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運用關係萃取策略於動態社群探勘之研究 

 

研究生：彭誠毅                               指導教授：李素瑛 

 

國立交通大學資訊科學與工程研究所 

摘要 

 

  近來在動態社會網路上，因為社群演化的廣大應用，動態社群的問題已經引起重

大的關注。多數潛在的社會現象實際上可經由分析社群網路結構萃取出來。雖然在動態

社群上已有多數的研究發表。它們一般而言均針對一連串的互動圖作社群分群，一連串

的互動圖是通常用來表現動態社群網路的一種方式。然而互動圖展露在人與人之間的關

係可能是不夠充足，因為它只是在一個時間切片上的快照。在這時間切片上兩人若沒有

互動發生，並不代表這兩人沒有關係。本篇論文提出一個新穎的演算法，EPC(關係萃取

和社群氏族的社群探勘者)，可被用來探勘社群演化。我們提出了一個關係萃取策略，

在一個時間窗內產生出關係圖。EPC 架構於關係圖來產生社群分群，且利用社群氏族對

映來發掘出動態社群在動態社群網路上的演化。實驗結果在合成資料和真實數據中顯示

EPC 的結果不僅在準確度比之前的方法佳，且在彈性和平滑程度也勝過之前的方法。 

檢索詞：動態社群，關係萃取，衰減權重函數，社群氏族。 
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Dynamic Community Detection via Relationship Extraction 

Strategy and Community Pedigree Mapping 

 

Cheng Yi Peng                            Suh-Yin Lee 

 

Institute of Computer Science and Information Engineering 

National Chiao-Tung University 

 

Abstract 

 

Recently, considerable attention has been paid to the issue of dynamic community in 

dynamic social network due to its widespread applications. Many potential social phenomena, 

in practice, can be extracted by analyzing the dynamic social structure over time. Although 

there have been many recent studies proposed on dynamic community, these works, generally, 

partition the community based on a sequence of interaction graphs, which is usually applied 

to express a dynamic social network. Nevertheless, the interaction graph may be insufficient 

to reveal the relationship among individuals, since, in a snapshot of time slice, no interaction 

among individuals does not indicate no actual relationship. In this thesis, a novel algorithm 

EPC, which stands for relationship Extraction and community Pedigree mapping Community 

miner, is developed to mine the evolution of community. We present a Relationship 

Extraction strategy to construct a relationship graph within a defined observation window. 

EPC partitions communities based on relationship graph and uses proposed Community 

Pedigree Mapping method to discover the evolution of dynamic community in dynamic social 

network. The experimental results on synthetic and real datasets show that EPC not only 

significantly outperforms the prior studies in accuracy but also possesses 

graceful scalability and smoothness. 
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Index terms: dynamic community, relationship extraction, decay weight 

function, pedigree of community 
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Chapter 1.  

Introduction 

In recent years, social network analysis in e-commerce, social science and computer 

science has received significant attention. A social network is a social structure made up of 

individuals, which are tied by one or more specific types of relationship or interdependency, 

such as friendship, co-authorship, common interest or financial exchange. Clustering similar 

individuals into a group has been a big challenge. A cluster in a social network is typically 

called a community. Traditional static methods discovered communities using the aggregate 

interaction data and ignored the effect of time. However, social networks are dynamic and 

evolve over time. With the increasing popularity of social network websites, the use of 

dynamic social network analysis has increasingly been the focus of study in recent years. 

Two major issues of dynamic community need to be addressed: 

(1) Community discovery: Which nodes should be associated with each other to 

become a community at each timestamp? (2) Evolution of community: How to explain the 

evolution of community partition from previous timestamp to current timestamp? 

Traditional methods of discovering dynamic communities such as [6, 7] are called 

two-stage approach. The community partition is detected at each timestamp using the 

interaction graph and the evolutions of communities between two consecutive timestamps are 

inferred successfully. However, the community partition discovered by current interaction 

data could distort the real community structure. The community partition presumed that there 

is no relationship between individual pairs while no interactions occur between them. 

Recently, a new concept of temporal smoothness was proposed [1] based on two points 

of view. (1) Each community partition in the time sequence should be similar to the 

community partition at the previous timestamp. (2) The community partition should 

accurately reflect the change of the interaction networks. The concept of temporal 

smoothness tries to discover the communities which not only consider about interaction data 
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of current timestamp but also historical interaction data to improve the weakness of two stage 

approach.  

However, the methods [1, 2, 3, 5] based on temporal smoothness have the following 

drawbacks. It is a big issue that the community partition should well reflect the previous 

interaction data more or a little more reflect the current interaction data. If the community 

partition always well reflects the previous interaction data more, the new change of social 

network would be hard to detect. On the other hand, the community partition would be more 

similar to the community partition based on two-stage approach and have the same weakness 

as two-stage approach. This setting of temporal smoothness has a great effect on the result of 

the methods based on temporal smoothness. 

Concerting the evolution of community, current methods [6, 13, 3, 5] focused on that one 

community of previous timestamp maps to one community of current timestamp (one-to-one 

mapping). We argue that mapping is not suitable for real dynamic community because 

mapping of communities is not always one-to-one. 

In this thesis, we propose EPC, “relationship Extraction and community Pedigree 

dynamic Community miner”, which produces the community partition taking into account the 

evolution of community. Instead of interaction data, we proposed the Relationship Extraction 

strategy which constructs a weighted graph for each timestamp and the weight indicates the 

relationship strength between individuals; we use two current static clustering algorithms, 

SHRINK [12] and GSCAN [5], to discover the community based on Relationship graph. We 

also proposed the Community Pedigree mapping which uses a realistic way to explain the 

evolution of dynamic community.  

The Relationship Extraction strategy produces the relationship graph which not only 

references the historical interaction data but also the ongoing interaction data. The 

relationship graph not only represents much realistic relationship between individuals but also 

express the dynamic property in relationship graph. The Relationship Extraction strategy 
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combines the normalized decay weight function to simulate the change of relationship 

strength between individuals. The Community Pedigree mapping extends the human pedigree 

to illustrate the evolution of community over time. The states of a community could be Birth, 

Death, Alive, Child and Fission. Using the community pedigree mapping, we could simply 

determine the evolution of community. 

In synthetic data experiment, our algorithm EPC not only has higher accuracy but also 

more smoothing than previous algorithms. The EPC also expresses the property of linearly 

scalability. We also apply EPC on real datasets, Enron email dataset; Facebook dataset and 

DBLP dataset. All datasets show the change of community partition in real dynamic social 

network is quite low. The change rates of communities in co-authorship and friendship are 

higher than the change rate in company since the variation of company network is lower than 

friendship network and co-authorship network. 

In summary, the contributions of this thesis are as follows: 

(1) We propose a new technique of data smoothing, Relationship extraction strategy, to 

produce a relationship graph. We discover community partition using the relationship graph 

instead of current interaction to overcome the weakness of two-stage approach. The 

relationship graph not only represents much realistic relationship between individuals but also 

express the dynamic property in dynamic social network. 

(2) We propose a new matching technique, Community Pedigree mapping, which extends 

the point of human pedigree to explain evolution of community. 

(3) We propose EPC, “relationship Extraction and community Pedigree dynamic 

Community miner”, which has not only higher accuracy but also better smoothing than 

previous methods no matter the noise level of data is high or low. 

(4) EPC is linearly scalable both on the execution time and memory usage.  

The rest of this thesis is organized as follows. Chapter 2 provides the related work and 

motivation. Chapter 3 presents the notation and problem definitions. Chapter 4 introduces the 
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Relationship graph strategy. Chapter 5 describes the SHRINK [12] and GSCAN[5] cluster 

algorithms. Chapter 6 presents the evolution of community and the proposed algorithm EPC. 

Chapter 7 presents the experiments and performance study. The conclusion and future work is 

in chapter 8. 
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Chapter2 

Related Works and Motivation 

In this section, we introduce the related works and motivation of this thesis. We first 

introduce the community detection technique in static graphs and then describe that in 

dynamic graphs where the dynamic graphs could change over time. Section 2-3 describes the 

motivation of this thesis. 

2.1 Community Detection in Static Graphs 

In the study of community detection in a single static graph which doesn’t change over 

time, several approaches have been proposed on static graph. 

Graph Partitioning approach consists of dividing the vertices into k groups of predefined 

size, such that the number of inter-edges between the groups is small [29]. The Kernighan 

-Lin algorithm is one of the earliest methods. Another popular technique proposed by Barnes 

et al is the spectral bisection method, which is based on the properties of the spectrum of the 

Laplacian matrix. The Laplacian matrix L= D-A where D is the diagonal matrix whose 

element Dii equals the degree of vertex i and A is the adjacency matrix of the graph. In 

particular, the eigenvector corresponding to the second smallest eigenvalue is used for graph 

bipartitioning. 

However, the Graph partitioning based methods need to predefine the number of clusters 

or the size of clusters at the beginning and the predefined parameter has great effect upon the 

result of graph partitioning.  

In modularity-based approach, the modularity measure has been widely used in 

community discovery for evaluating the quality of network partitions. Modularity-based 

approach [18, 19] assumes high value of modularity indicates good partitioning and the 

partition corresponding to its maximum modularity score on a given graph should be the best.  

However, detection of a community whose size is smaller than a certain size is 

impossible. This serious problem is famously known as the resolution limit of 
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modularity-based algorithms [10].  

The density based approach applies a local cluster criterion. Clusters are regarded as 

regions in the data space in which the objects are dense, and which are separated by regions of 

low object density. Density of intra-edges is used to partition graph into clusters. Xu et al [21] 

proposed the Structural Clustering Algorithm for Network (SCAN). SCAN [21] needs two 

predefined parameters minimum similarity threshold ( ) and minimum neighbors of core node 

( ) which limits that a core node has at least   neighbors whose similarities are more than 

minimum similarity threshold ( ). Each cluster should contain at least one core node inside. 

SCAN is an efficient structural network clustering algorithm while the predefined parameters 

are appropriate. 

However, SCAN [21] requires the predefinition of the minimum similarity parameter ( ) 

and minimum core size ( ) and the setting of parameters would huge affect the result of 

cluster partitions.  

Recently a structural clustering algorithm called SHRINK was proposed by Huang et al 

[12] to overcome the problem of predefining parameters (   and   ) of density-based 

clustering algorithm. Through the experiment, SHRINK was proven to be an efficient, 

parameter free and higher accuracy algorithm while comparing with the modularity-based 

approach [18, 19]. 

2.2 Community Detection in Dynamic Graphs 

Real social networks change over time so the community partition changes over time. So 

community detection in dynamic graphs would be more realistic than community detection in 

static graphs. Several approaches for discovering dynamic communities have been studied in 

dynamic social networks. We would illustrate the concept of these approaches. 

2.2.1 Two-Stage Approach 

Two-stage approach has two steps: (1) Community partition is detected at each 

timestamp of the interaction graph and the results of community partition are independent at 
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different timestamps. (2) While the relationships between the communities of two consecutive 

timestamps are determined, the community mapping of two consecutive timestamps are 

inferred successfully.  

Palla et al [6] proposed a method called Clique Percolation Method (CPM) to analyze 

the real dynamic network such as co-authorship network and mobile phone network. The 

CPM tries to find all k-cliques that can be reached from each other through a series of 

adjacent k-cliques where the adjacency means sharing k-1 nodes. The adjacency k-cliques are 

considered as community in [6]. The community mapping of two consecutive timestamps are 

dependent on their relative node overlapping. They first described the events in community 

evolution including Birth, Death, Merging, Splitting, Growth and Contraction. They have 

shown that the lifetime of communities in these networks depends on the dynamic behavior of 

these communities, with large groups that alter their behavior persisting longer than others. 

On the other hand, small groups were found to persist longer if their membership remained 

unchanged [6].  

Sun et al [7] considered dynamic networks such as Network traffic, email and cell-phone 

as bipartite graphs which treat source and destination separately. GraphScope [7] is based on 

the principle of Minimum Description employs (MDL) and employs lossless encoding scheme 

for a graph stream. The encoding scheme takes into account both the community structure and 

the community change in order to achieve a concise description of the data. 

 

Figure 2-1 Interaction data example 
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We use Fig 2-1 and Fig 2-2 to illustrate the weakness of methods based on the two stage 

approach. Given the interaction data as shown in Fig 2-1, a node indicates an individual and 

an edge ( u, v ) indicates the interaction occurs between u and v. The community partition 

result of CPM [6] is shown in Fig-2-2. There are two communities discovered in time 1, one 

community discovered in time 2 and two community discovered in time 3. 

 

Figure 2-2 Community partition produced by CPM 

 While the interaction data change frequently, the community partition also change 

frequently. The node 2 is covered by a community at time 1 and time 3. However, the 

individual 2 disappeared at time t=2 because individual 2 has no interaction with other 

individuals at time t=2. There should be some relationship strength between individual 2 and 

other individuals even though no interactions occur at time t=2. 

However, the methods [6,7] based on the two-stage approach presume that there is no 

relationship between individual pairs while no interactions occur between them and it often 

results in community structure with significant changes [3].  

While the community partitions at all timestamps have been produced, how to illustrate 

the evolution of community is another issue. In the studies of evolution of community, Palla et 

al [6] proposed a point of view that the basic operation in a community life should contains 
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consecutive timestamps.  

Lin et al [3] proposed the Evolution net which is a bipartite graph to illustrate all 

relationship between the communities of every two consequent timestamps. However, Lin et 

al [3] didn’t illustrate how a community evolution over time. Kim et al [5] also propose a 

heuristic mapping algorithm based on mutual information.  

However the above methods [6, 13, 3, 5] made effort in the mapping a community at 

previous timestamp to a community at current timestamp ( 1-1 mapping problem ). We use 

Fig 2-3 to illustrate the point of view. 

  

Figure 2-3 Evolution Net 

The evolution net shown in Fig 2-3 is a bipartite graph from t-1 to t. There are 5 

communities (A, B, C, D, E) at t-1 and 5 communities (F, G, H, I, J) at t. A node indicates a 

community and an edge from a community of t-1 to community of t indicates that there is a 

relationship between these two communities where the edge weight indicates the similarity 

between them. The community B having relationships with communities F and G could be 

considered as community B being divided into two parts, one part of B merges with 

community A into community F at timestamp t; the other part of B and one part of C are 

merged into community G. The merge and split operations of communities could happen at 

the same time.  

Although the similarities between communities are determined and are shown an edge 

weight in Fig 2-3, there is no indication community F is a split part of B or F is a growth of 

community A. Similarly, we do not know if community C is dead while community G 

matches with community B. It is judged that the one to one mapping is not suitable for real 
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dynamic networks. 

2.2.2 The approach of Evolutionary Clustering 

The approach of Evolutionary clustering was first proposed in [1] taking into account the 

concept of temporal smoothness. Each community partition in the time sequence should be 

similar to the community partition at the previous time slice. The community partition should 

accurately reflect the change of the interaction graph. For evolution clustering, [1] adopted the 

two widely used clustering algorithms, k-means and agglomerative hierarchical clustering 

incorporating temporal smoothness.  

Fig 2-4 shows the details of the concept of temporal smoothness. Given the dynamic 

network G={G1, G2, …, Gt-1, Gt, …}. Gt is the interaction graph of time t. The CPt indicates 

the community partition at time t and is affected by previous community partition CPt-1 and 

the current interaction graph Gt.  

 

Figure 2-4 Concept of temporal smoothness 

In order to measure the quality of community partition based on the concept of temporal 

smoothness, the objective function is defined: 

        
                

                      
                 (1) 

Consider all possible community partitions AP = {    
 ,    

 , …,    
 ,…}. For each 

community partition    
 , the snapshot cost SC() measures the similarity between the 

interaction graph Gt and    
  . The temporal cost TC() measures the similarity between the 

previous community partition CPt-1 and    
 . While the SC() is lower, the quality of snapshot 

Temporal Smoothness

Gt-1 Gt Gt+1

CPt-1 CPt CPt+1

…

…

Interaction 

Graph

Evolutionary 
Community 

Partition
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is higher. While the TC() is lower, the quality of temporal smoothness is higher. The optimal 

community partition CPt=    
  |       

             
   . The parameter α  controls the 

emphasis of the result of community partition. While α =1, the community partition CPt 

would be the same as community partition discovered in Gt . On the other hand, the CPt 

would be the same as CPt-1 whileα =0. 

Chi et al [2] extended the concept of temporal smoothness and considered that the 

characteristic change of dynamic community contains both long-term trend drift and 

short-term variation due to noise. They proposed two evolutionary spectral clustering 

algorithms called Preserving Clustering Quality (PCQ) and Preserving Clustering 

Membership (PCM). Their experiment shows that PCQ and PCM are less sensitive to 

short-term noises while at the same time are adaptive to long-term cluster drifts. The spectral 

clustering uses the eigenvectors of Laplacian matrix for clustering the graph nodes. The 

Laplacian matrix L= D-A where D is the diagonal matrix whose element Dii equals the degree 

of vertex i and A is the adjacency matrix of the graph.  

Lin et al [3], who are the first critic, argue that the methods of two-stage approach are 

inappropriate in applications with noise data. They considered an individual could be assigned 

to more than one community so they further assumed that each interaction graph Gt is 

combined effect by community partition CPt. They extended a mixture model [30] and 

incorporated the concept of temporal smoothness. The mixture model is a probabilistic 

model for representing the presence of sub-populations within an overall population, without 

requiring that an observed data-set should identify the sub-population to which an individual 

observation belongs. 

Given Gt as the interaction graph at time t and assume there are k communities at time t. 

Mixture model assumes that the edge Gij of Gt is combined effect due to all the k communities 

so                  
 
    where    is the prior probability that the interaction Gij is due 

http://en.wikipedia.org/wiki/Probabilistic_model
http://en.wikipedia.org/wiki/Probabilistic_model
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to the r-th community,      and      are the probabilities that an interaction in r-th 

community involves node i and node j, respectively. Written in a matrix form, we have 

          where   is a n × k non-negative matrix and     indicates the probability of 

node i belonging to community j. In addition,   is a k × k non-negative diagonal matrix 

with         where    indicates    . We use Fig 2-5 to illustrate the mixture model [3]. 

 

             (a)                     (b)                    (c) 

Figure 2-5 Mixture model(a) the original graph Gt (b) the bipartite graph with two 

communities c1 and c2 (c) How to approximate an edge (G42).[3] 

 In Fig. 2-5, there are 6 nodes and 2 communities. For a general graph Gt in Fig 2-5(a), 

we use a special bipartite graph Fig 2-5(b) to approximate Gt. Note that (b) has two more 

nodes, i.e., c1 and c2, corresponding to the two communities. In (c), we show how an edge 

G34 is generated in the mixture model as the sum of            and            [3]. 

The Kullback-Liebler divergence was used to measure the difference between two 

community partitions P and Q to reconstruct the defined cost function. They proposed “A 

Framework for Analyzing Communities and EvoluTions in dynamic NETworks” (FacetNet), 

defined the Community net and Evolution net to represent the community structure and 

evolutions. 

However, the methods in [ 1, 2, 3 ] assign a fixed number of communities over time and 

do not allow arbitrary start/stop of community over time [5].  

Kim et al [5] overcome the problems of fixed number of community and arbitrary 

v2v1

v5 v4

v3

c1

c2
v6

v2v1

v5 v4

v3v6

v2v1

v5 v4

v3

c1

c2
v6

Λ1

Λ2

X31

X41

X42

X32

G42



13 
 

start/stop of community. They first model a dynamic network as a collection of particles 

called nano-community, and a community as a densely connected subset of particles, called a 

quasi l-clique-clique. They proposed a greedy algorithm called “a Particle-and-Density Based 

Evolutionary Clustering Method” (PD-Greedy). PD-Greedy extends density based clustering 

[20, 21] and incorporates with the concept of temporal smoothness. They used a cost 

embedding technique to efficiently find temporally smoothed local clusters of high quality.  

 

Figure 2-6 Flowchart of PD-Greedy 

 Fig. 2-6 shows the flowchart of PD-Greedy in which the working flows of temporal 

smoothness is reconstructed. The comparison subject is pushed from community level to 

down data level. At each timestamp, an evolution graph (EGt), which reference both previous 

evolution graph (EGt-1) and current interaction graph (Gt), is produced. Then the community 

partition based on the EGt is discovered.  

However, the methods including PD-Greedy [1, 2, 3, 5] based on temporal smoothness 

have several drawbacks. The parameter α  of cost function might affect the community 

partition produced by the methods based on temporal smoothness.  

Assume the interaction data is the same as in Fig 2-1, the previous community partition 

CP1 is shown on the left of Fig 2-7 and the snapshot partition of G2 is shown on the right of 

Fig 2-7. 

Gt-1 Gt Gt+1

CPt-1 CPt CPt+1
…

Interaction 

Graph

Evolutionary 

Graph
EGt-1 EGt EGt+1

Evolutionary 

Community 

Partition

…



14 
 

 

Figure 2-7 Community partition of temporal smoothness 

Based on temporal smoothness, the community partition CP2 is not only similar to CP1 

but the snapshot partition of G2. if the parameter α  of the cost function of the concept of 

temporal smoothness is close to one, the CP2 is similar to the result of two-stage-approach and 

has the same weakness of two-stage approach. On the other hand, if the parameter α  of the 

cost function of the concept of temporal smoothness is close to zero, it is hard to catch new 

community birth or change. 

Tang et al [4] proposed the algorithm of Evolutionary Multi-mode Clustering where 

multi-mode network typically consists of multiple heterogeneous social actors among which 

various types of interactions could occur. However, we consider the network which has only 

single kind of interaction and this network is different from multi-mode networks in [4]. 

Besides, there is another issue, analyzing all interaction data [8]. Interaction data could 

frequently change violently over time so analyzing the interaction data at a single time slice 

may miss important tendencies of a dynamic network. An individual tends not to change he’s 

“home community” too frequently. An individual tends to interact with the member of his 

“home community” most of the time where the “home community means the original 

community of the specific individuals [8]. They proved that find the most explanatory 

community structure is NP-hard and APX-hard problem where the class APX ( approximate) 

is the set of NP optimization problems that allow polynomial-time approximation 

algorithms with approximation ratio bounded by a constant (or constant-factor approximation 
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http://en.wikipedia.org/wiki/Approximation_algorithm


15 
 

algorithms for short)[31]. They also proposed a greedy heuristic approximation algorithm 

using individual coloring and group coloring to identify the dynamic communities at each 

timestamp where the same colored individuals and group means the same community. 

However, the greedy heuristic algorithm in [8] is not appropriate for large dynamic 

networks and mining the communities with all timestamps of interaction graph would take 

huge computation time. 

2.3 Motivation 

To summarize, the methods [6,7] based on the two stage approach presume that there is 

no relationship between individuals while no interactions occurs between them and it often 

results in community structure with significant changes [3]. The methods based on the 

approach of analyzing all interaction data take huge computation cost and are not linearly 

scalable. The methods based on the approach of Evolutionary clustering which discovers 

the community partition based on the property of current interaction graph have the same 

weakness as two stage approach. And the parameter α  of cost function based on temporal 

smoothness also huge affects community partition.  

Besides, on the study of evolution of community, current researches [6, 5, 13, 3] are not 

suitable for real dynamic community due to the one-to-one mapping in which one community 

of previous timestamp maps to one community of current timestamp. 

For dynamic community detection, our goal is to develop a framework which not only 

has higher accuracy, linearly saleable execution time but also realistic community partition 

result which reference multiple interaction graphs. Besides discovering dynamic communities 

at each timestamps, there should be a general method to explain the evolution of 

communities. 
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Chapter3 

Notation and Problem Definition 

 In this section, we formally introduce necessary notation and formulate the problems. 

3-1 Notation and Symbol definition 

We define a dynamic social network G as a sequence of interaction graphs. 

Definition 1 (Interaction Graph)  

An interaction graph Gt = (Vt, Et) is an un-weighted undirected graph where a node indicates 

an individual and an edge indicates that an interaction occurs between two individuals at time 

t. 

Definition 2 (Dynamic Social Network) 

A dynamic social network G is a sequence of interaction graph Gt. i.e. G = {G1, G2, …, Gt, …} 

where the Gt (Vt,Et) is an interaction graph and the t indicates the t-th time point. 

For example, the Fig 2-1 shows the first three graphs in a dynamic social network.  

Definition 3 (Observation Window)  

The observation window   of current time point tc is defined by observation eyeshot (wr). 

i.e.                                  where the tc indicates the current timestamp. 

We use the interaction graphs whose time points are included by observation window   

to produce the relationship graph RGt. 

Definition 4 (Relationship Graph)  

A relationship graph RGt is a weighted undirected graph at time t. i.e. RGt = (  
 ,   

 ) where 

  
  indicates the set of individuals of RGt;   

  indicates the edges of RGt and the edge 

weight indicates the relationship strength between the individuals. Let Wt(u, v) represent the 

relationship strength between individuals u and v at time t. 

Definition 5 (Community Partition)  

A community partition CPt is the a sequence of communities at time t. i.e. CPt 
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={  
    

      
 
  } where   

 
 is the j-th community of CPt . 

3-2 Problem Statement 

Definition 6 (Dynamic Community Identification)  

Given a dynamic social network G = {G1, G2, … , Gt, …}, How to produce the community 

partition CPt of each timestamp? While the community partitions of each timestamp have 

been discovered, How to determine the evolution between the communities of every two 

consecutive timestamps?  
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Chapter 4 

Relationship Extraction Strategy 

 In this chapter, we first illustrate the framework of EPC, “relationship Extraction and 

community Pedigree dynamic Community miner”, and then we introduce how the 

Relationship graph is constructed. The Relationship Extraction strategy extracts the 

relationship strength using interaction data and combines the normalized decay weight 

function to simulate the change of relationship strength within a fix time observation window. 

4-1 Proposed Framework 

 

Fig 4-1 Flowchart of EPC, “relationship Extraction and community Pedigree dynamic 

Community miner” 

The flowchart of EPC, “relationship Extraction and community Pedigree dynamic 

Community miner”, shown in Fig 4-1 and consists of three phases. (1) Construct the 

relationship graph RGt which is using a set of interaction graphs within observation window. 

(2) Use static community detection methods to discover the community partition CPt based on 

the Relationship Graph produced in first step. (3) Determine the evolution of community 

using the community partitions.  
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Fig 4-2 Framework of EPC, “relationship Extraction and community Pedigree dynamic 

Community miner” 

Our framework of EPC is shown in Fig 4-2. Assuming the observation eyeshot wr = 1, 

tc=t, so the relationship graph RGt is constructed using interaction graphs Gt, Gt-1 and Gt+1. 

Then we use static community detection method to generate the community partition CPt 

based on the relationship graph RGt. While the community partitions of each timestamp have 

been generated, we determine the relationship between communities at each consecutive time 

points using the Community Pedigree Mapping.  

The graph on the top of Fig 4-2 is the pedigree of community A where a node indicates a 

community and an edge indicates the similarity strength between communities. The “pedigree 

of community A” shows all the communities which have relationship with community A. A 

square shape indicates the spouse community of A and the triangle shape indicates this 

community would be dead at next timestamp. There are 5 community spread on the 

timestamps {t-1, t, t+1}. The community F is similar to previous community A and B so F is 

the child of A and B. The community L is the child of G and F. The community B is the 

spouse of A and G is the spouse of F. While we want to monitor some communities to figure 
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out if these communities are involved with each other, the pedigree of community would be a 

good way to illustrate. 

We present the Relationship Extraction strategy to construct the relationship graph RGt 

in chapter 4. We present current static clustering method, SHRINK [12], in chapter 5 and 

we propose the Community pedigree Mapping to solve the problem of evolution of 

communities in chapter 6. 

4.2. Generating Relationship Graph? 

 The relationship graph RGt is constructed from interaction graphs which are most to the 

current time point t. We use the observation eyeshot wr to control the observation window  . 

For example, Assuming wr=2 and tc =3, then               and the relationship graph 

RG3 is constructed using interaction graph G3 and those interaction graphs 2 time units before 

(G1, G2) and after (G3, G4) current time tc. Then we determine the relationship strength 

Wtc(u,v) between individuals u and v using the predefined normalized weight function.  

Here we propose a naïve normalized weight function, normalized Equal weight function 

(EQL) as follows.  

          
 

   
                             (2) 

EQL considers the interaction graph of each time point within   having the same 

weight and makes sure the weight summation would be equal to 1. Using normalized weight 

function to determine the relationship strength of each pair of individuals is just like the 

function as follows: 

                                                          (3) 

                
  
  

                                                                   
          

 and         is the 

predefined normalized weight function. 
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Figure 4-3 Example of determining the relationship strength 

We use Fig 4-3 to illustrate how the relationship strength determined. Assuming the 

observation eyeshot wr equals to 2 and the interaction between individual u and v occurs at 

time 2, 6 and 7. The relationship strength between individual u and v at tc = 3, W3(u, v) = 

                +                 +                 +                 + 

                = (0*0.2)+ (1*0.2)+ (0*0.2)+ (0*0.2)+ (0*0.2) =0.2 . Using the same 

process we calculate W4(u,v) = 0.4, W5(u,v) = 0.4 .  

Using Eq 3 to determine the relationship graph RG2 of Fig 2-1 and the RG2 is shown on 

the bottom of Fig 4-4. A node indicates an individual and the edge weight W2(u, v) indicates 

the relationship strength between individuals u and v.  
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Figure 4-4 Using the EQL weight function to construct the Relationship graph RG2 of sample 

interaction data of Fig 2-1 

4.3 Normalized Decay Weight Function 

Assuming the observation eyeshot wr and the Observation window   is predefined. We 

propose three Normalized Decay weight functions: 

Linear Decay weight function (LIN): 

         
  

    
                                        (4) 

Wave Decay weight function: 

                       
      

    
                    (5) 

              

Exponential Decay weight function:  

             
       

  
                                      (6) 
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Fig 4-5 Normalized Decay Weight Function (wr=2) 

The      is based on linear decay and the weight distribution is shown in the curve 

(LIN) in Fig 4-5. Using      to calculate the relationship strength is the same as the example 

in section 4-2. We multiply the weight NL(t,tc) with the interaction occurring in   and sum 

all the values.  

The      is based on the sine function of trigonometric functions to produce the 

relationship graph. The weight distribution is shown in the curve (WAVE) in Fig 4-5.  

The      is based on the approach of exponential decay function. If the weight 

decreases at a rate proportional to its value, it is called exponential decay [11]. The processes 

can be modeled by the following differential equation. 

                 
  

  
                                       (7) 

                                                                

The decay constant   controls the decay rate of the exponential decay and we use 

Observation 

Window

wr=2
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        in our work. The weight distribution is shown in curve (EXP) in Fig 4-5.  

For each normalized decay weight distribution, if there are some interactions whose time 

point is out of the Observation Window, the weight is assigned zero. Note that exponential 

decay weight distribution the weight of time point out of the observation window   is 

non-zero but we simply assume the weight is zero. 

4.4 Discussion of Relationship Extraction Strategy 

In real world, the relationship between individuals could decay over time and the 

interaction at each time point within   should be considered an energy which increases the 

relationship strength between individuals. So we presume each interaction has the same 

lifetime equal to the size of observation window. Then the lifetime of each interaction would 

be extended from 1 to the size of observation window. This property could overcome the 

weakness that there is no relationship between individuals while no interactions occur. 

 

Fig 4-6. Relationship strength curve between u and v by extraction from the interaction data 

of Fig 4-2 based on Normalized Equal Weight Function (wr=2) 

Fig 4-6 shows the evolution of relationship strength of individual u and v in the 

interaction data of Fig 4-3 using normalized equal weight function. The dotted line implies the 

interaction occurring at time points 2, 6 and 7. The interactions at all time points have the 

same lifetime equal to the size of observation window  . The solid line sums up the curves 

of all interactions and represent the relationship strength of individual u and v over time.  
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However, the solid line in Fig 4-6 which shows the relationship curve is higher at time 

t=4, 5, 6 and 7. The relationship strength curve does not match any interaction data occurred 

and this curve does not have the property of dynamics. 

 

Fig 4-7. The Relationship strength curve of the interaction data of Fig4-2 based on 

Normalized Linear Decay Weight function (wr=2) 

We change the equal weight function to the linear decay weight function and the 

Relationship strength curve is shown in Fig 4-7. The solid curve in Fig 4-7 indicates the 

relationship strength of individuals and the curve is high at t=2, 5, 6, 7 and the solid curve 

matches with the timestamps interaction occurred. The difference between Fig 4-6 and Fig 4-7 

is that the relationship strength curve in Fig 4-7 demonstrates more dynamic property than 

that in Fig 4-6 so the normalized decay weight function would be more realistic than equal 

weight function.  

  

0

0.2

0.4

0.6

1 2 3 4 5 6 7

R
e

la
ti
o

n
s
h

ip
 s

tr
e

n
g

th

time point

Interaction curve 

at t = 2

Interaction curve 

at t = 6

Interaction curve 

at t = 7

Relationship 

strength curve 



26 
 

Chapter 5 

Current Static Community Detection methods 

After generating relationship graphs at each time point, we choose static community 

methods for discovering the community partition at each timestamp.  Although many of 

studies have focused on community detection on static networks, not every method is suitable 

for relationship graph. Two issues need to be considered about: (1) Discovering communities 

using the weighted graph (relationship graph). (2) Detecting the noisy vertices whose 

relationship strength is too low to belong to any community. The SHRINK algorithm [12] 

overcomes the problem of parameters pre-definition, such as minimum similarity threshold ( ) 

and minimum core size ( ), in density-based clustering algorithms and the predefined number 

of clusters in partitioning-based clustering algorithm. Through their experiment, SHRINK is 

an efficient, parameter free and high accuracy algorithm while comparing with other 

algorithm [18, 19]. So we choose SHRINK as our clustering algorithm. For comparison, we 

also use the greedy density-based clustering method (GSCAN) used in PD-Greedy [5, 21]. 

In section 5.1 we represent the detailed definition of GSCAN and section 5.2 represents 

the definition of SHRINK. Section 5.3 illustrates the quality measurement of community 

partition. Section 5.4 describes the detail algorithm of SHRINK algorithm and the algorithm 

of GSCAN is represented in section 5-5.  

5.1 GSCAN 

 In this chapter we present the definition of GSCAN and related notation. Let (V, E,  ) be 

a weighted undirected network where   is the weight set of edge set E, GSCAN uses the 

structure similarity as similarity measure and the related definition is as follows:  

Definition 7 [5]. (Neighborhood) 

Given G= (V, E,  ), for a node u    and the adjacent nodes of   are neighbors of   

(    ). i.e.:                       . 

Definition 8 [5]. (Structural Similarity)  
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Let G= (V, E,  ) be a weighted undirected network. The structural similarity between two 

adjacent nodes   and   is defined as below: 

                  
                         

                               

                     (8) 

where        indicate the weight of           

GSCAN applies a minimum similarity threshold ε  to the computed structural 

similarity when assigning cluster membership as formalized in the following ε

-Neighborhood definition: 

Definition 9[5]. (ε -Neighborhood) 

For a node     V, the ε -Neighborhood        of a node   is defined by          

                

When a vertex shares structural similarity with enough neighbors, it becomes a seed for a 

cluster. Such a vertex is called a core node, Core nodes are a special class of vertices that have 

a minimum limit of   neighbors with a structural similarity that exceeds the threshold ε  

[21]. 

Definition 10[5]. (Core node) 

A node     V is called a core node w.r.t.                       

Definition 11[5]. (Directly reachable)  

A node x   V is directly reachable from a node     V w.r.t.         if (1) node   is core 

node. (2) x         . 

Definition 12[5]. (Reachable) 

A node      V is reachable from a node      V w.r.t.         if there is a chain of nodes 

                    such that      is directly reachable from    (i < j) w.r.t.        . 

Definition 13[5]. (Connected) 

A node     V is connected to a node u   V w.r.t.         if there is a node x   V such 

that both   and u are reachable from x w.r.t.        . 
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Definition 14[5] (Connected cluster) 

A non-empty subset S   V is called a connected cluster w.r.t.         if S satisfies the 

following two conditions: 

(1) Connectivity:         S, v is connected to w w.r.t        . 

(2) Maximality:         V, if v   S and   is reachable from   w.r.t        , 

then     S. 

Using the above definition, a structure-connected cluster with respect to ε , μ  is 

uniquely determined by any cores of this cluster. 

 

Figure 5-1 (a) Sample network G           (b) Connected cluster of Sample network G 

We use the Fig 5-1 to illustrate the related definition. In Fig 5-1, a node indicates an 

individual and an edge indicates the structural similarity between individuals. Let   

           , we could evaluate the Core nodes as node 13, node 15 and node 6. The node 

10 is Directly reachable from node 13 due to that node 13 is a core node and           . 

The node 4 is Reachable from node 6 due to the Directly reachable chain (node 6, node 15, 

node4). Based on the definition of Connected cluster, there are two clusters, {3, 10, 11, 13} 

and {1, 4, 5, 6, 9, 14, 15}. 

5.2 SHRINK 

 In this section we introduce SHRINK and related notation. For structural similarity 

measure, SHRINK uses the same cosine similarity as GSCAN and the related definition is as 

follows: 

Definition 15[12]. (Dense Pair)      
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Given a network G(V,E), If        is the largest similarity between nodes         and 

their adjacent neighbor nodes. i.e.:                                        

               then       is called a Dense Pair in G, denoted by     , where 

         is the largest similarity between nodes         and their adjacent neighbor 

nodes. 

 Definition 16[12]. (Micro-community)  

Given a network G=(V,E), MC(a)=         is a connected sub-graph which is represented by 

node a in network G. MC(a) is a local Micro-community if and only if  

(1)        

(2)                           

(3)                        

where          represents the largest similarity between nodes         and 

their adjacent neighbor nodes. 

We use the Fig 5-1(a) to illustrate the Dense Pair and Micro-Community. All the Dense 

Pair within the Fig 5-1(a) are shown in Fig 5-2. The dot line nodes and dot line edges indicate 

that these nodes are Dense Pair and could be grouped into a Micro-Community. 

 

Figure 5-2 All Dense Pairs within the sample network G in Fig 5-1(a) 

Definition 17[12]. (Super-network)  

Given a network G=(V, E,  ),                 is a community partition of the node set V 

and       , the sub-network MCi=(Vi, Ei) induced by the node set Vi is a local 
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Micro-community in G. Define                          and           

                      ; then               is called a Super-network of G.  

Especially, the algorithm not only discovers all the communities but also the hubs and 

outliers in the network. A hub is called an overlap community and a hub plays a special role in 

many real networks such as search engines of web page network and the communication 

center of protein. An outlier does not belong to any communities because the similarities 

between it and other nodes are too small. This algorithm does not partition all the nodes into 

communities and this property is just perfect for our requirement.  

5.3 Measurement of Partitioning Quality 

 Although several well-known quality measures such as normalized cut [24] and 

modularity [18] have been proposed, the modularity is the most popular measure by far. 

GSCAN and SHRINK both use the same similarity based modularity function Qs [25]. 

                     
   

  
  

   

  
 

 

  
                         (9) 

Assume the community partition has k communities {   ,   , ...,    },     

              is the total similarity of the nodes within cluster    , 

                     is the total similarity between the nodes in cluster    and any 

nodes in the network, and                 is the total similarity between any two nodes 

in the network. 

SHRINK is based on this quality function (Qs) and incrementally calculates the 

increment of the modularity quality. Given two adjacent local communities    and   , the 

modularity gain can be computed by 

      
     

   
  

   
  

 
     

  
 

        

     
                (10) 

Where                       is the summation of similarity of total edges between 

two communities    and   . 

Based on Eq (10), assume that the micro-community     is constructed by h clusters 
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i.e.:                        , the modularity gain     for merging a micro-community 

    into a super-node can be easily computed as 

                  
                     

  
 

                        

     
       (11) 

 SHRINK uses the modularity gain to control the shrinkage of the micro-communities. 

Only while the modularity gain is positive            , these communities within 

micro-community (MC) could be merged into a super-node.  

 

5.4 Algorithm of SHRINK 

We use Fig 5-1 ~ Fig 5-5 to illustrate the key point of SHRINK. Given a simple network 

G as shown in Fig 5-1, nodes indicate the individuals and the weight of an edge indicates the 

Structural Similarity between individuals.  

Each round of process of SHRINK has two phases. (1) For each node u we considered u 

as a micro-community MC(u), determine if each neighbor of the node x within MC(u) is the 

Dense pair. If x within MC(u) and a node v of the neighbors of x is Dense pair, then push v 

into the micro-community MC(u). The example is shown the Fig 5-3(a) and 5-4(a). The dotted 

lines indicate all Dense pairs found in the network G. (2) SHRINK determines the          

for all micro-communities {MC1, MC2, …MCk} and only while the           , all the 

nodes of the micro-community MCi would be merged into a super-node which contains more 

than one node at next round. Fig 5-3(b) and 5-4(b) show the second process of SHRINK. Fig 

5-5(a) shows the result of third round of the SHRINK process and Fig 5-5(b) shows the fourth 

round of the SHRINK process. Fig 5-5(b) displays that the process of SHRINK terminates of 

           . The network shrieked from G is called Super-network as shown in Fig 

5-3(a) and Fig 5-4(a). Fig 5-5(b) shows the final result of SHRINK and there is a hub (node 2) 

and an outlier (node16).  
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Fig 5-3 Round 1(a): Find all Dense pairs in G           (b)Δ Q>0, Shrink 

 

Fig 5-4 Round 2(a): Find all Dense pairs in G           (b)Δ Q>0, Shrink 

 

Fig 5-5 (a): Round 3 shrink becauseΔ Q>0          (b) Round 4 no-shrink becauseΔ Q<0 

 

Algorithm1 : SHRINK[12]  

Input: weighted networks G = (V, E)  

Output: Set of clusters CP = {C1, C2, …, Ck};  Set of hubs and outliers N; 

1:  CP             ; 

2:  while true do 

3:      //Phase 1: Detect the all Dense Pairs of G 

4:      Micro-community MC ( ) ← {v}; 

5:      for each unclassified     do 

6:          temp community C(v)     ; 

7:          Classify  ;  Queue q;  q.insert(v) ; 

8:                                    ; 

9:          While q.empty()   true do 

10:             u  q.pop(); 

11:             if u=v   max{                 }=  

12:                 C(v) ← C(v) {u} ; 

13:                 for each w         

14:                     if        =   
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15:                         q.insert (w) ; 

16:                     end 

17:                 end 

18:             end 

19:         end 

20:         MC ← MC   C(v) 

21:     end 

22:     //Phase 2.2: Shrink micro-community 

23:             

24:     for each C   MC do 

25:         if                      then 

26:             CP ← (CP                    ) ; 

27:                ←    +       ; 

28:         end 

29:     end 

29:     if      then 

30:         break; 

31:     end 

32:  end 

33:  N ←  

34:  for each C   CP do  

35:      if |C|=1  

36:          CP ← CP   C ; 

37:          N ← N   C ; 

38:      end 

39:  end 

40:  return  CP, N ; 

Figure 5-6 Algorithm of SHRINK 

 

5.5 Algorithm of GSCAN 

In this section, we describe the algorithm GSCAN. GSCAN is extended from SCAN [21] 

and combines with greedy heuristic setting of ε . SCAN performs one pass scan on each 

node of a network and finds all structure connected clusters for a given parameter setting. The 

pseudo code of the algorithm SCAN is presented in Fig 5-7. Given a weighted undirected 

graph G (V, E), at the beginning all nodes are labeled as unclassified. For each node that is not 

yet classified, SCAN checks whether this node is a core node. If the node is a core, a new 

cluster is expanded from this node. Otherwise, the vertex is labeled as a non-member.  

GSCAN use greedy heuristic setting of ε to optimize the modularity score Q of 

clustering result. GSCAN adjusts the ε  with change of modularity score Q and decreases or 

increasesε until Q reaching the local maximum modularity [5]. 
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Algorithm2 : SCAN [21]  

Input: weighted networks G = (V, E), ε , μ  

Output: Set of clusters CP = {C1, C2, …, Ck} , modularity score Q . 

1:  // all nodes in V are labeled as unclassified; 

2:  CP ← ; 

3:  for each unclassified node v   V do 

4:      // STEP 1. check whether v is a core; 

5:      if COREε ,μ (v) then 

6:          // STEP 1.1. if v is a core node, a new cluster is expanded; 

7:          set C ← ; 

8:          insert all            into queue Q; 

9:          while Q ≠ 0 do 

10:              y = first vertex in Q; 

11:             R = {x   V | DirREACHε ,μ (y, x)}; 

12:             for each x   R do 

13:                 if x is unclassified or non-member then 

14:                     C ←C   x; 

15:                 end 

16:                 if x is unclassified then 

17:                     insert x into queue Q; 

18:                 end 

19:             end 

20:             remove y from Q; 

21:         end 

22:         CP ←CP   C; 

23:     end 

24: end 

25: // 1.2 determine the modularity score of CP; 

26: Q =   (CP);      

27: return CP , Q 

Figure 5-7 Algorithm of SCAN 

GSCAN chooses a median of similarity values of the sample nodes picked from V and 

the sampling rate is only about 5~10%. GSCAN increases or decreases the   by a unit    = 

0.01 or 0.02 and maintains two kinds of heaps: (1) max heap Hmax for edges having similarity 

below seedε ; and (2) min heap Hmin for edges having similarity above seedε . Hmax and 

Hmin are built during the initial clustering. After finding the initial clusters CP and calculating 

its modularity Qmid, GSCAN calculates two additional modularity values, Qhigh and Qlow. Here, 

Qhigh is calculated from CP with the edges having similarity of range [seedε , seedε +   ] in 

Hmin, and Qlow calculated from CP except the edges having similarity of range [seedε -   , 

seedε ] in Hmax. If Qhigh is the highest among Qhigh, Qmid, and Qlow, GSCAN increases the 

density by   . If Qlow is the highest value, GSCAN decreases the density by   . Otherwise, 
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seedε  would be the best density parameter. The initial clustering CP is continuously 

modified by adding edges from Hmax to CP or by deleting edges of Hmin from CP. The detailed 

algorithm of GSCAN is in Fig 5-8[5]: 

Algorithm2 : GSCAN [5]  

Input: weighted networks G = (V, E), ε , μ  

Output: Set of clusters CP = {C1, C2, …, Ck}, modularity score Q. 

1:  CPmid ←  ;  CPhigh ←  ;  CPlow ←  ;  

2:  Qmid  ← 0 ;  Qhigh  ← 0 ;  Qlow ← 0 ; 

3:  (CPmid, Qmid ) ← SCAN(G, ε , μ ) ; 

4:  (CPhigh, Qhigh ) ←SCAN(G, ε +  , μ ) ; 

5:  (CPlow, Qlow ) ← SCAN(G, ε    , μ ) ; 

6:  while ( Qmid    max (Qmid ,Qhigh ,Qlow)) do 

7:      if  Qhigh    max (Qmid ,Qhigh ,Qlow) 

8:          ε ←ε +   ; 

9:         (CPmid, Qmid ) ← (CPhigh, Qhigh); 

10:         (CPlow, Qlow ) ← (CPmid, Qmid ) ; 

11:         CPhigh, Qhigh ← SCAN(G, ε +  , μ ) ; 

12:      else if  Qmin    max (Qmid ,Qhigh ,Qlow) 

13:          ε ←ε +   ; 

14:         (CPhigh, Qhigh) ← (CPmid, Qmid ); 

15:         (CPmid, Qmid ) ← (CPlow, Qlow ) ; 

16:         (CPlow, Qlow ) ← SCAN(G, ε -   , μ ) ; 

17:     end 

18:  end 

19:  return CPmid, Qmid ; 

Figure 5-8 Algorithm of GSCAN 
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Chapter 6 

The Community Pedigree Mapping 

 Current methods [6, 13, 3, 5] made effort in the problem of mapping one community of 

previous timestamp to one community of current timestamp (1-1 mapping problem). We 

argue these methods are not suitable for real community evolution as discussed in section 2.3. 

So we propose a community pedigree mapping to express the evolution of communities. In 

this chapter we illustrate the evolution of communities between two consecutive time points. 

Section 6.1 provides the description of community similarity and section 6.2 presents the 

states of a community during its lifetime of community. Section 6.3 introduces the details of 

Community Pedigree Mapping and section 6.4 presents “relationship Extraction and 

community Pedigree dynamic Community miner” (EPC). 

6.1 The Similarity between Communities 

Social networks are dynamic and different amount of individuals are alive at each time 

point. If some individuals disappear at the time point either t-1 or t, we assume those are 

negative ones. On the other hand, the positive individuals who we care about are alive at both 

two consecutive time points t-1 and t. We further define those individuals as Influence 

individuals. 

Definition 11 (Influence individuals)  

Given the relationship graphs RGt-1(    
 ,     

 ) and RGt(  
 ,   

 ). The     
  is the node set of 

the relationship graph       and   
  is the node set of    . We define the Influence 

individuals at time points t-1 and t are: 

                
    

                             (12) 

Our Community Pedigree Mapping is based on Influence individuals to determine the 

similarity of community. 

 

Definition 12 (The similarity between the Communities at different timestamps) 
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Given the i-th community     
 =(    

      
 ) of community partition       at time t-1 and 

the j-th community   
 
    

 
    

 
  of     at time t. The similarity between community     

  

and community   
 
 is the number of individuals who are alive at both time points t-1 and t 

and is defined below. 

      
    

 
    

    
    

 
     

          
           

 
       

                     (13) 

 

Figure 6-1 Example of community similarity calculation 

    Take Fig 6-1 as an example, we using it illustrate the function 6-2. There are two 

communities A and B at time t-1 and two communities C and D at time t. There are 8 

members overlapped between community A and community C. The similarity between A and 

C is 
 

  
 since the community size of A is larger then C (12> 10).  

 

Figure 6-2 (a) Merge example           (b) Split example 
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There is a serious problem, splitting or merging of small community would cause the real 

alive state disappear, while we determine the similarity between the communities. We use the 

Fig 6-2 to illustrate the situation. Considering the two communities A and B at time t-1 and C 

at time t in Fig 6-2(a), C is still the combination of A and B even though the members of 

community C are almost the members of A while there is no constrain for similarity 

generation; In Fig 6-2(b), Communities E and F both are the splitting of D even though F has 

few members of community D. The above phenomenon is not reasonable so we predefine the 

Minimum community similarity threshold ( ) to avoid this situation. On the other hand, we set 

the       
    

 
   = 0 while the 

    
    

 
     

          
           

 
       

 < Minimum community similarity 

threshold ( ).  

6.2 The State of Communities 

Dynamic Community could change over time and we further define five community 

states: Birth, Death, Alive, Child and Division.  

Definition 13 (Birth)  

A new community   
 
 is born at time t iff there is no similarity between   

  and any 

communities     
 of      . i.e.:    

 
             

              
    

 
    

Definition 14 (Death)  

An old community     
  is dead at time point t iff there are none similarity between     

  

and any communities of community partition    . 

i.e.:     
             

 
           

    
 
    

Definition 15 (Alive) A current community   
 
 is alive iff there is similarity between one 

community     
  of community partition       and one community   

 
 of    . i.e.:    

 
 

          
              

    
 
    

Definition 16 (Child)  

A current community   
 
 is a child of {    

      
        

   iff there exist more than one 
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community     
  in       having similarity to a community   

 
 of    . i.e.:      

  

                  
                       

    
 
    

Definition 17 (Fission)  

A current community {  
    

      
    are fissions of     

  iff there exist communities 

   
    

      
   of     similar to a single community     

  of             
     . i.e.: 

   
    

      
            

                         
    

     

We use the Fig 6-3 to illustrate the five states of community. A node indicates a 

community and an edge weight indicates the similarity between communities. There are 5 

communities (A, B, C, D, E) at time point t-1 and 5 communities (F, G, H, I, J) at time point t. 

The Fig 6-3(a) is the original graph and the Fig 6-3(b) is the evolution result of our 

community pedigree Mapping. 

 

                (a)                                  (b) 

Figure 6-3 Example of evolution of communities 

(1) Birth: A circle colored purple indicates that a community is born at current time point 

t and the example is shown as the community J in Fig 6-3(b). (2) Death: A triangle indicates 

that a community would be dead at next time point and the example is shown as the 

community E in Fig 6-3(b). (3) Alive: A circle of colored red indicates that a community is 

Alive from only one community at time t-1 to only one community at time t. The example is 

shown as the community I at time t which is Alive from the community D at time t-1 in Fig 

6-3(b). (4) Child: A circle of colored green indicates that a community is a child of some 

communities at time t-1. The example is shown as the communities F which is the child of A 
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and B in Fig 6-3(b); (5) Fission: A circle of colored blue indicates that a community is a 

fission of a single community of time t-1 and the example is shown as the community H 

which is a fission of C in Fig 6-3(b). 

6.3 Community Pedigree Mapping 

 

Figure 6-4 (a) Evolution net            (b) Pedigree of single Community 

After we determine the similarities between communities and the states of communities, 

the states of a community express the evolution of all communities as in 6-4(a). Besides, the 

evolution of single community we called pedigree. We use the same states of a community to 

express the evolution of single community. Fig 6-4(a) shows the similarities between 

communities and the state of communities from t=1 to t=4 and is called evolution net [3]. Fig 

6-4(b) shows the pedigrees of community A, B and D. In the pedigree of specify community, 

a circle shape indicates that this community has blood relationship with the specific 

community. A square shape indicates that this community is non-blood relationship spouses of 

blood relationship communities. 

In the pedigree of A, communities B is a non-blood relationship spouse of A. Their child 

F has a spouse G at time t=2 and their child is L. The community L is dead at time 4 so the 

pedigree of community A ends at time t=4. In the middle of Fig 6-4(b), the pedigree of 

community B, F is the child of A and B; G is the child of B and C; the community L is the 

child of F and G. The community G is blood relationship spouse of F so the shape of G is 
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circle; Community M is fission of G. We could see the pedigree of community B ends at time 

t=4. In the pedigree of community D. Community I is Alive of D; K is Alive of I and P is 

Alive of K. The pedigree of D develops and does not finish.  

Though the illustration, we could observe the life time of community. Community could 

be alive, split and merge over time. The proposed community pedigree Mapping expresses the 

evolution of community and solves the “one to one mapping problem”. 

6.4 Proposed Algorithm: “relationship Extraction and community Pedigree 

dynamic Community miner” (EPC) 

 Assume a dynamic network G={G1,G2,…,Gt,…} where Gt is the interaction graph at t, 

the observation eyeshot wr, the selected normalized weight function (N(t,tc)) and Minimum 

community similarity threshold  , we start the algorithm EPC. For each time point tc, we 

determine the observation window  =[tc-wr, tc+wr] and EPC could be divided into three 

steps:  

(1)Construct the relationship graph RGtc: 

For each edge within interaction graphs Gt where time point t is belong to observation 

window  , we calculate the relationship strength between individuals (u,v) using Eq (3): 

                                  and then we contruct the Relationship graph RGtc. 

(2)Use the clustering method, SHRINK [12], to discover the community partition CPtc based 

on relationship graph RGtc: 

(3)Determine the evolution net (ENtc) for every two consequent timestamps tc-1 and tc: 

Based on the predefined Minimum community similarity threshold (  ) and the 

community partition results at time tc-1 and tc, we calculate the similarity between 

communities of tc-1 and the communities of tc using Eq (13). For each community, we 

determine the states of communities. The detail algorithm is shown in Fig 6-5.  
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Algorithm 2 : EPC  

Input: Dynamic networks                     where    is the interaction graph of time t, observation 

eyeshot (wr), Selected normalized weight function (N(t,tc)), Minimum community similarity threshold ( ) 

Output: Community partition of each time point                     , the evolution net of all communities 

at all time points                      

1:  for each tc    do 

2:             = Vertex set of Relationship graph      ;  

3:      Relationship graph       ← ;   

4:      Evolution net       ← ;   

5:      Community partition       ←    ;      ← ; 

6:      //Phase 1: Construct the relationship graph      

7:      for each edge          , where t    

8:          Determine the relationship strength          =                         ; 

9:          Insert the edge                       into Relationship graph     =(         ) ; 

10:     end 

11:     //Phase 2: Mining the community using SHRINK  

12:          = SHRINK (    ) or GSCAN(    ,  ,  ); 

13:     //Phase 3: Determine the evolution of community 

14:          = Vertex set of     ; 

15:     Calculate the Influence individuals  (tc) =             ; 

16:     Determine the community similarity       
    

   for all      
         and    

      ; 

17:     for each community      
         do 

18:         if      
  has no similarity with any    

       then 

19:             The state of      
  in evolution net      ← „Death‟;         

20:         end 

21:     end 

22:     for each    
       do 

23:         if    
  has no similarity with any      

         then 

24:             The state of    
  in evolution net      ← „Birth‟; 

25:         else if    
  has only one similarity with       

         then 

26:             if     
  has only one similarity with    

  then 

27:                 The state of   
  in evolution net      ←„Alive‟; 

28:             else                 

29:                 The state of   
  in evolution net      ←„Fission‟; 

30:             end 

31:         else if   
  has more than one similarities with some      

         then 

32:             The state of   
  in evolution net      ← „Child‟; 

33:         end 

34:     end 

35:     Output     ,     ; 

36:  end 

Figure 6-5 Algorithm of EPC 

For each iteration of EPC, the time complexity of step 1 is O(|   
 |) where the    

  is the 

edge set of relationship graph RGtc=(    
     

 ); the time complexity of SHRINK in step 2 is 

O(|   
  |log(|   

  |)) and the time complexity of step 3 is O(|   
 |). The total time complexity of 

each iteration of EPC is O(|  
  |log(|  

 |)) and the efficiency bottleneck of EPC depends on 

the clustering algorithm chosen. 
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Chapter 7 

Experimental results and Performance study 

In this chapter, the accuracy and efficiency of EPC would be examined. The environment 

is on a AMD Athlon(tm) П X2 240 CPU of 2.8 GHz with 2GBytes of main memory, running 

on Windows XP. The proposed EPC is implemented using C++. We compare EPC with the 

FacetNet [3] and PD-Greedy [5] by using 2 synthetic datasets SYN-FIX and SYN-VAR. 

SYN-FIX generates the dynamic network of a fixed number of communities and fixed 

number of nodes over time. SYN-VAR generates the dynamic network of a variable number 

of communities and variable number of nodes over time. For accuracy comparison, we use the 

mutual information to evaluate the performance. 

Section 7.1 describes the details of synthetic dataset generator and quality measurement 

using mutual information. Section 7.2 presents the discussion of all parameters of all 

comparison algorithms. Section 7.3 presents the accuracy of synthetic data experiment. 

Section 7.4 presents the smoothness quality of synthetic data experiment. Section 7.5 presents 

the scalability of synthetic data experiment and section 7.6 presents the result of real data 

experiment. 

7.1 Synthetic Data generation 

7.1.1 SYN-FIX 

Parameter  Description  Default  

n  Initial number of vertices. 128  

s_c  Initial size of community. 32  

n_c  Initial number of communities. 4  

Avg_v_deg  Average vertex degree. 16  

Avg_v_out_deg  Average vertex degree out of original community. 3 ~ 5  

Ran_sel  Random select some vertices out of original community. 3  

Table 7-1 Parameters of SYN-FIX 

 The data generator SYN-FIX has been released in [26] and the original idea is proposed 
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in [18]. The same idea is also discussed in [5]. The SYN-FIX produces an environment of 

fixed number of nodes and communities over time. It generates a network which has 128 

nodes, four communities of 32 nodes each and average vertex degree (Avg_v_deg) 16. Table 

7-1 describes the parameters of SYN-FIX. 

In SYN-FIX, the parameter Avg_v_out_deg is the average out-degree of all nodes in 

network. The Avg_v_out_deg controls the number of inter-edges placed between different 

communities so the number of intra-edge placed in a community is decided at the same time. 

The number of intra-edges is increasing while Avg_v_out_deg is decreasing. We generate two 

datasets of SYN-FIX (SYN-FIX-VOD_3 and SYN-FIX-VOD_5) and produce such networks 

for twenty consecutive timestamps. The SYN-FIX-VOD_3 uses the Avg_v_out_deg = 3 and 

the SYN-FIX-VOD_5 uses the Avg_v_out_deg = 5. At each timestamp 3 randomly selected 

nodes would leave original community and randomly join the other three communities.  

7.1.2 SYN-VAR 

Parameter  Description  Default  

n  Initial number of vertices. 256  

s_c  Initial size of community. [32, 64]  

n_c  Initial number of communities. [4, 8]  

Avg_c_e-ratio  Average community edge ratio. [0.2, 0.8]  

Avg_c_out_e-ratio  Average community edge ratio out of original community. [0.3, 0.5]  

Ran_sel  Random select some nodes out of original community. [8, 20] 

Add_v_at  Add some new vertices at each time point. 16  

Add_new_c_at  Add new community at some time points.  

Remove_min_c_at  Remove min-community at some time points.  

Table 7-2 Parameters of SYN-VAR 

SYN-VAR is first discussed in [5]. The SYN-VAR produces an environment of variable 

number of nodes and communities over time. The Average community edge ratio 

(Avg_c_e-ratio) is the ratio of the maximum intra-edges to the node number of the selected 

community. The average community edge ratio out of original community (Avg_c_out_e-ratio) 

means the ratio of inter-edges to total edges of the community. That is we generate the 
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network containing 256 nodes, 4 communities of 64 nodes each. Set the average community 

edge-ratio (Avg_c_e-ratio) to 0.5 and average community edge ratio out of original 

community (Avg_c_out_e-ratio) to 0.3. The total number of edges of a single community is 

0.5*(64*63/2) = 1008. The number of inter-edges is 1008*0.3 = 432 and the number of 

intra-edges is 1008-432 = 676.  

All datasets produced by SYN-FIX and SYN-VAR is shown as in Table 7-3. 

Type Synthetic Dataset Description 

SYN-FIX 

SYN-FIX-VOD_3 Fixed node number, fixed community number 

and average vertex out degree=3. 

SYN-FIX-VOD_5 Fixed node number, fixed community number 

and average vertex out degree=5. 

SYN-VAR 

SYN-VAR-COE_0_3_REG Dynamic changed node number, dynamic 

changed community number, average 

community out edge ratio = 0.3, creating new 

communities at time points {3, 5, 7, 9, 11, 13, 

15, 17, 19} and deleting the smallest community 

at time{4, 6, 8, 10, 12, 14, 16, 18, 20} 

SYN-VAR-COE_0_5_REG Dynamic changed node number, dynamic 

changed community number, average 

community out edge ratio = 0.5, creating new 

communities at time points {3, 5, 7, 9, 11, 13, 

15, 17, 19} and deleting the smallest community 

at time{4, 6, 8, 10, 12, 14, 16, 18, 20} 

SYN-VAR-COE_0_3_RAN Dynamic changed node number, dynamic 

changed community number, average 

community out edge ratio = 0.3, randomly 

creating 7 new communities at time points {2, 3, 

4, 6, 9, 10, 14} and deleting the smallest 

community at time{7, 9, 14, 15, 18, 19, 20} 20} 

SYN-VAR-COE_0_5_RAN Dynamic changed node number, dynamic 

changed community number, average 

community out edge ratio = 0.5, creating new 

communities at time points {1, 2, 3, 6, 8, 11, 12} 

and deleting the smallest community at time{7, 

8, 10, 11, 14, 16, 17} 

Table 7-3 Synthetic datasets generated by SYN-FIX and SYN-VAR 

We generate four datasets of SYN-VAR and produced such networks for twenty 
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consecutive timestamps. At each timestamp SYN-VAR randomly selects some nodes to be 

removed and randomly selects some nodes to be added to the network. We simulate the 

dynamic property of social networks using three parameters: “the average community out 

edge ratio” (Avg_c_out_e-ratio), “add new community at some time points” (Add_new_c_at) 

and “remove min-community at some time points” (Remove_min_c_at). New communities 

would be created at randomly selected time points. The smallest community would be 

removed at randomly selected time points. New communities would be constructed by parts 

of the larger communities at previous time. For example: the dataset 

SYN-VAR-COE_0_3_REG indicates the average community out edge ratio = 0.3, regularly 

creates communities at time points {3, 5, 7, 9, 11, 13, 15, 17, 19} and regularly deletes the 

smallest community at time {4, 6, 8, 10, 12, 14, 16, 18, 20}. The description of other datasets 

would be clear in Table 7-3. 

The dataset generators, SYN-FIX and SYN-VAR, provide the ground truths of the 

communities while they produce the interaction graphs of dynamic networks. The accuracy of 

EPC can be compared with these ground truths. We use the normalized mutual information 

(NMI) as the performance of accuracy since NMI is well-known to evaluate the quality of 

clusters produced by clustering algorithm [27] as is defined as: 

                  
       

             
                             (14) 

where MI(X, Y) is the Mutual information of two random variables X and Y. MI(X,Y) 

measures the mutual dependency of X and Y and is defined as: 

                            
      

           
                  (15) 

where p(x, y) is the joint probability distribution function of X and Y, and p1(x) and p2(y) 

are the marginal probability distribution functions of X and Y respectively. 

H(X) is the entropy of X and H(Y) is the entropy of Y. Entropy is a measure of the 

uncertainty associated with a random variable. The score of NMI is normalized to 0.0~1.0 and 
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the accuracy is higher while the score is higher. 

7.2 Synthetic Data Experiment 

We compare EPC algorithm with two algorithms, FacetNet [4] and PD-Greedy [5]. First 

we would experiment and discuss the effect of all different parameters of EPC-SHRINK, 

EPC-GSCAN, FacetNet and PD-Greedy. 

7.2.1 Parameter of FacetNet: α  

 FacetNet is based on the concept of temporal smoothness and uses the parameterα to 

control the community partitioning. However, the parameter α  could affect the community 

partitioning. So, we use different α  to observe the change of the community partitioning.  

 As shown in Fig 7-1, FacetNet are tested using SYN-FIX and SYN-VAR datasets. The 

vertical axis is the average NMI and the horizontal axis is the parameter α  from 0.1 to 0.9. 

Each line within Fig 7-1 is the performance of different datasets. The accuracy of FacetNet is 

stable whatever the value of α  is. That is the FacetNet is not influenced by the value of α . 

 

Figure 7-1 Parameter of FacetNet: α   

7.2.2 Parameters of PD-Greedy[5]: α  and μ  

PD-Greedy has two parameters: α  the parameter of temporal smoothness and μ  the 

constraint of community size.  
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Figure 7-2 Parameters of PD-Greedy: α , μ  on dataset SYN-FIX-VOD_3 

Fig 7-2 shows the experimental result of PD-Greedy on α  and μ . The vertical axis is 

the average NMI and the horizontal axis is the parameter α  from 0.1 to 0.9. Each line within 

Fig 7-2 is the performance for different parameters μ  on dataset SYN-FIX-VOD_3. The 

relevance between Avg-NMI and parameter μ  is low and the presetting of parameter μ  

has dependency on datasets. While the parameter α  is below 0.5, the Avg-NMI grows with 

α . While the parameter α  is above 0.5, the trend of Avg-NMI changed fuzzily.  

 

Figure 7-3 Parameters of PD-Greedy: α , μ  on dataset SYN-FIX-VOD_5 

Fig 7-3 shows the result of PD-Greedy on dataset SYN-FIX-VOD_5. Each line has low 

Avg-NMI due to the noise of dataset SYN-FIX-VOD_5 is higher than that of 

SYN-FIX-VOD_3. Avg-NMI has ambiguous correlation with parameter α .  
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Figure 7-4 Parameters of PD-Greedy: α , μ  on dataset SYN-VAR-COD_0_3_REG 

 

Figure 7-5 Parameters of PD-Greedy: α , μ  on dataset SYN-VAR-COD_0_5_REG 

Fig 7-4 and 7-5 are the experimental results of PD-Greedy on different datasets. Fig 7-4 

and Fig 7-5 show the same phenomenon the same as Fig 7-2. i.e.: the Avg-NMI grows with 

α while the parameter α  is below 0.5; the trend of Avg-NMI changed fuzzily while the 

parameter α  is above 0.5. While the noise level is higher, Fig 7-5 shows that the Avg-NMI 

is higher using lower parameter μ . We do not show the experimental result of 

SYN-VAR-COE_0_3_RAN and SYN-VAR-COE_0_5_RAN due to the same property as 

shown in Fig 7-4 and 7-5. 

In summary, the parameter α  should be setting within the range between 0.6~0.9 and 

the parameter μ  should be setting within the range between 1%~3% for producing better 

Avg-NMI.  
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7.2.3 Parameters of EPC-SHRINK: observation eyeshot, decay weight 

functions 

EPC-SHRINK uses the clustering algorithm SHRINK [12] and has two parameters, 

observation window and four weight functions. EPC-SHRINK use equal weight function 

(EQL) and other three normalized decay weight functions, linear decay (LIN), exponential 

decay (EXP) and wave decay (WAVE). While we set the observation eyeshot wr increasing, 

the interaction data of overlap time points would increase, the change of relationship strength 

of relationship graph would be small then the change of community partition is guaranteed to 

be small. However, increasing the wr is not always better for all situations and we use Fig 7-6 

to illustrate the circumstance. 

 

Figure 7-6 The EXP weight function under different observation eyeshot wr 

Fig 7-6 shows the curves of EXP weight function based on different wr. That the curve is 

getting smooth with the increasing wr shows the decay property of EXP being averaged out 

with the increasing wr. So the range of wr should be fixed and the setting of wr depends on 

the property of network.  
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Figure 7-7 Parameters of EPC-SHRINK: observation eyeshot, decay weight functions on 

dataset SYN-FIX-VOD_3 

Fig 7-7 shows the experimental result of EPC-SHRINK on dataset SYN-FIX-VOD_3. 

The vertical axis is the average NMI and the horizontal axis is the different values of 

observation eyeshot (wr). The results revealed that equal weight function (EQL) is 

significantly inferior to other three normalized decay weight functions, LIN; EXP and WAVE. 

The LIN; EXP and WAVE, have the same behavior and stable accuracy. Besides, the 

observation eyeshot is moderately negative related to Avg-NMI. 

 

Figure 7-8 Parameters of EPC-SHRINK: observation eyeshot, decay weight functions on 

dataset SYN-FIX-VOD_5 

  Fig 7-8 shows the experimental result of EPC-SHRINK on dataset SYN-FIX-VOD_5. 

The vertical axis and horizontal axis are the same as Fig 7-7. On the opposite, the observation 
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eyeshot and Avg-NMI have been shown to be positively correlated with each other. The 

experiments summarized indicate no strong relationship between Avg-NMI and observation 

eyeshot. The results of other datasets show the same property as Fig 7-7 and 7-8 so we do not 

display the experimental result of other datasets here. 

In summary, the presetting of observation eyeshot has dependency on specific dataset. 

On selection of decay weight functions, LIN, EXP and WAVE have roughly the same 

Avg-NMI on all datasets generated by us. 

7.2.4 Parameters of EPC-GSCAN: observation eyeshot, decay function and 

μ  

 EPC-GSCAN uses the clustering algorithm GSCAN [5]. We try to clarify the correlation 

between Avg-NMI and observation eyeshot (wr). Considering that the experimental results of 

most datasets are approximately the same. We use datasets, SYN-VAR-COE_0_3_RAN; 

SYN-VAR-COE_0_5_RAN, and linear decay weight function in the experiment. 

 

Figure 7-9 Parameters of EPC-GSCAN: observation eyeshot, μ  on dataset 

SYN-VAR-COE_0_3_RAN 

 Fig 7-9 shows the experimental result of EPC-GSCAN-LIN on dataset 

SYN-FIX-VOD_3. The vertical axis is the average NMI and the horizontal axis is the 

different values of observation eyeshot (wr). The 5 curves in Fig 7-9 use different parameters 

μ . The result appear that using small μ  and small observation eyeshot (wr) would get 
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higher value of Avg-NMI. 

 

Figure 7-10 Parameters of EPC-GSCAN: observation eyeshot, μ  on dataset 

SYN-VAR-COE_0_5_RAN 

Fig 7-10 shows the experiment of EPC-GSCAN-LIN on dataset 

SYN-VAR-COE_0_5_RAN. The vertical axis and the horizontal axis indicates the same 

information as Fig 7-9. The result appear to reject the assumption that using small μ  and 

small observation eyeshot (wr) would get better Avg-NMI. In terms of the relationships 

between observation eyeshot (wr) and Avg-NMI, the results depict no correlation and the 

parameter presetting is data dependent. 

 

Figure 7-11 Parameters of EPC-GSCAN: decay weight functions on dataset 

SYN-VAR-COE_0_3_RAN 

 We compare with different decay functions on dataset SYN-VAR-COE_0_3_RAN in Fig 
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7-11. The vertical axis is the NMI score and the horizontal axis is timestamp. Each decay 

function uses the optimal parameters, μ  and observation eyeshot wr. The presetting 

parameter is shown on the right of Fig 7-11. The result shows that the equal weight function is 

worse than other decay weighted functions.  

 

Figure 7-12 Parameters of EPC-GSCAN: decay weight functions on dataset 

SYN-VAR-COE_0_5_RAN 

In Fig 7-12, the result shows the same property as Fig 7-11. While the noise level is 

increasing, using EXP or WAVE function has better Avg-NMI than using EQL or LIN. 

In summary, the presetting of observation eyeshot and the parameter μ  depend on 

specified dataset. On selection of decay weight functions, the EXP and WAVE decay weight 

function have better Avg-NMI than other functions. 

7.3 Accuracy Comparison 

EPC has two algorithm versions, EPC-SHRINK and EPC-GSCAN. We compare EPC 

with two algorithms, FacetNet [4] and PD-Greedy [5]. These algorithms need to preset their 

respective parameters as discussed above. In the figures of this section, “a” is the parameter of 

temporal smoothness, μ  is the constraint of community size and wr is the observation 

eyeshot. We use the parameters of highest Avg-NMI for each algorithm.  
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Figure 7-13 Accuracy comparison on dataset SYN-FIX-VOD_3 

Fig 7-13 shows the accuracy comparison for SYN-FIX datasets. The vertical axis 

indicates the NMI score and the horizontal axis indicates timestamp. The solid curves of 

EPC-SHINK and EPC-GSCAN show higher accuracy than the dotted curves of FacetNet and 

PD-Greedy.  

 

Figure 7-14 Accuracy comparison on dataset SYN-FIX-VOD_5 

In Fig 7-14, the vertical axis and horizontal axis are the same as Fig 7-13. The solid 

curves of EPC-SHINK and EPC-GSCAN show the higher accuracy than both the FacetNet 

and PD-Greedy even though the noise level is higher than Fig 7-13.  
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Figure 7-15(a) Accuracy comparison on dataset SYN-VAR-COE_0_3_REG 

 

Figure 7-15(b) Accuracy comparison on dataset SYN-VAR-COE_0_5_REG 

 

Figure 7-15(c) Accuracy comparison on dataset SYN-VAR-COE_0_3_RAN 
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Figure 7-15(d) Accuracy comparison on dataset SYN-VAR-COE_0_5_RAN 

Fig 7-15 shows the accuracy for SYN-VAR datasets. Fig 7-15 shows that the accuracies 

of EPC-SHRINK and EPC-GSCAN are more stable and better than FacetNet and PD-Greedy 

whatever the noise level is high or low in the datasets SYN-VAR. 

In general, the accuracy of EPC-SHRINK is better than EPC-GSCAN and it appears that 

the clustering quality of SHRINK is better than the clustering quality of GSCAN. The 

accuracy of EPC-GSCAN is better than PD-Greedy. The experimental results validate that the 

concept of Relationship graph adopted outperforms the concept of temporal smoothness in 

dynamic networks over time. 

7.4 Smoothness Comparison 

For the smoothness property of community partitioning, we further assume that the 

normalized mutual information (NMI) of every two consecutive timestamps is higher and the 

smoothness quality is better. We compare the smoothness among EPC-SHRINK, 

EPC-GSCAN, FacetNet and PD-Greedy using the same parameters in section 7.3.  

 

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17

N
M

I

Timestamp

SYN-VAR-COE_0_5_RAN EPC-SHRINK-

WAVE wr=2

EPC-GSCAN-LIN 

wr=1, u=4%

FacetNet a=0.6

PD-Greedy 
a=0.9, u=1%



58 
 

 

Figure 7-16 Smoothness comparison on dataset SYN-FIX-VOD_3 

Fig 7-16 shows the smoothness quality of EPC-SHRINK, EPC-GSCAN, FacetNet and 

PD-Greedy. The vertical axis is the NMI score and the horizontal axis is timestamp. The solid 

curves of EPC-SHRINK and EPC-GSCAN have higher quality of smoothness than the dotted 

curves of FacetNet and PD-Greedy.  

 

Figure 7-17 Smoothness comparison on dataset SYN-FIX-VOD_5 

Fig 7-17 shows the smoothness quality on dataset SYN-FIX-VOD_5. The change of the 

curve of SHRINK is very violent due to higher noise level of dataset.  
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Figure 7-18(a) Smoothness comparison on dataset SYN-FIX-COE_0_3_REG 

 

Figure 7-18(b) Smoothness comparison on dataset SYN-FIX-COE_0_5_REG 

 

Figure 7-18(c) Smoothness comparison on dataset SYN-FIX-COE_0_3_RAN 
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Figure 7-18(d) Smoothness comparison on dataset SYN-FIX-COE_0_5_RAN 

Fig 7-18 shows the accuracy for SYN-VAR datasets. Fig 7-18 shows that the smoothness 

quality of EPC-SHRINK and EPC-GSCAN are more stable and better than both FacetNet and 

PD-Greedy whether the noise level is high or low in the datasets SYN-VAR. 

In summary, the smoothness quality of EPC-SHRINK is better than EPC-GSCAN. The 

smoothness quality of EPC-GSCAN is better than PD-Greedy. 

7.5 Scalability 

 

Figure 7-19: Execution time of EPC-SHRINK, EPC-GSCAN and PD-Greedy w.r.t different 

input size 

Fig 7-19 shows the execution time EPC-SHRINK, EPC-GSCAN and PD-Greedy w.r.t 

different amount of nodes. The horizontal axis indicates the node number of different datasets 

and the node number is exponential growth in 2. The vertical axis indicates the execution time 
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in log2 scale. Although PD-Greedy is faster than EPC-SHRINK and EPC-GSCAN, the result 

of PD-Greedy may be very bad and unstable. On the other hand, EPC-GSCAN has almost the 

same speed as PD-Greedy and good accuracy while using huge datasets. 

 

Fig 7-20: Memory usages of EPC-SHRINK, EPC-GSCAN and PD-Greedy 

In Fig 7-20, the horizontal axis is the same to Fig 7-20. The vertical axis indicates the 

memory usage for different datasets. While the datasets is increasing, the result shows 

EPC-SHRINK, EPC-GSCAN and PD-Greedy are linearly scalable with the size of datasets. 

7.6 Experiment on Real world dataset 

We use three real datasets to evaluate our algorithm EPC: (1) Enron email [16] (2) 

Facebook [17] (3) DBLP data [14]. We only show the experiments of FacetNet at Enron email 

dataset since FacetNet only performs at small datasets experiment. In this section, we 

compare with PD-Greedy with all the real data experiments. 

7.6.1 Enron email dataset 

For the Enron email dataset, it is the email record between employees of Enron 

Corporation. Email address represents an individual and the edge represents email exchange. 

Enron email dataset contains 150 users and 24,140 messages in the company. We use a 

cleaner version of the dataset from March 2000 to April 2002. We split Enron dataset with the 

time slice unit = 5 days because an appropriate time unit is suggested for analyzing dynamic 

networks [10]. We arrange this data from 150 time slices, observation eyeshot wr = 2 and 
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preset the Minimum community similarity threshold ( )=0.3.  

 

Figure 7-21 Result of Enron email dataset using EPC-SHRINK 

In Fig 7-23, the horizontal axis is the time slice of Enron email dataset. The vertical axis 

is the cumulative number of states of community. The curve of Alive state is higher than other 

states of community and the curves of other states are the same. There is no doubt about the 

result because the variation of company network is relatively low than general human 

relationship.  

 

Figure 7-22 Smoothness quality result on Enron email dataset 

 In Fig 7-22, the horizontal axis is the time slice of Enron email dataset and the vertical 

axis is the cumulative number of states of community. For the smoothness quality of the EPC 

in Enron dataset, the curve of EPC-SHRINK shown in Fig 7-22 demonstrates the high 

smoothness quality. And the curves of FacetNet and PD-Greedy show that the smoothness 
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quality is worse than EPC-SHRINK in Enron email dataset. 

7.6.2 Facebook dataset 

For the Facebook, there are two records, friend list and wall posts. We use the wall posts 

as our interaction data. Facebook dataset contains 46,952 users and 876,255 wall posts in the 

dataset. We also use a cleaner version of the dataset from January 2006 to January 2009. We 

aggregate these data using the same time slice unit (5) as Enron email dataset to form 220 

time points, observation eyeshot wr = 2 and the same Minimum community similarity 

threshold ( )=0.3. 

 

Figure 7-23 Result of Facebook dataset using EPC-SHRINK 

Fig 7-23 shows the result of Facebook dataset. The respective unit scales of horizontal 

and vertical axis are the same as Fig 7-22. The number of Alive state is always higher shows 

that most communities are alive and stable in real world. The cumulative numbers of Birth 

states and Dead state is higher than that of Fig 7-23 demonstrates that the real dynamic 

networks could change quickly. Child and Fission shows that the friend relationships are 

cultivated quickly at recent time. The cumulative number of merge and split operations 

indicate that these operations are not common in dynamic social networks. 
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Figure 7-24 Smoothness quality result on Facebook email dataset 

 For the smoothness quality in Facebook dataset, the curve of EPC-SHRINK shown in 

Fig 7-24 expresses that the smoothness quality is still high.   

7.6.3 DBLP dataset 

The DBLP dataset presents the interaction information of co-authorship. We take out the 

related dataset from 2000 to 2009 which contains 769,137 authors and 1,068,239 records. A 

node represents an author and an edge between nodes represents the co-authorship between 

authors. We use a year as a time unit due to the characteristics of interaction data. We preset 

the observation eyeshot wr = 1 and the same Minimum community similarity threshold 

( )=0.3. 

 

Figure 7-25 Result of DBLP dataset using EPC-SHRINK 

Fig 7-25 shows the result of DBLP dataset. The cumulative number of Alive being 

0

0.2

0.4

0.6

0.8

1

2 22 42 62 82 102 122 142 162 182 202

N
M

I

Timestamp

Facebook dataset

EPC-SHRINK-
EXP wr=2

PD-Greedy 
a=0.8, 
u=0.0001%

0

50000

100000

150000

200000

250000

300000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

C
u

m
u

la
ti

ve
 n

u
m

b
e

r

Timestamp

DBLP dataset
Alive

Birth

Death

Child

Fission



65 
 

higher than other states depicts that most communities are alive over time. The cumulative 

numbers of Child and Fission are still lower than that of other states depicts the same 

phenomenon as the Enron dataset and Facebook.  

However, the aggregate number of Birth increases fast shows an obvious fact. For 

example: a researcher could be a Master or a Ph. D. who co-worked with the professor and 

later he graduated from school. Nevertheless, he chooses another job rather than a researcher 

so the phenomenon displays the growth rates of Birth and Death states are higher than Enron 

email and Facebook dataset. 

Especially in Facebook and in DBLP datasets, the cumulative number of Birth and Death 

are higher than in Enron dataset. This phenomenon shows the networks of FacetNet and 

Co-authorship change fast. The highly cumulative number of Alive also shows the result that 

EPC is more smoothy. 

 

Figure 7-26 Smoothness property of EPC when running with DBLP dataset 

 For the smoothness quality in DBLP dataset, the curve of EPC expresses higher 

smoothness quality than PD-Greedy. 
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Chapter 8 

Conclusion and Future work 

8.1 Conclusion 

Although a large number of studies have been made on community detection in networks, 

little is known about the property and feature of dynamic community. We propose the 

algorithm EPC which provides a novel approach of data smoothness to explore the evolution 

of community. The proposed Relationship extraction strategy not only considers the historical 

data but also the oncoming data. We also propose a mapping method of community partition 

over time called Community Pedigree Mapping which shows the state of community and 

displays the life circle of community.  

In synthetic data experiment, our algorithm EPC provides a scalable way to solve the 

problem of mining dynamic community. There are two versions of the EPC-algorithm, 

EPC-SHRINK and EPC-GSCAN. The experiment demonstrates that EPC-SHRINK and 

EPC-GSCAN have higher accuracy than previous algorithms such as FacetNet[3] and 

PD-Greedy [5]. For the smoothness quality of community partitioning, the experiment shows 

the community partition of EPC is more smoothing than FacetNet and PD-Greedy. For the 

scalability of EPC, the experiment shows EPC-GSCAN is linearly scalable and almost as fast 

as PD-Greedy. In general, the accuracy and smoothness quality of EPC-SHRINK is better 

than EPC-GSCAN. It appears that the clustering quality of SHRINK is better than the 

clustering quality of GSCAN. The accuracy of EPC-GSCAN is better than PD-Greedy, which 

validates that the concept of Relationship graph over time outperforms the concept of 

temporal smoothness which using the same clustering algorithm. 

We also apply EPC on real datasets to Enron email, Facebook and DBLP dataset. In all 

datasets, the cumulative number of Alive state being higher than other states indicates that the 

variation of real dynamic communities is quite low in social networks. The growth rates of 

Birth and Death in DBLP dataset and Facebook dataset are higher than Enron email dataset, 
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indicating that new communities appear more quickly in common relationship than in 

company. This phenomenon supports the argument that the real world such as FacetNet and 

Co-authorship change fast. The high cumulative number of Alive also verifies the result of 

EPC provides the property of smoothness over time. 

8.2 Future work 

Although EPC has acceptable time complexity and higher accuracy, there still are some 

related works worth further investigation. (1) So far there are no convinced theories about 

how to measure the quality of dynamic community in dynamic social network even we have 

discovered the community. (2) The proposed EPC presets the observation eyeshot wr and 

assumes each relationship between individuals should use the same decay weighting function. 

In real world the decays of relationship between individuals might be different. Moreover, the 

observation eyeshot could be very dependent on different individuals at different timestamps. 

(3) In real world, there are many kinds of interaction between individuals. How to correctly 

determine and present the relationship strength converting various kinds of interactions is still 

a challenging problem.  
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