteries are fully
charged initially. The vehicle also provides the user some parameter information of
the system, such as the vehicle speed, the battery voltage, etc.

The camera system, called a two-mirror omni-camera, consists of one
perspective camera, one lens, and two reflective mirrors of different sizes. The
perspective camera, ARCAM-200S0, is produced by the ARTRAY company with a
size of 33mmx33mmx50mm and the maximum resolution of 2.0M pixels. With the
maximum resolution, the frame rate can reach 8 fps. The CMOS visual sensor in the
camera has a size of 1/2 inches (33mmx33mm). The lens is produced by Sakai Co.
and has a variable focal length of 6-15mm. The two reflective mirrors are produced by
Micro-Star International Co. A detailed view of the entire camera system is shown in
Figure. 2.3, and the camera and the lens are shown in Figures 2.3(a) and 2.4(Db),
respectively. Other details about the camera structure will be described in the next

section.

(b)

Figure. 2.3 The two-mirror omni-camera used in this study. (a) A full view of the camera equipped

on the vehicle. (b) A closer view.

14



About the final part, we use a laptop computer as the control system. It is of the
model of ASUS W7J produced by ASUSTek Computer Inc. as shown in Figure. 2.5.
For the computer to communicate with the other parts, we connected it with the

autonomous vehicle by an RS-232, and with the camera system by a USB.

(a) (b)
Figure. 2.4 The used camera and lens. (a) The camera of model Arcam 200so produced by ARTRAY
Co. (b) The lens produced by Sakai Co.

Figure. 2.5 The laptop computer of model ASUS W7J used in this study.

2.2.2 Structure of used two-mirror omni-camera

The structure of the two-mirror omni-camera used in this study and the

projection of a space point P onto the system are illustrated in Figure 2.6. We call the
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bigger and higher mirror Mirror A, and the smaller and lower one Mirror B
subsequently, and both of them are made to be of the shape of a hyperboloid with
parameters shown in Table 2.1. One of the focal points of Mirror A is on f, and one of
the focal points of Mirror B is on f,. Both mirrors have another focal point on the
same position f; which is the center of the lens. In addition, the line segment f.f, ,

which we call the baseline, has a length in 20cm.

Table 2.1  Specifications of the used two hyperboloidal-shaped mirrors.
radius Parameter a Parameter b
Mirror A 12 cm 11.46cm 9.68cm
Mirror B 2cm 241cm 4.38cm

An important optical property of the hyperboloidal-shaped mirror is: if a light ray
goes through one focal point, it must be reflected by the mirror to the other focal point.
As illustrated in Figure 2.7, two light rays which go through f, and f, are both
reflected to the same focal point f. by the specially-designed mirrors, Mirrors A and B,
respectively. Based on these property of the omni-camera and as illustrated in Figure
2.6, a space point P will be projected onto two different positions in the CMOS sensor
in the camera along the blue light ray and the red light ray reflected by Mirrors A and
B, respectively, so that the range data of P can be computed according to the two
resulting distinct image points.

Furthermore, the way of placement of the two-mirror omni-camera on the
vehicle has been carefully considered. The camera was originally placed in such a
way that the optical axis going through Mirrors A and B is parallel to the ground as

shown in Figure 2.8(a). In the omni-image acquired by the two-mirror omni-camera,
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because of the existence of the image region caused by Mirror B, the image region of
the field of view (FOV) reflected by Mirror A became smaller. We can see that the
overlapping region on the ground where range data can be computed was not large
enough in this situation (as shown in the green dotted region in the figure). However,
for a navigation system, the front FOV is very important for the vehicle to avoid
collisions. Moreover, it is desired that the vehicle can find obstacles at distances as
large as possible in the navigation process. Due to these reasons, the camera was later
slanted up for an angle of y as shown in Figure 2.8(b). We can see in the figure that

the region of overlapping is now bigger than before.

\\—TM
N
Mirro \/1\/\/
N

Mirror B

CMOS sensor v

Figure 2.6 The prototype of the two-mirror omni-camera and a space point projected on the CMOS

sensor of the camera.
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Mirror A

Mirror B

Figure 2.7 The reflection property of the two hyperboloidal-shaped mirrors in the camera system.

Mirror A

Mirror B

(@)

Mirror A

(b)

Figure 2.8 Two different placements of the two-mirror omni-camera on the vehicle and the region of
overlapping. (a) The optical axis going through the two mirrors is parallel to the ground. (b) The

optical axis through the two mirrors is slanted up for an angle of

2.2.3 Software configuration

The producer, MobileRobots Inc., of the autonomous vehicle used in this study
provides an application interface, called ARIA (Advanced Robotics Interface

Application), for the user to control the vehicle. The ARIA is an object-oriented
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interface which can be used under the Win32 or Linux operating system using the C*
language. Therefore, we can utilize the ARIA to communicate with the embedded
sensor system in the vehicle and obtain the vehicle state to control the pose of the
vehicle.

For the camera system, the ARTAY provides a development tool called Capture
Module Software Developer Kit (SDK). This SDK is an object-oriented interface and
its application interface is written in several computer languages like C, C™", VB.net,
C” net and Delphi. We use the SDK to capture image frames with the camera and can
change many parameters of the camera, such as the exposure. In the control system,
we use Borland C++ Builder 6, which is a GUI-based interface development

environment, to develop our system processes on the Windows XP operating system.

2.3 3D Data Acgquisition by the
Two—mirror Omni-camera

2.3.1 Review of imaging principle of the two-mirror

omni-camera

Before derivation of the formulas for range data computation by the use of the
two-mirror omni-camera, we review first the imaging principle of a simple
omni-camera consisting of a hyperboloidal-shaped mirror and a projective camera.
First of all, we introduce two coordinate systems as shown in Figure 2.9 where the
image coordinate system (ICS) is a two-dimensional coordinate system coincident
with the omni-image plane with its origin being the center of the omni-image. The
camera coordinate system (CCS) in Figure 2.9 is a three-dimensional coordinate

system with the origin being located at a focal point of the mirror.
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According to the optical property of the hyperboloidal-shaped mirror, a space
point P at coordinates (x, y, z) in the CCS is projected onto an omni-image point / at
coordinates (u, v) in the ICS as shown in Figure 2.9. In more detail, assume that a
light ray from P goes through a focal point in the mirror center Oy, Then, reflected by
the hyperboloidal-shaped mirror, the light ray goes through another focal point at the
lens center O, It is finally projected onto an image point / at coordinates (#, v) on the
image plane. In this way of imaging space points, therefore, for each image point 7,
we can find a corresponding light ray with a specific elevation angle « and a specific
azimuth angle 8 (shown in the figure by the red and the green characters, respectively)

to represent the image point /.

t
P(x, y,z)

‘| ¥ Omni-image

ol
/
y U

' T, v f

Figure 2.9 Imaging principle of a space point P using an omni-camera.

2.3.2 3D data computation for used two-mirror

omni-camera

Before deriving the 3D data from the omni-image acquired by the two-mirror
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omni-camera, we define a camera coordinate system (CCS) CCS, , as shown in
Figure 2.10. The origin of CCS, ,is the focal point of Mirror A, and the Z-axis

coincident with the optical axis going through the two mirrors. As shown in the figure,

there is a space point Q at coordinates (X, Y, Z) inCCS, , which is projected
respectively by the two mirrors onto two image points, /5 at coordinates (u;, v;) and I,
at coordinates (u2, v»), in the omni-image. By the geometry of the camera oprtics, we

may compute the 3D position of Q by the following way.
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Figure 2.10 The cameras coordinate system CCS,, ., , and a space point Q projected on the

omni-image acquired by the two-mirror omni-camera.

Firstly, following the two light rays which go through Mirror A’s center and Mirror
B’s center, respectively, we obtain two different elevation angles o, and ¢, as shown
in Figure 2.11(a). Also, the points O,, Op, and Q form a triangle AO,O,Q which we
especially illustrate in Figure 2.11(b). The distance between O, and Oy, which is the
length of the baseline defined previously, is known to b, while the distance d between
O, and Q is an unknown parameter. By the law of sines based on geometry, we can

compute d as follows:
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Figure 2.11 An illustration of the relation between a space point Q and the two mirrors in the used

camera. (a) A side view of Q projected onto the two mirrors. (b) A triangle AO,O,Q used in deriving

3D data.

Secondly, we may compute the azimuth angles of the two light rays. According to the

property of rotational invariance of the omni-image, these two azimuth angles actually

are equal, which we denote by 6. From Figure 2.12, by the use of the image point /; at

coordinates (u1, v;), we can derive 6 by the following equations:

. u v
sinf = —L—: cos&z—l;
[2 2 [2, 2
. u _ v
0 =sin™! (——=) = cos | (——) .
2 2 [ 2 2
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Thirdly, with the distance d derived by Equation (2.2) and the azimuth angle 6

obtained by Equation (2.3), we can compute the position of Q in CCS,,, according

to geometry illustrated in Figure 2.12 as follows:

X = d %X cosa, x sind,
Y = d %X cosa, x cos,

Z = d X sinag,. (2.4)

Baseline.

CCSloca 0X,Y 7

Figure 2.12 An illustration of a space point Q at coordinates (X, ¥, Z) in CCS,,.,; -

However, as mentioned previously, the optical axis going through the two
mirrors is slanted up so that it is not parallel to the ground. It is desired that the Z-axis
of CCS,, , could be parallel to the ground. As shown in Figure 2.13, we define
another camera coordinate system CCS, which coincidences with CCS, , except
that the Z-axis is slanted for an angle of y toward the Y-axis along the X-axis. Finally,
the coordinates of Q is translated to a new coordinates (X’, Y’, Z’), which we want to

obtain, in the CCS by the use of a rotation matrix R by following equations:
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Figure 2.13 The relation between the two camera coordinate systems CCS and CCS,,,,; -

2.4 System Processes

2.4.1 Learning process

The goal in the learning process is to “teach” the autonomous vehicle to know
how to navigate automatically in a pre-specified path. The entire learning process
proposed in this study is shown in Figure 2.14. Discussed in the following is some
information which the vehicle should “memorize.” First, as mentioned in Chapter 1,
the autonomous vehicle has to conduct self-localization by some pre-selected
landmarks in the specified path, so the first type of information the vehicle have to

record is the landmark locations along the path. Next, for our study, the experimental
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environment is on the sidewalk, and this has an advantage that the vehicle may
navigate along the curb of the sidewalk. For this reason, line following along the
sidewalk curb, called sidewalk following, is a proper navigation method instead of
using the odometer only. Thus, the second type of information which has to be
recorded is the vehicle navigation information along the path (path nodes, the
navigation distance between two nodes, etc.). Finally, the environment information at
different locations on the navigation path also has to be recorded.

For the purpose of training an autonomous vehicle easily, a user learning
interface is constructed for the frainer and can be used to control the autonomous
vehicle as well as construct learning navigation information. First, at the beginning of
each section of the navigation path, the trainer should establish a set of corresponding
navigation rules in advance, and the vehicle will follow them and conduct navigation
in the learning process as well as in the navigation process. Then, the current vehicle
pose obtained from the odometer and some current environment information like the
illumination are also recorded.<Next, when the mode, navigation by following the
sidewalk, is selected, a semi-automatic learning process will proceed until reaching
the next node assigned by the trainer. Otherwise, the trainer is required to guide the
vehicle manually to the next path node by the use of the learning interface.

In addition, the trainer can decide where to localize the vehicle by a selected
landmark in the learning process. After guiding the vehicle to a proper pose for
detecting the landmark (close enough to the landmark, “looking” at the landmark
from the right direction, etc.), the trainer then has to establish relevant rules for
landmark detection. Some parameters for landmark detection can be appropriately
adjusted by the trainer before the detection work is started. Next, landmark
localization is conducted by a space line detection technique described in Chapter 5.

After possibly multiple times of detecting and collecting adequate information of the
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landmark, its position is finally computed automatically and recorded.

At last, after bringing the autonomous vehicle to the destination, the learning
process is finished, and the learned information is organized into a learned path
composed of several path nodes with guidance parameters. Combining it with
landmark information and environment information, we obtained an integrated path

map which finally is stored in the memory of the vehicle navigation system.

2.4.2 Navigation process

With the map information obtained in the learned process, the autonomous
vehicle can continually analyze the current location using various stored information
and navigate to an assigned goal node on the learned path in the navigation process.
The entire navigation process proposed in this studyis shown in Figure 2.15.

According to the learned" information ‘data retrieved from the storage, the
autonomous vehicle continually analyzes the current environment node by node to
navigate to the goal. At first, before starting to navigate to the next node, the
autonomous vehicle checks if the image frame is too dark or too bright according to
the learned environment parameter data, and then dynamically adjusts the exposure of
the camera if necessary.

After that, the autonomous vehicle always checks if any obstacle exists in front
of the vehicle. As soon as an obstacle is found and checked to be too close to the
vehicle, a procedure of collision avoidance is started automatically to perform
collision avoidance. Then, based on the learned navigation rules, the autonomous
vehicle checks the corresponding navigation mode and follows it to navigate forward.
In the meantime, the vehicle checks whether it has arrived at the next node; whether

the node is the destination; or whether the vehicle has to localize its current position.
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Figure 2.14 Learning process.

In addition, if a self-localization node is expected, the autonomous vehicle will
adjust its pose and relevant parameters into an appropriate condition and conduct
landmark detection. For landmark detection, the autonomous vehicle uses the
corresponding technique in accordance with the property of the landmark. If a
desired landmark is found and localized successfully, its location then is used to
modify the position of the vehicle; if not, some remedy for recovering the landmark
will be conducted, such as changing the pose of the vehicle to detect the landmark

again.
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Chapter 3
_earning Guidance Parameters and
Navigation Paths

3.1 Introduction

Before the autonomous vehicle can navigate, some works has to be conducted in
the learning process. First, the camera system should be calibrated. Then, a path and a
set of landmarks should be selected,;and each landmark location should be recorded
into the path, resulting in a /learned path. Finally, adopted guidance parameters have

to be “trained” and then recorded.

3.1.1 Camera calibration

As mentioned in Chapter 1, instead of calibrating the camera’s intrinsic and
extrinsic parameters, we adopt a space-mapping technique [25], called pano-mapping,
to calibrate the two-mirror omni-camera used in this study. We will describe the

adopted technique in Section 3.2.

3.1.2 Selection of landmarks for navigation guidance

For the purpose to localize the position of the vehicle during the navigation
process, some objects should be selected as landmarks to conduct vehicle localization.
Two types of objects, hydrant and light pole, as shown in Fig 3.1 are selected in this
study as landmarks for vehicle localization during sidewalk navigation. By the use of

proposed hydrant and light pole localization techniques, introduced later in Chapter 5,
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we can guide the vehicle to learn the positions of pre-selected hydrants and light poles

in the learning process.

Figure 3.1 The hydrant (left) and the light pole (right) used as landmarks in this study.

3.1.3 Learning of guidance parameters

For complicated outdoor environments, the trainer should train some parameters
for use in vehicle guidance, such as-environment parameters and image segmentation
thresholds, in the learning process. We will introduce the proposed techniques for
learning environment parameters in Sections-3.4. Also, some image segmentation
parameters for landmark image analysis.and-the techniques proposed to learn them
will be introduced in Sections 3.5. Finally, a scheme proposed to create the learned

navigation path will be described in Section 3.6.

3.2 Camera Calibration by
Space-mapping Approach
We utilize the pano-mapping technique proposed by Jeng and Tsai [25] for image
unwarping to calibrate the camera system used in this study. The main idea is to

establish a so-called pano-mapping table to record the relation between image points

and corresponding real-world points. More specifically, as illustrated in Figure 3.2, a
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light ray going through a world-space point P with the elevation angle o and the

azimuth angle 6 is projected onto a specific point p at coordinates (u, v) in the

omni-image. The pano-mapping table specifies the relation between the coordinates

(u, v) of the image point p and the azimuth-elevation angle pair (6, @) of the

corresponding world-space point P. The table is established in advance and can be

looked up to retrieve 3D information forever. Accordingly, we construct two

pano-mapping tables for Mirrors A and B, respectively, by the following steps,

assuming an omni-image / has been taken as the input.

Algorithm 3.1 Construction of pano-mapping tables.

Step 1.

Step 2.

Step 3.

Step 4.

Manually select in advance six known image points p; at coordinates (u;, v;,)
on the Mirror A region in omni-image [ and the six corresponding known
world-space points P; at coordinates (x;, yis z;), where i is 1 through 6.

Select similarly six known image points g; at coordinates (U;, V},) on the
Mirror B region in omni-image / and the six corresponding known
world-space points Q; at coordinates (X), Y}, Z)), where j is 1 through 6.

For image points p; and ¢g;, compute the radial distances 7; and R; in the
image plane with respect to the image center respectively by the following

equations:
r=Aul+v?; R =\JU>+V". (3.1)

Compute the elevation angles ; and f; for the corresponding world-space

points P; and Q; by the following equations:

a, =tan"'(z,/\[x" +y’); B =tan(Z, /X +Y") (3.2)

resulting in six pairs of radial distances and corresponding elevation angles
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for Mirrors A and B, respectively.

Step 5. Under the assumption that the surface geometries of Mirrors A and B are
radially symmetric in the range of 360 degrees, use two radial stretching
functions, denoted as f; and fp, to describe the relationship between the
radial distances 7;and the elevation angles a; as well as that between R;and

B, respectively, by the following equations:

’/;':fA(ai):aO-i_alxail+a2xai2+a3xai3+a4xai4+a5xai5;
1 2 3 4 5
R =1,(B)=b,+bxp +b,xf +bxf +bxpf +bxp . (3.3)

Step 6.  Solve the above 6-th degree polynomial equations f; and /3 by the use of the
six radial-distance pairs for Mirrors 4 and B, respectively, obtained in Step
4 using a numerical-method to obtain the coefficients a through as and b,
through bs.
Step 7. By the use of the function f; with the known coefficients @ through as,
construct the pano-mapping table for Mirror A in a form as that shown in
Figure 3.3(a) according to the following rule:
for each world-space point P; with the azimuth-elevation pair (6,, o),
compute the corresponding image coordinates (i, v;) by the following

equations:

u; =r,xcost; v, =r;xsind,. 3.4

Step 8. In a similar way, construct the pano-mapping table for Mirror B by the use
of the function fz with the known coefficients by through bs in a form as that

shown in Figure 3.3(b).
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Figure 3.3 Two pano-mapping tables used for the two-mirror omni-camera used in this study. (a)

Pano-mapping table used for Mirror A. (b) Pano-mapping used for Mirror B.

3.3 Coordinate Systems

In this section, we will introduce the coordinate systems used in this study, which
describe the relations between the used devices and concerned landmarks in the
navigation environment. Furthermore, the used odometer and some involved
coordinate transformations are introduced also. The following are four coordinate
systems used in this study.

(1). Image coordinate system (ICS): denoted as (u, v). The u-v plane coincides with
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(2). Vehicle coordinate system (VCS): denoted as (Vx, Vy). The Vy-Vy plane
coincides with the ground and the origin Oy of the VCS is located at the center
of the autonomous vehicle.

(3). Global coordinate system (GCS): denoted as (My, My). The Mxy-My plane
coincides with the ground. The origin Og of this system is always placed at the
start position of the vehicle in the navigation path.

(4). Camera coordinated system (CCS): denoted as (X, Y, Z). The origin O¢ of the
CCS is placed at the focal point of Mirror A. The X-Z plane is parallel to the

ground and the Y-axis is perpendicular to the ground.

O,

Omni-image

(a) (b)
Figure 3.4 Two coordinate systems used in this study. (a) The ICS. (b) The GCS.

In this study, the navigation path is specified by the GCS as shown in Figure
3.4(b). The relationship between the GCS and the VCS is illustrated in Figure 3.5. At
the beginning of the navigation, the VCS coincides with the GCS, and then the VCS
follows the movement of the current vehicle position as well as the CCS. In addition,
it is emphasized that the vehicle uses an odometer to localize its position in the GCS.
As illustrated in the figure, the reading of the vehicle odometer is denoted as (Py, P,,

P.)) where P, and P, represent the current vehicle position with respect to its original
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position on the ground, and Py, represents the rotation angle of the vehicle axis with
respect to the GCS.

As shown in Figure 3.6, assume that the vehicle is at a position V" at world
coordinates (C,, C,) with a rotation angle 6. We can derive the coordinate
transformation between the coordinates (My, My) of the VCS and the coordinates (Vy,

Vy) of the GCS by the following equations:
M, =V,xcos@—-V,xsin@+C_;

M, =V, xsin0-V,xcos0+C,. (3.5)

In addition, the relationship between the CCS and the VCS is illustrated in
Figure 3.7. As shown in the figure, the projection of the origin of the CCS onto the
ground does not coincident with the origin of the VCS, and there is a horizontal
distance between the two origins, which we denote as S,. Thus, the coordinate

transformation between the CCS and the VCS can be derived in the following way:

Vi = X Sy r=—_80 (3.6)

My
A
Vx
»
vehicle odometer reading ( Px, Py, Py)
° > M,
GCS

jiFigure 3.5 An illustration of the relation between the GCS and the VCS.
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GCS M,

Figure 3.6 A vehicle at coordinates (C, C,) with a rotation angle ¢ with respect to the GCS.

The ground

Vy VCS

Figure 3.7 An illustration of the relation between the GCS and the VCS.

3.4 Learning of Environment
Parameters

3.4.1 Definition of environment windows on images

In the process of navigation, the vehicle conducts several works including
following sidewalk curbs, finding landmarks, obstacle detection, etc. In general, each
desired landmark is projected onto a specific region in the image. By this property, we
can consider only the region of interest in the image instead of the whole image, and
two advantages can be obtained from this approach as follows:

1. reducing computation time for each navigation cycle;
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2. the environment appearing within the image region is similar in each navigation
cycle so that we can analyze the environment information in this region with a
fixed scheme.

To be more specific, an environment window, as we call hereafter, is predefined
by the trainer, which specifies a rectangular region in the image. Two environment
windows including a small one in the region of Mirror B and a big one in the region of
Mirror A, denoted as wingand winp, respectively, are considered to form a set for use
in conducting specific image analysis works when the vehicle is navigating. For
instance, a set of environment windows is defined for the hydrant detection work, as
shown is Figure 3.8 (the blue rectangles). Besides, it is pointed out that this scheme of
defining a pair of search windows: for use in this study follows the property of
rotational invariance of the omni-image, which is useful to reduce the redundancy
region where we cannot get relevant 3D information; as will be elaborated later in this

section.

d

Figure 3.8 An example of a pair of environment windows for hydrant detection
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3.4.2 Learning of environment intensity by

environment windows

In outdoor environments, varying lighting conditions influence the results of our
navigation environment analysis work, according to our experimental experience. For
example, as shown in Figure 3.9(a), the feature of the curb is not obvious enough to
be recognized because of the overexposure due to the lighting condition. Also, using a
fixed value of the exposure, some landmark detection works cannot be completed
successfully. For example, the hydrant and the light pole become undetectable in
images because of the overexposure and underexposure, as shown the examples in

Figures 3.10(a) and 3.11(a), respectively.

(b)
Figure 3.9 Two different illuminations in the image for curb detection and the environment windows. (a)

An instance of overexposure. (B) A suitable case.

(b)

Figure 3.10 Two different illuminations in the image for hydrant detection and the environment windows.

(a) An unclear case. (B) An appropriate case.
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(b)

Figure 3.11 Two different illuminations in the image for light pole detection and the environment windows.

(a) A blurred case. (B) A proper case.

For this reason, in this study we design the system in such a way to allow the
trainer in the learning phase to determine a suitable illumination parameter by
manually adjusting the exposure‘of the camera for the purpose to detect desired
objects successfully. By adjusting the-illumination parameter to a suitable value, we
mean that the desired landmark feature can be extracted well in the same illumination
afterward. Then, this image illumination - parameter is recorded into the path
information as part of the learning result. To.be more specific, for each environment
analysis work using a landmark, we learn a value of suitable image intensity, called
environment intensity hereafter, on the image in relevant environment windows during
the path learning process. The detail of this scheme of getting proper environment

intensity parameters is described in the following algorithm.

Algorithm 3.2 Learning of the environment intensity parameter at a path node.

Input: a relevant set of environment windows Win,, for a certain path node with a
pre-selected landmark under the assumption that the vehicle reaches this node
currently.

Output. an environment intensity parameter /.

Steps.
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Step 1. Adjust the exposure of the camera and acquire an appropriate image /..
Step 2. Check if the desired landmark feature is well imaged in the resulting
illumination. If not, go to Step 1.
Step 3. For each pixel /; in 1., with color (R, G, B) in wing of Win,,, calculate its
intensity value Y; by the following equation and record Y; into a set Sy:
Y =0.299xR+0.587xG+0.114x B. (3.7)
Step 4. Compute the value 1., as output by the use of the data in Sy in the following
way where N is the size of wing of Win,,:

N

I =—Y7Y. (3.8)
=1

i
n N ‘
Some examples of suitable illuminations for navigation tasks are shown in Figures
3.9(b), 3.10(b), and 3.11(b), and the environment intensity parameters learned in the
above way for them will be recorded as part of the learning result of landmark

detection described later.

3.5 Learning of Landmark
Segmentation Parameters

In this study, we utilize some segmentation methods for image analysis in
landmark detection which we describe in detail later in Chapters 5 and 6. In this
section, we introduce the process for learning the parameters used in landmark
segmentation. Firstly, we introduce three sets of segmentation parameters for

landmark segmentation which we propose for use in this study as follows.
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(1)

2)

)

In sidewalk curb segmentation, we use the color information (hue and saturation)
and the image thresholding technique to find the curb feature in the image
utilizing the HSI color model. The thresholds for hue and saturation values are
collected as a set of curb segmentation parameters.

In hydrant segmentation, just like what we do in sidewalk curb detection, we use
the HSI color model to extract the hydrant shape. The threshold values for hue
and saturation and also the contour of the hydrant described by the principal
components obtained from principal component analysis is collected as a set of
hydrant segmentation parameters.

In light pole segmentation, we adopt the Canny edge detection technique to
extract the light pole shape. The threshold values used to detect the light pole in

the image are collected as a set of light pole segmentation parameters.

Next, as shown in Figure 3.12, when conducting landmark learning, the trainer

can detect a desired landmark by the use of a user interface of the system, and adjust

the values of the related set of segmentation parameters. After obtaining a proper

result from the landmark detection process, the used set of segmentation parameters

and the learned landmark information are recoded together as part of the learned path.

Adiust Record the
Start to learn s mejn ation Detect landmark related
landmark garam eters landmark segmentation
P parameters

Figure 3.12 The process for learning landmark segmentation parameters.
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3.6 Learning Processes for Creating a
Navigation Path

In this section, we introduce the proposed method for learning a navigation path
in the learning process. As usual, we use the odometer to localize the vehicle position
and estimate the position of a detected landmark in the learning process. The proposed
strategy for learning landmarks for vehicle localization is introduced in Section 3.6.1.
In addition, in the navigation path, some obstacles on the sidewalk, which may not be
recognized easily by the camera system, could also block the vehicle. An example of
obstacles, a sewer cover with uprising handles, which might hinder autonomous
vehicle navigation, is shown in Figure 3:13. Thus, ' we propose in this study a method
to learn the positions of such ebstacles, called fixed obstacles hereafter. The method is
described in Section 3.6.2. Finally, the entire proposed procedure to learn a navigation

path is described in Section 3:6.3.

Figure 3.13 A fixed obstacle in a navigation path which may block the autonomous vehicle.

3.6.1 Strategy for learning landmark positions and

related vehicle poses

In this section, we introduce the proposed strategy for learning a landmark and

its position. Simply speaking, for a landmark to be learned well, we guide the vehicle
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to appropriate positions to detect it. To increase the accuracy of the learned landmark
position, we take images of the landmark a number of times from a number of
different directions after guiding the vehicle to a number of different locations. The
reason why we take multiple images from a fixed direction at a fixed position is that
the weather condition might cause the taken images to be all different, especially
when there are clouds floating across the sun in the sky during the noon time. After
analyzing the collected multiple images, a more precise landmark position can be
obtained, which, together with the corresponding vehicle pose (including the vehicle
position and orientation on the path), is recorded as part of the learned navigation
path.

To be more specific, after detecting the landmark in acquired omni-images for a
multiple times with the vehicle in‘a number of poses, we calculate the mean of all the
detected landmark positions.as an estimated landmark position, denoted as Pjandmark-
Furthermore, we choose the vehicle pose among the multiple ones, which is closest to
the one to yield the estimated Ppamark, fOr use as.the learned pose, denoted as Pyehicle,
corresponding to the estimated Plandmark- 1he detailed algorithm for the above process

is described in the following.

Algorithm 3.2 Learning of the landmark position and related vehicle pose.

Input: A landmark type of the appointed landmark to be learned.

Output. an estimated landmark position Pj,gmax and a corresponding vehicle pose
Prenicie-

Steps.

Step 1. Initialize three parameters i, j and & to be all zero, where i, j and k represent
the k-th landmark detection, the j-th vehicle orientation, and the i-th vehicle

position, respectively.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Guide the vehicle to a position V; = (Px;, Py;) and record this vehicle position
V; into a set Sy.

Turn the vehicle into an orientation 7h; and record this orientation into a set
Sth.

According to the landmark type, localize the landmark by the use of the
corresponding localization technique (described in subsequent chapters) to
obtain the landmark position pjr = (X, Vi), and record this landmark
position p;j into a set S;.

Go to Step 4 for K times as needed, and record the number of recoded
landmark positions in the j-th vehicle orientation and the i-th vehicle
position, denoted as N;; = K

Go to Step 3 for J .times as needed, and record the number of different
vehicle orientations.in the i-th vehicle position, denoted as N; = J.

Go to Step 2 for / times as needed, and record the number of the different
vehicle position, denoted as N = 1.

Compute the desired landmark position Piagmar using the set S; by the
following equation:

N

ZZ (X Vi) - (3.9)

k=

p landmark —

M=
Mz —
=
Mz
Mz —
3

In Sy, select the c-th vehicle pose v. = (Px., Py.), where v, has the minimum
distance to Plandmark cOmputed in terms of the Euclidean distance.
Choose a median orientation 7, from all Th., in Sz, where a is 1 through

N,, and set the desired vehicle pose Pyenicie 3s Prenicie= (PXc, Py, The).
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3.6.2 Learning of fixed obstacles in a navigation path

In this study, we propose a function in the learning interface which can be used
to learn fixed obstacles. After guiding the vehicle to a proper location where a fixed
obstacle is projected onto the image region of both Mirrors A and B, we utilize this
function to learn the fixed obstacle. As shown in Figure 3.14, we can select the fixed
obstacle in the image by using the mouse to click two corresponding fixed obstacle
positions on the regions of Mirrors A and B. In the mean time, a pair of selected
mutually-corresponding image points is recorded into a set for use later to analyze the
learned position of the fixed obstacle. Finally, after selecting sufficient obstacle points
in the image, the fixed obstacle position W, is computed automatically. This fixed
obstacle position W, and some.parameters for avoiding it are recorded together as
part of the learned path information. The detailed algorithm for learning a fixed

obstacle’s position W, is described in the following.

Algorithm 3.3 Computation of fixed obstacle positions.
Input: an image I;,,., and a set S,»; 0of N pairs of corresponding image points, denoted
as a; = (uy;, vi;) and b; = (ua;, v2;), where i = 1 through N.

Output: a fixed obstacle position W.

Steps.

Step 1. Select manually a fixed obstacle point a; at coordinates (uy;, vi;) in the region
of Mirror A in Iy, and record a;.

Step 2. Manually select the corresponding fixed obstacle point b; at coordinates (u2;,
v2;) in the region of Mirror B in I, and record b;.

Step 3. Repeat Steps 1 and 2 for N times.

Step 4. For a pair of the corresponding points a;and b;, compute the 3D position (¢,

¢yi, ¢z) of the corresponding point C; in the CCS by the derivations
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Step 5.  Compute the position (x;, y;) of the corresponding point V; on the ground in
the WCS by the camera coordinates (c., ¢y, cz;) of point C; and the
coordinate transformation from the CCS to the WCS described by Equations
(3.4) and (3.5), and record V; into a set V.

Step 6. Repeat Steps 4 and 5 for N times.

Step 7. Derive the position (0bsy, obs,) of point W, in the WCS as the location of
the obstacle by the following equations:

N N

1 1
obs =—>» x.; obs =— . 3.10
L=y obs, =Dy, (3.10)
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Figure 3.14 A learning interface for the trainer to learn the position of a fixed obstacle by clicking the

mouse on a pair of corresponding obstacle points in the image regions of Mirrors A and B.

3.6.3 Learning procedure for navigation path

creation

In this section, we describe how we establish a navigation path in the learning
process. Firstly, we define eight types of navigation nodes as listed in Table 3.1,

where each navigation node includes a set of different appointed works which have to
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be conducted by the vehicle, or a set of data representing a landmark position in the
navigation path. We guide the vehicle to learn a pre-selected navigation path as well
as some pre-selected landmarks by the use of these navigation nodes to construct a
learned navigation path. In addition, while each navigation node is recorded, some
relevant guidance parameters are also recorded into the learning result. At the end of
the learning process, a navigation path consisting of a series of navigation nodes and
relevant guidance parameters is recorded, which then can be utilized for vehicle
navigation in the navigation process. A flowchart of the process for navigation path
creation is shown in Figure 3.15, and the detailed algorithm to implement it is

described in the following.

Table 3.1 Eight different types of navigation path nodes.

Type of number Type.of node
Bpe0 Start / Terminal node
Bype 1 Curb-following navigation node
Type 2 Blind navigation node
Type 3 Curb-line calibration node
Type 4 Localization node
Bype 5 Light-pole landmark node
Type 6 Hydrant landmark node
Bpe 7 Fixed obstacle node

Algorithm 3.4 Creation of a navigation path.
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Input: Odometer readings of vehicle poses, denoted as (P, P,, Py), where P, and P,

WCS.

represent the vehicle location and Py, represents the vehicle direction, in the

Output: A set of navigation nodes denoted as N,q.

Steps.

Step 1.

Step 2.

Step 3.

Record into N, the start node Npegin of Type 0 with the odometer readings

(Px, Py, Pn)=1(0,0,0).

Set the navigation mode, and guide the vehicle to navigate forward until

arriving at a desired destination and stop the vehicle.

According to the appointed navigation mode, record into N, the current

vehicle pose, denoted as Ng = (Pyx, P,, Py) obtained from the odometer

readings in Type 1 or.ype 2; and select one of the four following additional

learning tasks.

(1)

(2)

€)

(4)

Learn a hydrant landmark by the method mentioned in Section 3.3,
obtain a hydrantposition Ny, and the related vehicle pose N4, and
record Ny, in Type 4 and Nyq in Type 6 into Npgsp.

Learn a light pole landmark by the method mentioned in Section 3.3
and obtain a light pole position N, and the related vehicle poses N,
and record N, in Type 4 and Nj, in Type S into Npyu.

Learn a fixed obstacle N, using the proposed function discussed in
Section 3.4, and record N, in Type 7 into Npygs.

Learn a curb line calibration node N..;, where the vehicle can “see” a
complete curb line segment without occlusion and will calibrate its
pose by the “seen” curb line information in the navigation process
(with the detail introduced in Section 4.2.2), and record N,,; in Type 3

nto Npas.
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Step 4.

Step 5.

Go to Step 2 if the destination is not reached yet, where the destination

position is selected by the trainer.

Record the terminal node N4, denoted as (P, P,

current odometer readings, in Type 0 into Npgsp.

P,), according to the

Start to learn a navigation path

Set navigation
mode

-

Navigation starts

Vehicle navigates i

Vehicle stops v

odometer

Arriving at a new
position and read

‘According mode

ALY \\.

L

navigation

Record blind Record curb-

node navigation node

following

Selected additional learning work

Learn a hydrant landmark
and a related vehicle pose

Learn a light pole landmark
and a related vehicle pose

Learn a sidewalk curb
landmark

Learn a fixed obstacle’
position

End of
earnin,

Yes

No

End of learning a navigation

path

Figure 3.15 The process for navigation path creation.
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Chapter 4
Navigation Strategy in Outdoor
Environments

4.1 ldea of Proposed Navigation
Strategy

After successfully learning the navigation environment, we acquire the learned
environment information including a navigation path and other guidance parameters.
In this chapter, we introduce the proposed strategies for vehicle navigation in
complicated outdoor environments by use of this “information. The proposed
principles to conduct the navigation work are introduced in Section 4.2.1. The process
for navigation is described in Section 4.2.3. In-addition, three main ideas to guide the

vehicle to navigate on the learned path in this study follows.

4.1.1 Vehicle localization by alone-path objects

As mentioned previously, the vehicle navigation process usually suffers from
incremental mechanic errors, resulting in imprecise computations of vehicle positions,
so the vehicle should be guided to constantly localize its position by the learned
landmark position. After localizing a landmark by the use of proposed localization
techniques introduced later in Chapter 5 and obtaining the relative vehicle position
with respect to the landmark, we can adjust the vehicle posture by changing its

position and orientation using vehicle commands and correcting the odometer
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readings. In addition, we also used the learned straight curb line segment on the
sidewalk to calibrate the vehicle posture. Theses proposed techniques to adjust the

vehicle posture in the navigation path are introduced in Section 4.2.2.

4.1.2 Dynamic adjustment of guidance parameters

In complicated outdoor environments, we cannot only adopt fixed guidance
parameters recorded in the learning process to conduct image analysis works,
resulting in varying lighting. Thus, we taught the vehicle in the learning process to
analyze environment data and then utilize learned methods to adjust guidance
parameters. Some techniques for dynamic guidance parameters adjustment are
proposed in this study. First, the learned contour. of the hydrant helps the vehicle to
adjust the segmentation parameters. by principal component analysis (PCA). Also, by
estimating the result of curb.contour extraction, we can.adjust the curb segmentation
parameters. The above two. techniques  of dynamic adjustment of thresholds for
hydrant and curb detection are introduced later in Chapters 5 and 6, respectively.

In addition, we use a dynamic exposure adjustment scheme to deal with the
varying lighting condition in the outdoor environment during the vehicle navigation
process. An advantage of dynamic exposure is the possibility to preserve more usable
color information of the object in the image. According to the environment intensity
parameter learned in the learning process for each work, we can determine whether
the current luminance of the image frame is suitable, and the technique will be
automatically enforced if necessary. The proposed technique for dynamic exposure

adjustment is introduced in Section 4.2.3.

4.1.3 Obstacle avoidance by 3D information

For vehicle navigation in outdoor environments, encountering an obstacle is
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unavoidable and must be found to dodge it. By using a stereo camera in this study, we
propose a dynamic obstacle detection technique via the use of 3D information. We use
this technique to conduct secure navigation. The detail about this technique is

described later in Chapter 6.

4.2 Guidance Technique in Navigation
Process

4.2.1 Principle of navigation process

In this section, we introduce. the principles of the proposed vehicle navigation
method on the learned path. At the beginning, the vehicle retrieves a navigation path
and related guidance parameters which were recorded 1 the vehicle system in the
learning process. The obtained navigation path consists of several navigation nodes
labeled in a sequential order. The vehiele is.guided to visit each node sequentially in
the navigation process. Four principles are proposed in this study to guide the vehicle
to navigate to a desired destination. They are described as follows.

(1) The vehicle always keeps its navigation safe by avoiding collusions along the
navigation path. By the use of the proposed obstacle detecting method, the
vehicles always check if there is any dynamic obstacle in front and dodge it if
necessary. In addition, by localizing a nearby light pole and the learned position
of fixed obstacles, the vehicle conducts a specific procedure to dodge these static
obstacles.

(2) The vehicle always adjusts guidance parameters based on the learned rules when

detecting a landmark using techniques such as dynamic thresholding and
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(3) The vehicle always follows the sidewalk curb if possible. After detecting and
localizing the curb line, the vehicle modifies its direction to maintain a safe
distance and orientation with respect to the curb on the sidewalk.

(4) The vehicle localizes its position and corrects the odometer readings at a constant
time interval along the navigation path. According to the learned landmark
information, the vehicle detects and then localizes an appointed landmark by the
use of the proposed techniques. Then, calibration of the vehicle pose is

conducted.

As arule, the vehicle always localizes itself by the odometer readings to conduct
node-base navigation. With the learned path information, we establish two principles
to judge whether the vehicle+has arrived at the next node in node-based navigation.
The principles are described i the following.

(1) As shown in Figure 4.1(a), the distance dists between the current vehicle position

J and the position of the next node Node;« 1S smaller than a threshold thr.

(2) As shown in Figure 4.1(b), if the distance distp between the next node Node;;
and the position of the projection of the vehicle on the vector formed by Node;

and Node;+, is smaller than a threshold thr».

By the mentioned navigation principles, the vehicle can be expected to navigate
to the goal in the end. A flowchart illustrating the proposed node-based navigation is

shown in Figure 4.2.

4.2.2 Calibration of vehicle odometer readings by

sidewalk curb and particular landmarks
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Figure. 4.1 Two proposed principles to judge if the vehicle arrives at the next node in the navigation

process. (a) According to the distance between the vehicle position and the next node position. (b)
According to the distance between the next node pesition and the position of the projection of the

vehicle on the vector connecting the current node-and the next node.
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Figure 4.2 Proposed node-based navigation process
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As mentioned in Chapter 3, the odometer readings provide three values P,, P,,
and Py for the vehicle to know its position (P, P,) and moving direction Py,.
Unfortunately, all of them become imprecise owing to incremental mechanic errors
after the vehicle navigates for a period of time. In this section, we describe the
proposed schemes to calibrate the odometer readings. The process of odometer
reading calibration is illustrated in Figure 4.3. At first, we use recorded curb line
segment information to calibrate the orientation reading Py, of the odometer. Second,
by the recoded hydrant and light pole positions, we use the proposed hydrant and light
pole detection method to obtain its position and then calibrate the position readings
(Px, Py) of the vehicle. The reason why we have to combine a hydrant or light pole
position with the curb information is:that in the odometer reading calibration method
we propose in this study, we.have to calibrate the orientation odometer reading in
advance using the detected curb line before the computed position of the hydrant and

light pole can be used to localize the vehicle position.

(A) Odometer calibration by the hydrant and the sidewalk curb line

Two different positions of the vehicle at two nodes in the navigation path and
the relation between the vehicle, the curb, and the hydrant are illustrated in Figure
4.4. The calibration process consists of two steps. Firstly, after adjusting the vehicle
to the direction specified by the current odometer readings, we detect the nearby
straight curb line segment seen in the omni-image, and obtain the slope angle with
respect to the vehicle. From the learned navigation path, we can obtain the recorded
slope angle of the curb line, and then analyze the two different slope angles to
estimate the correct direction of the vehicle. Second, we conduct the vehicle to
detect the hydrant and obtain its location. According to the recorded hydrant position

from the learned navigation path, we use the correct vehicle orientation to compute
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the correct vehicle position by the relation between the hydrant position and the
vehicle position in the GCS as shown in Figure 4.5. We describe the proposed

method to calibrate the odometer readings in detail in the following algorithm.

Start vehicle localization

Y

Curb landmark
detection

Y

Compute curb line

LCurb line slope 8’

Recorded curb

Odometer
Orientation

line slope 8

Hydrant landmark Light pole landmark
detection detection
Y Landmark position in CCS
Compute landmark
position In VCS
Landmark position in VCS
Learned Landmark \i
position in GCS > Compute vehicle
position in GCS
Correct vehicle position in
GCS

Vehicle
odometer

Figure 4.3 Proposed odometer reading calibration process.

End vehicle localization
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Figure 4.4 A recoded vehicle position V" and the current vehicle position V” in the GCS.
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Figure. 4.5 Hydrant detection for vehicle localization at position L. (a) At coordinates (/, /y) in VCS.
(b) At coordinates (Cy, Cy) in GCS.
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Algorithm 4.1 Odometer readings calibration by a hydrant and a curb line segment.

Input: a recoded vehicle pose V. (P, Py, Pu), a recorded slope angle 6 of the curb line,
a recorded hydrant position ...z, and the odometer readings of the vehicle
pose.

Output: None.

Step.

Step 1. Turn the vehicle to the recorded direction Py, conduct the curb line detection
process described in Chapter 6, and compute the slope angle 6 of the curb line
relative to the vehicle direction.

Step 2. Compute an adjustment angle 6, by the following equation:
O = 0 O (@.1)

and modify the orientation odometer reading to be 6,4 which is then taken as
the correct vehicle orientation P;;".

Step 3. Detect the hydrant and compute 1its position at L., in the CCS (using the
method described in Chapter 5); and by the coordinate transformation between
the CCS and the VCS as described in Equation (3.6) with L. in the CCS as
input, compute the landmark position Lycs and describe it with coordinates (/;,
ly) in the VCS.

Step 4. From the learned navigation path, obtain the recorded landmark position L,ecorq
at coordinates (C,, Cy) in the GCS, and use the calibrated orientation Py’ to

compute the current vehicle position (Xeui, Year;) in the GCS by the following

X eai C, cos,' sinF/| [
= + . . 4.2)
)Icali Cy —sin Pth' Cos Pth' ly
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Step 5. Replace imprecise position readings of the odometer, (Py, Py'), by the

computed vehicle position (Xeasi, Year)-

(B) Odometer calibration by the light pole and the sidewalk curb line

The process for calibration by the light pole and the sidewalk curb is similar to
the above-mentioned method for odometer calibration by a hydrant and a sidewalk
curb line segment. First, we detect and localize a nearby curb line segment for the
purpose to calibrate the orientation reading in a similar way as described previously at
a node V; in the learned path. Next, we conduct a slight difference task, i.e., we
navigate the vehicle a step further to another node V>, which is a location recoded in
the navigation path with a light pole nearby, in order to detect the light pole at a closer
location. The process is shown in Figure 4.4. It is noted that here the mechanical error
of the orientation reading is assumed slight after the movement of the vehicle from
node V; to node V5. Then, after detecting and localizing the light pole position, we use
the same method to compute the current vehicle position and modify the position

odometer as that used for the calibration work using the hydrant described previously.

4.2.3 Dynamic exposure adjustment for different

tasks

In the navigation process, by the recorded relevant environment intensity
information in the learned navigation path, we can adjust the luminance into an
appropriate value for different works. According to the experimental result as shown
in Figure 4.7, we find that there exits a specific range of exposure values in which the
exposure value has an approximate linear relation with the image intensity in a
specific area in the image. Thus, we can estimate an appropriate exposure value Exp

using the following polynomial function f.:
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Exp=fop (Y)=m x Y+b, (4.3)
where Y is the average intensity in a specific region in the image, and a and b

are two parameters.

Vy -7

_—
_—

V2(PX2, PY2, PThZ)

Vehicle position of position
readings calibration

GCS

VI(PXb PYI; PThI)

Vehicle position of
orientation reading
calibration

Figure. 4.6 Process of odometer calibration by the light pole and curb line. The vehicle detects the
curb line at V; to calibrate the orientation and then navigates to V, to calibrate the position reading

by a detecting light pole.
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Figure. 4.7 A relationship between the exposure value and intensity in an experimental result.

However, under different light sources in outdoor environments, the specific
range will be different, so is the linear function, fe.,. Thus, we propose an efficient
method consisting of two stages to automatically obtain an appropriate exposure value
which can be utilized to obtain an appointed illumination in an appointed region in an
omni-image. First, we use a+«bisection scheme to adjust the exposure to find the
specific range. It is desired to obtain two approximate bounds of the exposure value
between which we can get proper intensities..Next, by the two bounds, we utilize
linear interpolation to adjust ‘the.exposure value and then obtain the desired

illumination. An algorithm to describe the proposed method is as follows.

Algorithm 4.2 Dynamic exposure adjustment.

Input: an input image I;,.; desired environment intensity Yp.. and relevant
environment window Win,,; and the minimum lower bound Exp; and the
maximum upper bound Exp; of the camera exposure value.

Output: None.

Step.

Step 1. Initialize two parameters Y= —1and Y, = —1.

Step 2. Compute an exposure value Exp;; by the following equation:

_ (Exp, + Exp,)

Exp,; 3

. (4.4)
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Use Expyp; to acquire an image [;,,, with the system camera, and compute
the average intensity Y., in Wine, in Lypu.

Compare Y, with Ypg:

(1). if Yipuse < Yeur, set Expy = Expp; and Yo = Yo

(2). if Ypuse = Yeur, set Expy = Expp; and Yy = Yoy

If ¥, and Y, are between 10 and 245, go to Step 5; else, go to Step 2.

Compute the exposure value Expjineq- by the following equation:

Explinear = Y )i X(Exp2 _Expl)+Expl . (45)

2 1

Use Expiinear to acquire an image /i, and compute the average intensity
Yeur Of Linpue 1N Wingy. If |Yeur— Youse| 1s smaller than a threshold Thry, then
exit.

Compare Y, with Ypgge:

(D). if Yoase < Yeur, set Expa = Expiinear and Yo= Yoy

(2). if Ypase = Yeur, €t EXP) = EXPlinear-and Y1= Yoy,

and then go to Step 6.

An experimental result for dynamically adjusting the exposure in the sidewalk

curb detection task in the outdoor environment is illustrated in Figure 4.8. By the use

of the leaned environment window for curb detection as illustrated by a red

rectangular shape on the image in each figure, we compute the average intensity in

this region. In the first stage, for the purpose to finding the exposure bounds, we

conduct the bi-section scheme to adjust the exposure value as shown in Figures 4.8(a)

through 4.8(d). After that, using the obtained exposure lower bound 50 and upper

bound 100, we can use a linear interpolation scheme to obtain a suitable intensity on

the image as illustrated in Figures 4.8(e).
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Figure 4.8 Process of the proposed method to dynamically adjust the exposure for the sidewalk detection
task. (a) With exposure value 400. (b) With exposure value 200. (c) With exposure value 100. (d) With

exposure value 50. (e) A suitable illumination for sidewalk detection with exposure value 79.
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4.3 Detail Algorithm of Navigation
Process

In this section, we describe the detail process for vehicle navigation in the
navigation process. The flowchart of the entire navigation process is shown in Figure
4.8. With the learned information, the vehicle navigates along the learned path by the
way of visiting each recorded node consecutively and conducts appointed works at
specific positions until reaching the destination of the learned path. The entire

navigation process is described in the following algorithm.

Algorithm 4.3 Navigation Process.

Input: a learned navigation path Ny, with relevant guidance parameters, and learned

data of camera calibration.

Output. Navigation process.

Step.

Step 1. Read from N, a navigation node V., and relevant guidance parameters.

Step 2. Turn the vehicle toward the next node N,.y.

Step 3. Check the illumination by the recoded environment intensity and conduct
the dynamic exposure adjustment procedure if necessary, and then conduct
the vehicle to navigate forward.

Step 4. Try to find obstacles; and if an obstacle is founded and located at a position
which is too close to the vehicle, stop the vehicle and insert avoidance nodes
(see Section 6.2 for the detail) into the navigation path for the purpose of
obstacle avoidance and go to Step 1.

Step 5. If a sidewalk following mode is adopted, modify the vehicle direction after

localizing the curb landmark by the curb detection method using the
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Step 6.

Step 7.

Step 8.

Step 9.

Check whether the next node N, is reached by the mentioned two

principles in Section 4.2.1; and if not, go to Step 4.

If a fixed obstacle is read from N, insert dodging nodes into the

navigation path and go to Step 10.

If a hydrant or light pole landmark is read from N,., take the following

steps and then go to Step 10.

8.1 Check the illumination in the relevant environment windows in the
image for the appointed landmark by the recoded environment
intensity, and then dynamically adjust the exposure if necessary.

8.2 Detect the appointed landmark, a light pole or a hydrant, and obtain the
landmark position as illustration in Sections 5.3 and 5.4, respectively.

8.3 Use the landmark position to localize the vehicle position and modify
the odometer position as described.in Section 4.2.

If a curb line calibration node is read from N, modify the orientation

reading of the odometer by detecting and localizing a curb line segment, as

illustrate as described in Section 4.2.

Step 10. Repeat Steps 1 through 9 until there exists no remaining nodes in Npy.
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Figure 4.9 Flowchz igation process.
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Chapter 5

Light Pole and Hydrant Detection in
Images Using a New Space Line
Detection Technique

5.1 ldea of Proposed Space Line
Detection Technique

In this study, it is desired to develop a space line detection technique to localize
each light pole or hydrant landmark on the navigation path for vehicle navigation.
However, in contrast to the function of a traditional projective camera, the projection
of a space line on an omni-image using an omni-camera is not a line shape any more
but a conic-section curve [26]. Some'techniques have been proposed for line detection
in an omni-image, among which is Wu and Tsai’s method [26] which detects lines in
an H-shaped landmark for use in automatic helicopter landing, as illustrated in Figure
5.1. By the use of the parameters of a hyperboloidal mirror and some geometric
relationship, they proved that the projection of a space line onto an omni-image is a
conic section curve. Then, by the use of a simple technique using the 2D Hough
transform, they extracted the conic section curve in the omni-image and localized the
boundary lines of the H shape for conducting helicopter localization.

However, the above-mentioned method is based on the condition that the
parameters of the hyperboloidal mirror are known, but in fact retrieving the

parameters of a hyperboloidal mirror is not an easy work. Hence, by the use of the
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pano-mapping method which is a more convenient omni-camera calibration method,
we propose a new space line detection technique in this study. Instead of directly
obtaining the projected conic section cure of a space line in the omni-image, we
obtain the space plane which goes through the desired space line and the mirror center.
The detail of the proposed line detection method by the use of the two-mirror
omni-camera is introduced in Section 5.2.1. Furthermore, for the specific space line
which is perpendicular to the ground, we derive in this study a method to obtain its

3D information directly based on the results of the proposed line detection method.

omni - camera

(a) (b)
Figure 5.1 Wu and Tsai [26] proposed a line detection method for the omni-image to conduct
automatic helicopter landing. (a) Illustration of automatic helicopter landing on a helipad with a

circled H shape. (b) An omni-image of a simulated helipad.

Finally, by the use of the proposed space line detection technique, the light pole
and hydrant localization works can be completed for vehicle navigation in both the
learning and the navigation processes. We introduce the proposed hydrant and light

pole detection and localization techniques in Sections 5.3 and 5.4, respectively.
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5.2 Proposed Technique for Space Line
Detection

5.2.1 Line detection using pano-mapping table

In this section, we introduce the proposed space line detection technique for use
on omni-images taken by the two-mirror omni-camera. As mentioned previously, it is
desired to detect the space plane, which goes through a specified space line and the
mirror center, instead of detecting a space line projected on an omni-image in other
methods. The process is described in the following. It is emphasized that the
pano-mapping table has be established in advance for the use in this process.

Suppose that the space line Lto be detected is'projected by Mirror A onto the
omni-image, and that P is an arbitrary space point on L. Firstly, we consider a way to
represent a vector which goes through P and the mirror center in the camera system
used in this study. As shown in Figure 5.2, a light ray going through the space point P
is projected by Mirror A onto an image pomt 1. The mirror center O, and P together
form a vector V), denoted as (P, P,, P.’) in the CCS CCSocq. This vector V,”can be

described using the elevation and azimuth angles o and @by the following equations:

P'=cosaxcosf; P'=cosaxsind; P'=sinc. (5.1)

Next, owing to the slant-up placement of Mirror A discussed previously in
Chapter 2, we rotate the camera coordinate system CCSj,.,; by a specific slant angle,
denoted as y. By the use of the rotation matrix described in Equation (2.5), the
transformation between the coordinates (X', Y, Z') of the original CCS CCSjy.; and

the coordinates (X, Y, Z) of the rotated CCS can be described as follows:
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X 1 0 0 X
Y |={0 cos(—y) —sin(-=y)| Y ]. (5.2)
Z 0 sin(—y) cos(—y) || Z'

7
v
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K Y’
2 -9 >
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Figure 5.2 A space point with a elevation angle « and an azimuth 6.

By the above coordinate transformation described by Equation (5.2), we can convert
vector V,”into a new one V), which represents the vector-with an azimuth angle 6 and
an elevation angle a going through the mirror center in.the rotated CCS and may be

described by the following equations:;

P cosa xcosé
V,=| P, |=|cosaxsinfxcosy+sinaxsiny |. (5.3)
P

—cosa xsinf+sina xcos y

Next, considering the space line L projected onto the omni-image the one /; as
shown in Figure 5.3, we can find a space plane Q which goes through L and the
mirror center Oa. For this, suppose that the normal vector of Q is denoted as Ny = (/,
m, n). Then, we can derive the following equation to describe the coordinates (X, Y, Z)

of a pixel on the space plane Q:
IX+mY+nZ=0. (5.4)

On the other hand, it is noted that vector Vp is perpendicular to Ny, so that the
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inner product between Vp and Ny becomes zero, leading to the following equation:

No-Vp = (I, m, n)-(Py, Py, P.) = Py + mP, + nP. =0, (5.5)

a space line)

/ ~omni-image

Oc

Figure 5.3 A space line L projected on /; in an.omni-image.

By Equation (5.3), we can transform.Equation (5.5) into an alternative form as

follows:

cosa xsin@xcosy +sina xsin y —cosa xsin @ +sina xcos y
[+mx +nx =0.

cosa xcos@ cosa xcosf

(5.6)

From Equation (5.6), it is desired to obtain the three unknown parameters /, m, and n
which represent the normal of the space plane Q. For this purpose, we divide Equation

(5.6) by n to get the following form:

COS a X Sin @ x cos ¥ +sin a x sin —cos o xsin @ +sin a x cos
B+ Ax Y 7/+ 7/:0

cosa xcosf cosa xcos @

(5.7)
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where 4 = m/n, B = I/n. We may rewrite the above equation further to obtain

B+A4ayta =0 (5.8)
where 4 = m/n, B = l/n, and
cosa xsin@xcos y +sin @ xsin y g —cosa xsin@+sina xcos y
a, = =
0 1
cosa xcosd ’ cosa xcos@

In the above equation, we use two parameters 4 and B to represent the original
three ones /, m, n. By this form, we can use a simple 2D Hough transform technique

to obtain the parameters 4 and B, as described in detail in the following algorithm.

Algorithm 5.1 Space line detection.
Input: an input edge-point image /40, Wwhich mcludes the points of the projection /; of
a space line L, and the pano-mapping table.for Mirror A.
Output: two parameters, Ayax and Bpay, representing a-normal vector of the space
plane described by Equation (5.8).
Steps.
Step 1. Set a 2D Hough space S with the parameters 4 and B, and initialize all cell
counts to be zero.
Step 2. For an edge point / at coordinates (u, v) in legee, look up the pano-mapping
table and obtain a corresponding azimuth-elevation angle pair (6, o).
Step 3. Compute the parameter values 4 and B by Equation (5.7) using & and a, and
increment the count in the cell (4, B) of the Hough space S by one.
Step 4. Repeat Steps 2 and 3 until all the edge points in Z.4e are computed.

Step 5. Take the cell (4max, Bmax) With a maximum count in S as output.

After the algorithm is conducted, we can obtain the normal vector (/, m, n) of the

desired space plane Q in another form represented by the two parameters 4 = m/n and
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B=l/n.
Furthermore, if L is a vertical space line which means that the normal vector of
the space plane Q is parallel to the ground, then it is easy to figure out that m is equal

to zero. Thus Equation (5.8) can be reduced to the following equation:
B= —a (5.9)

where B = //n and

—COSQXSiIIQ-i—Sil’lOlXCOS]/
a; =
1

cosa x cos

In a similar way as described in Algorithm 5.1, we can use a 1D Hough transform to
find the parameter B, which represents a normal vector of the specific space plane

through a vertical space line and the mirror center.

5.2.2 3D data computation using a vertical space line

In this section, based on‘the proposed space line detection technique described
above, we can derive the 3D data of'a vertical space line (such as the boundary lines
of a light pole or the vertical axis of a hydrant) from the omni-image, as described
subsequently.

As shown in Figure 5.4, a vertical space line L is projected onto /z; and /1, on the
regions of Mirrors A and B, respectively. The center Oa of Mirror A is located at
coordinates (0, 0, 0) in the CCS as we previously assumed. Thus, with the slant angle
denoted as y and the length of the baseline denoted as b as shown in Figure 5.4, we
can derive the position of the center Og of Mirror B to be at coordinates (0, bsiny,
bcosy). Next, according to Equation (5.4), the equations of the two space planes O,
and O, going through L and the mirror centers, On and Op, respectively, can be

described in the following:
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11X+m1Y+n12=0; (510)

LX+my(Y — bsiny) +ny(Z — bcosy) =0 (5.11)

where ([, , m;, n;) represents the normal vector of Q; and (/» , my, ny) represents that
of 0.

In addition, by the reason that the space line L is perpendicular to the ground, we
know that m; and m, are both zero. Thus, the above two space plane equations can be

reduced into the following forms:

hX+mZ=0; (5.12)
LX+ny(Z — bcosy)=0 (5.13)
which are equivalent to
BX+7Z=0; (5.14)
By X+(Z — bcosy) =0 (5.15)

where B; = [1/n; and By = L/ns.

O03(0,bx siny ,bxcosy )

/: Ip>
X .........
0, Z - _ Q2 ___________________________________
06,0) T T T
Ql L
~ (A verticle
~ Space Line )
~

Ground Plane

Figure 5.4 A space line projected onto /;; and /;; on two mirrors in the used two-mirror omni-camera.

By solving Equations (5.14) and (5.15), we can obtain the following equations to

describe the position of the vertical space line L:
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Yo bxcosy;
Bz_B1

Z=-BX=-B,X+(b+cosy) (5.16)

where B; = [i/n;, By = L/n,. It is noted that Equation (5.15) cannot be solved when B
is equal to B, resulting in the parallelism between the two space planes Q; and Q.

In conclusion, for a vertical space line projected on both of the regions of
Mirrors A and B in the omni-image, after conducting the proposed line detection on
the regions of Mirrors A and B in the omni-image and finding a pair of the
corresponding space planes using Algorithm 5.1, we can use Equation (5.16) to

compute the location of the vertical space line directly.

5.3 Method of Light Pole Detection

The idea of the proposed method for light pole localization is to use two vertical
boundary lines of the light pole to estimate.the position of the light pole. The entire
process for light pole position computation is shown in Figure 5.5. Firstly, the
proposed technique to detect two boundary lines of the light pole is introduced in
Section 5.3.1. Then, the computation of the light pole location is described in Section

5.3.2. Finally, some experimental results for light pole detection are given in Section

5.3.3.

5.3.1 Light pole boundary detection

In this section, we describe how to detect the two boundary lines of a light pole
in an omni-image. The proposed method consists of two steps. Firstly, we conduct

light pole segmentation by the Canny edge detection technique to obtain the boundary
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points of the light pole. Then, by the resulting edge-point image, we use the

above-mentioned space line detection technique to find the two vertical boundary

lines based on a 1D Hough transform technique. Finally, we can obtain two specific

space planes which go through one of the two light pole boundary lines as well as two

other space planes which go through the other of the two light pole boundary lines;

and use these results to compute the light pole location, as described in the next

section. The detailed algorithm for the just-mentioned idea of light pole detection is

described as follows.

Input omni} Boundary points
image segmentation

Boundary line
detection

Boundary line
position
computation

A,

Light pole
position
estimation

Light !3016
location

Figure 5.5 Proposed method of light pole localization.

Algorithm 5.2 Light pole boundary line detection.

Input: an input image /;,,.., two pano-mapping-tables for Mirrors A and B, and a set of

environment windows Win,.

Output: two parameters B, and Bp representing the parameters of two space planes

through one of the two boundary lines of the light pole and then through the

Mirror A center and the Mirror B center, respectively; and two other

parameters By, and Bp, representing the parameters of two space planes

through the other one of the two boundary lines of the light pole and then

through the Mirror A center and the Mirror B center, respectively.

Steps.

Step 1. For Z;yu, use the Canny edge detector to conduct edge detection to extract

the feature points of the boundary lines of the light pole, and obtain an
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Step 2. Seta 1D space S with parameter B and initialize all cell counts to be zero.

Step 3. For each edge point / at coordinates (u, v) in wing of Winy, look up the
pano-mapping table to obtain an azimuth #and an elevation angle a.

Step 4. Compute B by Equation (5.9) using & and a, and increment by 1 the value
of the cell with parameter B in S.

Step 5. Repeat Steps 2 and 3 until all edge points in wing of Win;, are computed.

Step 6.  Find two cells, denoted as B, and B», with the two maximum values in space
S

Step 7. If By > B», set By; = By and By, = By; else, set By = B> and By, = B.

Step 8. Take B4 and By, as outputs.

Step 9. In the same way, repeat Steps.2 through 8 in wings of Win,, for Mirror B and

take the obtained two corresponding parameters B and Bg, as outputs.

5.3.2 Light pole position computation

After successfully detecting two boundary lines of a light pole, we can use them
to compute the light pole location. The proposed technique for this is described in this
section. At first, by the use of two known corresponding space planes obtained in the
previous section, we compute the locations of the two light pole boundary lines,
denoted as L;, and L,,,, respectively, in the CCS as illustrated in Figure 5.6. Then, two
corresponding points, G, and G,,, on the ground can be obtained by the obtained
equations of L;, and L,,. Next, we check whether the distance between G;, and G, is
close to the known diameter of the light pole. If not, we assume that the detected two
vertical space lines are not the boundary lines of the light pole. Finally, we compute
the center position between G;, and G, for use as the light pole position Gj,. The

detailed algorithm to estimate the light pole position is described in the following
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algorithm.

<———— Light pole
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Figure 5.6 Two obtained boundary lines-L;;-andL,,, of the light pole in the CCS.

Algorithm 5.3 Light pole position computation.

Input: two corresponding space plane parameters B, and Bp;, and two other
corresponding parameters B4, and Bg, obtained from Algorithm 5.2, of a light
pole appearing in an omni-image.

Output: a light pole position Gy, in the CCS.

Steps.

Step 1. By By and Bjg;, compute one boundary space line L; of the light pole by

Equation (5.16) and obtain its equation as follows:
X=X\, Z=27. (5.17)

Step 2. By By, and Bp,, compute another boundary space line L, of the light pole by

Equation (5.16) and derive its equation as follows:
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X:Xz; Z:ZQ. (518)

Step 3. Compute the distance d between the two lines by the following equation:

d=\(X, - X, +(Z,-2,) . (5.19)
Step4. If |d — Ddgiameter] = Thp where Dgiameter represents the pre-measured
diameter of the light pole and 7% is a pre-defined threshold, then go to Step
5; else, show the message that there is no light pole and exit.
Step 5. Compute the coordinates (xj,, vy, zj) of the light pole position Gy, in the
CCS as follows:
xXp =X+ X)2; yp= —H;, zj,=(Z1+2,)/2 (5.20)

where H is the height of the camera center, and take Gy, as output.

5.3.3 Experimental results for light pole detection

An input image with the projection of a light pole on the regions of Mirrors A
and B is shown in Figure 5.7(a).-After conducting.Canny edge detection, we obtain an
edge-point image as shown in Figure 5.7(b). By this edge image, we use the proposed
line detection method to extract two light pole boundary lines, and the two 1D Hough
spaces of the parameter B for Mirrors A and B are shown in Figures 5.8(a) and 5.8(b),
respectively. The result of light pole detection is shown in Figure 5.9 and the relative

light pole position with respect to the vehicle is shown in Figure 5.10.

5.4 Method of Hydrant Detection

In this section, we introduce the proposed method to localize a hydrant. At first,
we introduce the used method to describe a hydrant contour and the learning of the

hydrant contour in Section 5.4.1. Next, by the use of dynamic threshold adjustment
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and vertical line localization techniques, we can extract a representative structural
feature of the hydrant, namely, its axis, and then estimate the position of the axis, as
described in Section 5.4.2. Also, some experimental results for hydrant detection by

the proposed method are given in Section 5.4.3.

(a) (b)
Figure 5.7 Two omni-images with-the projection of the light pole. (a) The input image. (b) The result

edge image after doing Canny edge detection.
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Figure 5.8 Two 1D accumulator spaces with parameters B. (a) For Mirror A. (b) For Mirror B.
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Figure 5.9 The result image of light pole-detection. Two boundary lines are illustrated as the red

and blue curves.

&
£
2

Figure 5.10 A computed light pole position, the yellow point, with respect to the vehicle
position, the blue point, in the VCS. Two boundary lines are located at the blue and red

positions.

5.4.1 Hydrant contour description

In hydrant detection, for the purpose to inspect the results of hydrant

segmentation on the image, we use a simple description with two specific parameters
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obtained by principal component analysis. Specifically, after obtaining the hydrant
segmentation results, we compute the covariance matrix Cy by the feature point
positions in the image. After obtaining the two eigenvalues and the two corresponding
eigenvectors of the matrix C,, we compute the length ratio 7 of the two eigenvalues of
C: and the rotational angle @ between the ICS and the principal component,
respectively. Then, we use @ and 7 to describe the hydrant contour as shown in Figure
5.11. The detail to obtain these two parameters is described in the following

algorithm.

Algorithm 5.4 Hydrant contour parameter computation.

Input: an input bi-level image /;,,,, which includes the feature points of a hydrant

appearing in an omni-image.

Output. two hydrant contour parameters, a rotational angle o, and a length ratio 7.

Steps.

Step 1. Scan each feature point p with coordmates (u, v) in J;,., compute the center
m, = (uy, vy) of all the feature points using their coordinates, and calculate
the covariance matrix C, of these feature points using their coordinates and
M.

Step 2. Compute the eigenvectors e; = (u1, vi) and e, = (u2, v2) and the two
corresponding eigenvalues A; and A, of matrix C,, where e; represents the
first principal component and e, the second.

Step 3. By the two eigenvectors e; and e, and the two eigenvalues 4; and A,
compute two parameters, the rotational angle @ of the first principle
component e; with respect to the v-axis in the ICS and the ratio 7 of 4; to A,

by the following equations:
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®= tan’l(i) ;o=

A
. T (5.21)

Step 4. Take wand 7 as outputs.

» N

el(t, »)

&, V)

(a) (b)
Figure 5.11 Principal component: analysis' for the hydrant contour. (a) Illustrated principal
components, e; and e;, on the ‘omni-image. (b) A rotation angle @ between the ICS and the

computed principal components,

In addition, because different projections of the same hydrant on omni-images
taken at different positions are usually similar, we can record as many different
hydrant contours as possible in the learning process in order to “learn” the hydrant
contour more precisely. More specifically, for the learning of a specific hydrant
contour in the navigation path, we guide the vehicle to take a number of omni-images
from different directions at different positions. For each obtained image, we compute
two parameters «; and 7; by the above-described algorithm after extracting the
hydrant feature points. Then, from all @; and 7;, we select a minimum angle @i, and
a maximum angle @max as well as a minimum ratio 77mi, and a maximum ratio 7Jmax to
compose the ranges of the hydrant contour parameters. Then, we record the four
parameters @min, @max> Mmin, aNd max as the hydrant contour thresholds. After this

learning process, if the computed rotational angle @ and the ratio 7 in hydrant
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detection are not in the learned ranges, we decide that the result of detection is not a

hydrant.

5.4.2 Hydrant detection and localization

By the symmetric shape of a common hydrant, the idea of the proposed method
for hydrant localization is to detect the vertical axis line of the hydrant using principal
component analysis, and localize the hydrant by this line. The entire process to
localize a hydrant in this way is shown in Figure 5.12, and two stages of works

conducted in this process are described in the following.

. Feature Contour Hydrant middle Hydrant Hvd
Ingut omni-_ | points analvsis | » line position | » position | > | y r?nt
1mage extraction ys computation . ocation
Dynamic Threshold
Adjustment

Figure 5.12 Proposed method-of light pole localization.

(A) Hydrant feature extraction by dynamic color thresholding

Due to the special color of the hydrant, we utilize the color information to extract
the hydrant contour from an image. Specifically, by the use of the HSI color space, we
use only the hue and saturation values to classify the hydrant feature in order to ignore
the influence of the varying image intensity caused by the time-changing lighting
condition in the outdoor environment. The conversion of color values from the RGB

color space to the HSI color space is as follows:

H = 0, if B<=G
- 1360-6, if B<G’

3 . _
S = 1 —m[mln(& G, B)] N
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I=%(R+G+B) (5.22)

where

;[(R—G)+(R—B)]
6 =cos™’

[(R-G)’+(R-B)G-B)]"

According to our experimental experience, we define two hue values, denoted as
Hpin and Hpax, as the hue threshold values of the upper and lower bounds for
extracting the red feature of the hydrant. Similarly, we define two saturation values,
denoted as Smin and Smax, as the saturation threshold values of the upper and lower
bounds for extracting the surface feature of the hydrant. These threshold values are
used together to classify the hydrant feature points.

Furthermore, varying lighting conditions will influence the hue and saturation
features. Based on the learned hydrant contour, we conduct dynamic color
thresholding to adjust the recorded saturation threshold-value of Sy, in a fixed range
[So, S1], where Sy and S are learned in.advance in different lighting conditions in the
learning stage. We describe the overall method to extract the feature points of the

hydrant in detail in the following algorithm.

Algorithm 5.4 Hydrant detection by dynamic thresholding.

Input: an input image [, including a hydrant; the learned four hydrant contour
parameters, @min, Omaxs Nmins ANA May; two hue threshold values H,i, and Hypgy;
two saturation thresholds S, and S,..; and a set of environment windows
Winpya.

Output: a bi-level image [, with feature points of the hydrant, and an adjusted
saturation threshold Sp;p.

Steps.
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Step 1.  Initialize an empty bi-level image I;; for labeling feature points and set all
pixel values as zero.

Step 2. Scan each pixel 7,, with coordinates (u, v) in Winy,q, compute its hue value
hy, and saturation value s,, by Equation (5.22), and if 4,, is between H,;,
and H,,, and s,, is between S,,;, and Sy, then label 7,, by “1” in I,

Step 3. Apply erosion and dilation operations to the bi-level image /.

Step 4. Conduct image connected component labeling, and find a maximum
connected component M in Ij;.

Step 5.  Apply Algorithm 5.3 to M in [; to obtain two contour parameters, the
rotational angle @ and the length ratio 7 of M.

Step 6. If Wpin < @ < Opay AN iy < Nax, then take M in I, and S,,,;, as outputs;

else, adjust the threshold S, in the range {So,.S1] and go to Step 1.

(B) Hydrant position computation by the vertical axis line of the hydrant

By using the results obtained by the hydrant contour extraction process described
above, it is desired further to find the vertical axis line of the hydrant to localize the
hydrant. We assume that the desired vertical axis line goes through both centers of the
hydrant appearing in the regions of Mirrors A and B in the omni-image. After
extracting the two center positions of the hydrant in regions of Mirrors A and B, we
can obtain further the two space planes which go through the axis line and the two
mirror centers, respectively, by the use of the proposed vertical line detection method.
Finally, we can obtain the hydrant position by the located axis line using the

information of the two space planes. The detailed process is described as follows.

Algorithm 5.5 Hydrant location computation.

Input. an input bi-level image [; which includes hydrant feature points, and an
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environment window Winyq.

Output: a hydrant position G, in the CCS.

Steps.

Step 1. Compute the center Cp with coordinates (up, ug) of the hydrant feature
points in wing of Winy,, and the center Cs with coordinates (us, us) of the
hydrant feature points in wing of Winpy,.

Step 2.  Look up the pano-mapping table to obtain the corresponding elevation angle
ap and azimuth angle & of Cp and the corresponding elevation angle ag and
azimuth angle 6s of Cs.

Step 3. By Equation (5.9), compute the parameter value Bp corresponding to Cp
using @z and ap as well as the parameter value Bs corresponding to Cs using
O and ag.

Step 4. By the use of B, and B, compute the position coordinates X and Z of the
axis line L of the hydrant by Equation (5.16).

Step 5. Compute the hydrant position Gy, with' coordinates (Xpya, Yya, Zhya) in the
CCS as follows:

Xiyd = X5 Ywa= —H, zpa=2 (5.23)
where H is the height of the camera center.

Step 6.  Take Gyyq as output.

5.4.3 Experimental results for hydrant detection

Some experimental results for hydrant detection are shown in this section. The
input image with a hydrant on the regions of Mirrors A and B, respectively, is shown
in Figure 5.13. The result of hydrant segmentation using the initial threshold values is
shown in Figure 5.14(a). Next, the result of hydrant segmentation by dynamic

thresholding is shown in Figure 5.14(b). We can see that the extracted contour in
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Figure 5.14(b) is more similar to the real shape of the hydrant. Finally, the result of
detecting the vertical axis line of the hydrant and the obtained hydrant position are

shown in Figure 5.15.

(b)

Figure 5.14 Two result images of hydrant segmentation with different threshold values (a) The result

of hydrant segmentation with original threshold values. (b) The result image of hydrant segmentation

by dynamic thresholding.
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(b)

Figure 5.15 The result of hydrant detection and obtained hydrant position. (a) The result image of
extracting the vertical axis line of the hydrant (b) The related hydrant position with respect to the

vehicle position.
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Chapter 6
Curb Line Following and Obstacle
Avoidance in Navigation

6.1 Proposed Technique of Curb Line
Following

To conduct vehicle navigation on sidewalks, we propose a technique to detect a
curb line and compute its location with respect to the vehicle. Then, by a localized
curb line, we can guide the vehicle to-follow the curb and also calibrate the orientation
odometer reading in the navigation process. In this system, we detect the curb line by
the use of the projection of a-curb line on the region of Mirror A in the omni-image.
We know that the detected curb image points-are on the floor in the real world, so the
position of the curb line can be computed directly by the use of a single camera, i.e.,
the one with Mirror A in the proposed camera system.

In the remainder of this chapter, the proposed method to extract curb boundary
points is introduced in Section 6.1.1. By the use of the method for curb boundary
extraction, we conduct curb line localization by the proposed dynamic threshold
adjustment technique described in Section 6.1.2. Finally, after deriving the location of
the curb line, we propose a method for the vehicle to navigate by following the curb
line in the navigation process as introduced in detail in Section 6.1.3. Some

experimental results for curb detection are shown in Section 6.1.4.
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6.1.1 Curb line boundary points extraction

For curb line detection on an omni-image, we define an environment window,
denoted as Winqu, to specity a specific region of Mirror A on the image. By an input
omni-image obtained from the omni-camera, we perform the following four steps to
compute the relative position of a detected curb boundary point with respect to the

vehicle.

(1) Curb feature detection by the use of color information

Because of the special color of the curb (which is red in our experimental
environment), we use the color information to extract the curb feature using the HSI
color model. Like the method for hydrant feature extraction as discussed previously in
Section 5.4.2, we classify the«curb feature in the image by the use of two hue
threshold values, denoted as' Hp, and Hn.x, and two saturation threshold values,
denoted as Syin and Smax, as the lower and upper bounds for thresholding the hue and
saturation value, respectively. Then, by thresholding the hue and saturation values for
each point on the image, we can obtain a set of curb feature points and then label their

positions on a bi-level image /; for the use in the next step.

(2) Curb boundary point detection

With the bi-level image I; which includes the curb feature points, we can start to
find the inner boundary points of the curb line. In image /;;, we scan each pixel from
top to down and from right to left in Winey as illustrated in Figure 6.1, and record the
first found feature point as a curb boundary point. After scanning each row, we derive
the curb boundary point position in the image and label them as red points, as shown

in Figure 6.1.
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(3) Computation of curb boundary point positions

After deriving the curb boundary points in the omni-image, we compute the
boundary positions in the CCS. Suppose that a curb point is found on the ground, such
as the point P illustrated in Figure 6.2. By the use of Mirror A, point P at coordinates
(X, Y, Z) is projected onto the omni-image with an elevation angle a and an azimuth
angle 6. As described previously in Section 5.2.1, we can represent the vector from
the mirror center O4 to a space point P using the related elevation and azimuth angles

by the use of Equation (5.3) which is repeated in the following:

P cosa xcosé
V,=| P, |=|cosaxsinfxcosy+sinaxsiny |. (5.3)
P,

—cosaxsin @ +sina xcos y

In other words, we can represent the-position-of P in the CCS with the form described
by Equation (5.3). Besides, by the reason that the height / of the center of Mirror A is
known in advance, we can further derive Y= -—H. Hence, by the proportions among
P,, Py, and Pz and known parameter-Y,.the.position of the ground point P can be
computed by dividing Equation (5.3) by P, and then multiplying the result by —H,

leading to the following equations which describe the position of P:

Yo —H x(cosaxcosf)
- . . . H
Cos & X sin @xcos y +sin ¢ xsin ¥

Y=-H;

Z_—Hx(—cosaxsin0+sinaxcosy) ©.1)
cosaxsin@xcosy +sinaxsiny '

Finally, the details of the above three major steps for curb line boundary
extraction is described in the following algorithm, and the obtained curb boundary

points positions in the VCS will be used to estimate the location of the curb line, as
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introduced in the next section.

Figure 6.1 A detected curb line and the inner boundary points of the curb line on the omni-image.

Mirror A Mirror B
X

\ PX, Y, Z)

Ground Plane

Figure 6.2 A ground point P projected onto Mirror A

Algorithm 6.1 Extraction of curb boundary points.

Input: an input image fi,pu, two hue threshold values Hpin and Hpax, two saturation
threshold values Suin and Smax, and an environment window Wincup.

Output: a set S.,,;, of the positions of the curb boundary points in 7, in the VCS.
Steps.

Step 1. Initialize a bi-level image I,.

Step 2. Scan each point /,, at coordinates (u, v) in Wincuw 1n iy, and by Equation

(5.22) compute its hue value 4,, and saturation value s,,. If A,, is between
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Conduct the erosion and dilation processes to the bi-level image /5;.

Scan each row from right to left in Wing, in I; and find the first labeled
point B; at coordinates (u, v).

Look up the pano-table to obtain the corresponding elevation and azimuth
angle pair (a,6), and compute the boundary point position Bccs in the CCS
by the use of Equation (6.1).

Calculate the corresponding position Bycs of the point in the VCS by the
coordinate transformation described by Equation (3.6) with B¢cs as input,
and record By s into the set S..,».

Repeat Steps 4 through 6 until all rows in Wing,w have been scanned.

6.1.2 Curb line localization by dynamic color

thresholding

To localize a detected curb line.segment; firstly assume that the curb line

segment in the image is a straight line. This is reasonable because the projection of the

curb line on the omni-image is a small part of the whole curb line. Thus, we may

approximate the detected curb line using a liner function by a line fitting technique.

Specifically, using the boundary point positions by the method discussed previously in

the last section, we can fit the data to a line L and obtain the equation of L as follows:

Y=ax+b, (6.5)

where the two parameters, a and b, are calculated by the following equations:

nzxiyi _inzyi
_ il

i=1 i=1

- 2
n n
2
nz X; —(E xl}
i=l1 i=l

a

2
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2
”E X; —[E xl}

b

(6.6)

with (x;, v;) being the position coordinates of a boundary point.

Furthermore, by the use of this model, we can estimate a more precise position of
the curb line using the proposed dynamic color thresholding technique mentioned
previously. To be more specific, we conduct dynamic threshold adjustment for curb
detection by adjusting the saturation threshold Smi, in a pre-defined fixed range [So,
S1]. After using all possible pre-selected threshold values in this range to extract curb
boundary points, we select the saturation threshold value with the minimum sum of
errors in the result of fitting the curb boundary points with the computed line. The
entire process for curb line location computation is shown in Figure 6.3 and the

detailed algorithm is described in the following.

. Sidewalk
; Sidewalk Sidewalk . Curb .

Input - .
np.u ommnt curb (> boundary point [ ¥, bounda.r}./ point > line > i llpe Curb !me

Image . I position fittin analysis location

segmentation computation g
*
Dynamic Threshold

Adjustment

Figure 6.3 Process of curb line location computation

Algorithm 6.2 Curb line detection by dynamic color thresholding.

Input: an input image /.., and an environment window Wingyr.

Output. a slope angle @ of the curb line, and the distance d of the vehicle to the curb
line.

Steps.
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Conduct curb boundary point extraction by the use of Algorithm 6.1 with
Linput, Wineun, two hue threshold values Hnin and Hpmax and two saturation
threshold values Syin and Smax as inputs to obtain a set Sgy of N boundary
points, each denoted as ¢; with coordinates (x;, y;) in the VCS.

Use the line regression scheme to compute a line L by Equation (6.6) with ¢;
as inputs, where i is 1 through N and derive the equation of the best-fit line L

as follows:

Y=aX+b (6.4)
where the coefficients @ and b are as described by Eqgs. (6.6).
Compute the sum of the errors S, of fitting the boundary points ¢; with L by

the following equation:

n

S, = [J’i _(“xi +b)] (6.5)
i=l

Adjust the threshold value S, m the range [S, Si] and repeat Steps 1
through 3 until all possible pre-selected threshold values in [, S1] have been
computed.

Select the fitting line L., with the minimum sum of errors from the
computed fitting lines obtained in Step 4.

Compute the slope angle of L., and the distance d to the vehicle by the

following equation:

b
0= tan™ (lj; d =%. (6.6)

Take fand d as outputs.
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6.1.3 Line following in navigation

By the obtained curb line location, the vehicle can conduct line following on
sidewalks in the navigation process. The proposed scheme for line following aims to
keep the navigation path at an appreciate distance to the curb line. As shown in Figure
6.4, we define the range [Dist,, Dist,] as the safe limits between the vehicle and the
curb line. When the vehicle is at a position with a safe distance to the curb, we guide
the vehicle to adjust its direction to be parallel to the curb. However, if the distance to
the curb line is not in this range, we slow down the speed of the vehicle and turn the
vehicle forward to get into the safe region progressively. The proposed line following

process for vehicle navigation is described in the following algorithm.

Danger LY B

- Safe Distance
Range

Curb line

Figure 6.4 Illustration of line following strategy.

Algorithm 6.3 Curb Line following.

Input: an input image ;..

Output: none.

Steps.

Step 1. By the use of Algorithm 6.2, obtain the slope angle & of the curb line and a

distance d to the curb line.
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Step 2. According to the distance d between the vehicle and the curb line, perform
the following steps.

(1) 1If d > Dist,, slow down the speed of the vehicle; and if the current
vehicle direction is toward the safe region, exit; else, turn to the right
for an angle of 5° toward the safe region.

(2) If d < Dist;, slow down the speed of the vehicle; and if the current
vehicle direction is toward the safe region, exit; else, turn to the left for
an angle of 5° forward the safe region.

(3) IfDisty = d = Dist,, modify the vehicle direction by the use of dto

make it parallel to the curb line.

6.1.4 Experimental results of curb detection

Some experimental results of curb detection using the proposed method are
given in this section. An input omni-image with curb line is shown in Figure 6.5. By
the proposed method, the curb segmentation result with original threshold parameters
is shown in Figure 6.6(a). In addition, a better curb segmentation result adopting the
dynamic threshold adjustment technique is shown in Figure 6.6(b). Finally, the
extracted curb boundary points and computed best-fit line from Figure 6.6(b) are

shown in Figure 6.7.
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Figure 6.5 An input omni-image with curb line landmark.

(a) (b)
Figure 6.6 Two result images of curb segmentation with different threshold values (a) The segmentation

result with original threshold values. (b) The segmentation result image by dynamic thresholding.

Figure 6.7 Illustration of extracted curb boundary points and a bet fitting line (the yellow dots).
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6.2 Proposed Technique of Obstacle
Avoidance

The idea of the proposed obstacle detection technique is based on the use of the
disparity resulting from the separation of Mirrors A and B. Because the used
two-mirror omni-camera is placed at a fixed position and slanted up for a fixed angle
on the autonomous vehicle, a ground point P will be projected by the two mirrors onto
the camera at two specific different image positions as shown in Figure 6.8(a). In
other words, we can find the same space point P at these two image positions
simultaneously. Thus, we can record in advance the relation between two
corresponding ground points in the two mirrors and use them to inspect an object
which is not flat on the ground. More specifically, if an object with a height is
projected by the two mirrors onto the omni-images, we can detect it by looking up
recoded corresponding ground positions on the two mirrors. As shown in Figure
6.8(b), instead of the ground point'G we.find out another space point F on the obstacle
which is projected by Mirror A onto the image.

Simply speaking, for obstacle detection in this study, our purpose is to construct
a specific table, we call ground matching table, which records the relationship
between the ground points on the image region of Mirror A and the corresponding
ground points on the image region of Mirror B in the omni-image as shown in Figure
6.9. The proposed method for creating a ground matching table is introduced in
Section 6.2.1. Next, by the use of the established ground matching table, we can
conduct obstacle detection and localization conveniently for vehicle navigation, as
described in Section 6.2.2. Finally, the procedure of obstacle avoidance is introduced

in Section 6.2.3.
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(a) (b)
Figure 6.8 Two side view of the vehicle system and a ground G. (a) Without obstacles. (b) With an obstacle

in front of the vehicle.

Ground matching table

Figure 6.9 Hlustration of the ground‘matching table.

6.2.1 Calibration process for obtaining

corresponding ground points in two mirrors

At the beginning of the calibration process, we specify a set of environment
windows Wingps for use in the calibration process as well as in the obstacle detection
process in the navigation process. The purpose of the calibration process is to
construct a ground matching table for the use in wing of Win,,, and the entry in the
table records the image point position of a corresponding ground point in the image
region of Mirror B. In this study, we propose a semi-automatic calibration method for

obtaining corresponding ground points in Mirrors A and B.
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To be more specific, a specific line, which we call a calibration line, with a
special color is placed on the ground in front of the vehicle as shown in Figure 6.10
and can be seen on both regions of the two mirrors in the omni-image. Next, by the
property of rotational invariance of omni-imaging, we can obtain the corresponding
ground points in the two mirror regions from an input omni-image automatically as
illustrated in Figure 6.11, and record them on the relevant entries in the ground

matching table by the following algorithm.

Figure 6.10 A calibration line used to creating the ground matching table in this study.

Figure 6.11 Illustration of detecting corresponding ground points on a calibration line by

the use of rotational property on the omni-image.
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Algorithm 6.4 Ground matching table recording.

Input: an input omni-image /.., and a ground matching table.

Output. Updated ground matching table.

Steps.

Step 1.

Step 2.

Step 3.

Step 4.

By the use of the previously-mentioned HSI classification method, classify
the feature points of the calibration line on Wingps in [y and label the
feature points in a bi-level image /5.

Scan each pixel from bottom to top for all columns on wing of Wingys in I; to
find the first feature point f; at coordinates (u;, v;); and record f3; into a set
Ss.

For each point f3; in Sp, compute-its azimuth angle by Equation (2.3); scan
accordingly on the same radial direction from far to near in the region of
Mirror B to find the first feature point fs;.

Record the image position of fs into_the relevant entire in the ground
matching table; and go to Step 3 if the elements in Sz have not been

exhausted.

By conducting the above algorithm continually while the vehicle is moving

around, we can gradually create the ground matching table. With sufficient input

images taken at different positions by manually moving the vehicle, a complete

ground matching table can be obtained at the end of the calibration process.

6.2.2 Obstacle detection process

For obstacle detection during vehicle navigation, it is assumed that each obstacle

which blocks the vehicle has a surface with a single color. Also, the vehicle should be

close enough to “see” it on the two regions of Mirrors A and B in the image. The idea
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of the proposed method to detect an obstacle is to “learn” the color information of the
obstacle points which are detected by the use of the ground matching table. Then, by
analyzing the color information of these points, we can derive the color of the
obstacle and extract the entire obstacle contour. Finally, we can localize the detected
obstacle position by extracting the boundary points on the bottom of the obstacle on
the floor. The above-mentioned obstacle detection process consisting of four major
steps are described in the following, and a flow chart illustrating the process is shown

in Figure 6.12.

Input omni- Obstacle points Obstacle color Qbsta(:,le e Obstacle
. - > . [P classification by | boundary .
image extraction learning o location

learned color localization

Figure 6.12 Proposed process for obstacle detection.

(1) Obstacle point extraction by the use of the ground matching table

By the use of the ground match table, we can obtain the corresponding ground
points on the two mirror regions in the omni-image. By the difference of the intensity,
we can find out a space point like F on the obstacle surface projected on the region of
Mirror A in the omni-image as shown in Figure 6.13. We collect all detected obstacle
points on wing of Win,, and label them in a bi-level image /5;. After reducing noise by
conducting some image processing on I, we record all remaining obstacle points in
Ip; into a set S, ps.
(2) Obstacle color information learning

By RGB-to-HSI conversion, we compute the average hue value H,,, and a hue

variance var,ps from all image points in S,»;. We record H,,s and var, as the color

information of the obstacle.
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- Obstacle 7

Figure 6.13 An obstacle point F found dun to the difference of the intensity.

G —
The ground

(3) Obstacle detection by the learned color information

By the use of the HSI color model, we classify the obstacle feature points by the
learned color information of the obstacle. After that, we obtain the obstacle feature
points in the omni-image.
(4) Obstacle location computation

With the image which includes-the detected obstacle points, we detect outlier
feature points on the bottom of the obstacle by a method which scans each radial line
in wing of Win,s, and takes the first found feature point as the outlier point as shown
in Figure 6.14. By the reason that these bottom boundary points are on the ground, we
use the previously-mentioned method using Equation (6.1) to compute their positions.
Finally, we calculate the average position of the found bottom boundary points as the

obstacle location G,p,.

The detailed algorithm of the above four steps for conducting obstacle
localization is described in the following. At the end of the algorithm, we can obtain
the obstacle location and guide the vehicle to dodge the found obstacle as discussed in

the next section.
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Figure 6.14 Illustration of the method to find boundary points on the bottom of obstacle.

Algorithm 6.5 Obstacle detection and localization.

Input: an input omni-image /i, @ set of environment windows Win,,, and a ground

match table.

Output: an obstacle location G, in the CCS.

Steps.

Step 1. Scan each point /5 at coordinates (ug, vs) in wing of Win,ps in Linpur, and look
up the ground matching table to find the corresponding ground point s at
coordinates (us, vs).

Step 2. (Detecting obstacle points) Compute the intensity Yz of Iz and Yy of Is; if |V
— Yj| is larger than a threshold, label 7 in a bi-level image 7,; which keeps
obstacle pixels; go to Step 1 until all points in wing of Win, are scanned.

Step 3.  Apply the operations of erosion, dilation, and connected component labeling
to the bi-level image /.

Step 4. (Deciding whether an obstacle has been found) If the number of all labeled
points in /; is larger than a threshold, then regard the points as an obstacle

and record them into a set Sp.
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Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

6.2.3

By the image points in Sp, compute the mean hue value H,, and the hue
variance value var,,s by the use of the conversion described by Equation
(5.22).
(Finding obstacle points more precisely) For each pixel on wing of Win,s in
the original input image I, classify the obstacle feature points by the
following rule:
if the computed hue value of a pixel is between the range [Hyps — 2x
varens, Hops 1+ 2xvar,s), then take the pixel as an obstacle point;
and label all obstacle points in another bi-level image /yyye.
Scan each radial line in wing of Win,s from far to near in /e, and record the
first found obstacle point as«a bottom boundary point 7,5 into a set Spps.
For all points Zyps <10 Sppss 00K up. the .pano-mapping table to find
corresponding elevation and azimuth pair (o, 6).
Compute the related boundary point position C,ss in the CCS by Equation
(6.1).
Calculate the average position of the bottom boundary points as the obstacle

position G, and take G, as output.

Obstacle avoidance process

In this section, we introduce the method of obstacle avoidance for vehicle

navigation. The obstacle avoidance process is conducted in the cases of finding a

localized light pole, reading a fixed obstacle position from the navigation path, or

detecting a dynamic obstacle in the navigation process. The proposed strategy of the

obstacle avoidance is to insert additional path nodes for obstacle avoidance into the

navigation path to guide the vehicle to change its path to pass the obstacle. As shown

in Figure 6.15, after obtaining the obstacle location, the path node Node,,is 1s placed
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at the left-hand side with a pre-defined distance Dist with respect to the obstacle

position as shown in the figure. Finally, the vehicle will navigate to Node,yiq firstly

and then the original destination node Node;: .

Nodeyypia gl_} G,y
A obs

|

i

N ‘
N
AN

AS
NodeA,_y

Node;
Curb line

Figure 6.15 Illustration of inserting. a path node Node,;,,; for obstacle avoidance in the original

navigation path.
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Chapter 7
Experimental Results and
Discussions

7.1 Experimental Results

In this section, we will show some experimental results of the proposed vehicle
navigation system in the learning and navigation processes. The experimental
environment was an outdoor sidewalks in National Chiao Tung University as shown
in Figure 7.1(a). An illustration of the environment consisting of a gray sidewalk, a
red curb line, and some landmarks is shown in Figure 7.1(b). The portion to the right

of the red curb line is part of an around-campus road.

Fixed M
Obstacle
L 2
Hydrant Light pole U
Y —
Light pole
® (
Sidewalk Road
(b)

Figure 7.1. The experimental environment. (a) A side view. (b) Illustration of the

environment.

In the learning process, a trainer guided the vehicle by the use of the learning
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interface as shown in Figure 7.2 to construct unknown navigation environment. The
vehicle navigated forward along the detected curb line, and the trainer followed the
vehicle to conduct learning tasks on the vehicle system. After arriving at appropriate
locations on the sidewalk, the vehicle was instructed to learn the positions of specific
landmarks such hydrants and light poles. Some landmark detection results are shown
in Figure 7.3. In addition, the position of a fixed obstacle, a cover of an underground
sewer, has also been recorded by the method of manually localizing its position on the
omni-image as shown in Figure 7.4. At the end of the learning process, a navigation
map with a navigation path and other environment landmarks was created, as

illustrated in Figure 7.5.

Main
- Keaming GO Learning Selection -

Nevigation | gnd Learning v Line following

« Obstacke detection

Figure 7.2 The Learning interface of the proposed vehicle system.

In the navigation process, the vehicle started from the same origin like that in the
learning process and navigated alone the recorded navigation path nodes with the
method of curb line following. By conducting curb detection, the vehicle kept its path

to be parallel to the curb. An example of curb detection results is given in Figure 7.6.

110



Next, by the use of the dynamic exposure adjustment technique, the vehicle detected
the appointed landmarks with a suitable illumination and localized its position. Some
results of hydrant and light pole landmark detection are shown in Figure 7.7. In
addition, for a detected light pole and a recoded fixed obstacle, the vehicle adopted
the obstacle avoidance procedure to dodge them as shown in Figures 7.8 and 7.9,
respectively. Also, after detecting a dynamic obstacle in the navigation path as shown
in Figures 7.10, the vehicle created a new path with avoidance nodes to pass through
the obstacle as illustrated in Figure 7.11. Finally, the vehicle reached the appointed
terminal node successfully, and the path map with a record of each vehicle position in

the navigation process is illustrated in Figure 7.12.

(b)

Figure 7.3 Images of some results of landmark detection in the learning process. (a) A hydrant

detection result with axes of the hydrant drawn in red. (b) A light pole detection result with pole

boundaries drawn in blue.
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Figure 7.4 Learning of the fixed obstacle. (a) The fixed obstacle position on the omni-image (Lime

points clicked by the trainer). (b) Computed fixed obstacle positions in the real world.
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Figure 7.6 Image of a result of curb line detection.
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(@) (b)

Figure 7.7 Images of results of landmark detection for vehicle localization in the navigation process.

(a) Hydrant detection results. (b) Light pole detection results.

() (d)

Figure 7.8 The vehicle detects the light pole and conduct avoidance procedure in the navigation

process. (a) ~ (d) show the process of light pole avoidance.
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(©) (d)

Figure 7.9 The vehicle reads the fixed obstacle position from the navigation path and change the path

to avoid it. (a) ~ (d) show the process of fixed obstacle avoidance.

A 2

Figure 7.10 Image of a result of dynamic obstacle detection.
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Figure 7.11 The process of dynamic obst avigation path. (a) Starting to conduct
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W 2,656.773
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| 2643648
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m 228212

Figure 7.12 The recorded path map in the navigation process. (Blue points represent the vehicle path
and other points with different color represent different localized landmark position in different

detecting)
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7.2 Discussions

By analyzing the experimental results of the vehicle navigation, we find some
problems. Firstly, for sidewalk curb detection, we detect the specific curb with a red
surface in the campus of National Chiao Tung University. More kinds of curb lines
with different colors should be learned for the line following technique. Also, when
dynamically adjusting the exposure to obtain an appropriate exposure value for
conducting different landmark detection works, it may take some time to wait the
camera system to adjust to the appointed exposure value. A possible way to solve this
problem is to use another camera with quicker response time in the camera parameter
adjustment process. Furthermore, the' light reflection caused by the plastic camera
enclosure creates in the omni-image also’ causes ill. effects in image analysis. A
possible solution is to learn these specific regions in advance and ignore them when
conducting image processing. Finally, more experiments in different environments

should also be conducted to test-oursystem more thoroughly.
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Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

A vision-based autonomous vehicle navigation system for use as a machine
guide dog in outdoor environments has been proposed in this study. To implement
such as a system, several techniques has been proposed.

At first, a method to train the vehicle system. for the purpose of learning
environment information has ‘been proposed. By the pano-mapping technique
proposed by Jeng and Tsai [25], we calibrate the two-mitror omni-camera used in this
study by recoding the relationship between image pixels and real-world elevation and
azimuth angles. Next, by a learning interface designed in this study, a trainer of the
vehicle system can guide the vehicle to navigate on a sidewalk and construct a
navigation map conveniently including the path nodes, alone-path landmarks, and
relevant guidance parameters.

Next, a new space line detection technique based on the pano-mapping technique
has been proposed. The space line with a curve projection on the omni-image can be
detected by the use of analytic formulas and the Hough transform technique. In
addition, for the vertical space line which exists in landmarks like light poles and
hydrants, we can further compute its position directly according to omni-imaging and
pan-mapping techniques.

Also, several landmark detection techniques have been proposed for conducting
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vehicle navigation. Firstly, a curb line detection technique has been proposed for use
to guide the vehicle on a safe path as well as to calibrate the odometer reading of the
vehicle orientation. Next, hydrant and light pole detection techniques have been
proposed. The vertical space lines found in these landmarks using the techniques can
be used to localize the vehicle in the navigation process. Furthermore, to conduct the
landmark detection works more effectively in outdoor environments, techniques for
dynamic exposure and threshold adjustments have also been proposed, which can be
employed to adjust the system’s parameters to meet different lighting conditions. Also
have been proposed is a new obstacle detection technique, which can be used to find
dynamic obstacles on the sidewalk for safer vehicle navigation. Specifically, by the
use of a ground matching table, the vehicle ‘can detect obstacles on the path and
localize its position for realtime path planning to conduct an obstacle avoidance
process automatically.

Good landmark detection results “and successful navigation sessions on a

sidewalk in a university campusshow the feasibility of the proposed methods.

8.2 Suggestions for Future Works

According to our experience obtained in this study, in the following we point out

some related interesting issues worth further investigation in the future:

(1) the proposed line detection may be adopted to detect and localize other kinds of
landmarks with vertical line features;

(2) it is interesting to use different artificial or nature landmarks, such as a tree, a
signboard, a pillar, or a building, to conduct vehicle navigation in outdoor
environments;

(3) the curb line detection technique may be improved by learning features of other
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(4)

©)
(6)

(7

it is a challenge to develop additional techniques to guide the vehicle to pass
crossroads, like recognizing traffic signals and following zebra crossings, etc.;

it seems necessary to add the capability of warning the user in danger conditions;
dynamic obstacles detection technique may be improved using other techniques
such as template matching;

it is desired to design a new camera system which owns a smaller size.
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