
 

 

國 立 交 通 大 學 
 

 

 

 

 

 

無線感測網路下適用於橢圓曲線加密機制 

之快速窗口純量乘法演算法 

 

A Fast Window-based Scalar Multiplication Algorithm for Elliptic 

Curve Cryptography in Wireless Sensor Networks 

 

 

     研 究 生：葉宏男 

           指導教授：王國禎  博士 

 

 



 

 

無線感測網路下適用於橢圓曲線加密機制 

之快速窗口純量乘法演算法 

 

A Fast Window-based Scalar Multiplication Algorithm for 

Elliptic Curve Cryptography in Wireless Sensor Networks 

 

研 究 生：葉宏男          Student：Hung-Nan Ye 

指導教授：王國禎          Advisor：Kuochen Wang 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

A Thesis 

Submitted to Institutes of Computer Science and Engineering 

Department of Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master 

in Computer Sciencmae 

June 2011 

Hsinchu, Taiwan, Republic of China 

 

中華民國一百年六月 



 

 i 

無線感測網路下適用於橢圓曲線加密機制 

之快速窗口純量乘法演算法 

 

學生：葉宏男     指導教授：王國禎 博士 

 

國立交通大學資訊科學與工程研究所 

 

摘 要 

最近幾年來，由於無線感測網路廣泛的應用在軍事、環境監控、健康和

居家照顧上，使得其在安全性方面變得越來越重要。加密機制是一個提供

安全服務的基本技術。因為感測節點的資源有限，所以在執行加密時必須

減少計算、通信和記憶體的負載。橢圓曲線加密機制和其他的加密機制比

較，其在通訊、計算和記憶體的使用需求上比較少。此外，在相同的安全

層次上，橢圓曲線加密機制只需要160位元的金鑰長度，而RSA加密演算法

則需要1024位元的金鑰長度，所以橢圓曲線加密機制非常適合用在無線感

測網路上。然而，橢圓曲線加密機制的金鑰產生包含許多的純量乘法，使

得其應用在感測節點上仍需要耗費許多的執行時間。在本論文中，我們提

出一個在無線感測網路下適用於橢圓曲線加密機制之快速窗口純量乘法演
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算法(EW-MOF)。這個方法結合了相互交替型式和改良式窗口方法，它不

只可以減少預先計算的時間和記憶體的使用，而且還可以減少每一個感測

節點包含預先計算時間的平均時間。我們的分析結果顯示，EW-MOF所需

要預先計算點的數目比1的補數演算法還要少，因此它非常適合用在無線感

測網路上。此外，模擬結果顯示，我們提出的EW-MOF在不同的質數域下，

包含預先計算時間的橢圓曲線加密機制，其平均金鑰產生時間比傳統1的補

數演算法還要快24.69%。總之，在節省能源和金鑰產生時間方面，EW-MOF

比1的補數演算法更適用在無線感測網路上。 

 

關鍵詞：橢圓曲線密碼學、相互交替型式、1的補數、純量乘法、窗口方法。 
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 A Fast Window-based Scalar Multiplication 

Algorithm for Elliptic Curve Cryptography in 

Wireless Sensor Networks 

 

Student：Hung-Nan Ye Advisor：Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 

In recent years, the security of wireless sensor networks (WSNs) has become more and 

more important due to extensive applications of WSNs in the areas of military, environmental 

monitoring, health and homecare. Cryptography is a basic technique to provide security 

services for WSNs. Owing to the limitation of resources in sensor nodes, the computation, 

communication, and memory overheads introduced by performing cryptography must be 

minimized. Elliptic curve cryptography (ECC) compared to other cryptosystems requires less 

communication, computation, and memory usages. Hence, ECC is suitable for wireless sensor 

network security because ECC only requires 160 bits length of keys to achieve the same level 

of security as RSA using 1024 bits length of keys. However, the key generations in ECC, 

which involve with a large number of scalar multiplications, is still time consuming when 

applied to sensor nodes. In this paper, we propose an enhanced window-based mutual 

opposite form (EW-MOF) for scalar multiplication with ECC in WSNs. The proposed 

EW-MOF combines MOF with an enhanced window method that can reduce not only 

pre-computation time and memory usage, but also average key generation time including 

pre-computation time in each sensor node. Our analysis has shown that the proposed 
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EW-MOF requires a smaller number of essential pre-computed points than the one’s 

complement and therefore it is very suitable for WSNs. Simulation results show that the 

proposed EW-MOF is 24.69% faster than the one’s complement method, which is a classical 

method, in the average key generation time of ECC including pre-computation time under 

different field sizes. In summary, the proposed EW-MOF is more feasible than the one’s 

complement for wireless sensor networks in terms of key generation time and power saving. 

 

Keywords: Elliptic curve cryptography, mutual opposite form, one’s complement, scalar 

multiplication, window method. 



 

 v 

Acknowledgements 

 Many people have helped me with this thesis. I am in debt of gratitude to my thesis 

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would also like to show 

my appreciation for all the classmates in the Mobile Computing and Broadband Networking 

Laboratory for their invaluable assistance and inspirations. The support by the National 

Science Council under Grants NSC99-2218-E-009-002 is also gratefully acknowledged. 

Finally, I thank my father, my mother and my friends for their endless love and support. 



 

 vi 

Contents 
 

Abstract (in Chinese)…………………………………………….…………………...i 

Abstract ....................................................................................................................... iii 

Contents ....................................................................................................................... vi 

List of Figures ........................................................................................................... viii 

List of Tables ............................................................................................................... ix 

Chapter 1 Introduction ............................................................................................... 1 

1.1 Motivation ......................................................................................................... 1 

1.2 Cryptography .................................................................................................... 2 

1.3 Problem statement ............................................................................................. 2 

1.4 Thesis organization ........................................................................................... 3 

Chapter 2 Background ................................................................................................ 4 

2.1 Elliptic curve cryptography overview ............................................................... 4 

2.2 Elliptic curve Diffie-Hellman protocol ............................................................. 5 

Chapter 3 Related Work ............................................................................................. 7 

3.1 Binary method [3] ............................................................................................. 7 

3.2 Non-adjacent form [9]....................................................................................... 7 

3.3 Mutual opposite form [10] ................................................................................ 8 

3.4 Complementary recoding [12] .......................................................................... 8 

3.5 One’s complement [4]....................................................................................... 9 



 

 vii 

Chapter 4 Proposed EW-MOF Algorithm .............................................................. 11 

4.1 Why use MOF for scalar multiplication ......................................................... 11 

4.1.1 NAF ....................................................................................................... 12 

4.1.2 MOF ...................................................................................................... 12 

4.1.3 Complementary recording ..................................................................... 13 

4.2 Design of the proposed enhanced window method ........................................ 15 

4.3 Design the proposed EW-MOF algorithm ...................................................... 18 

Chapter 5 Performance Evaluation and Discussion ............................................... 25 

5.1 Simulation environment setup ........................................................................ 25 

5.2 Comparison between the proposed EW-MOF and one’s complement ........... 25 

5.3 Discussion ....................................................................................................... 29 

Chapter 6 Conclusion ................................................................................................ 30 

6.1 Concluding remarks ........................................................................................ 30 

6.2 Future work ..................................................................................................... 31 

Bibliography ............................................................................................................... 32 



 

 viii 

List of Figures 

 

Figure 1. Sensor nodes randomly deployed in a sensor field. .................................................... 1 

Figure 2. Three addition cases in an elliptic curve. .................................................................... 5 

Figure 3. Elliptic curve Diffie-Hellman protocol. ...................................................................... 6 

Figure 4. An illustration of how to derive pre-computed points for w = 5 in MOF. ................ 13 

Figure 5. Comparison of the number of pre-computed points under different window sizes 

among NAF, MOF, complementary recoding. ................................................................. 14 

Figure 6. Enhanced window method for deriving essential pre-computed points. .................. 15 

Figure 7. Comparison of the number of essential pre-computed points under different window 

sizes in MOF. .................................................................................................................... 17 

Figure 8. Selection of the best window size under N (assuming 100) times of key generations.

 .......................................................................................................................................... 18 

Figure 9. Flowchart of selecting an elliptic curve and a base point for ECC in WSNs. .......... 22 

Figure 10. Flowchart of the public key generation process for a sensor node. ........................ 23 

Figure 11. Average key generation time excluding pre-computation time under different field 

sizes. ................................................................................................................................. 26 

Figure 12. Average key generation time including pre-computation time under different field 

sizes. ................................................................................................................................. 27 

Figure 13. Average key generation time, excluding pre-computation time, under different 

window sizes. ................................................................................................................... 28 

Figure 14. Average key generation time, including pre-computation time, under different 

window sizes. ................................................................................................................... 29 

         

file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873970
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873971
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873972
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873973
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873974
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873974
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873975
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873976
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873976
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873977
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873977
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873978
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873979
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873980
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873980
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873981
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873981
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873982
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873982
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873983
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873983


 

 ix 

List of Tables 

 

Table 1. Comparison of key lengths in different security levels [7]. ......................................... 4 

Table 2. Comparison of three existing scalar multiplication algorithms. ................................... 9 

Table 3. Comparison of the numbers of pre-computed points and doubling and addition 

operations under different window sizes. ......................................................................... 10 

Table 4. Best selection of S under different window sizes. ...................................................... 17 

file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606954
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606955
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606956
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606956
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606957


 

 1 

Chapter 1  

Introduction 

1.1 Motivation 

Wireless sensor networks (WSNs) are formed by a large number of sensor nodes which 

have features of small size, low cost, low power consumption, and limited computation and 

communication capabilities. Each sensor node is used to collect data from the environment 

and to transmit data back to the sink, as shown in Figure 1. In recent years, WSNs have wide 

applications in the areas of military, health and homecare, which have security issues that 

need to be resolved. Therefore, security on WSNs becomes an essential issue, especially for 

WSNs that are deployed in hostile environments with various potential malicious attacks [1]. 

That is, how to ensure security in WSNs is a top priority concern. 

 

SourceSensor node Sink

 

Figure 1. Sensor nodes randomly deployed in a sensor field. 
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1.2 Cryptography 

Generally speaking, network security focuses on three major issues: authentication, 

confidentiality and integrity. Cryptography is a basic technique to provide security services to 

address the above issues in a network [2]. Recently, establishing secure communications 

between sensor nodes and authenticating communicating nodes have become an important 

issue. Because sensor nodes in WSNs have limited resources, such as computing power, 

communication bandwidth and energy, the computational complexity of the cryptosystem 

must be low. 

Modern cryptography can be classified into two techniques: symmetric cryptography 

(also called secret key encryption) and asymmetric cryptography (also called public key 

encryption). Symmetric cryptography uses the same secret key to encrypt and decrypt 

messages, whereas asymmetric cryptography uses public and private keys. The calculation of 

symmetric cryptography is quick, but it is relatively easier to be attacked. On the contrary, the 

calculation of asymmetric cryptography is slow, but it is difficult to be attacked. 

1.3 Problem statement 

There are many cryptography approaches proposed for WSNs but most of them utilize 

symmetric cryptography. Recently, elliptic curve cryptography (ECC) [5] [6] has been used 

for WSNs because it requires less computational power, communication bandwidth, and 

memory usage compared with other asymmetric cryptosystems. Moreover, ECC is suitable 

for wireless sensor network security over other asymmetric cryptosystems such as RSA and 

DSA, because ECC requires smaller bits length of keys [7]. For example, RSA (DSA) 

requires keys with length of 1024 bits, but ECC requires only 160 bits for the same level of 

security. 

Elliptic curve based protocols, such as Elliptic Curve Diffie-Hellman (ECDH) and 

Elliptic Curve Digital Signature Algorithm (ECDSA), involve scalar multiplication [3]. Scalar 
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multiplication is required in ECC, which takes 80% of key calculation time in each sensor 

node [4]. Many schemes, such as the non-adjacent form (NAF), mutual opposite form (MOF), 

and complementary recoding, discussed how to reduce computation time. In this paper, we 

propose an enhanced window-based MOF for scalar multiplication (EW-MOF). EW-MOF 

converts a binary string into the mutual opposite form (MOF) and uses an enhanced window 

method to scan a few bits at a time. The proposed EW-MOF can largely reduce the number of 

pre-computed points and greatly reduce the computation time and energy consumption in 

each sensor node. 

1.4 Thesis organization 

The remaining of this paper is organized as follows. Chapter 2 introduces the elliptic 

curve concepts. Exiting scalar multiplication schemes are discussed in Chapter 3. We describe 

the proposed EW-MOF in Chapter 4. Simulation results and discussion are presented in 

Chapter 5. We compare the proposed EW-MOF with one’s complement. Finally, Chapter 6 

gives a concluding remark and outlines future work. 
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Chapter 2  

Background 

2.1 Elliptic curve cryptography overview 

ECC is a public key encryption technique based on the elliptic curve theory that was first 

proposed by Victor Miller [5] and Neal Koblitz [6] in 1985. ECC technology can be used in 

encryption, decryption, key exchange and digital signature. ECC is widely used in recent 

years because the computation complexity is lower than other asymmetric cryptosystems. 

Under the same security level, the required key length of ECC is smaller than that required by 

RSA, which is shown in Table 1. Shorter encryption/decryption keys lead to smaller average 

key generation time [7]. 

 

Let E is an elliptic curve over GF(p) which is defined as follows: 

               where a, b   GF(p) and            

Let O mean the infinity. P(x1, y1) and Q(x2, y2) are two points on the curve and we compute R 

= P + Q = (x3, y3) by following equations: 

If P   Q, it involves addition operations: 

                

                   

Table 1. Comparison of key lengths in different security levels [7]. 

RSA over binary field (bits) ECC over binary field (bits) 

1024 160 

2048 224 

3072 256 

7680 384 

15360 512 
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else if P = Q, it involves doubling operations 

              

                   

          
         

There are three addition cases in an elliptic curve that are shown in Figure 2. Those 

arithmetic operations over GF(p) consider about addition, subtraction, multiplication and 

inverse. 

 

2.2 Elliptic curve Diffie-Hellman protocol 

 The traditional Elliptic Curve Diffie-Hellman Protocol (ECDH), which is based on the 

elliptic curve, works as shown in Figure 3. Initially, node A and node B both have the same 

elliptic curve E over GF(p) and the base point P which was suggested by NIST [15]. They 

generate their public keys, namely QA and QB, based on their private keys, KA and KB, by 

multiplying P. After node A shares its public key to node B and node B shares its public key 

to node A, they generate secret key R where R = KA   KB   P. In ECDH, it is hard to be 

figured out the private key (KA or KB) because deriving such a key is an elliptic curve discrete 

logarithmic problem (ECDLP) [5] [6]. 

 

Figure 2. Three addition cases in an elliptic curve. 
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Node 
A

Node 
B

}{ AQ

}{ BQ

PKQ AA 
AK

BA QKR 

Private Key
 

Compute Public  Key

Compute Secret Key 

BK

PKQ BB 

AB QKR 

Private Key
 

Compute Public  Key

Compute Secret Key
 

Figure 3. Elliptic curve Diffie-Hellman protocol. 
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Chapter 3  

Related Work 

ECC is a promising cryptography algorithm in WSNs; however, the scalar 

multiplications during key generation are the bottleneck. A few scalar multiplication schemes 

have been proposed to reduce the computation time. Some famous scalar multiplication 

schemes are briefly reviewed in the following sections. 

3.1 Binary method [3] 

The definition of scalar multiplication is the computation of the form Q = K P, where P 

and Q are two points on the elliptic curve and K is an integer [3]. K is converting into binary 

K =     
    

   , where kj   {1, 0} is used to compute KP by repeatedly executing addition 

and doubling operations and L is the bit lengths of binary K. The binary method scans the bits 

of K either from left-to-right or right-to-left. If kj = 1, then it needs to execute two operations, 

one is doubling operation and the other is addition operation. If kj = 0, then it needs to execute 

one doubling operation. In this method, the number of doubling operations is L – 1 and the 

number of addition operations is hw – 1 where hw is the Hamming weight defined as the 

number of none zero elements. The average Hamming weight is (L – 1) / 2. Thus, if a binary 

representation has more zeroes, the Hamming weight becomes smaller and the computation 

time becomes shorter. For example, if K = (1100111000111)2, then hw = 8. It will require 

hw – 1 = 7 addition operations and L – 1 = 12 doubling operations. 

3.2 Non-adjacent form [9] 

 The signed binary representation is first proposed by Booth [8] in 1951. The signed 

binary representation of K is K =     
    

   , where kj   {1, 0, -1}. If kj = 1 or 0, then it 



 

 8 

requires the same operations with the Binary method. If kj = -1, then it needs to execute two 

operations: doubling and subtraction, where subtraction is based on the addition operation but 

the associated point is changed from (x, y) to (x, -y). Here, we collectively called the 

subtraction as addition. The non-adjacent form (NAF) [9] is a signed binary representation 

and has no two consecutive non-zero digits in the representation. For example, if K = (1111)2, 

then it is converted into K =          . In NAF, the number of doubling operations is L – 1 

and the number of addition operations is hw – 1. The average Hamming weight is (L – 1) / 3. 

Thus, NAF reduces the Hamming weight more than the Binary method and the computation 

time also becomes even shorter. NAF scans the bits of K from right-to-left and requires O(n) 

memory to store the shifted single digit. Hence, the conversion time of NAF is longer. 

3.3 Mutual opposite form [10] 

 In 2004, Okeya [10] proposed a new scalar multiplication scheme called mutual opposite 

form (MOF). MOF is also a signed binary representation. The binary representation of K is 

converted into a signed binary representation by computing mi = ki-1 – ki where “ – ” 

represents a bit wise subtraction [11]. The most significant bit is 1 and the least significant bit 

is -1. The conversion time of MOF is shorter than that of NAF because MOF just requires 

subtraction. And, MOF scans the bits of K either from right-to-left or left-to-right, which is 

more flexible. For example, let us take K = 6599 = (1100111000111)2, then K = 6599 = 

(11001110001110)2 – (1100111000111)2 = (                 )2 , where    means -1. 

3.4 Complementary recoding [12] 

Complementary recoding was proposed by Chang et al. [12] in 2003. Complementary 

recoding is also a signed binary representation and it converts a binary string into a signed 

binary string by using complementary operation. The complementary operation is as follows: 
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        , where kj   {1, 0, -1} and    is the inverse of K. For example, 

if K = 1001, then        . 

The conversion time of complementary recoding is shorter than that of MOF because the 

average Hamming weight of complementary recoding is smaller than that of MOF. That is, 

complementary recoding is faster than MOF. The qualitative comparison of the above three 

scalar multiplication algorithms is shown in Table 2. Note that the average key generation 

time is the average execution time of each algorithm [11]. 

 

3.5 One’s complement [4] 

The window method [16] is different from the above three methods. It scans a few bits at 

a time and divides a binary string into several blocks. The sum of each block is odd and is less 

than 2
w
 where w is the window size. Applying the window method to the elliptic curve 

cryptography will reduce the computation time and increase the memory usage and 

pre-computation time. Table 3 shows an example of K = 6599 = (1100111000111)2 with 

different window sizes from 2 to 13. Note that when the window size increases, the number of 

pre-computed points will also increase geometrically. In addition, the number of addition and 

doubling operations will decrease and the computation time will decrease. Consequently, the 

selection of a window size will affect the computation time. It requires taking a tradeoff 

between pre-computation time and window size. One’s complement algorithm [4] which 

Table 2. Comparison of three existing scalar multiplication algorithms. 

 NAF [9] MOF [10] Complementary recoding [12] 

Hamming weight large large small 

Scanning direction right to left 
right to left 

left to right 

right to left 

left to right 

Average key 

generation time 
large medium small 
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combines complementary recoding with the window method will largely reduces the average 

key generation time. However, it will consume more pre-computation time and memory due 

to the number of pre-computed points. 

 

Table 3. Comparison of the numbers of pre-computed points and doubling and 

addition operations under different window sizes. 

Window size 
Number of 

pre-computed points 

Number of doubling 

operations 

Number of addition 

operations 

2 1 11 4 

3 3 11 2 

4 7 11 2 

5 15 8 2 

6 31 7 2 

7 63 6 1 

8 127 6 1 

9 255 6 1 

10 511 6 1 

11 1023 2 1 

12 2047 1 1 

13 4095 0 0 
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Chapter 4  

Proposed EW-MOF Algorithm 

Because of limited resources in sensor nodes, we cannot use protocols with complicate 

computation in sensor nodes. Traditional ECC-based protocols, such as ECDH and ECDSA, 

take much computation time in scalar multiplication. In this paper, we propose an enhanced 

window-based mutual opposite form for scalar multiplication (EW-MOF) for WSNs that can 

largely reduce the number of pre-computed points and greatly reduce the computation time 

and memory usage in each sensor node. In Section 4.1, we describe why use MOF for scalar 

multiplication. The design of the proposed enhanced window method is described in Section 

4.2. The proposed EW-MOF algorithm using the enhanced window method is described in 

Section 4.3. 

4.1 Why use MOF for scalar multiplication 

Because of using the window method, which scans several bits at a time, we need to 

compute 2
w – 1 

– 1 pre-computed points where w is the window size. For example, if w = 5, it 

requires to compute 2
5 – 1 

– 1 = 15 pre-computed points, which are 3P, 5P, 7P, 9P, 11P, 13P, 

15P, 17P, 19P, 21P, 23P, 25P, 27P, 29P and 31P. We have observed that existing scalar 

multiplication algorithms, such as NAF, MOF and one’s complement with window method, 

all may need to compute many pre-computed points. A large number of pre-computed points 

will increase pre-computation time and memory usage. In the following, we illustrate the 

above three scalar multiplication algorithms combined with the window method. 
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4.1.1 NAF 

According to the NAF algorithm, there are no two consecutive non-zero digits in any 

representation. Thus, if w is odd, the maximal pre-computed point using NAF is 

                   
 

 and if w is even, it would be                       
 

. For example, if w = 5, the 

maximal pre-computed point using NAF is         
 

 and the pre-computed points are 3P, 5P, 

7P, 9P, 11P, 13P, 15P, 17P, 19P, and 21P. Furthermore, if w = 6, the maximal pre-computed 

point using NAF is            
 

 and the pre-computed points are 3P, 5P, 7P, 9P, 11P, 13P, 15P, 

17P, 19P, 21P, 23P, 25P, 27P, 29P, 31P, 33P, 35P, 37P, 39P, and 41P. 

4.1.2 MOF 

Figure 4 shows the procedure of deriving pre-computed points for w = 5 in MOF. Note 

that the maximum pre-computed point is 15P and the number of pre-computed points is 7, 

which are 3P, 5P, 7P, 9P, 11P, 13P and 15P. 
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4.1.3 Complementary recording 

Since complementary recording adopted one’s complement, the maximal pre-computed 

point would be                         
 

, where    means -1. For example, if w = 5, the maximal 

pre-computed point using complementary recording is              
 

  and the pre-computed points 

are 3P, 5P, 7P, 9P, 11P, 13P, 15P, 17P, 19P, 21P, 23P, 25P, 27P, 29P and 31P. 

0 1 0 0 0 0
   0 1 0 0 0 0
   1-1 0 0 0 P

 

0 1 0 0 0 1
   0 1 0 0 0 1
   1-1 0 0 1 9P

 

0 1 0 0 1 0
   0 1 0 0 1 0
   1-1 0 1-1 9P

 

0 1 0 0 1 1
   0 1 0 0 1 1
   1-1 0 1 0 5P

 

0 1 0 1 0 0
   0 1 0 1 0 0
   1-1 1-1 0 5P

 

0 1 0 1 0 1
   0 1 0 1 0 1
   1-1 1-1 1 11P

 

0 1 0 1 1 0
   0 1 0 1 1 0
   1-1 1 0-1 11P

 

0 1 0 1 1 1
   0 1 0 1 1 1
   1-1 1 0 0 3P

 

0 1 1 0 0 0
   0 1 1 0 0 0
   1 0-1 0 0 3P

 

0 1 1 0 0 1
   0 1 1 0 0 1
   1 0-1 0 1 13P

 

0 1 1 0 1 0
   0 1 1 0 1 0
   1 0-1 1-1 13P

 

0 1 1 0 1 1
   0 1 1 0 1 1
   1 0-1 1 0 7P

 

0 1 1 1 0 0
   0 1 1 1 0 0
   1 0 0-1 0 7P

 

0 1 1 1 0 1
   0 1 1 1 0 1
   1 0 0-1 1 15P

 

0 1 1 1 1 0
   0 1 1 1 1 0
   1 0 0 0-1 15P

 

0 1 1 1 1 1
   0 1 1 1 1 1
   1 0 0 0 0 P

 

1 0 0 0 0 0
   1 0 0 0 0 0
  -1 0 0 0 0 -P

 

1 0 0 0 0 1
   1 0 0 0 0 1
  -1 0 0 0 1 -15P

 

1 0 0 0 1 0
   1 0 0 0 1 0
  -1 0 0 1-1 -15P

 

1 0 0 0 1 1
   1 0 0 0 1 1
  -1 0 0 1 0 -7P

 

1 0 0 1 0 0
   1 0 0 1 0 0
  -1 0 1-1 0 -7P

 

1 0 0 1 0 1
   1 0 0 1 0 1
  -1 0 1-1 1 -13P

 

1 0 0 1 1 0
   1 0 0 1 1 0
  -1 0 1 0-1 -13P

 

1 0 0 1 1 1
   1 0 0 1 1 1
  -1 0 1 0 0 -3P

 

1 0 1 0 0 0
   1 0 1 0 0 0
  -1 1-1 0 0 -3P

 

1 0 1 0 0 1
   1 0 1 0 0 1
  -1 1-1 0 1 -11P

 

1 0 1 0 1 0
   1 0 1 0 1 0
  -1 1-1 1-1 -11P

 

1 0 1 0 1 1
   1 0 1 0 1 1
  -1 1-1 1 0 -5P

 

1 0 1 1 0 0
   1 0 1 1 0 0
  -1 1 0-1 0 -5P

 

1 0 1 1 0 1
   1 0 1 1 0 1
  -1 1 0-1 1 -9P

 

1 0 1 1 1 0
   1 0 1 1 1 0
  -1 1 0 0-1 -9P

 

1 0 1 1 1 1
   1 0 1 1 1 1
  -1 1 0 0 0 -P

 

 

Figure 4. An illustration of how to derive pre-computed points for w = 5 in MOF. 
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From the above, we found that MOF with window method has the smallest number of 

pre-computed points. Similarly, it has low pre-computation time and low memory usage. The 

comparison of number of pre-computed points under different window sizes among NAF, 

MOF, complementary recoding is shown in Figure 5. Note that the number of pre-computed 

points grows fast, especially for the complementary recording. MOF with window method has 

the smallest number of pre-computed points; therefore we choose MOF for scalar 

multiplication in order to reduce the number of pre-computed points and pre-computation 

time. 

 

 

Figure 5. Comparison of the number of pre-computed points under different window 

sizes among NAF, MOF, complementary recoding. 
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4.2 Design of the proposed enhanced window method 

In this section, we propose an enhanced window method that can significantly reduce the 

number of pre-computed points than the original window method. The enhanced window 

method only requires to compute a few essential pre-computed points which can then be used 

to derive the rest of pre-computed points at low cost. The enhanced window method for 

deriving essential pre-computed points is described in Figure 6. 

 

We select S that can result in the smallest number of essential pre-computed points for a 

specific window size. Based on the essential pre-computed points, we can derive the rest of 

pre-computed points. That is, we can calculate remaining pre-computed points by adding or 

subtracting two selected essential pre-computed points. Only one extra addition time is 

needed to calculate a pre-computed point. Furthermore, once a pre-computed point has been 

derived, it will be saved in a sensor node. If we need this pre-computed point later, we do not 

need to calculate it again. Hence, no extra addition time is consumed. The enhanced window 

method can largely reduce the total number of essential pre-computed points (Ne) and 

pre-computation time, compared to the window method. 

                                            

 

Essential pre-computed points =  

The constraints are: 

1) S is the number of even essential pre-computed points and S   1. 

2) {The maximal essential pre-computed point +                  (the maximal 

pre-computed point). 

3) w   4. 

Figure 6. Enhanced window method for deriving essential pre-computed points. 
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In the following, we give an example to illustrate the selection of S for w = 6 using MOF. 

Note that the maximal pre-computed point is 31P: 

For S = 1 

Essential pre-computed points = {2P}   {5P, 11P, 17P, 23P, 29P} = 

{2P, 5P, 11P, 17P, 23P, 29P} such that (29P + 2P)   31P 

The total number of essential pre-computed points = 6 

 

For S = 2 

Essential pre-computed points = {2P, 4P}   {7P, 17P, 27P} = {2P, 4P, 7P, 17P, 27P} 

such that (27P + 4P)   31P 

The total number of essential pre-computed points = 5 

 

For S = 3 

Essential pre-computed points = {2P, 4P, 6P}   {9P, 23P, 37P} = 

{2P, 4P, 6P, 9P, 23P, 37P} such that (37P + 6P)   31P 

The total number of essential pre-computed points = 6 

 

Since the number of essential pre-computed points for S = 2 is the smallest, S = 2 is 

selected. Therefore, all pre-compute points, 3P, 5P, 7P, 9P, 11P, 13P, 15P, 17P, 19P, 21P, 

23P, 25P, 27P, 29P, 31P, can be derived from essential pre-computed points = {2P, 4P, 7P, 

17P, 27P}. The details are as follows: Firstly, 3P, 11P can be calculated by       and 5P, 

9P can be calculated by      . Secondly, 13P, 21P can be calculated by        and 

15P, 19P can be calculated by       . Thirdly, 23P, 31P can be calculated by 2      

and 25P, 29P can be calculated by 2     . Therefore, we have obtained all pre-computed 

points. By using the proposed enhanced window method, the number of essential 

pre-computed points that need to be derived initially has been reduced from 15 to 5. However, 
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extra additions will be needed for calculating the rest of pre-computed points when needed, 

which is a small overhead. The best selection of S under different window sizes is shown in 

Table 4. Figure 7 shows the comparison of the number of essential pre-computed points under 

different window sizes in MOF using the window method and the enhanced window method. 

Note that the number of essential pre-computed points using the enhanced window method is 

much smaller than that of the window method. As the window size increases, the 

improvement will become significant. 

 

 

 

Figure 7. Comparison of the number of essential pre-computed points under different 

window sizes in MOF. 
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Table 4. Best selection of S under different window sizes. 

w 4 5 6 7 8 9 10 

S 1 1 2 3 4 6 8 
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Figure 8 shows the selection of the best window size under N (assuming 100) times of 

key generations. Essential pre-computed points ratio is defined as the number of essential 

pre-computed points divided by the total number of pre-computed points. Average number of 

extra additions in each key generation is defined as the number of extra addition operations 

divided by N (= 100, in this case). We found that the best window size is w = 6 under 100 

times of key generations. If N is larger than 100, the best window size will increase. 

 

4.3 Design the proposed EW-MOF algorithm 

In this section, we propose an enhanced window-based mutual opposite form for scalar 

multiplication (EW-MOF) in WSNs. The proposed EW-MOF combines MOF with an 

enhanced window method that can significantly not only reduce the number of essential 

pre-computed points but also reduce memory consumption and speed up the average key 

generation time. The proposed EW-MOF algorithm is shown in Algorithm 1, which includes 

 

Figure 8. Selection of the best window size under N (assuming 100) times of key 

generations. 
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three phases, essential pre-computed points pre-computation phase, signed binary 

representation phase and public key generation using enhanced window method phase. In the 

essential pre-computed points pre-computation phase, all the essential pre-computed points 

will be calculated once S is selected for a specific window size. After the essential 

pre-computed points pre-computation phase, we start to execute the scalar multiplication 

algorithm to calculate the public key. In the signed binary representation phase, the private 

key utilizes MOF to convert the binary representation into a signed binary representation. 

Then, the public key is calculated in the public key generation using enhanced window 

method phase. Firstly, the private key is scanned from left to right. If a digit is 0, doubling 

operations are executed; otherwise, remove the block based on the window size. If the sum of 

the block has been saved in the sensor node, addition operations are executed to calculate the 

public key. If the sum of the block has not been saved in the sensor node, addition operations 

are executed to calculate the sum of the block first by using essential pre-computed points and 

save it in the sensor node. Then, addition operations are executed to calculate the public key. 

In addition, if we have another block with the same sum later, no more calculation is needed. 

Finally, the execution will continue until the end of digits and the public key is returned. 
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Algorithm 1: Left-to-Right EW-MOF 

Input: An n-bit binary string K = bn-1, bn-2, …, b1, b0, where K is a private key and w 

Output: A public key Q, where Q = KP 

1. Essential pre-computed points pre-computation phase: 

1.1  S = Table lookup (w) 

1.2  P1 = P, P2 = 2P, P3+2S = (3 + 2S)P, P2+4S = (2 + 4S)P  

1.3  i = 4, j = 5 + 6S, r = Ne – S 

1.4  While S > 1 do 

Pi = Pi-2 + P2, i = i + 2, and S = S – 1 

1.5  While r > 1 do 

Pj = Pj-(2+4S) + P2+4S, j = j + (2 + 4S), and r = r – 1 

2. Signed binary representation phase: 

2.1  mn = bn-1 

2.2  For i = n – 1 down to 1 do 

mi = bi-1 – bi 

2.3  m0 = –b0 

3. Public key generation using enhanced window method phase: 

3.1  Q = P 

3.2  While     do 

3.2.1 If mn = 0 then Q = 2Q and n = n – 1 

3.2.2 Else 

g = max(n – w + 1, 0) 

While mg = 0 do g = g + 1 

wsum = 0 

For i = n to g do 

Q = 2Q 

wsum = 2wsum + mi 

If Pwsum has been calculated 

Q = Q + Pwsum 

Else 

calculate Pwsum by essential pre-computed points 

save Pwsum in the sensor node 

Q = Q + Pwsum  

3.2.3 n = g – 1 

3.3 Return Q  
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Figure 9 shows the flowchart of selecting an elliptic curve and a base point (P(x, y)) for 

ECC in wireless sensor networks. Firstly, the sink selects an elliptic curve         

     over GF(p) where a, b   GF(p) and           .  Then, the sink selects a 

base point P = (x, y) on the elliptic curve, where x and y are the coordinates of E. When a 

sensor node receives the elliptic curve and the base point, it will determine a window size w 

and executes the essential pre-computed points pre-computation phase. After this phase, these 

essential pre-computed points will be stored in the sensor node. If the elliptic curve E or the 

base point P is changed, the essential pre-computed points pre-computation phase needs to be 

re-executed and new essential pre-computed points are stored in the sensor node. In this paper, 

we assume all computations are performed in the sensor node, since it would be more secure 

to do key exchanges and key generations in WSNs. 
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Figure 10 shows the flowchart of the public key generation process for a sensor node. 

The sensor node generates a private key K and executes the signed binary representation 

phase to convert K into m in MOF. Then, according to window size w, m is split into several 

blocks. Then, the sensor node checks whether the sum of the block has been saved or not. If 

the sum of the block has been saved, the sensor node will compute public key Q using the 

proposed enhanced window method. Otherwise, the sensor node will execute addition 

operations to derive the sum of the block from essential pre-computed points and save it in the 

sensor node. Then, the sensor node computes public key Q using the enhanced window 

method. Finally, public key Q is calculated. 

 pGFba , 0274 23  ba
 pGFbaxxyE  32

 

Figure 9. Flowchart of selecting an elliptic curve and a base point for ECC in WSNs. 
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In the following, we give an example to illustrate how a sensor node computes a public 

key Q. For w = 6, essential pre-computed points = {2P, 4P, 7P 17P, 27P}. Firstly, the sensor 

node randomly generates a private key K = 12434877 = (101111011011110110111101)2. 

Express K in MOF:                                                                     

                                                                                         

Note that 3P can be calculated by 7P – 4P, which only needs to be calculated once and 9P can 

be calculated by 7P + 2P, which again only needs to be calculated once. The intermediate 

values of Q are 3P, 6P, 12P, 24P, 48P, 96P, 192P, 384P, 768P, 759P, 1518P, 3036P, 6072P, 

12144P, 24288P, 48576P, 97152P, 194304P, 194295P, 388590P, 777180P, 1554360P, 

3108720P, 6217440P, 12434880P, 12434877P 

 

Figure 10. Flowchart of the public key generation process for a sensor node. 
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The computation cost of arithmetic operations for the above example include 22 

doubling operations, 5 addition operations, with two extra addition operations used to 

calculate 3P and 9P. Although two extra addition operations are needed, there is no need to 

calculate them again at next time. Note that the two extra addition operations will result in 

very small increase in the average key generation time since the average extra number of 

additions for w = 6 is very small, as shown previously. That is, the time required for the two 

extra addition operations in the average key generation time can be neglected. 
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Chapter 5  

Performance Evaluation and Discussion 

In this chapter, we evaluate the average key generation time of the proposed EW-MOF 

and compare it with that of one’s complement. 

5.1 Simulation environment setup 

We implemented the proposed EW-MOF on the 2.66 GHz Intel Core i5 and used 

Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL) [13] for elliptic 

curves and Basicrypt which is an ECC benchmark suite [14] for ECC. MIRACL is a big 

number library which implements all of the primitives necessary to design big number 

cryptography into your real-world application [13]. It is an open source library and can be 

used to perform the arithmetic of elliptic curves. The Basicrypt benchmark package uses the 

MIRACL library and it contains standards and elliptic curve codes for Diffie-Hellman key 

exchange, digital signature algorithm, ElGamal and RSA encryption/decryption [14]. 

Furthermore, the various parameters of elliptic curves are defined in the National Institute of 

Standards and Technology (NIST) DSS standard FIPS 186-3 [15].  

5.2 Comparison between the proposed EW-MOF and 

one’s complement 

Figure 11 shows the average key generation time, excluding pre-computation time, of the 

binary, MOF, one’s complement, and the proposed EW-MOF methods under different field 

sizes for w = 6. The average key generation time is defined as the summation of each key 

generation time divided by the number of key generations (N). The field size means the 



 

 26 

elliptic curves over prime fields that are specified in [15]. The average key generation time of 

Binary is the worst because Binary contains the most bits of 1 that involve addition and 

doubling operations. The average key generation time of MOF is better than that of Binary 

because MOF contains less bits of 1. As to the one’s complement, the average key generation 

time is better than that of MOF because one’s complement uses the window method that splits 

the private key into blocks so as to reduce the number of addition operations. The proposed 

EW-MOF is almost the same as one’s complement because their numbers of blocks are not 

much different. As a result, their numbers of addition operations are not much different. 

Although the proposed EW-MOF requires extra addition operations, it causes little increase in 

the average key generation time. 

 

Figure 12 shows the average key generation time, including pre-computation time, of the 

one’s complement and the proposed EW-MOF under different field sizes for w = 6. The 

average key generation time of the proposed EW-MOF is better than that of the one’s 

 

Figure 11. Average key generation time excluding pre-computation time under different 

field sizes. 
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complement because the number of pre-computed points in the one’s complement is larger 

than that of the proposed EW-MOF, as shown in Figure 5 and Figure 7. Thus, the 

pre-computation time in the one’s complement is longer than that of the proposed EW-MOF. 

In summary, in terms of the average key generation time, including pre-computation time, 

under different field sizes, for w = 6, the proposed EW-MOF is 24.69% faster than the one’s 

complement. 

 

Figure 13 shows the average key generation time, excluding pre-computation time, of the 

one’s complement and the proposed EW-MOF under different window sizes. We found that 

when the window size increases the average key generation time decreases. This is because 

when the window size increases the number of blocks will decrease and the number of 

addition operations will decrease as well. The average key generation time of the one’s 

complement and the proposed EW-MOF are almost the same for    . This matches the 

result in section 4.2, where w = 6 is selected for the EW-MOF under 100 times of key 

 

Figure 12. Average key generation time including pre-computation time under different 

field sizes. 
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generations. For    , the average key generation time of the proposed EW-MOF will 

slowly increase. This is because that the proposed EW-MOF has a smaller number of essential 

pre-computed points. However, for the same number of pre-computed points, the proposed 

EW-MOF can set a bigger window size than one’s complement. Thus, the proposed 

EW-MOF can be still faster than the one’s complement in terms of average key generation 

time, excluding pre-computation time. 

 

Figure 14 shows the average key generation time, including pre-computation time, of the 

one’s complement and the proposed EW-MOF under different window sizes. The average key 

generation time of the proposed EW-MOF is better than that of the one’s complement because 

the number of pre-computed points in the one’s complement is larger than that of the 

proposed EW-MOF, as shown in Figure 7. Note that the average key generation time of the 

proposed EW-MOF increases slowly compared to that of the one’s complement as window 

 

Figure 13. Average key generation time, excluding pre-computation time, under 

different window sizes. 
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size increases. This is because the number of essential pre-computed points does not increase 

too much in the proposed EW-MOF; however, the number of pre-computed point increases 

exponentially in the one’s complement. 

 

5.3 Discussion 

Since the proposed EW-MOF is 24.69% faster than the one’s complement in terms of 

average key generation time, the proposed EW-MOF is more power saving than the one’s 

complement. That is, the proposed EW-MOF is more feasible than the one’s complement for 

wireless sensor networks, which is battery powered, in terms of power saving. Applying the 

proposed EW-MOF to the ECC for wireless sensor networks can benefit associated sensor 

nodes in terms of less computing and memory needed, and power saving. In addition, the 

proposed EW-MOF is also feasible to other mobile and wireless devices for ECC security. 

 

Figure 14. Average key generation time, including pre-computation time, under 

different window sizes. 
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Chapter 6  

Conclusion 

6.1 Concluding remarks 

In this paper, we have presented an enhanced window-based mutual opposite form for 

scalar multiplication (EW-MOF) that combines MOF with an enhanced window method. The 

proposed EW-MOF can largely reduce average key generation time including 

pre-computation time and it needs less pre-computation time and memory. Moreover, the 

proposed enhanced window method only requires to calculate essential pre-computed points, 

which is better than the original window method that needs to calculate all pre-computed 

points. Simulation results have shown that the proposed EW-MOF is 24.69% faster than the 

one’s complement in terms of average key generation time including pre-computation time 

under different field sizes. Furthermore, the proposed EW-MOF can use a larger window size 

because its number of essential pre-computed points is smaller than the number of 

pre-computed points used in the one’s complement. Thus, the average key generation time, 

excluding pre-computation time, of the proposed EW-MOF can be still shorter than that of the 

one’s complement. Shorter average key generation time implies consuming less power, which 

is important for wireless sensor networks that are battery-powered. The proposed EW-MOF 

can significantly reduce ECC key generation time and is suitable for wireless sensor networks. 

That is, the proposed EW-MOF is more feasible than the one’s complement for wireless 

sensor networks in terms of key generation time and power saving. 
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6.2 Future work 

The proposed EW-MOF can be applied to key exchange protocols, such as ECDH and 

ECDSA, for security and power saving of wireless sensor networks. In addition, we can apply 

the proposed EW-MOF to any wireless network that uses elliptic curve cryptography for 

reducing key generation time and power consumption.  
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