i
=

A

. 24 A 2 R L, A= 2 e . a
BB R BARE L L g

Dynamic Community Detection via Relationship
Extraction Strategy and Community Pedigree Mapping

FoRO2 e
IERE R KR

FERE —H &+t A



WG R RAAEER 2y
Dynamic Community Detection via Relationship Extraction Strategy and
Community Pedigree Mapping

oyo2 L ER Student : Cheng-Yi Peng
hEREEEm Advisor : Suh-Yin Lee
CINEEEEE T
PR R o= e S R
Ak
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2011

Hsinchu, Taiwan, Republic of China

PEA - [



m
P
e
g}t
b
¥
=
&
&
:4)
‘ ~
]i'
*
99
LS
(w
it
o]

FiiEBR hEFE 2 A%

FaAd A S FRAFEL AT o

#F&

Tk s Ak g RELD > FEAREF R A R o B AR ORI GilAE

KB LA E MR F L TS d AR RERSHEIEN R AR AR

2/

3 B L F kAR BALERER D N ke TR RRR Bt 8 L2

GE R AL FE U RA A BEE2 S PauepR o AipE R P A X E

E
%’

¥
IEEA AR AEA ARG ARth Y A - B AT i B2 o EPCORE 1%

JoALHE S R BT ) 0 T AL REFBASE o A PRI - BRAF R



Dynamic Community Detection via Relationship Extraction

Strategy and Community Pedigree Mapping

Cheng Yi Peng Suh-Yin Lee

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Recently, considerable attention has.been. paid to the issue of dynamic community in
dynamic social network due to its widespread applications. Many potential social phenomena,
in practice, can be extracted by analyzing the dynamic social structure over time. Although
there have been many recent studies proposed on dynamic. community, these works, generally,
partition the community based on a sequence of interaction graphs, which is usually applied
to express a dynamic social network. ‘Nevertheless, the interaction graph may be insufficient
to reveal the relationship among individuals, since, in a snapshot of time slice, no interaction
among individuals does not indicate no actual relationship. In this thesis, a novel algorithm
EPC, which stands for relationship Extraction and community Pedigree mapping Community
miner, is developed to mine the evolution of community. We present a Relationship
Extraction strategy to construct a relationship graph within a defined observation window.
EPC partitions communities based on relationship graph and uses proposed Community
Pedigree Mapping method to discover the evolution of dynamic community in dynamic social
network. The experimental results on synthetic and real datasets Show that EPC not only
significantly outperforms the prior studies in accuracy but also possesses

graceful scalability and smoothness.
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Chapter 1.
Introduction

In recent years, social network analysis in e-commerce, social science and computer
science has received significant attention. A social network is a social structure made up of
individuals, which are tied by one or more specific types of relationship or interdependency,
such as friendship, co-authorship, common interest or financial exchange. Clustering similar
individuals into a group has been a big challenge. A cluster in a social network is typically
called a community. Traditional static methods discovered communities using the aggregate
interaction data and ignored the effect of time. However, social networks are dynamic and
evolve over time. With the increasing popularity of social network websites, the use of
dynamic social network analysis has increasingly been the focus of study in recent years.

Two major issues of dynamic community need to be addressed:

(1) Community discovery: Which nodes should be associated with each other to
become a community at each timestamp?(2) Evolution of community: How to explain the
evolution of community partition.from previous timestamp to current timestamp?

Traditional methods of discovering dynamic communities such as [6, 7] are called
two-stage approach. The community partition is detected at each timestamp using the
interaction graph and the evolutions of communities between two consecutive timestamps are
inferred successfully. However, the community partition discovered by current interaction
data could distort the real community structure. The community partition presumed that there
is no relationship between individual pairs while no interactions occur between them.

Recently, a new concept of temporal smoothness was proposed [1] based on two points
of view. (1) Each community partition in the time sequence should be similar to the
community partition at the previous timestamp. (2) The community partition should
accurately reflect the change of the interaction networks. The concept of temporal

smoothness tries to discover the communities which not only consider about interaction data
1



of current timestamp but also historical interaction data to improve the weakness of two stage
approach.

However, the methods [1, 2, 3, 5] based on temporal smoothness have the following
drawbacks. It is a big issue that the community partition should well reflect the previous
interaction data more or a little more reflect the current interaction data. If the community
partition always well reflects the previous interaction data more, the new change of social
network would be hard to detect. On the other hand, the community partition would be more
similar to the community partition based on two-stage approach and have the same weakness
as two-stage approach. This setting of temporal smoothness has a great effect on the result of
the methods based on temporal smoothness.

Concerting the evolution of community, current methods [6, 13, 3, 5] focused on that one
community of previous timestamp maps to one.community of current timestamp (one-to-one
mapping). We argue that mapping is not suitable for real dynamic community because
mapping of communities is not always one-to-one.

In this thesis, we propose: ERPC, “relationshipExtraction and community Pedigree
dynamic Community miner”, which produces the community partition taking into account the
evolution of community. Instead of interaction data, we proposed the Relationship Extraction
strategy which constructs a weighted graph for each timestamp and the weight indicates the
relationship strength between individuals; we use two current static clustering algorithms,
SHRINK [12] and GSCAN [5], to discover the community based on Relationship graph. We
also proposed the Community Pedigree mapping which uses a realistic way to explain the
evolution of dynamic community.

The Relationship Extraction strategy produces the relationship graph which not only
references the historical interaction data but also the ongoing interaction data. The
relationship graph not only represents much realistic relationship between individuals but also

express the dynamic property in relationship graph. The Relationship Extraction strategy
2



combines the normalized decay weight function to simulate the change of relationship
strength between individuals. The Community Pedigree mapping extends the human pedigree
to illustrate the evolution of community over time. The states of a community could be Birth,
Death, Alive, Child and Fission. Using the community pedigree mapping, we could simply
determine the evolution of community.

In synthetic data experiment, our algorithm EPC not only has higher accuracy but also
more smoothing than previous algorithms. The EPC also expresses the property of linearly
scalability. We also apply EPC on real datasets, Enron email dataset; Facebook dataset and
DBLP dataset. All datasets show the change of community partition in real dynamic social
network is quite low. The change rates of communities in co-authorship and friendship are
higher than the change rate in company:since the variation of company network is lower than
friendship network and co-authorship network.

In summary, the contributions of this thesis are as follows:

(1) We propose a new technique of data smoothing, Relationship extraction strategy, to
produce a relationship graph. We discover community partition using the relationship graph
instead of current interaction to overcome the weakness of two-stage approach. The
relationship graph not only represents much realistic relationship between individuals but also
express the dynamic property in dynamic social network.

(2) We propose a new matching technique, Community Pedigree mapping, which extends
the point of human pedigree to explain evolution of community.

(3) We propose EPC, “relationship Extraction and community Pedigree dynamic
Community miner”, which has not only higher accuracy but also better smoothing than
previous methods no matter the noise level of data is high or low.

(4) EPC is linearly scalable both on the execution time and memory usage.

The rest of this thesis is organized as follows. Chapter 2 provides the related work and

motivation. Chapter 3 presents the notation and problem definitions. Chapter 4 introduces the
3



Relationship graph strategy. Chapter 5 describes the SHRINK [12] and GSCAN]I5] cluster
algorithms. Chapter 6 presents the evolution of community and the proposed algorithm EPC.
Chapter 7 presents the experiments and performance study. The conclusion and future work is

in chapter 8.



Chapter?2
Related Works and Motivation

In this section, we introduce the related works and motivation of this thesis. We first
introduce the community detection technique in static graphs and then describe that in
dynamic graphs where the dynamic graphs could change over time. Section 2-3 describes the
motivation of this thesis.

2.1 Community Detection in Static Graphs

In the study of community detection in a single static graph which doesn’t change over
time, several approaches have been proposed on static graph.

Graph Partitioning approach consists of dividing the vertices into k groups of predefined
size, such that the number of inter-edges between the groups is small [29]. The Kernighan
-Lin algorithm is one of the earliest methods. Another popular technique proposed by Barnes
et al is the spectral bisection method, which is based on the properties of the spectrum of the
Laplacian matrix. The Laplacian matrix ‘L= D-A where D is the diagonal matrix whose
element Dj; equals the degree of vertex i and A.is the adjacency matrix of the graph. In
particular, the eigenvector corresponding to the second smallest eigenvalue is used for graph
bipartitioning.

However, the Graph partitioning based methods need to predefine the number of clusters
or the size of clusters at the beginning and the predefined parameter has great effect upon the
result of graph partitioning.

In modularity-based approach, the modularity measure has been widely used in
community discovery for evaluating the quality of network partitions. Modularity-based
approach [18, 19] assumes high value of modularity indicates good partitioning and the
partition corresponding to its maximum modularity score on a given graph should be the best.

However, detection of a community whose size is smaller than a certain size is

impossible. This serious problem is famously known as the resolution limit of
5



modularity-based algorithms [10].

The density based approach applies a local cluster criterion. Clusters are regarded as
regions in the data space in which the objects are dense, and which are separated by regions of
low object density. Density of intra-edges is used to partition graph into clusters. Xu et al [21]
proposed the Structural Clustering Algorithm for Network (SCAN). SCAN [21] needs two
predefined parameters minimum similarity threshold (&) and minimum neighbors of core node
(u) which limits that a core node has at least u neighbors whose similarities are more than
minimum similarity threshold (€). Each cluster should contain at least one core node inside.
SCAN is an efficient structural network clustering algorithm while the predefined parameters
are appropriate.

However, SCAN [21] requires thepredefinition of the minimum similarity parameter (g)
and minimum core size (u) and the setting of parameters would huge affect the result of
cluster partitions.

Recently a structural clustering-algorithm called SHRINK was proposed by Huang et al
[12] to overcome the problem .of.predefining parameters ( € and u ) of density-based
clustering algorithm. Through the experiment, SHRINK was proven to be an efficient,
parameter free and higher accuracy algorithm while comparing with the modularity-based
approach [18, 19].

2.2 Community Detection in Dynamic Graphs

Real social networks change over time so the community partition changes over time. So
community detection in dynamic graphs would be more realistic than community detection in
static graphs. Several approaches for discovering dynamic communities have been studied in
dynamic social networks. We would illustrate the concept of these approaches.

2.2.1 Two-Stage Approach
Two-stage approach has two steps: (1) Community partition is detected at each

timestamp of the interaction graph and the results of community partition are independent at
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different timestamps. (2) While the relationships between the communities of two consecutive
timestamps are determined, the community mapping of two consecutive timestamps are
inferred successfully.

Palla et al [6] proposed a method called Clique Percolation Method (CPM) to analyze
the real dynamic network such as co-authorship network and mobile phone network. The
CPM tries to find all k-cliques that can be reached from each other through a series of
adjacent k-cliques where the adjacency means sharing k-1 nodes. The adjacency k-cliques are
considered as community in [6]. The community mapping of two consecutive timestamps are
dependent on their relative node overlapping. They first described the events in community
evolution including Birth, Death, Merging, Splitting, Growth and Contraction. They have
shown that the lifetime of communitiesiin these networks depends on the dynamic behavior of
these communities, with large groups that alter their behavior persisting longer than others.
On the other hand, small groups were found to persist longer if their membership remained
unchanged [6].

Sun et al [7] considered dynamic networks suchas Network traffic, email and cell-phone
as bipartite graphs which treat source and destination separately. GraphScope [7] is based on
the principle of Minimum Description employs (MDL) and employs lossless encoding scheme
for a graph stream. The encoding scheme takes into account both the community structure and

the community change in order to achieve a concise description of the data.

Figure 2-1 Interaction data example



We use Fig 2-1 and Fig 2-2 to illustrate the weakness of methods based on the two stage
approach. Given the interaction data as shown in Fig 2-1, a node indicates an individual and
an edge (u, v ) indicates the interaction occurs between u and v. The community partition
result of CPM [6] is shown in Fig-2-2. There are two communities discovered in time 1, one

community discovered in time 2 and two community discovered in time 3.

F——=——-—=-=-=-=---

Figure 2-2 Community partition produced by CPM

While the interaction data change frequently, the community partition also change
frequently. The node 2 is covered by a community at time 1 and time 3. However, the
individual 2 disappeared at time t=2 because individual 2 has no interaction with other
individuals at time t=2. There should be some relationship strength between individual 2 and
other individuals even though no interactions occur at time t=2.

However, the methods [6,7] based on the two-stage approach presume that there is no
relationship between individual pairs while no interactions occur between them and it often
results in community structure with significant changes [3].

While the community partitions at all timestamps have been produced, how to illustrate
the evolution of community is another issue. In the studies of evolution of community, Palla et
al [6] proposed a point of view that the basic operation in a community life should contains
birth, death, growth, contraction, merge and split.

Asur et al. [13] considered the issue of community evolution and they defined their own
community similarity function. They proposed five critical events such as Continue, K-merge,

K-split, Form and Dissolve to illustrate the evolution of communities between two
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consecutive timestamps.

Lin et al [3] proposed the Evolution net which is a bipartite graph to illustrate all
relationship between the communities of every two consequent timestamps. However, Lin et
al [3] didn’t illustrate how a community evolution over time. Kim et al [5] also propose a
heuristic mapping algorithm based on mutual information.

However the above methods [6, 13, 3, 5] made effort in the mapping a community at
previous timestamp to a community at current timestamp ( 1-1 mapping problem ). We use

Fig 2-3 to illustrate the point of view.

Figure 2-3 Evolution Net

The evolution net shown in Fig 2-3 i1s a bipartite graph from t-1 to t. There are 5
communities (A, B, C, D, E) at't-1 and 5 communities (F, G, H, |, J) at t. A node indicates a
community and an edge from a community of t-1 to community of t indicates that there is a
relationship between these two communities where the edge weight indicates the similarity
between them. The community B having relationships with communities F and G could be
considered as community B being divided into two parts, one part of B merges with
community A into community F at timestamp t; the other part of B and one part of C are
merged into community G. The merge and split operations of communities could happen at
the same time.

Although the similarities between communities are determined and are shown an edge
weight in Fig 2-3, there is no indication community F is a split part of B or F is a growth of
community A. Similarly, we do not know if community C is dead while community G

matches with community B. It is judged that the one to one mapping is not suitable for real
9



dynamic networks.
2.2.2 The approach of Evolutionary Clustering

The approach of Evolutionary clustering was first proposed in [1] taking into account the
concept of temporal smoothness. Each community partition in the time sequence should be
similar to the community partition at the previous time slice. The community partition should
accurately reflect the change of the interaction graph. For evolution clustering, [1] adopted the
two widely used clustering algorithms, k-means and agglomerative hierarchical clustering
incorporating temporal smoothness.

Fig 2-4 shows the details of the concept of temporal smoothness. Given the dynamic
network G={Gy, G, ..., Gu1, Gy, ...}. Gt is the interaction graph of time t. The CP; indicates
the community partition at time t and. is' affected. by previous community partition CP; and

the current interaction graph G..

Temporal Smoothness

Evolutionary
Community —»( CP_, —%» CP, —» CP,, —»
Partition 5 a

Interaction
Graph
Figure 2-4 Concept of temporal smoothness

In order to measure the quality of community partition based on the concept of temporal
smoothness, the objective function is defined:

Cost(CP!) = a * SC(G,,CP!) + (1 — &) * TC(CP,_y , CPY) (1)

Consider all possible community partitions AP = { CP!, CP?, ..., CPl...}. For each
community partition CP!, the snapshot cost SC() measures the similarity between the
interaction graph G and CP} . The temporal cost TC() measures the similarity between the

previous community partition CP.; and CP!. While the SC() is lower, the quality of snapshot
10



is higher. While the TC() is lower, the quality of temporal smoothness is higher. The optimal

community partition CP= CP{ |min, pi_,p{Cost(CP)}. The parameter a controls the

vCP}
emphasis of the result of community partition. While a =1, the community partition CP;
would be the same as community partition discovered in G; . On the other hand, the CP;
would be the same as CPy.; whilea =0.

Chi et al [2] extended the concept of temporal smoothness and considered that the
characteristic change of dynamic community contains both long-term trend drift and
short-term variation due to noise. They proposed two evolutionary spectral clustering
algorithms called Preserving Clustering Quality (PCQ) and Preserving Clustering
Membership (PCM). Their experiment shows that PCQ and PCM are less sensitive to
short-term noises while at the same: time-are adaptive to long-term cluster drifts. The spectral
clustering uses the eigenvectors of Laplacian matrix for clustering the graph nodes. The
Laplacian matrix L= D-A where D is the diagonal matrix-whose element D;; equals the degree
of vertex i and A is the adjacency matrix of the graph.

Lin et al [3], who are the first critic, argue-that the methods of two-stage approach are
inappropriate in applications with noise data. They considered an individual could be assigned
to more than one community so they further assumed that each interaction graph G; is
combined effect by community partition CP;. They extended a mixture model [30] and
incorporated the concept of temporal smoothness. The mixture model is a probabilistic
model for representing the presence of sub-populations within an overall population, without
requiring that an observed data-set should identify the sub-population to which an individual
observation belongs.

Given G; as the interaction graph at time t and assume there are k communities at time t.
Mixture model assumes that the edge Gj; of G, is combined effect due to all the k communities

S0 Gjj = YK P* Py * P._; where P, is the prior probability that the interaction G;; is due
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to the r-th community, P._; and P.,; are the probabilities that an interaction in r-th
community involves node i and node j, respectively. Written in a matrix form, we have
Gt ~ XAXT where X is a n x k non-negative matrix and Xj; indicates the probability of
node i belonging to community j. In addition, A is a k x k non-negative diagonal matrix

with A; = P, where A; indicates A;;. We use Fig 2-5 to illustrate the mixture model [3].

(a) (b) (©)

Figure 2-5 Mixture model(a). the original -graph Gt- (b) the bipartite graph with two

communities ¢l and c2 (¢) How to approximate an edge (G42).[3]

In Fig. 2-5, there are 6 nodes and-2 communities. For a general graph Gt in Fig 2-5(a),
we use a special bipartite graph Fig 2-5(b) to-approximate Gt. Note that (b) has two more
nodes, i.e., ¢l and c2, corresponding to the two communities. In (c), we show how an edge
G34 iIs generated in the mixture model as the sum of A; * X531 * X4, and A, x X3, *x X4, [3].

The Kullback-Liebler divergence was used to measure the difference between two
community partitions P and Q to reconstruct the defined cost function. They proposed “A
Framework for Analyzing Communities and EvoluTions in dynamic NETworks” (FacetNet),
defined the Community net and Evolution net to represent the community structure and
evolutions.

However, the methods in [ 1, 2, 3 ] assign a fixed number of communities over time and
do not allow arbitrary start/stop of community over time [5].

Kim et al [5] overcome the problems of fixed number of community and arbitrary

12



start/stop of community. They first model a dynamic network as a collection of particles
called nano-community, and a community as a densely connected subset of particles, called a
quasi I-clique-clique. They proposed a greedy algorithm called “a Particle-and-Density Based
Evolutionary Clustering Method” (PD-Greedy). PD-Greedy extends density based clustering
[20, 21] and incorporates with the concept of temporal smoothness. They used a cost

embedding technique to efficiently find temporally smoothed local clusters of high quality.

Evolutionary CP CP CP
Community tl t trl

Partition

Evolutionary
e —> (&) —(E6) > E)—
Interaction
Graph GD_Ted G&D

Figure 2-6 Flowchart of PD-Greedy

Fig. 2-6 shows the flowchart of PD-Greedy in which the working flows of temporal
smoothness is reconstructed. The comparison subject is pushed from community level to
down data level. At each timestamp, an evolution graph (EG;), which reference both previous
evolution graph (EG¢.1) and current interaction graph (Gt), is produced. Then the community
partition based on the EG; is discovered.

However, the methods including PD-Greedy [1, 2, 3, 5] based on temporal smoothness
have several drawbacks. The parameter a of cost function might affect the community
partition produced by the methods based on temporal smoothness.

Assume the interaction data is the same as in Fig 2-1, the previous community partition
CP; is shown on the left of Fig 2-7 and the snapshot partition of G, is shown on the right of

Fig 2-7.

13



CP,

Snapshot partition

Figure 2-7 Community partition of temporal smoothness

Based on temporal smoothness, the community partition CP; is not only similar to CP;
but the snapshot partition of G,. if the parameter a of the cost function of the concept of
temporal smoothness is close to one, the CP, is similar to the result of two-stage-approach and
has the same weakness of two-stage approach. On the other hand, if the parameter a of the
cost function of the concept of temporal smoothness is _close to zero, it is hard to catch new
community birth or change.

Tang et al [4] proposed_the algorithm of Evolutionary Multi-mode Clustering where
multi-mode network typically consists of multiple -heterogeneous social actors among which
various types of interactions could occur. However, we consider the network which has only
single kind of interaction and this network is different from multi-mode networks in [4].

Besides, there is another issue, analyzing all interaction data [8]. Interaction data could
frequently change violently over time so analyzing the interaction data at a single time slice
may miss important tendencies of a dynamic network. An individual tends not to change he’s
“home community” too frequently. An individual tends to interact with the member of his
“home community” most of the time where the “home community means the original
community of the specific individuals [8]. They proved that find the most explanatory
community structure is NP-hard and APX-hard problem where the class APX ( approximate)
is the set of NP optimization problemsthat allow polynomial-time approximation

algorithms with approximation ratio bounded by a constant (or constant-factor approximation
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algorithms for short)[31]. They also proposed a greedy heuristic approximation algorithm
using individual coloring and group coloring to identify the dynamic communities at each
timestamp where the same colored individuals and group means the same community.

However, the greedy heuristic algorithm in [8] is not appropriate for large dynamic
networks and mining the communities with all timestamps of interaction graph would take
huge computation time.

2.3 Motivation

To summarize, the methods [6,7] based on the two stage approach presume that there is
no relationship between individuals while no interactions occurs between them and it often
results in community structure with significant changes [3]. The methods based on the
approach of analyzing all interaction data take huge computation cost and are not linearly
scalable. The methods based onthe approach of Evolutionary clustering which discovers
the community partition based on the property of current interaction graph have the same
weakness as two stage approach. And the parameter a = of cost function based on temporal
smoothness also huge affects community partition.

Besides, on the study of evolution of community, current researches [6, 5, 13, 3] are not
suitable for real dynamic community due to the one-to-one mapping in which one community
of previous timestamp maps to one community of current timestamp.

For dynamic community detection, our goal is to develop a framework which not only
has higher accuracy, linearly saleable execution time but also realistic community partition
result which reference multiple interaction graphs. Besides discovering dynamic communities
at each timestamps, there should be a general method to explain the evolution of

communities.
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Chapter3
Notation and Problem Definition

In this section, we formally introduce necessary notation and formulate the problems.
3-1 Notation and Symbol definition

We define a dynamic social network G as a sequence of interaction graphs.
Definition 1 (Interaction Graph)
An interaction graph G; = (V, Ey) is an un-weighted undirected graph where a node indicates
an individual and an edge indicates that an interaction occurs between two individuals at time
t.
Definition 2 (Dynamic Social Network)
A dynamic social network G is a sequence of interaction graph Gt. i.e. G = {G,, Gy, ..., G, ...}
where the G; (V,Ey) is an interaction graph and the t indicates the t-th time point.

For example, the Fig 2-1'shows the first three graphs.in a dynamic social network.
Definition 3 (Observation Window)
The observation window W of current time point.tcis defined by observation eyeshot (wr).
i.e. W = {time pointt |tc — wr < t < tc +'wr} where the tc indicates the current timestamp.

We use the interaction graphs whose time points are included by observation window ¥
to produce the relationship graph RG..
Definition 4 (Relationship Graph)
A relationship graph RG; is a weighted undirected graph at time t. i.e. RG; = (VR, ER) where
VR indicates the set of individuals of RGy; ER indicates the edges of RG; and the edge
weight indicates the relationship strength between the individuals. Let Wi(u, v) represent the
relationship strength between individuals u and v at time t.
Definition 5 (Community Partition)

A community partition CP; is the a sequence of communities at time t. i.e. CP;
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={Ci,C%, ..., Ci, ...} where Ci is the j-th community of CP; .

3-2 Problem Statement

Definition 6 (Dynamic Community Identification)

Given a dynamic social network G = {G;, Gy, ..., Gy, ...}, How to produce the community
partition CP; of each timestamp? While the community partitions of each timestamp have
been discovered, How to determine the evolution between the communities of every two

consecutive timestamps?
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Chapter 4

Relationship Extraction Strategy

In this chapter, we first illustrate the framework of EPC, “relationship Extraction and
community Pedigree dynamic Community miner”, and then we introduce how the
Relationship graph is constructed. The Relationship Extraction strategy extracts the
relationship strength using interaction data and combines the normalized decay weight
function to simulate the change of relationship strength within a fix time observation window.

4-1 Proposed Framework

Interaction
Graphs

Construct the Relationship
Graph RG,

Discovering community
partition CP, using RG, CP

Determine the evolution
of community EN, using
CP, EN,

Fig 4-1 Flowchart of EPC, “relationship Extraction and community Pedigree dynamic
Community miner”

The flowchart of EPC, “relationship Extraction and community Pedigree dynamic
Community miner”, shown in Fig 4-1 and consists of three phases. (1) Construct the
relationship graph RGt which is using a set of interaction graphs within observation window.
(2) Use static community detection methods to discover the community partition CP; based on
the Relationship Graph produced in first step. (3) Determine the evolution of community

using the community partitions.
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Graph
| |
1 Observation Window |
Assume L L L 1
wr=1 t-wr t t+wr '

timestamp

Fig 4-2 Framework of EPC, “relationship Extraction and community Pedigree dynamic
Community miner”

Our framework of EPC is.shown in Fig 4-2. Assuming the observation eyeshot wr = 1,
tc=t, so the relationship graph RG; Is constructed using interaction graphs G, Gi.1 and Gea.
Then we use static community detection method to generate the community partition CP;
based on the relationship graph RG. While the.community partitions of each timestamp have
been generated, we determine the relationship between communities at each consecutive time
points using the Community Pedigree Mapping.

The graph on the top of Fig 4-2 is the pedigree of community A where a node indicates a
community and an edge indicates the similarity strength between communities. The “pedigree
of community A” shows all the communities which have relationship with community A. A
square shape indicates the spouse community of A and the triangle shape indicates this
community would be dead at next timestamp. There are 5 community spread on the
timestamps {t-1, t, t+1}. The community F is similar to previous community A and B so F is
the child of A and B. The community L is the child of G and F. The community B is the

spouse of A and G is the spouse of F. While we want to monitor some communities to figure
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out if these communities are involved with each other, the pedigree of community would be a
good way to illustrate.

We present the Relationship Extraction strategy to construct the relationship graph RG;
in chapter 4. We present current static clustering method, SHRINK [12], in chapter 5 and
we propose the Community pedigree Mapping to solve the problem of evolution of
communities in chapter 6.

4.2. Generating Relationship Graph?

The relationship graph RG; is constructed from interaction graphs which are most to the
current time point t. We use the observation eyeshot wr to control the observation window ¥.
For example, Assuming wr=2 and tc =3, then ¥ = {1,2,3,4,5} and the relationship graph
RG;3 is constructed using interaction graph Gz and those interaction graphs 2 time units before
(G1, Gy) and after (Gs, G4) current time tc. Then we determine the relationship strength
Wic(u,v) between individuals uand v using the predefined normalized weight function.

Here we propose a nave normalized- weight function, normalized Equal weight function

(EQL) as follows.

1
NQ(t,tc)—m,Vt EY )

EQL considers the interaction graph of each time point within ¥ having the same
weight and makes sure the weight summation would be equal to 1. Using normalized weight
function to determine the relationship strength of each pair of individuals is just like the

function as follows:

WtC (u, V) = ZV tey Iu,V (t) X N(t' tC): (3)
where Iu,v (t) — {é; if there exists an ediih(:;\;a;/:ithin interactiongraph G¢ and N(t, tC) is the

predefined normalized weight function.
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Figure 4-3 Example of determining the relationship strength

We use Fig 4-3 to illustrate ‘how the relationship strength determined. Assuming the
observation eyeshot wr equals to«2 and the interaction between individual u and v occurs at
time 2, 6 and 7. The relationship strength between individual u and v at tc = 3, W3(u, v) =
L,y(1) *No(1,3) + 1,,(2) *Ng(2,3) + [ (3)*xNo(3,3) + IL,,(4)*Nq(43) +
I, »,(5) * No(5,3) = (0*0.2)+ (1*0.2)+"(0*0.2)+ (0*0.2)+ (0*0.2) =0.2 . Using the same
process we calculate Wy(u,v) = 0.4, Ws(u,v) = 0.4 .

Using Eqg 3 to determine the relationship graph RG; of Fig 2-1 and the RG; is shown on
the bottom of Fig 4-4. A node indicates an individual and the edge weight W5(u, v) indicates

the relationship strength between individuals u and v.
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Figure 4-4 Using the EQL weight function to construct the Relationship graph RG2 of sample
interaction data of Fig 2-1
4.3 Normalized Decay Weight Function
Assuming the observation eyeshot-wr and.the Observation window W is predefined. We
propose three Normalized Decay weight functions:

Linear Decay weight function (LIN):

-1
wr+1

N, (t, tc) =

x|[t—tc|+1,Vt €W 4

Wave Decay weight function:

Ny (t, tc) = 0.5 * (Sin (2 * T * (lzt:;il + (p)) + 1) ,Vt e ¥ (5)
,where ¢ = 0.25
Exponential Decay weight function:
—|t—tc]|
NE(t,tc)zexp( — ),‘v’t E Y (6)
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Fig 4-5 Normalized Decay \Weight Function (wr=2)
The N, () is based on linear decay and the weight distribution is shown in the curve
(LIN) in Fig 4-5. Using N, () to.calculate the relationship strength is the same as the example

in section 4-2. We multiply the weight N(t,tc) with the interaction occurring in ¥ and sum
all the values.

The N,,() is based on the sine function of trigonometric functions to produce the

relationship graph. The weight distribution is shown in the curve (WAVE) in Fig 4-5.

The Ng() is based on the approach of exponential decay function. If the weight

decreases at a rate proportional to its value, it is called exponential decay [11]. The processes
can be modeled by the following differential equation.

W AN
dt

()

where N is the weight quantity and A is called decay constant.

The decay constant A controls the decay rate of the exponential decay and we use
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A = 1/wr inour work. The weight distribution is shown in curve (EXP) in Fig 4-5.

For each normalized decay weight distribution, if there are some interactions whose time

point is out of the Observation Window, the weight is assigned zero. Note that exponential

decay weight distribution the weight of time point out of the observation window W is

non-zero but we simply assume the weight is zero.

4.4 Discussion of Relationship Extraction Strategy

In real world, the relationship between individuals could decay over time and the

interaction at each time point within ¥ should be considered an energy which increases the

relationship strength between individuals. So we presume each interaction has the same

lifetime equal to the size of observation window. Then the lifetime of each interaction would

be extended from 1 to the size of observation window. This property could overcome the

weakness that there is no relationship between individuals while no interactions occur|

Relationship strength

0.5

04

0.3

0.2

0.1

=@ |Interaction cruve
® g d att=2

=B~ |nteraction curve
att=6
=A== |nteraction curve

R Gl i B |
n=-
/ ",

/ N\ att=7

/ 7 N\ —8— Relationship
et == = —A =P

strength curve

1 2 3 ., 4 5 6 7
time point

Fig 4-6. Relationship strength curve between u and v by extraction from the interaction data

of Fig 4-2 based on Normalized Equal Weight Function (wr=2)

Fig 4-6 shows the evolution of relationship strength of individual u and v in the

interaction data of Fig 4-3 using normalized equal weight function. The dotted line implies the

interaction occurring at time points 2, 6 and 7. The interactions at all time points have the

same lifetime equal to the size of observation window W. The solid line sums up the curves

of all interactions and represent the relationship strength of individual u and v over time.
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However, the solid line in Fig 4-6 which shows the relationship curve is higher at time
t=4, 5, 6 and 7. The relationship strength curve does not match any interaction data occurred

and this curve does not have the property of dynamics.

. 0.6 =@ “|nteraction curve
g att=2
=04 =B~ |nteraction curve
= att=6
(2]
é 02 = 4= |nteraction curve
% att=7
a4 - N —®— Relationship
0 B=P——=PN==1 O—=1+ =0 =<
strength curve
1 2 3 4 5 6
time point

Fig 4-7. The Relationship strength curve of the interaction data of Fig4-2 based on
Normalized Linear Decay Weight function (wr=2)

We change the equal weight function to the linear decay weight function and the
Relationship strength curve i1s shown in Fig 4-7. The solid curve in Fig 4-7 indicates the
relationship strength of individuals ‘and the curve-is high at t=2, 5, 6, 7 and the solid curve
matches with the timestamps interaction occurred. The difference between Fig 4-6 and Fig 4-7
is that the relationship strength curve in Fig 4-7 demonstrates more dynamic property than
that in Fig 4-6 so the normalized decay weight function would be more realistic than equal

weight function.
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Chapter 5
Current Static Community Detection methods

After generating relationship graphs at each time point, we choose static community
methods for discovering the community partition at each timestamp. Although  many  of
studies have focused on community detection on static networks, not every method is suitable
for relationship graph. Two issues need to be considered about: (1) Discovering communities
using the weighted graph (relationship graph). (2) Detecting the noisy vertices whose
relationship strength is too low to belong to any community. The SHRINK algorithm [12]
overcomes the problem of parameters pre-definition, such as minimum similarity threshold (g)
and minimum core size (u), in density-based clustering algorithms and the predefined number
of clusters in partitioning-based clustering algorithm. Through their experiment, SHRINK is
an efficient, parameter free and high_ accuracy algorithm while comparing with other
algorithm [18, 19]. So we choose:SHRINK as our clustering algorithm. For comparison, we
also use the greedy density-based clustering method (GSCAN) used in PD-Greedy [5, 21].

In section 5.1 we represent the detailed definition of GSCAN and section 5.2 represents
the definition of SHRINK. Section 5.3 illustrates the quality measurement of community
partition. Section 5.4 describes the detail algorithm of SHRINK algorithm and the algorithm
of GSCAN is represented in section 5-5.

5.1 GSCAN

In this chapter we present the definition of GSCAN and related notation. Let (V, E, w) be
a weighted undirected network where w is the weight set of edge set E, GSCAN uses the
structure similarity as similarity measure and the related definition is as follows:

Definition 7 [5]. (Neighborhood)
Given G= (V, E, w), for a node u € V and the adjacent nodes of u are neighbors of u
('w)).ie.: '(w) ={vevV|(uv) € E}U{u}.

Definition 8 [5]. (Structural Similarity)
26



Let G= (V, E, w) be a weighted undirected network. The structural similarity between two
adjacent nodes u and v is defined as below:

Yxerwnry) @ (Wx)*w(v,x)

\/err‘(u) w? (u:x)*\/ZxEl"(v) w?(v,x)

o(u,v) =

(8)

where w(u, v) indicate the weight of edge(u, v)

GSCAN applies a minimum similarity threshold € to the computed structural
similarity when assigning cluster membership as formalized in the following €
-Neighborhood definition:

Definition 9[5]. (¢ -Neighborhood)
Foranode v € V, the € -Neighborhood N,(v) ofanode v isdefined by N.(v) = {x €
F(w)|o(v,x) > &}

When a vertex shares structural similarity with enough neighbors, it becomes a seed for a
cluster. Such a vertex is called a core node, Core nodes are a special class of vertices that have
a minimum limit of p neighbors with a structural similarity that exceeds the threshold ¢
[21].

Definition 10[5]. (Core node)

Anode v € Viscalled acore node w.rt. £and y,if [Nz.(v)| = L.

Definition 11[5]. (Directly reachable)

Anode x € Visdirectly reachable fromanode v € Vw.rt. €andp if (1) node v is core
node. (2) x € N.(v).

Definition 12[5]. (Reachable)

Anode v; € Visreachable fromanode v; € Vw.rt. eand p if there is a chain of nodes
Vi, Vig1,--» Vj—1, Vj SUCh that v, isdirectly reachable from v; (i <j)w.rt. eand p.
Definition 13[5]. (Connected)

Anode v € Visconnectedtoanodeu € Vw.rt. eandp ifthereisanode x € V such

that both v and u are reachable from x w.r.t. € and p.
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Definition 14[5] (Connected cluster)
Anon-empty subset S € V is called a connected cluster w.r.t. €and p if S satisfies the
following two conditions:
(1) Connectivity: V v,u € S, visconnected to w w.r.t €and p.
(2) Maximality: Vv v,u € V,ifv € Sand u isreachable from v w.rt €and y,
then u € S.
Using the above definition, a structure-connected cluster with respect to € , y is

uniquely determined by any cores of this cluster.

Figure 5-1 (a) Sample network G (b) Connected cluster of Sample network G

We use the Fig 5-1 to illustrate the related definition. In Fig 5-1, a node indicates an
individual and an edge indicates the structural similarity between individuals. Let € =
0.6 and p = 3, we could evaluate the Core nodes as node 13, node 15 and node 6. The node
10 is Directly reachable from node 13 due to that node 13 is a core node and ¢(13,10) > «.
The node 4 is Reachable from node 6 due to the Directly reachable chain (node 6, node 15,
node4). Based on the definition of Connected cluster, there are two clusters, {3, 10, 11, 13}
and {1, 4,5, 6, 9, 14, 15}.

5.2 SHRINK

In this section we introduce SHRINK and related notation. For structural similarity
measure, SHRINK uses the same cosine similarity as GSCAN and the related definition is as
follows:

Definition 15[12]. (Dense Pair) u &, v
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Given a network G(V,E), If a(u,v) is the largest similarity between nodes u and v and
their adjacent neighbor nodes. i.e.: o(u,v) = max {o(x,y)|(x =u,y € T(w) — {uhV(x =
v,y € '(v) — {v}} then {u,v} is called a Dense Pair in G, denoted by u <, v, where
e =o(u,v) is the largest similarity between nodes u and v and their adjacent neighbor
nodes.
Definition 16[12]. (Micro-community)
Given a network G=(V,E), MC(a)= (V', E") is a connected sub-graph which is represented by
node a in network G. MC(a) is a local Micro-community if and only if
(1) aeV’
(2)forallu € V',3v € V'(u . v)
RAueVu e vAue VAv V)
where ¢ = a(u,v) represents the largest similarity between nodes u and v and
their adjacent neighbor nodes:
We use the Fig 5-1(a) to'illustrate the‘Dense Pair and Micro-Community. All the Dense
Pair within the Fig 5-1(a) are shown.in Fig 5-2. The dot line nodes and dot line edges indicate

that these nodes are Dense Pair and could'be grouped into a Micro-Community.

Figure 5-2 All Dense Pairs within the sample network G in Fig 5-1(a)
Definition 17[12]. (Super-network)
Given a network G=(V, E, o), V = {V,,V,, ..., Vx} is a community partition of the node set VV

and VvV; € V, the sub-network MC;=(Vi, E;) induced by the node set V; is a local
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Micro-community in G. Define E={(u,v)€EqueV,aveV} and &(V,V)=
max {o(u,v)|u € V;,v € V;}; then G = (V,E, &) is called a Super-network of G.

Especially, the algorithm not only discovers all the communities but also the hubs and
outliers in the network. A hub is called an overlap community and a hub plays a special role in
many real networks such as search engines of web page network and the communication
center of protein. An outlier does not belong to any communities because the similarities
between it and other nodes are too small. This algorithm does not partition all the nodes into

communities and this property is just perfect for our requirement.

5.3 Measurement of Partitioning Quality

Although several well-known quality measures such as normalized cut [24] and
modularity [18] have been proposed, the modularity is the most popular measure by far.

GSCAN and SHRINK both use the same similarity-based modularity function Qs [25].

2
Qs = 35 = () | ©)

Assume the community_ partition” has k communities { c*, C?, .., C¥ }, IS; =
Yuvecio(w,v) is the total similarity of “the nodes within cluster C'
DS; = Yyecivey 0(u,v) is the total similarity between the nodes in cluster C* and any
nodes in the network, and TS = ¥, ,ey o(u,v) is the total similarity between any two nodes
in the network.

SHRINK is based on this quality function (Qs) and incrementally calculates the
increment of the modularity quality. Given two adjacent local communities C* and €/, the

modularity gain can be computed by

2US;j5 2DS;*DS;
TS (TS)?

AQg = QsCiUCj - QsCi — Qscj = (10)

Where US;; = X, ecivec (1, V) is the summation of similarity of total edges between

two communities C¢ and ¢/,

Based on Eq (10), assume that the micro-community MC; is constructed by h clusters
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i.e.. MC; ={C%,C?,...,c"}, the modularity gain AQg for merging a micro-community

MC; into a super-node can be easily computed as

Yxye(itiz,...ih}USxy  Xxye(iiz,..ih} DSx*DSy

SHRINK uses the modularity gain to control the shrinkage of the micro-communities.
Only while the modularity gain is positive (AQg(MC) > 0), these communities within

micro-community (MC) could be merged into a super-node.

5.4 Algorithm of SHRINK
We use Fig 5-1 ~ Fig 5-5 to illustrate the key point of SHRINK. Given a simple network

G as shown in Fig 5-1, nodes indicate the individuals and the weight of an edge indicates the
Structural Similarity between individuals.

Each round of process of SHRINK has two phases. (1) For each node u we considered u
as a micro-community MC(u), determine If each neighbor of the node x within MC(u) is the
Dense pair. If x within MC(u) and a node v of the neighbors of x is Dense pair, then push v
into the micro-community MC(u). The example is shown the Fig 5-3(a) and 5-4(a). The dotted
lines indicate all Dense pairs found in'the network G. (2) SHRINK determines the AQ¢(MC;)
for all micro-communities {MC;, MC,, ...MCy} and only while the AQs(MC;) > 0, all the
nodes of the micro-community MC; would be merged into a super-node which contains more
than one node at next round. Fig 5-3(b) and 5-4(b) show the second process of SHRINK. Fig
5-5(a) shows the result of third round of the SHRINK process and Fig 5-5(b) shows the fourth
round of the SHRINK process. Fig 5-5(b) displays that the process of SHRINK terminates of
Y. AQs(MC;) < 0. The network shrieked from G is called Super-network as shown in Fig
5-3(a) and Fig 5-4(a). Fig 5-5(b) shows the final result of SHRINK and there is a hub (node 2)

and an outlier (nodel6).
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(b)A Q>0, Shrink
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Fig 5-4 Round 2(a): Find all Dense pairs in G
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Fig 5-5 (a): Round 3 shrink becauseA Q>0 (b) Round 4 no-shrink becauseA Q<0

Algorithml : SHRINK][12]

Input: weighted networks G = (V, E)

Output: Set of clusters CP = {C,, C,, ..., C¢}; Set of hubs and outliers N;
1. CPe« {{vi}|vie V} ;

2. while true do

3 /IPhase 1: Detect the all Dense Pairs of G
4 Micro-community MC (v) « {v};

5: for each unclassified v € V do
6:

7

8

9

temp community C(v) « @ ;
Classify v; Queueq; g.insert(v);
e « max{o(v,x)|x € T(v) —{v}} ;
: While g.empty() # true do
10: ue g.pop();

11: if u=v V max{o(u, x)|x € T'(v) — {u}}=¢
12: C(v) < C(v)u{u};

13: foreachw eT'(u) —u

14: if o(w,u) = ¢

32




15: g.insert (w) ;
16: end

17: end

18: end

19: end

20: MC — MCuU C(v)

21: end

22: //Phase 2.2: Shrink micro-community
23: AQs < 0;

24: foreach C € MCdo

25: if |C|>1 AAQs(MC) > 0 then
26: CP « (CP— Upiecl{ivi}h v {71} ) ;
27: AQ «— AQ +AQs(MC);

28: end

29: end

29: if AQ =0 then

30: break;

31: end

32: end

33: N«0O

34: foreachC € CPdo

35: if |IC|=1

36: CP—CP - C;

37: N«—NU C;

38: end

39: end

40: return CP,N;

Figure 5-6 Algorithm of SHRINK

5.5 Algorithm of GSCAN
In this section, we describe the algorithm GSCAN. GSCAN is extended from SCAN [21]

and combines with greedy heuristic setting of € . SCAN performs one pass scan on each
node of a network and finds all structure connected clusters for a given parameter setting. The
pseudo code of the algorithm SCAN is presented in Fig 5-7. Given a weighted undirected
graph G (V, E), at the beginning all nodes are labeled as unclassified. For each node that is not
yet classified, SCAN checks whether this node is a core node. If the node is a core, a new
cluster is expanded from this node. Otherwise, the vertex is labeled as a non-member.

GSCAN use greedy heuristic setting of € to optimize the modularity score Q of
clustering result. GSCAN adjusts the € with change of modularity score Q and decreases or

increasese until Q reaching the local maximum modularity [5].
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Algorithm2 : SCAN [21]

Input: weighted networks G=(V, E), € , p

Output: Set of clusters CP = {C,, Cy, ..., C¢} , modularity score Q .
1: //all nodes in V are labeled as unclassified;

2: CP<«0;

3: for each unclassified nodev € V do

4 /I STEP 1. check whether v is a core;

5 if COREe ,u (v) then

6: /I STEP 1.1. if v is a core node, a new cluster is expanded,;
7 set C —0;

8: insertall x € N, (v) into queue Q;

9: while Q # 0do

10: y = first vertex in Q;

11: R={x € V|DIirREACHe ,u (y,x)};

12: foreachx € Rdo

13: if x is unclassified or non-member then
14: C—C ux

15: end

16: if x is unclassified then

17: insert x into queue Q;

18: end

19: end

20: remove y from Q;

21: end

22: CP~CP U C;

23: end

24: end

25: /1 1.2 determine the modularity'score of CP;

26:Q = Qs(CP);

27: return CP, Q

Figure 5-7 Algorithm of SCAN

GSCAN chooses a median of similarity values of the sample nodes picked from V and
the sampling rate is only about 5~10%. GSCAN increases or decreases the € by a unit Ae =
0.01 or 0.02 and maintains two kinds of heaps: (1) max heap Hmax for edges having similarity
below seede ; and (2) min heap Hpi, for edges having similarity above seede . Hmax and
Hmin are built during the initial clustering. After finding the initial clusters CP and calculating
its modularity Qmigs, GSCAN calculates two additional modularity values, Qnigh and Qiow. Here,
Qnign is calculated from CP with the edges having similarity of range [seede , seede + Ag] in
Hmin, and Qjow Calculated from CP except the edges having similarity of range [seede - Ag,
seede ] in Hmax. If Qnign is the highest among Qnigh, Qmid, and Qiow, GSCAN increases the

density by Ae. If Qiow IS the highest value, GSCAN decreases the density by Ae. Otherwise,
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seede would be the best density parameter. The initial clustering CP is continuously
modified by adding edges from Hy.x to CP or by deleting edges of Hy,in from CP. The detailed

algorithm of GSCAN is in Fig 5-8[5]:

Algorithm2 : GSCAN [5]
Input: weighted networks G=(V, E), € , p
Output: Set of clusters CP = {C,, C, ..., C¢}, modularity score Q.
1. CPpige— @; CPhigh<—® ; CPiow 0 ;
Qmia <0, OQnigh <—0; Qiow0;
(CPrig» Qmia ) <~ SCAN(G, € , | );
(CPhigh, Qnign ) «~SCAN(G, € +Ag, Y ) ;
(CP|OW1 Qlow) — SCAN(G, € —Ag, p ) ;
while ( Qmig ! = max (Qmia ,Qnigh ,Qiow)) dO

if  Qnigr == max (Qmig ,Qhigh »Qiow)

€ «—¢& +Ag ;
(CPrigs Qmig ) < (Cphigh: thgh);

10: (CP|OWI Qlow) — (CPmida Qmid ) ;
11: CPhighs Qnigh <~ SCAN(G, € +Ag, Y );
12: else if  Qmin == max (Qmig ,Qnigh »Qiow)
13: € «—¢& +Ag ;
14: (CPhighs Qnigh) < (CPria, Quid );
15: (CPrmigs Qumia ) < (CPiows Qiow) 5
16: (CPiow, Qiow ) < SCAN(G, € =Ag, 4 )5
17: end
18: end
19:  return CPpig, Qmid;

N TRwN

Figure 5-8 Algorithm of GSCAN
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Chapter 6
The Community Pedigree Mapping

Current methods [6, 13, 3, 5] made effort in the problem of mapping one community of
previous timestamp to one community of current timestamp (1-1 mapping problem). We
argue these methods are not suitable for real community evolution as discussed in section 2.3.
So we propose a community pedigree mapping to express the evolution of communities. In
this chapter we illustrate the evolution of communities between two consecutive time points.
Section 6.1 provides the description of community similarity and section 6.2 presents the
states of a community during its lifetime of community. Section 6.3 introduces the details of
Community Pedigree Mapping and section 6.4 presents “relationship Extraction and
community Pedigree dynamic Community miner’> (EPC).
6.1 The Similarity between Communities

Social networks are dynamic and different amount of individuals are alive at each time
point. If some individuals disappear at the time point either t-1 or t, we assume those are
negative ones. On the other hand, the positive individuals who we care about are alive at both
two consecutive time points t-1 and t. 'We further define those individuals as Influence
individuals.
Definition 11 (Influence individuals)
Given the relationship graphs RG1(VR ;, ER ;) and RGy(VR, ER). The VR, is the node set of
the relationship graph RG,_; and VR is the node set of RG,. We define the Influence
individuals at time points t-1 and t are:

M) ={ueVjueVk, nvi} (12)
Our Community Pedigree Mapping is based on Influence individuals to determine the

similarity of community.

Definition 12 (The similarity between the Communities at different timestamps)
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Given the i-th community C!_,=(Vi_,,Ei_,) of community partition CP._, at time t-1 and
the j-th community Ci = (th, Ei) of CP, at time t. The similarity between community Cl_;
and community Ci is the number of individuals who are alive at both time points t-1 and t

and is defined below.

Vi_nvinm(
max (|Vit_1nn(t)|,|vinn(t)|)

o(cl_,,cl) = (13)

A B
t-1
8/12 @ 6/10
t
C D

Figure 6-1 Example of community similarity calculation
Take Fig 6-1 as an example, we.using. it illustrate the function 6-2. There are two
communities A and B at time t-1 and two communities C and D at time t. There are 8

members overlapped between community A and community C. The similarity between A and

Cis % since the community size of A is larger then C (12> 10).

Figure 6-2 (a) Merge example (b) Split example
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There is a serious problem, splitting or merging of small community would cause the real
alive state disappear, while we determine the similarity between the communities. We use the
Fig 6-2 to illustrate the situation. Considering the two communities A and B at time t-1 and C
at time t in Fig 6-2(a), C is still the combination of A and B even though the members of
community C are almost the members of A while there is no constrain for similarity
generation; In Fig 6-2(b), Communities E and F both are the splitting of D even though F has
few members of community D. The above phenomenon is not reasonable so we predefine the

Minimum community similarity threshold (p) to avoid this situation. On the other hand, we set

Vi_,nvinm(
max (|Vi_, n(O}[VinTi®)])

the ®(Ci_,,C) = 0 while the < Minimum community similarity

threshold (p).
6.2 The State of Communities

Dynamic Community could change over time and we further define five community
states: Birth, Death, Alive, Child and Division.
Definition 13 (Birth)
A new community C{ is born at time.t iff -there 'is no similarity between C. and any
communities Ci_jof CP._;.i..:3Cl € CP, #ACi_, € CP_;:®(Ci_;,C)) >0
Definition 14 (Death)
An old community Ci_, is dead at time point t iff there are none similarity between Ci_,
and any communities of community partition CP,
ie.:3Ci_, € CP_, ,AC) € CP: ®(Cl_,,Cl) >0
Definition 15 (Alive) A current community Ci is alive iff there is similarity between one
community C._, of community partition CP,_; and one community C{ of CP. i.e. ac{ €
CP,3!Cl_; € CP_y: ®(Cl_,,C) >0
Definition 16 (Child)

A current community Ci is a child of {CL,,CZ,,..,Cl,}iff there exist more than one
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community C._, in CP_; having similarity to a communityCi of CP.. ie.:3Cl_, €
CP_1i=1,.,n 3! C" € CPy: q’ie{1,2,...,h}(ci—1» CD >0
Definition 17 (Fission)
A current community {C},CZ,..,CP} are fissions of Cl_, iff there exist communities
{CL,C?,...,CM} of CP, similar to a single community C!_, of CP._; A VCl€CP,. ie.:
3CE, CE, ..., CP € CP,3!Cl_y € CP_y: Pier1z ny(Ci_4,Cl) >0

We use the Fig 6-3 to illustrate the five states of community. A node indicates a
community and an edge weight indicates the similarity between communities. There are 5
communities (A, B, C, D, E) at time point t-1 and 5 communities (F, G, H, I, J) at time point t.
The Fig 6-3(a) is the original graph and the Fig 6-3(b) is the evolution result of our
community pedigree Mapping.

HAB OOE L MA®® OO A

0.3/1 0.7,

0.3 1 1 3l 1
ONONORY FNCNH N X/
(@) (b)

Figure 6-3 Example of evolution of communities

0.7}/ o.

(1) Birth: Acircle colored purple indicates that a community is born at current time point
t and the example is shown as the community J in Fig 6-3(b). (2) Death: A triangle indicates
that a community would be dead at next time point and the example is shown as the
community E in Fig 6-3(b). (3) Alive: A circle of colored red indicates that a community is
Alive from only one community at time t-1 to only one community at time t. The example is
shown as the community | at time t which is Alive from the community D at time t-1 in Fig
6-3(b). (4) Child: A circle of colored green indicates that a community is a child of some

communities at time t-1. The example is shown as the communities F which is the child of A
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and B in Fig 6-3(b); (5) Fission: A circle of colored blue indicates that a community is a
fission of a single community of time t-1 and the example is shown as the community H
which is a fission of C in Fig 6-3(b).

6.3 Community Pedigree Mapping

1@9 ) @ G A t=1
t=2
‘L_
t=3
H_J \ ]

t=4 Pedigree  pegigree
of A of B

Pedigree
of D

Figure 6-4 (a) Evolution net (b) Pedigree of single Community

After we determine the similarities between communities and the states of communities,
the states of a community express the evolution of all communities as in 6-4(a). Besides, the
evolution of single community we called pedigree. \We use the same states of a community to
express the evolution of single community. Fig 6-4(a) shows the similarities between
communities and the state of communities from t=1 to t=4 and is called evolution net [3]. Fig
6-4(b) shows the pedigrees of community A, B and D. In the pedigree of specify community,
a circle shape indicates that this community has blood relationship with the specific
community. A square shape indicates that this community is non-blood relationship spouses of
blood relationship communities.

In the pedigree of A, communities B is a non-blood relationship spouse of A. Their child
F has a spouse G at time t=2 and their child is L. The community L is dead at time 4 so the
pedigree of community A ends at time t=4. In the middle of Fig 6-4(b), the pedigree of
community B, F is the child of A and B; G is the child of B and C; the community L is the

child of F and G. The community G is blood relationship spouse of F so the shape of G is
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circle; Community M is fission of G. We could see the pedigree of community B ends at time
t=4. In the pedigree of community D. Community | is Alive of D; K is Alive of | and P is
Alive of K. The pedigree of D develops and does not finish.

Though the illustration, we could observe the life time of community. Community could
be alive, split and merge over time. The proposed community pedigree Mapping expresses the
evolution of community and solves the “one to one mapping problem”.

6.4 Proposed Algorithm: “relationship Extraction and community Pedigree
dynamic Community miner” (EPC)

Assume a dynamic network G={G;,G,...,Gy,...} Where G; is the interaction graph at t,
the observation eyeshot wr, the selected normalized weight function (N(t,tc)) and Minimum
community similarity threshold p, we start the algorithm EPC. For each time point tc, we
determine the observation window W=[tc-wr, tc+wr] and EPC could be divided into three
steps:

(1)Construct the relationship graph RG:

For each edge within interaction graphs G; where time point t is belong to observation
window W, we calculate the relationship strength between individuals (u,v) using Eq (3):
Wie(u,v) = Yy rewlyy(t) X N(t, tc) and then we contruct the Relationship graph RGy.
(2)Use the clustering method, SHRINK [12], to discover the community partition CPy. based
on relationship graph RGy:

(3)Determine the evolution net (EN) for every two consequent timestamps tc-1 and tc:

Based on the predefined Minimum community similarity threshold (p) and the
community partition results at time tc-1 and tc, we calculate the similarity between
communities of tc-1 and the communities of tc using Eq (13). For each community, we

determine the states of communities. The detail algorithm is shown in Fig 6-5.
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Algorithm 2 : EPC

Input: Dynamic networks G = {G;,G,, ...,G, ...} where G, is the interaction graph of time t, observation
eyeshot (wr), Selected normalized weight function (N(t,tc)), Minimum community similarity threshold (p)
Output: Community partition of each time point {CP, ,CP,, ...,CP, ...}, the evolution net of all communities
at all time points {EN, ,EN,,...,EN, ...}

1: foreachtc €T do

2 Vree—1 = Vertex set of Relationship graph RGy. ;

3 Relationship graph  RG. « &;

4: Evolution net EN,. « ;

5: Community partition CP_;«CPy; CPc— ;

6:

7

8

9

//Phase 1: Construct the relationship graph RG.

for each edge (u,v) € G, ,wheret € ¥

Determine the relationship strength W, (u,v) = Yyiew Ly, () X N(t, tc) ;

: Insert the edge (u, v,weight = W (u, v)) into Relationship graph RG.=(Vrte) Erte) ;
10: end

11: /IPhase 2: Mining the community using SHRINK

12: CP, = SHRINK (RG,.) or GSCAN(RGy, &, W);

13: //Phase 3: Determine the evolution of community

14: Vree = Vertex set of RGy;

15: Calculate the Influence individuals TI(tc) = Vgie N VRie—1 ;

16: Determine the community similarity ®(C{-,,C™) forall Cf._; € CP._, and C{} € CP,;
17: for each community Cf._; € CP,_; «do

18: if C._, has no similarity with-any Cft € CPthen

19: The state of Cf._q . inevolution.net EN,. <« ¢‘Death’;
20: end

21: end

22: for each C{t € CP,. do

23: if C{2 has no similarity with any Ci_; € CP._; then

24: The state of C{t_inevolution net ENg. -« ‘Birth’;

25: else if C{2 has only one similarity with™ Cf._, € CP,._, then
26: if C{L; hasonly one similarity with C{-then

27: The state of C{™ inevolutionnet EN,. «‘Alive’;
28: else

29: The state of C{" in evolution net EN,. «¢Fission’;
30: end

31: else if C™ has more than one similarities with some Cf._, € CP,._, then
32: The state of C™ in evolution net EN. « ‘Child’;

33: end

34: end

35: Output CP., EN¢;

36: end

Figure 6-5 Algorithm of EPC
For each iteration of EPC, the time complexity of step 1 is O(|ER|) where the ER is the
edge set of relationship graph RGy=( V& ER): the time complexity of SHRINK in step 2 is
O(ER |log(JVE |)) and the time complexity of step 3 is O(|V{|). The total time complexity of
each iteration of EPC is O(|[ER |log(|[VR|)) and the efficiency bottleneck of EPC depends on

the clustering algorithm chosen.
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Chapter 7
Experimental results and Performance study

In this chapter, the accuracy and efficiency of EPC would be examined. The environment
is on a AMD Athlon(tm) IT X2 240 CPU of 2.8 GHz with 2GBytes of main memory, running
on Windows XP. The proposed EPC is implemented using C++. We compare EPC with the
FacetNet [3] and PD-Greedy [5] by using 2 synthetic datasets SYN-FIX and SYN-VAR.
SYN-FIX generates the dynamic network of a fixed number of communities and fixed
number of nodes over time. SYN-VAR generates the dynamic network of a variable number
of communities and variable number of nodes over time. For accuracy comparison, we use the
mutual information to evaluate the performance.

Section 7.1 describes the details of synthetic dataset generator and quality measurement
using mutual information. Section 7.2 'presents the discussion of all parameters of all
comparison algorithms. Section 7.3 presents ‘the accuracy of synthetic data experiment.
Section 7.4 presents the smoothness quality of synthetic data experiment. Section 7.5 presents
the scalability of synthetic data experiment and section 7.6 presents the result of real data
experiment.

7.1 Synthetic Data generation

7.1.1 SYN-FIX

Parameter Description Default
n Initial number of vertices. 128

s C Initial size of community. 32

n_c Initial number of communities. 4

Avg v _deg Average vertex degree. 16
Avg_v_out_deg | Average vertex degree out of original community. 3~5
Ran_sel Random select some vertices out of original community. 3

Table 7-1 Parameters of SYN-FIX

The data generator SYN-FIX has been released in [26] and the original idea is proposed
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in [18]. The same idea is also discussed in [5]. The SYN-FIX produces an environment of
fixed number of nodes and communities over time. It generates a network which has 128
nodes, four communities of 32 nodes each and average vertex degree (Avg_v_deg) 16. Table
7-1 describes the parameters of SYN-FIX.

In SYN-FIX, the parameter Avg_v_out_deg is the average out-degree of all nodes in
network. The Avg_v_out_deg controls the number of inter-edges placed between different
communities so the number of intra-edge placed in a community is decided at the same time.
The number of intra-edges is increasing while Avg_v_out_deg is decreasing. We generate two
datasets of SYN-FIX (SYN-FIX-VOD_3 and SYN-FIX-VOD_5) and produce such networks
for twenty consecutive timestamps. The SYN-FIX-VOD_3 uses the Avg_v_out_deg = 3 and
the SYN-FIX-VOD _5 uses the Avg_v. out. deg'= 5. At each timestamp 3 randomly selected

nodes would leave original community and randomly join the other three communities.

7.1.2 SYN-VAR

Parameter Description Default
n Initial number of vertices. 256

s C Initial size of community. [32, 64]
n_c Initial number of communities. [4, 8]
Avg c_e-ratio Average community edge ratio. [0.2,0.8]

Avg c_out_e-ratio | Average community edge ratio out of original community. | [0.3, 0.5]

Ran_sel Random select some nodes out of original community. [8, 20]
Add_v_at Add some new vertices at each time point. 16
Add_new_c_at Add new community at some time points.

Remove_min_c_at | Remove min-community at some time points.

Table 7-2 Parameters of SYN-VAR

SYN-VAR is first discussed in [5]. The SYN-VAR produces an environment of variable
number of nodes and communities over time. The Average community edge ratio
(Avg_c_e-ratio) is the ratio of the maximum intra-edges to the node number of the selected
community. The average community edge ratio out of original community (Avg_c_out_e-ratio)

means the ratio of inter-edges to total edges of the community. That is we generate the
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network containing 256 nodes, 4 communities of 64 nodes each. Set the average community
edge-ratio (Avg_c _e-ratio) to 0.5 and average community edge ratio out of original
community (Avg_c_out_e-ratio) to 0.3. The total number of edges of a single community is
0.5*(64*63/2) = 1008. The number of inter-edges is 1008*0.3 = 432 and the number of
intra-edges is 1008-432 = 676.

All datasets produced by SYN-FIX and SYN-VAR is shown as in Table 7-3.

Type

Synthetic Dataset

Description

SYN-FIX

SYN-FIX-VOD_3

Fixed node number, fixed community number
and average vertex out degree=3.

SYN-FIX-VOD_5

Fixed node number, fixed community number
and average vertex out degree=>5.

SYN-VAR

SYN-VAR-COE_0 3 REG

Dynamic changed node number, dynamic
changed  community  number, average
community out edge ratio = 0.3, creating new
communities at time points {3, 5, 7, 9, 11, 13,
15,17, 19} and deleting the smallest community
at time{4; 6, 8, 10, 12, 14, 16, 18, 20}

SYN-VAR-COE.0 5/ REG

Dynamic =~ changed node number, dynamic
changed.- “community  number, average
community out edge ratio = 0.5, creating new
communities at time points {3, 5, 7, 9, 11, 13,
15, 17,19} and deleting the smallest community
at time{4, 6, 8, 10, 12, 14, 16, 18, 20}

SYN-VAR-COE_0_3 RAN

Dynamic changed node number, dynamic
changed  community  number, average
community out edge ratio = 0.3, randomly
creating 7 new communities at time points {2, 3,
4, 6, 9, 10, 14} and deleting the smallest
community at time{7, 9, 14, 15, 18, 19, 20} 20}

SYN-VAR-COE_0 5 RAN

Dynamic changed node number, dynamic
changed  community  number, average
community out edge ratio = 0.5, creating new
communities at time points {1, 2, 3, 6, 8, 11, 12}
and deleting the smallest community at time{7,
8,10, 11, 14, 16, 17}

Table 7-3 Synthetic datasets generated by SYN-FIX and SYN-VAR

We generate four datasets of SYN-VAR and produced such networks for twenty
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consecutive timestamps. At each timestamp SYN-VAR randomly selects some nodes to be
removed and randomly selects some nodes to be added to the network. We simulate the
dynamic property of social networks using three parameters: “the average community out
edge ratio” (Avg_c_out_e-ratio), “add new community at some time points” (Add_new_c_at)
and “remove min-community at some time points” (Remove_min_c_at). New communities
would be created at randomly selected time points. The smallest community would be
removed at randomly selected time points. New communities would be constructed by parts
of the larger communities at previous time. For example: the dataset
SYN-VAR-COE_0 3 REG indicates the average community out edge ratio = 0.3, regularly
creates communities at time points {3, 5, 7, 9, 11, 13, 15, 17, 19} and regularly deletes the
smallest community at time {4, 6, 8, 10,12, 14,16, 18, 20}. The description of other datasets
would be clear in Table 7-3.

The dataset generators, 'SYN=FIX and SYN-VAR,. provide the ground truths of the
communities while they produce the interaction graphs of dynamic networks. The accuracy of
EPC can be compared with these ground truths. \We use the normalized mutual information
(NMI) as the performance of accuracy since NMI is well-known to evaluate the quality of

clusters produced by clustering algorithm [27] as is defined as:

MI(X,Y)
NM] = ———— 14
[HX)+H(Y)]/2 (14)
where MI(X, Y) is the Mutual information of two random variables X and Y. MI(X,Y)

measures the mutual dependency of X and Y and is defined as:

MI(X,Y) = Zyey Zaexp(x,¥) X log (222 —) (15)

where p(X, y) is the joint probability distribution function of X and Y, and p1(x) and p2(y)
are the marginal probability distribution functions of X and Y respectively.
H(X) is the entropy of X and H(Y) is the entropy of Y. Entropy is a measure of the

uncertainty associated with a random variable. The score of NMI is normalized to 0.0~1.0 and
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the accuracy is higher while the score is higher.
7.2 Synthetic Data Experiment
We compare EPC algorithm with two algorithms, FacetNet [4] and PD-Greedy [5]. First

we would experiment and discuss the effect of all different parameters of EPC-SHRINK,

EPC-GSCAN, FacetNet and PD-Greedy.
7.2.1 Parameter of FacetNet: a

FacetNet is based on the concept of temporal smoothness and uses the parametera to
control the community partitioning. However, the parameter a could affect the community
partitioning. So, we use different a to observe the change of the community partitioning.

As shown in Fig 7-1, FacetNet are tested using SYN-FIX and SYN-VAR datasets. The

vertical axis is the average NMI and the horizontal axis is the parameter a from 0.1 to 0.9.

Each line within Fig 7-1 is the-performance of different datasets. The accuracy of FacetNet is
stable whatever the value of a ' is. That is the FacetNet is-not influenced by the value of a .
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—e— FacetNet-SYN-FIX-
VOD_5
3 . . . —0 @ ——k=--FacetNet-SYN-VAR-
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COE_0_5 REG
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1 1 1 1 1 T 1 ﬁj COE_0O_3 RAN
0 ==& FacetNet-SYN-VAR-
0.1 0.5 a 0.9 COE_0_5 RAN

Average NMI
o
N

o
N
T

2
L 4
L 4

3

Figure 7-1 Parameter of FacetNet: a
7.2.2 Parameters of PD-Greedy[5]: a and p

PD-Greedy has two parameters: a the parameter of temporal smoothness and p  the

constraint of community size.

47



SYN-FIX-VOD_3 — PDi(iFEEdV
u=1%

--&-- PD-Greedy
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—@— PD-Greedy
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Figure 7-2 Parameters of PD-Greedy: a , g on dataset SYN-FIX-VOD_3
Fig 7-2 shows the experimental result of PD-Greedy on a and u . The vertical axis is
the average NMI and the horizontal axis is the parameter a from 0.1 to 0.9. Each line within
Fig 7-2 is the performance for different parameters u on dataset SYN-FIX-VOD 3. The
relevance between Avg-NMI and parameter p isdow and the presetting of parameter p
has dependency on datasets. While the-parameter a. is below 0.5, the Avg-NMI grows with

a . While the parameter a isabove 0.5, the trend of Avg-NMI changed fuzzily.

1 —
SYN-FIX-VOD_5 —— PD-Greedy
u=1%
==k=- PD-Greedy
u=2%

—— PD-Greedy
u=3%

--#-- PD-Greedy
u=5%

—&— PD-Greedy
u=7%

Figure 7-3 Parameters of PD-Greedy: a , g on dataset SYN-FIX-VOD_5
Fig 7-3 shows the result of PD-Greedy on dataset SYN-FIX-VOD_5. Each line has low
Avg-NMI due to the noise of dataset SYN-FIX-VOD_5 is higher than that of

SYN-FIX-VOD_3. Avg-NMI has ambiguous correlation with parameter a .
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Figure 7-4 Parameters of PD-Greedy: a , 4 on dataset SYN-VAR-COD 0 3 REG

1 -
SYN-VAR-COE_0_5_REG —— PD-Greedy
u=1%
--k-- PD-Greedy
u=2%

—— PD-Greedy
u=3%

--#-- PD-Greedy
u=5%

=8 PD-Greedy

0.1 05 4 0.9 u=7%

Figure 7-5 Parameters of PD-Greedy. a , - ondataset SYN-VAR-COD_0 5 REG

Fig 7-4 and 7-5 are the experimental results of PD-Greedy on different datasets. Fig 7-4
and Fig 7-5 show the same phenomenon the same as Fig 7-2. i.e.: the Avg-NMI grows with
a while the parameter a is below 0.5; the trend of Avg-NMI changed fuzzily while the
parameter a is above 0.5. While the noise level is higher, Fig 7-5 shows that the Avg-NMI
is higher using lower parameter y . We do not show the experimental result of
SYN-VAR-COE_0_3 RAN and SYN-VAR-COE_0 5 RAN due to the same property as
shown in Fig 7-4 and 7-5.

In summary, the parameter a should be setting within the range between 0.6~0.9 and
the parameter u  should be setting within the range between 1%~3% for producing better

Avg-NMI.
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7.2.3 Parameters of EPC-SHRINK: observation eyeshot, decay weight
functions

EPC-SHRINK uses the clustering algorithm SHRINK [12] and has two parameters,
observation window and four weight functions. EPC-SHRINK use equal weight function
(EQL) and other three normalized decay weight functions, linear decay (LIN), exponential
decay (EXP) and wave decay (WAVE). While we set the observation eyeshot wr increasing,
the interaction data of overlap time points would increase, the change of relationship strength
of relationship graph would be small then the change of community partition is guaranteed to
be small. However, increasing the wr is not always better for all situations and we use Fig 7-6

to illustrate the circumstance.

0.6

0.5F

0.4 -

0.2

0.1F

0.0

time point

Figure 7-6 The EXP weight function under different observation eyeshot wr
Fig 7-6 shows the curves of EXP weight function based on different wr. That the curve is
getting smooth with the increasing wr shows the decay property of EXP being averaged out
with the increasing wr. So the range of wr should be fixed and the setting of wr depends on

the property of network.
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Figure 7-7 Parameters of EPC-SHRINK: observation eyeshot, decay weight functions on
dataset SYN-FIX-VOD 3
Fig 7-7 shows the experimental result of EPC-SHRINK on dataset SYN-FIX-VOD_3.
The vertical axis is the average NMI and_the horizontal axis is the different values of
observation eyeshot (wr). The« results revealed ‘that equal weight function (EQL) is
significantly inferior to other three normalized decay weight functions, LIN; EXP and WAVE.
The LIN; EXP and WAVE; have the same behavior-and stable accuracy. Besides, the

observation eyeshot is moderately negative related to. Avg-NMI.

0.6

SYN-FIX-VOD_5

—— EPC-SHRINK-EQL

—— EPC-SHRINK-LIN

--&-- EPC-SHRINK-EXP

--0-- EPC-SRHINK-WAVE
1 2 3 4
Observation eyeshot(wr)

Figure 7-8 Parameters of EPC-SHRINK: observation eyeshot, decay weight functions on
dataset SYN-FIX-VOD 5
Fig 7-8 shows the experimental result of EPC-SHRINK on dataset SYN-FIX-VOD 5.

The vertical axis and horizontal axis are the same as Fig 7-7. On the opposite, the observation
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eyeshot and Avg-NMI have been shown to be positively correlated with each other. The
experiments summarized indicate no strong relationship between Avg-NMI and observation
eyeshot. The results of other datasets show the same property as Fig 7-7 and 7-8 so we do not
display the experimental result of other datasets here.

In summary, the presetting of observation eyeshot has dependency on specific dataset.
On selection of decay weight functions, LIN, EXP and WAVE have roughly the same
Avg-NMI on all datasets generated by us.

7.2.4 Parameters of EPC-GSCAN: observation eyeshot, decay function and

M

EPC-GSCAN uses the clustering algorithm GSCAN [5]. We try to clarify the correlation
between Avg-NMI and observation.eyeshot (wr). Considering that the experimental results of
most datasets are approximately the same. We use datasets, SYN-VAR-COE_0 3 RAN;
SYN-VAR-COE_0_5 RAN, and linear decay weight function in the experiment.

SYN-VAR-COE_0 3 RAN —4— EPC-GSCAN-LIN
reee - u=1%

0.95
-=-&=-- EPC-GSCAN-LIN
509 ¢ u=2%
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}t'b.ss u=3%
08 --#-- EPC-GSCAN-LIN
u=5%
0.75 * * * —#— EPC-GSCAN-LIN
1 5 u=7%

Observatio3n window(wrz)t

Figure 7-9 Parameters of EPC-GSCAN: observation eyeshot, y on dataset
SYN-VAR-COE_0_3 RAN
Fig 7-9 shows the experimental result of EPC-GSCAN-LIN on dataset
SYN-FIX-VOD_3. The vertical axis is the average NMI and the horizontal axis is the
different values of observation eyeshot (wr). The 5 curves in Fig 7-9 use different parameters

M . The result appear that using small y and small observation eyeshot (wr) would get
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higher value of Avg-NMI.
1
SYN-VAR-COE_0_5_RAN — Epi‘/GSCAN‘“N
u=1%

==k=-- EPC-GSCAN-LIN
u=2%

—— EPC-GSCAN-LIN
u=3%

--o-- EPC-GSCAN-LIN
u=5%

0 ‘ ‘ ‘ : —8— EPC-GSCAN-LIN

4 u=7%
0bservatio?;1 window (wr) > °

Figure 7-10 Parameters of EPC-GSCAN: observation eyeshot, y on dataset
SYN-VAR-COE_0 5 RAN
Fig 7-10 shows the experiment of EPC-GSCAN-LIN on dataset
SYN-VAR-COE_0 5 RAN. The vertical axis and the horizontal axis indicates the same
information as Fig 7-9. The result appear to reject the assumption that using small gy and
small observation eyeshot (wr) would get better Avg-NMI. In terms of the relationships
between observation eyeshot (wr). and Avg-NMI; the results depict no correlation and the

parameter presetting is data dependent.
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123456 7 8 91011121314151617181920 u=5%,wr=2

Timestamp

Figure 7-11 Parameters of EPC-GSCAN: decay weight functions on dataset
SYN-VAR-COE_0_3 RAN

We compare with different decay functions on dataset SYN-VAR-COE_0_3_RAN in Fig
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7-11. The vertical axis is the NMI score and the horizontal axis is timestamp. Each decay
function uses the optimal parameters, u and observation eyeshot wr. The presetting
parameter is shown on the right of Fig 7-11. The result shows that the equal weight function is

worse than other decay weighted functions.
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Figure 7-12 Parameters of EPC-GSCAN: decay weight functions on dataset
SYN-VAR-COE_0.5 RAN

In Fig 7-12, the result shows the same property as Fig 7-11. While the noise level is
increasing, using EXP or WAVE function has better Avg-NMI than using EQL or LIN.

In summary, the presetting of observation eyeshot and the parameter y depend on
specified dataset. On selection of decay weight functions, the EXP and WAVE decay weight
function have better Avg-NMI than other functions.

7.3 Accuracy Comparison

EPC has two algorithm versions, EPC-SHRINK and EPC-GSCAN. We compare EPC
with two algorithms, FacetNet [4] and PD-Greedy [5]. These algorithms need to preset their
respective parameters as discussed above. In the figures of this section, “a” is the parameter of
temporal smoothness, p is the constraint of community size and wr is the observation

eyeshot. We use the parameters of highest Avg-NMI for each algorithm.
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Figure 7-13 Accuracy comparison on dataset SYN-FIX-VOD_3
Fig 7-13 shows the accuracy comparison for SYN-FIX datasets. The vertical axis
indicates the NMI score and the horizontal axis indicates timestamp. The solid curves of

EPC-SHINK and EPC-GSCAN show higher accuracy than the dotted curves of FacetNet and

PD-Greedy.
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Figure 7-14 Accuracy comparison on dataset SYN-FIX-VOD_5
In Fig 7-14, the vertical axis and horizontal axis are the same as Fig 7-13. The solid
curves of EPC-SHINK and EPC-GSCAN show the higher accuracy than both the FacetNet

and PD-Greedy even though the noise level is higher than Fig 7-13.
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Figure 7-15(a) Accuracy comparison on dataset SYN-VAR-COE 0 3 REG
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Figure 7-15(b) Accuracy comparison on-dataset SYN-VAR-COE_0 5 REG
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Figure 7-15(c) Accuracy comparison on dataset SYN-VAR-COE_0_3 RAN
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Figure 7-15(d) Accuracy comparison on dataset SYN-VAR-COE_0 5 RAN

Fig 7-15 shows the accuracy for SYN-VAR datasets. Fig 7-15 shows that the accuracies
of EPC-SHRINK and EPC-GSCAN are more stable and better than FacetNet and PD-Greedy
whatever the noise level is high or low in the datasets SYN-VAR.

In general, the accuracy of EPC-SHRINK is better than EPC-GSCAN and it appears that
the clustering quality of SHRINK isbetter than the clustering quality of GSCAN. The
accuracy of EPC-GSCAN is better than PD-Greedy. The experimental results validate that the
concept of Relationship graph-adopted outperforms the concept of temporal smoothness in
dynamic networks over time.

7.4 Smoothness Comparison

For the smoothness property of community partitioning, we further assume that the
normalized mutual information (NMI) of every two consecutive timestamps is higher and the
smoothness quality is better. We compare the smoothness among EPC-SHRINK,

EPC-GSCAN, FacetNet and PD-Greedy using the same parameters in section 7.3.
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Figure 7-16 Smoothness comparison on dataset SYN-FIX-VOD_3
Fig 7-16 shows the smoothness quality of EPC-SHRINK, EPC-GSCAN, FacetNet and
PD-Greedy. The vertical axis is the NMI score and the horizontal axis is timestamp. The solid
curves of EPC-SHRINK and EPC-GSCAN have higher quality of smoothness than the dotted

curves of FacetNet and PD-Greedy.
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Figure 7-17 Smoothness comparison on dataset SYN-FIX-VOD_5
Fig 7-17 shows the smoothness quality on dataset SYN-FIX-VOD_5. The change of the

curve of SHRINK is very violent due to higher noise level of dataset.
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Figure 7-18(a) Smoothness comparison on dataset SYN-FIX-COE_0 3 REG
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Figure 7-18(b) Smoothness comparison.en dataset SYN-FIX-COE_0 5 REG
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Figure 7-18(c) Smoothness comparison on dataset SYN-FIX-COE_0_3 RAN
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Figure 7-18(d) Smoothness comparison on dataset SYN-FIX-COE_0 5 RAN
Fig 7-18 shows the accuracy for SYN-VAR datasets. Fig 7-18 shows that the smoothness
quality of EPC-SHRINK and EPC-GSCAN are more stable and better than both FacetNet and
PD-Greedy whether the noise level is high or low in the datasets SYN-VAR.
In summary, the smoothness guality of EPC-SHRINK is better than EPC-GSCAN. The

smoothness quality of EPC-GSCAN is better than PD-Greedy.

7.5 Scalability
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Figure 7-19: Execution time of EPC-SHRINK, EPC-GSCAN and PD-Greedy w.r.t different
input size
Fig 7-19 shows the execution time EPC-SHRINK, EPC-GSCAN and PD-Greedy w.r.t
different amount of nodes. The horizontal axis indicates the node number of different datasets

and the node number is exponential growth in 2. The vertical axis indicates the execution time
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in log2 scale. Although PD-Greedy is faster than EPC-SHRINK and EPC-GSCAN, the result
of PD-Greedy may be very bad and unstable. On the other hand, EPC-GSCAN has almost the

same speed as PD-Greedy and good accuracy while using huge datasets.
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Fig 7-20: Memory usages of EPC-SHRINK, EPC-GSCAN and PD-Greedy

In Fig 7-20, the horizontal axis‘is the same ta Fig 7-20. The vertical axis indicates the
memory usage for different ‘datasets. While the datasets is increasing, the result shows
EPC-SHRINK, EPC-GSCANand PD-Greedy are linearlyscalable with the size of datasets.
7.6 Experiment on Real world dataset

We use three real datasets to ‘evaluate our algorithm EPC: (1) Enron email [16] (2)
Facebook [17] (3) DBLP data [14]. We only show the experiments of FacetNet at Enron email
dataset since FacetNet only performs at small datasets experiment. In this section, we
compare with PD-Greedy with all the real data experiments.
7.6.1 Enron email dataset

For the Enron email dataset, it is the email record between employees of Enron
Corporation. Email address represents an individual and the edge represents email exchange.
Enron email dataset contains 150 users and 24,140 messages in the company. We use a
cleaner version of the dataset from March 2000 to April 2002. We split Enron dataset with the
time slice unit = 5 days because an appropriate time unit is suggested for analyzing dynamic

networks [10]. We arrange this data from 150 time slices, observation eyeshot wr = 2 and
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preset the Minimum community similarity threshold (p)=0.3.
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Figure 7-21 Result of Enron email dataset using EPC-SHRINK
In Fig 7-23, the horizontal axis is the time slice of Enron email dataset. The vertical axis
iIs the cumulative number of states of community. The curve of Alive state is higher than other
states of community and the curves of other states are the same. There is no doubt about the

result because the variation ‘of company: network. is relatively low than general human

relationship.
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Figure 7-22 Smoothness quality result on Enron email dataset
In Fig 7-22, the horizontal axis is the time slice of Enron email dataset and the vertical
axis is the cumulative number of states of community. For the smoothness quality of the EPC
in Enron dataset, the curve of EPC-SHRINK shown in Fig 7-22 demonstrates the high

smoothness quality. And the curves of FacetNet and PD-Greedy show that the smoothness
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quality is worse than EPC-SHRINK in Enron email dataset.
7.6.2 Facebook dataset

For the Facebook, there are two records, friend list and wall posts. We use the wall posts
as our interaction data. Facebook dataset contains 46,952 users and 876,255 wall posts in the
dataset. We also use a cleaner version of the dataset from January 2006 to January 2009. We
aggregate these data using the same time slice unit (5) as Enron email dataset to form 220
time points, observation eyeshot wr = 2 and the same Minimum community similarity

threshold (p)=0.3.
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Figure 7-23 Result of Facebook dataset using EPC-SHRINK
Fig 7-23 shows the result of Facebook dataset. The respective unit scales of horizontal
and vertical axis are the same as Fig 7-22. The number of Alive state is always higher shows
that most communities are alive and stable in real world. The cumulative numbers of Birth
states and Dead state is higher than that of Fig 7-23 demonstrates that the real dynamic
networks could change quickly. Child and Fission shows that the friend relationships are
cultivated quickly at recent time. The cumulative number of merge and split operations

indicate that these operations are not common in dynamic social networks.
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Figure 7-24 Smoothness quality result on Facebook email dataset

For the smoothness quality in Facebook dataset, the curve of EPC-SHRINK shown in
Fig 7-24 expresses that the smoothness quality is still high.
7.6.3 DBLP dataset

The DBLP dataset presents the interaction information of co-authorship. We take out the
related dataset from 2000 to 2009 which contains 769,137 authors and 1,068,239 records. A
node represents an author and an edge between nodes represents the co-authorship between
authors. We use a year as a time unit due to the characteristics of interaction data. We preset
the observation eyeshot wr = 1 and the same Minimum community similarity threshold

(p)=0.3.
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Figure 7-25 Result of DBLP dataset using EPC-SHRINK

Fig 7-25 shows the result of DBLP dataset. The cumulative number of Alive being
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higher than other states depicts that most communities are alive over time. The cumulative
numbers of Child and Fission are still lower than that of other states depicts the same
phenomenon as the Enron dataset and Facebook.

However, the aggregate number of Birth increases fast shows an obvious fact. For
example: a researcher could be a Master or a Ph. D. who co-worked with the professor and
later he graduated from school. Nevertheless, he chooses another job rather than a researcher
so the phenomenon displays the growth rates of Birth and Death states are higher than Enron
email and Facebook dataset.

Especially in Facebook and in DBLP datasets, the cumulative number of Birth and Death
are higher than in Enron dataset. This phenomenon shows the networks of FacetNet and
Co-authorship change fast. The highly cumulative number of Alive also shows the result that

EPC is more smoothy.
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30.6 | —— EXP wr=2
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ut=%0.01,
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Figure 7-26 Smoothness property of EPC when running with DBLP dataset
For the smoothness quality in DBLP dataset, the curve of EPC expresses higher

smoothness quality than PD-Greedy.
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Chapter 8
Conclusion and Future work
8.1 Conclusion

Although a large number of studies have been made on community detection in networks,
little is known about the property and feature of dynamic community. We propose the
algorithm EPC which provides a novel approach of data smoothness to explore the evolution
of community. The proposed Relationship extraction strategy not only considers the historical
data but also the oncoming data. We also propose a mapping method of community partition
over time called Community Pedigree Mapping which shows the state of community and
displays the life circle of community.

In synthetic data experiment, ourtalgorithm. EPC provides a scalable way to solve the
problem of mining dynamic community. There are two versions of the EPC-algorithm,
EPC-SHRINK and EPC-GSCAN. The experiment demonstrates that EPC-SHRINK and
EPC-GSCAN have higher accuracy than previous algorithms such as FacetNet[3] and
PD-Greedy [5]. For the smoothness quality of community partitioning, the experiment shows
the community partition of EPC is more 'smoothing than FacetNet and PD-Greedy. For the
scalability of EPC, the experiment shows EPC-GSCAN is linearly scalable and almost as fast
as PD-Greedy. In general, the accuracy and smoothness quality of EPC-SHRINK is better
than EPC-GSCAN. It appears that the clustering quality of SHRINK is better than the
clustering quality of GSCAN. The accuracy of EPC-GSCAN is better than PD-Greedy, which
validates that the concept of Relationship graph over time outperforms the concept of
temporal smoothness which using the same clustering algorithm.

We also apply EPC on real datasets to Enron email, Facebook and DBLP dataset. In all
datasets, the cumulative number of Alive state being higher than other states indicates that the
variation of real dynamic communities is quite low in social networks. The growth rates of

Birth and Death in DBLP dataset and Facebook dataset are higher than Enron email dataset,
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indicating that new communities appear more quickly in common relationship than in
company. This phenomenon supports the argument that the real world such as FacetNet and
Co-authorship change fast. The high cumulative number of Alive also verifies the result of
EPC provides the property of smoothness over time.
8.2 Future work

Although EPC has acceptable time complexity and higher accuracy, there still are some
related works worth further investigation. (1) So far there are no convinced theories about
how to measure the quality of dynamic community in dynamic social network even we have
discovered the community. (2) The proposed EPC presets the observation eyeshot wr and
assumes each relationship between individuals should use the same decay weighting function.
In real world the decays of relationshipbetween individuals might be different. Moreover, the
observation eyeshot could be very dependent on different individuals at different timestamps.
(3) In real world, there are many-kinds of interaction-between individuals. How to correctly
determine and present the relationship strength converting various kinds of interactions is still

a challenging problem.
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