BRI EEHTEWErT

"+t @ X

4=

£ SR PR TE AR T HRR] Y AR e DS

2 R T R R

A Fast Window-based Scalar Multiplication Algorithm for Elliptic

Curve Cryptography in Wireless Sensor Networks

BoypodiEsy

hERE IR HEL

PERKEBE -—BHFAA

BEUR PRI BT R Y AR R4 B8
2P ErHEfERE R

A Fast Window-based Scalar Multiplication Algorithm for

Elliptic Curve Cryptography in Wireless Sensor Networks

oy oA rE=ZY Student : Hung-Nan Ye
iR 2 A Advisor : Kuochen Wang

|
|4
&k
(=
/s
g

MLNE 3
A Thesis

Submitted to Institutes of Computer Science and Engineering

Department of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master

in Computer Sciencmae

June 2011

Hsinchu, Taiwan, Republic of China

PEAR- &S

AR R RETT Y TR AR BB
2P FrHELERAER

g4 ET9 fEKE IR BL

BTSE K d N ERR AR LR A BT RBE T A
BREBAEY R UTH AX M 6 SEARRBRER o o pIHIT- BRE
G RRAFRA AR F1 LR B EBOTRTF L T AR T RE R
BOEE S B re A o R A RS E @ s B B0
B B AH M P Efr B 3 R bRt o b AR b 3
B b R M B8R % 2160~ ek kR B 0 A RSAL Biw B 2

% B 1024 1 5 chd 45 B o 00 RS 4 BRI 2 F i A A

3;

PlRELF o A o FERY R RS FINAKAL F S s BB R o #

PH T GRS PDFRALF S ONGEEE o hhHY Y o AR
N A USRI RS T E NHERY R B E E T B

-

5% (EW-MOF) « 8% i % £ 7 493 2 53l e

NECTAES TR

H\
s

R LR IFAIE B foie o oom PRV U S E - BRI

G 8Ly ZAAEPER OTHER o AP Hs 78 % B 0 EW-MOF#r 3

‘&r

BAF R gl Vit BoR 2 RE D > FR v YA AR

ik boo gt eh s BRI R AT 0 AP S PEW-MOF 27 e ch T #icis T

LN

B
P BT L4 A 4 P B] il

s

FE AL P Ol O A B

Bow 52 BB PE2469% 0 B2 > &Y i iRfr kA 2 PR 6 EW-MOF

Wl BT E LY AR AR PIRER S -

=+

Mk Rl RRmE I R FAS Tt B R R EF o

F

A Fast Window-based Scalar Multiplication
Algorithm for Elliptic Curve Cryptography in
Wireless Sensor Networks

Student : Hung-Nan Ye Advisor : Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

In recent years, the security of wireless sensor networks (WSNs) has become more and
more important due to extensive applications of WSNs in-the areas of military, environmental
monitoring, health and homecare. Cryptography is a basic technique to provide security
services for WSNs. Owing to the limitation of resources in sensor nodes, the computation,
communication, and memory overheads introduced by performing cryptography must be
minimized. Elliptic curve cryptography (ECC) compared to other cryptosystems requires less
communication, computation, and memory usages. Hence, ECC is suitable for wireless sensor
network security because ECC only requires 160 bits length of keys to achieve the same level
of security as RSA using 1024 bits length of keys. However, the key generations in ECC,
which involve with a large number of scalar multiplications, is still time consuming when
applied to sensor nodes. In this paper, we propose an enhanced window-based mutual
opposite form (EW-MOF) for scalar multiplication with ECC in WSNs. The proposed
EW-MOF combines MOF with an enhanced window method that can reduce not only
pre-computation time and memory usage, but also average key generation time including

pre-computation time in each sensor node. Our analysis has shown that the proposed

EW-MOF requires a smaller number of essential pre-computed points than the one’s
complement and therefore it is very suitable for WSNs. Simulation results show that the
proposed EW-MOF is 24.69% faster than the one’s complement method, which is a classical
method, in the average key generation time of ECC including pre-computation time under
different field sizes. In summary, the proposed EW-MOF is more feasible than the one’s

complement for wireless sensor networks in terms of key generation time and power saving.

Keywords: Elliptic curve cryptography, mutual opposite form, one’s complement, scalar

multiplication, window method.

Acknowledgements

Many people have helped me with this thesis. | am in debt of gratitude to my thesis
advisor, Dr. Kuochen Wang, for his intensive advice and guidance. | would also like to show
my appreciation for all the classmates in the Mobile Computing and Broadband Networking
Laboratory for their invaluable assistance and inspirations. The support by the National
Science Council under Grants NSC99-2218-E-009-002 is also gratefully acknowledged.

Finally, I thank my father, my mother and my friends for their endless love and support.

Contents

AbStract (in ChineSe).....ccceeeiiiiiniiiiineiiiinntieiieetessesstossssssssssssssssscsssasconns i
ADSTFACT ... bbb ii
LO70] 01 =] | < TP PP PP Vi
I TS o) T 10 TSSO viii
I TS o) B = o] LSS IX
Chapter 1 INtrodUCTIONcccviiiee e 1
1.1 MOTIVALION ...ttt ettt bbb 1
1.2 Cryptography ..cc.eoee e cth i et sesssssnms sde s e e eesreesreestesnaesreesessee s e enteaneesreas 2
1.3 Problem StatemMeNt..... ... o st iait e sh bbb a5t enee e e ste e sbesseeneenee e 2
1.4 THheSIS OrganiZation ..o . .ec i cai it e st b st e s e e e st este e e e e etesneesreas 3
Chapter 2 BaCKgroUNd ...l e ettt 4
2.1 Elliptic curve cryptography OVEIVIEW.........c.ccoeiiiiiiiiiieieee e 4
2.2 Elliptic curve Diffie-Hellman protocol............ccoiiiiiiiiiiiiieee, 5
Chapter 3 Related WOKKcoveieiieiece ettt 7
3.1 Binary Method [3] ...cccveeiieiiee e 7
3.2 Non-adjacent Form [9]......cooieiiiii e 7
3.3 Mutual opposite FOrm [L0].....cccooiieiiiiie e 8
3.4 Complementary recoding [12]ccccovveiiieiieiieeiie e 8
3.5 0ne’s COMPIEMENT [4]...viiiiiieiiiiiieeiie ettt 9

Vi

Chapter 4 Proposed EW-MOF AIgorithm ... 11

4.1 Why use MOF for scalar multiplicationcccceeveveiieii e, 11
AL L NAF e 12

A L2 IMOF ..o 12

4.1.3 Complementary reCording.........c.covevueieeresieeieee e see s 13

4.2 Design of the proposed enhanced window methodcccoccoeiiiiiiiiiennn, 15

4.3 Design the proposed EW-MOF algorithm...........ccccoovveviicinecc e 18
Chapter 5 Performance Evaluation and DiSCUSSION............cccooerverieiiieneeieesieennenn 25
5.1 Simulation environNmMeNt SETUD i et ebe e enrenieseeeeeeee e 25

5.2 Comparison between the proposed EW-MOF and one’s complement........... 25

5.3 DISCUSSTON ... siieh e s b e ahh s s e e b ettt et et bbbt be e 29
Chapter 6 CONCIUSION.........c.ooi it et ssEatae T e te et re s sre e e sreenne e 30
6.1 CoNClUAING FEMAIKScviiiieie ettt 30

6.2 FULUIE WOTK ...t 31
BIDIIOGIaPNY ... 32

Vil

List of Figures

Figure 1. Sensor nodes randomly deployed in a sensor field. ... 1
Figure 2. Three addition cases in an elliptiC CUNVE.cccov e e 5
Figure 3. Elliptic curve Diffie-Hellman protocol.cccoeieiiiiiiiiiecec e 6
Figure 4. An illustration of how to derive pre-computed points forw =5 in MOF.................. 13

Figure 5. Comparison of the number of pre-computed points under different window sizes
among NAF, MOF, complementary reCoding.cccvevueiieneerie i 14

Figure 6. Enhanced window method for deriving essential pre-computed points. 15

Figure 7. Comparison of the number of essential pre-computed points under different window
SIZES TN MO . ..o it s e St Sh ettt bbbttt et e e e et bbb nne s 17

Figure 8. Selection of the best window size under N (assuming 100) times of key generations.

.. 18
Figure 9. Flowchart of selecting.an elliptic curve and-a base point for ECC in WSNSs. 22
Figure 10. Flowchart of the public key generation process for a sensor node.c.cceveeee 23

Figure 11. Average key generation time excluding pre-computation time under different field
] 71T SR 26
Figure 12. Average key generation time including pre-computation time under different field
R 4= OSSPSR 27
Figure 13. Average key generation time, excluding pre-computation time, under different
WINAOW SIZES. ..uveeriieiieiieeieettestaesteeseesteesteeseesseestaeseesse e teaseesseesseeseeaseesseessesseesseeneeaneenseeneenn 28
Figure 14. Average key generation time, including pre-computation time, under different

WV NN OV SIZES. ettt ettt e ettt s et s e et e e e e e e senenesnnenennnnns 29

viii

file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873970
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873971
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873972
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873973
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873974
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873974
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873975
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873976
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873976
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873977
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873977
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873978
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873979
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873980
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873980
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873981
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873981
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873982
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873982
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873983
file:///E:/報告/one%20column%20男/one%20column%20男-20110820(圖書館).docx%23_Toc301873983

List of Tables

Table 1. Comparison of key lengths in different security levels [7]. ... 4

Table 2. Comparison of three existing scalar multiplication algorithms.cccccveviviieieennns 9

Table 3. Comparison of the numbers of pre-computed points and doubling and addition
operations under different WiNAOW SIZES.cccecveiiiiicie i 10

Table 4. Best selection of S under different Window SIZES.oovvveveeeeie, 17

file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606954
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606955
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606956
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606956
file:///E:/報告/one%20column%20男/one%20column%20男-20110820.docx%23_Toc301606957

Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks (WSNs) are formed by a large number of sensor nodes which
have features of small size, low cost, low power consumption, and limited computation and
communication capabilities. Each sensor node is used to collect data from the environment
and to transmit data back to the sink, as shown in Figure 1. In recent years, WSNs have wide
applications in the areas of military, ‘health-and homecare, which have security issues that
need to be resolved. Therefore;.security-on WSNSs becomes an essential issue, especially for
WSNs that are deployed in hostile environments with various potential malicious attacks [1].

That is, how to ensure security-in WSNS Is a top priority concern.

O Sensor node XI\C/VDI_? Source T Sink

Figure 1. Sensor nodes randomly deployed in a sensor field.

1.2 Cryptography

Generally speaking, network security focuses on three major issues: authentication,
confidentiality and integrity. Cryptography is a basic technique to provide security services to
address the above issues in a network [2]. Recently, establishing secure communications
between sensor nodes and authenticating communicating nodes have become an important
issue. Because sensor nodes in WSNs have limited resources, such as computing power,
communication bandwidth and energy, the computational complexity of the cryptosystem
must be low.

Modern cryptography can be classified into two techniques: symmetric cryptography
(also called secret key encryption) and asymmetric cryptography (also called public key
encryption). Symmetric cryptography uses the. same secret key to encrypt and decrypt
messages, whereas asymmetric cryptography uses public'and private keys. The calculation of
symmetric cryptography is quick, but it is relatively easier to be attacked. On the contrary, the

calculation of asymmetric cryptography is slow,-but itis difficult to be attacked.

1.3 Problem statement

There are many cryptography approaches proposed for WSNs but most of them utilize
symmetric cryptography. Recently, elliptic curve cryptography (ECC) [5] [6] has been used
for WSNs because it requires less computational power, communication bandwidth, and
memory usage compared with other asymmetric cryptosystems. Moreover, ECC is suitable
for wireless sensor network security over other asymmetric cryptosystems such as RSA and
DSA, because ECC requires smaller bits length of keys [7]. For example, RSA (DSA)
requires keys with length of 1024 bits, but ECC requires only 160 bits for the same level of
security.

Elliptic curve based protocols, such as Elliptic Curve Diffie-Hellman (ECDH) and

Elliptic Curve Digital Signature Algorithm (ECDSA), involve scalar multiplication [3]. Scalar

2

multiplication is required in ECC, which takes 80% of key calculation time in each sensor
node [4]. Many schemes, such as the non-adjacent form (NAF), mutual opposite form (MOF),
and complementary recoding, discussed how to reduce computation time. In this paper, we
propose an enhanced window-based MOF for scalar multiplication (EW-MOF). EW-MOF
converts a binary string into the mutual opposite form (MOF) and uses an enhanced window
method to scan a few bits at a time. The proposed EW-MOF can largely reduce the number of
pre-computed points and greatly reduce the computation time and energy consumption in

each sensor node.

1.4 Thesis organization

The remaining of this paper is organized as follows. Chapter 2 introduces the elliptic
curve concepts. Exiting scalar multiplication schemes are discussed in Chapter 3. We describe
the proposed EW-MOF in Chapter 4. Simulation results and discussion are presented in
Chapter 5. We compare the proposed EW-MOF with one’s complement. Finally, Chapter 6

gives a concluding remark and outlines future work.

Chapter 2

Background

2.1 Elliptic curve cryptography overview

ECC is a public key encryption technique based on the elliptic curve theory that was first
proposed by Victor Miller [5] and Neal Koblitz [6] in 1985. ECC technology can be used in
encryption, decryption, key exchange and digital signature. ECC is widely used in recent
years because the computation complexity is lower than other asymmetric cryptosystems.
Under the same security level, the required key.length of ECC is smaller than that required by
RSA, which is shown in Table:1. Sherter encryption/decryption keys lead to smaller average

key generation time [7].

Table 1. Comparison of key lengths:-in different security levels [7].

RSA over binary field (bits) ECC over binary field (bits)
1024 160
2048 224
3072 256
7680 384
15360 512

Let E is an elliptic curve over GF(p) which is defined as follows:
y?=x3+ax+b wherea, b € GF(p)and 4a3 + 27b% # 0
Let O mean the infinity. P(xy, y1) and Q(x2, y») are two points on the curve and we compute R
=P + Q = (x3, y3) by following equations:
If P # Q, it involves addition operations:
X3 =A% —x; —x,

v3 = —x3)A—y,

A= —y1) + (X2 —xq)
else if P = Q, it involves doubling operations
X3 =A% —2x;
y3 = (x1 —x3)A =y,
1= (3Bx?+a)=+2y,
There are three addition cases in an elliptic curve that are shown in Figure 2. Those

arithmetic operations over GF(p) consider about addition, subtraction, multiplication and

inverse.
R P=Q /Rol/
0_/7/ = | P=(x, y).
A" | |
| :
| | _ ®
R:. RI. -P= (X! -y)
(@) R= P+ Q (byR= P+ P (c) O= P+ (-P)

Figure 2. Three addition-cases in an elliptic curve.

2.2 Elliptic curve Diffie-Hellman protocol

The traditional Elliptic Curve Diffie-Hellman Protocol (ECDH), which is based on the
elliptic curve, works as shown in Figure 3. Initially, node A and node B both have the same
elliptic curve E over GF(p) and the base point P which was suggested by NIST [15]. They
generate their public keys, namely Qa and Qg, based on their private keys, Ka and Kg, by
multiplying P. After node A shares its public key to node B and node B shares its public key
to node A, they generate secret key R where R = Ka X Kg X P. In ECDH, it is hard to be
figured out the private key (Ka or Kg) because deriving such a key is an elliptic curve discrete

logarithmic problem (ECDLP) [5] [6].

{Q.}
Node Node

A 1Qs} B

Private Key K, Private Key Kg
Compute Public Key Q, =K, xP Compute Public Key Qg = Kg x P
Compute Secret Key R = K, xQj Compute Secret Key R =Ky xQ,

Figure 3. Elliptic curve Diffie-Hellman protocol.

Chapter 3

Related Work

ECC is a promising cryptography algorithm in WSNSs; however, the scalar
multiplications during key generation are the bottleneck. A few scalar multiplication schemes
have been proposed to reduce the computation time. Some famous scalar multiplication

schemes are briefly reviewed in the following sections.

3.1 Binary method [3]

The definition of scalar multiplication is the .computation of the form Q = K P, where P
and Q are two points on the elliptic curve and K is.an integer [3]. K is converting into binary
K= 2?;3 kaf , Where k; € {1, 0} is used to compute KP by repeatedly executing addition
and doubling operations and L.is the bit lengths-of binary K. The binary method scans the bits
of K either from left-to-right or right-to-left. If ky=1, then it needs to execute two operations,
one is doubling operation and the other is addition operation. If k; = 0, then it needs to execute
one doubling operation. In this method, the number of doubling operations is L — 1 and the
number of addition operations is hw — 1 where hw is the Hamming weight defined as the
number of none zero elements. The average Hamming weight is (L — 1) / 2. Thus, if a binary
representation has more zeroes, the Hamming weight becomes smaller and the computation
time becomes shorter. For example, if K = (1100111000111),, then hw = 8. It will require

hw — 1 = 7 addition operations and L — 1 = 12 doubling operations.

3.2 Non-adjacent form [9]
The signed binary representation is first proposed by Booth [8] in 1951. The signed
binary representation of K is K = Y27 k;2/, where kj € {1, 0, -1}. If kj = 1 or 0, then it

7

requires the same operations with the Binary method. If k; = -1, then it needs to execute two
operations: doubling and subtraction, where subtraction is based on the addition operation but
the associated point is changed from (x, y) to (X, -y). Here, we collectively called the
subtraction as addition. The non-adjacent form (NAF) [9] is a signed binary representation
and has no two consecutive non-zero digits in the representation. For example, if K = (1111),,
then it is converted into K = (10001),. In NAF, the number of doubling operations is L — 1
and the number of addition operations is hw — 1. The average Hamming weight is (L — 1) / 3.
Thus, NAF reduces the Hamming weight more than the Binary method and the computation
time also becomes even shorter. NAF scans the bits of K from right-to-left and requires O(n)

memory to store the shifted single digit. Hence, the conversion time of NAF is longer.

3.3 Mutual opposite form [10]

In 2004, Okeya [10] proposed a new scalar multiplication scheme called mutual opposite
form (MOF). MOF is also asigned binary representation. The binary representation of K is
converted into a signed binary representation by computing m; = ki.; — ki where “ — ”
represents a bit wise subtraction [11]. The maost significant bit is 1 and the least significant bit
is -1. The conversion time of MOF is shorter than that of NAF because MOF just requires
subtraction. And, MOF scans the bits of K either from right-to-left or left-to-right, which is
more flexible. For example, let us take K = 6599 = (1100111000111),, then K = 6599 =

(11001110001110) — (1100111000111), = (10101001001007), , where T means -1.

3.4 Complementary recoding [12]

Complementary recoding was proposed by Chang et al. [12] in 2003. Complementary
recoding is also a signed binary representation and it converts a binary string into a signed

binary string by using complementary operation. The complementary operation is as follows:

K =3¥%gk2/ =2"—K —1,wherek; € {1,0,-1}and K is the inverse of K. For example,
if K=1001, then K = 0110.

The conversion time of complementary recoding is shorter than that of MOF because the
average Hamming weight of complementary recoding is smaller than that of MOF. That is,
complementary recoding is faster than MOF. The qualitative comparison of the above three
scalar multiplication algorithms is shown in Table 2. Note that the average key generation

time is the average execution time of each algorithm [11].

Table 2. Comparison of three existing scalar multiplication algorithms.

NAF [9] MOF [10] Complementary recoding [12]
Hamming weight large large small
o _ right-to left right to left
Scanning direction right to left \ i
left to right left to right
Average key :
large medium small

generation time

3.5 One’s complement [4]

The window method [16] is different from the above three methods. It scans a few bits at
a time and divides a binary string into several blocks. The sum of each block is odd and is less
than 2" where w is the window size. Applying the window method to the elliptic curve
cryptography will reduce the computation time and increase the memory usage and
pre-computation time. Table 3 shows an example of K = 6599 = (1100111000111), with
different window sizes from 2 to 13. Note that when the window size increases, the number of
pre-computed points will also increase geometrically. In addition, the number of addition and
doubling operations will decrease and the computation time will decrease. Consequently, the
selection of a window size will affect the computation time. It requires taking a tradeoff
between pre-computation time and window size. One’s complement algorithm [4] which

9

combines complementary recoding with the window method will largely reduces the average

key generation time. However, it will consume more pre-computation time and memory due

to the number of pre-computed points.

Table 3. Comparison of the numbers of pre-computed points and doubling and

addition operations under different window sizes.

Window size

Number of
pre-computed points

Number of doubling
operations

Number of addition
operations

1

11

4

3

11

7

[N
[EEY

15

31

63

127

O oo N OO bW N

255

[HEN
o

511

[EEN
[EEN

1023

[EEN
N

2047

[HEN
w

4095

OR[N || O | O ||

OlRr|Rr|RPRIRPR|ILR|RLIMDINM|NMN

10

Chapter 4
Proposed EW-MOF Algorithm

Because of limited resources in sensor nodes, we cannot use protocols with complicate
computation in sensor nodes. Traditional ECC-based protocols, such as ECDH and ECDSA,
take much computation time in scalar multiplication. In this paper, we propose an enhanced
window-based mutual opposite form for scalar multiplication (EW-MOF) for WSNs that can
largely reduce the number of pre-computed points and greatly reduce the computation time
and memory usage in each sensor node. In Section 4.1, we describe why use MOF for scalar
multiplication. The design of the.proposed enhanced window method is described in Section
4.2. The proposed EW-MOF ‘algorithm using the enhanced window method is described in

Section 4.3.

4.1 Why use MOF for scalar multiplication

Because of using the window method, which scans several bits at a time, we need to
compute 2" ~*— 1 pre-computed points where w is the window size. For example, if w = 5, it
requires to compute 2°~!— 1 = 15 pre-computed points, which are 3P, 5P, 7P, 9P, 11P, 13P,
15P, 17P, 19P, 21P, 23P, 25P, 27P, 29P and 31P. We have observed that existing scalar
multiplication algorithms, such as NAF, MOF and one’s complement with window method,
all may need to compute many pre-computed points. A large number of pre-computed points
will increase pre-computation time and memory usage. In the following, we illustrate the

above three scalar multiplication algorithms combined with the window method.

11

4.1.1 NAF

According to the NAF algorithm, there are no two consecutive non-zero digits in any
representation. Thus, if w is odd, the maximal pre-computed point using NAF is

101010 ---101 and if w is even, it would be 101010 ---1001. For example, if w = 5, the

w w

maximal pre-computed point using NAF is 10101 and the pre-computed points are 3P, 5P,
5

7P, 9P, 11P, 13P, 15P, 17P, 19P, and 21P. Furthermore, if w = 6, the maximal pre-computed

point using NAF is 101001 and the pre-computed points are 3P, 5P, 7P, 9P, 11P, 13P, 15P,
6

17P, 19P, 21P, 23P, 25P, 27P, 29P, 31P, 33P, 35P, 37P, 39P, and 41P.

4.1.2 MOF

Figure 4 shows the procedure of deriving pre-computed points for w = 5 in MOF. Note
that the maximum pre-computed point-is 15P and the number of pre-computed points is 7,

which are 3P, 5P, 7P, 9P, 11P; 13P and 15P.

12

0110000; 010001} 010010} 010011]
01,0000 0100011 0100110 0100,111
1-1000r => P | TI.T001 = 9P T-101-I, => 9P T-10110; => 5P
|
010100 010101] 0110110! OILO1L1;
010100 010101 010110 0101 11l
-TI-L00 => P | 7T 111 = 1P | T 10-1 = 1P | -1 100 = 3P
01 1000; 0111001 0111010! 0iL1011;
011,000 0110011 011010 0110111
10-1,000 = 3P T0-101 = 13P | TT0-11-1 =» 13P | 1101500 = 7P
01 1100; 0111101} 0l 1110} 0L 1111;
011100 011101 011110 011111
100-1101 = 7P M00-11 => 15P | T1T000-I) = 15P | 1,0000r = P
100000; 100001] 100010} 100011,
11,00000 11000011 1100010 11000111
00000 = -P 10001 = -15P -1001-11 => -15P -100 L0 = -7P
100100; 10010 14 100 101 100111
1100100 11001011 11004 10 100111
-101-1j00 = -7P 10101 =»=13P | TF1.010-1, = -13P -10100 = -3P
101000; 101001, 1010610 101011;
1101000 11010011 £101010 11,010 111
FI1-1000 = 3P | TR0 s dlIP S TR UL = -11P | LT L0 = -SP
101100; 10110] [0 10 1111,
1 1011,000 11011011 101110 110,11 111
-1 10-1J00 = -5P | TET10-1 11 = -9P -1100-1 => 9P -1 L0000 = <P

Figure 4. An illustration of how to derive pre-computed points for w =5 in MOF.

4.1.3 Complementary recording

Since complementary recording adopted one’s complement, the maximal pre-computed

point would be 1111---111, where 1 means -1. For example, if w = 5, the maximal
w

pre-computed point using complementary recording is 11111 and the pre-computed points
5

are 3P, 5P, 7P, 9P, 11P, 13P, 15P, 17P, 19P, 21P, 23P, 25P, 27P, 29P and 31P.

13

From the above, we found that MOF with window method has the smallest number of
pre-computed points. Similarly, it has low pre-computation time and low memory usage. The
comparison of number of pre-computed points under different window sizes among NAF,
MOF, complementary recoding is shown in Figure 5. Note that the number of pre-computed
points grows fast, especially for the complementary recording. MOF with window method has
the smallest number of pre-computed points; therefore we choose MOF for scalar
multiplication in order to reduce the number of pre-computed points and pre-computation

time.

600

2
£ 500 ‘I
o 7
]
©
£ 400 T
=
Q
§
; 300] & Complementary
S 2 NAF
s 200 7
= 7 = MOF
Ko 7 2
£ 100 e
z Pﬁ i z

3 4 5 6 7 8 9 10

Window size

Figure 5. Comparison of the number of pre-computed points under different window

sizes among NAF, MOF, complementary recoding.

14

4.2 Design of the proposed enhanced window method

In this section, we propose an enhanced window method that can significantly reduce the
number of pre-computed points than the original window method. The enhanced window
method only requires to compute a few essential pre-computed points which can then be used
to derive the rest of pre-computed points at low cost. The enhanced window method for

deriving essential pre-computed points is described in Figure 6.

Essential pre-computed points =
{2nP|1<n <S8} U{(3+25P,(5+6S)P,(7 + 10S)P, -}
The constraints are:
1) Sis the number of even-gssential pre-computed pointsand S > 1.
2) {The maximal essential pre-computed point + (25)P} > (2¥~1 — 1)P (the maximal
pre-computed point).

3) w = 4

Figure 6. Enhanced window method for deriving essential pre-computed points.

We select S that can result in the smallest number of essential pre-computed points for a
specific window size. Based on the essential pre-computed points, we can derive the rest of
pre-computed points. That is, we can calculate remaining pre-computed points by adding or
subtracting two selected essential pre-computed points. Only one extra addition time is
needed to calculate a pre-computed point. Furthermore, once a pre-computed point has been
derived, it will be saved in a sensor node. If we need this pre-computed point later, we do not
need to calculate it again. Hence, no extra addition time is consumed. The enhanced window
method can largely reduce the total number of essential pre-computed points (Ne) and

pre-computation time, compared to the window method.

15

In the following, we give an example to illustrate the selection of S for w = 6 using MOF.
Note that the maximal pre-computed point is 31P:

ForS=1

Essential pre-computed points = {2P} U {5P, 11P, 17P, 23P, 29P} =

{2P, 5P, 11P, 17P, 23P, 29P} such that (29P + 2P) > 31P

The total number of essential pre-computed points = 6

ForS=2
Essential pre-computed points = {2P, 4P} u {7P, 17P, 27P} = {2P, 4P, 7P, 17P, 27P}
such that (27P + 4P) > 31P

The total number of essential pre-computed points = 5

ForS=3
Essential pre-computed points = {2P, 4P, 6P} U {9P, 23P, 37P} =
{2P, 4P, 6P, 9P, 23P, 37P} such that (37P + 6P) = 31P

The total number of essential pre-computed points = 6

Since the number of essential pre-computed points for S = 2 is the smallest, S = 2 is
selected. Therefore, all pre-compute points, 3P, 5P, 7P, 9P, 11P, 13P, 15P, 17P, 19P, 21P,
23P, 25P, 27P, 29P, 31P, can be derived from essential pre-computed points = {2P, 4P, 7P,
17P, 27P}. The details are as follows: Firstly, 3P, 11P can be calculated by 7P + 4P and 5P,
9P can be calculated by 7P + 2P. Secondly, 13P, 21P can be calculated by 17P + 4P and
15P, 19P can be calculated by 17P + 2P. Thirdly, 23P, 31P can be calculated by 27P + 4P
and 25P, 29P can be calculated by 27P + 2P. Therefore, we have obtained all pre-computed
points. By using the proposed enhanced window method, the number of essential
pre-computed points that need to be derived initially has been reduced from 15 to 5. However,

16

extra additions will be needed for calculating the rest of pre-computed points when needed,
which is a small overhead. The best selection of S under different window sizes is shown in
Table 4. Figure 7 shows the comparison of the number of essential pre-computed points under
different window sizes in MOF using the window method and the enhanced window method.
Note that the number of essential pre-computed points using the enhanced window method is
much smaller than that of the window method. As the window size increases, the

improvement will become significant.

Table 4. Best selection of S under different window sizes.

W 4 5 6 7 8 9 10
S 1 1 2 3 4 6 8
300
(]
<
‘©
2 250 7
o -
b
2
g 200 :EE:_
S 7
@ 7 Window method
2 150 H—
o o
t] i
Q ::-;:: e .
@ 100 “ — B Enhanced window
s 'f": method (proposed)
S 50 i
£ i v o
=] e
2 v
0 e T Bl T T T :II: T 1

Window size

Figure 7. Comparison of the number of essential pre-computed points under different

window sizes in MOF.

17

Figure 8 shows the selection of the best window size under N (assuming 100) times of
key generations. Essential pre-computed points ratio is defined as the number of essential
pre-computed points divided by the total number of pre-computed points. Average number of
extra additions in each key generation is defined as the number of extra addition operations
divided by N (= 100, in this case). We found that the best window size is w = 6 under 100

times of key generations. If N is larger than 100, the best window size will increase.

3
2.5

2

Essential pre-
1.5 computed points
/ ratio
1 = Average number of
(extra additions
0.5 7
T
* - -cu
0 T T T T T T ' 1
4 5 6 7 8 9 10
Window size

Figure 8. Selection of the best window size under N (assuming 100) times of key

generations.

4.3 Design the proposed EW-MOF algorithm

In this section, we propose an enhanced window-based mutual opposite form for scalar
multiplication (EW-MOF) in WSNs. The proposed EW-MOF combines MOF with an
enhanced window method that can significantly not only reduce the number of essential
pre-computed points but also reduce memory consumption and speed up the average key
generation time. The proposed EW-MOF algorithm is shown in Algorithm 1, which includes

18

three phases, essential pre-computed points pre-computation phase, signed binary
representation phase and public key generation using enhanced window method phase. In the
essential pre-computed points pre-computation phase, all the essential pre-computed points
will be calculated once S is selected for a specific window size. After the essential
pre-computed points pre-computation phase, we start to execute the scalar multiplication
algorithm to calculate the public key. In the signed binary representation phase, the private
key utilizes MOF to convert the binary representation into a signed binary representation.
Then, the public key is calculated in the public key generation using enhanced window
method phase. Firstly, the private key is scanned from left to right. If a digit is 0, doubling
operations are executed; otherwise, remove the block based on the window size. If the sum of
the block has been saved in the sensor node, addition operations are executed to calculate the
public key. If the sum of the bloek has not been saved in the sensor node, addition operations
are executed to calculate the sum of the block first by using essential pre-computed points and
save it in the sensor node. Then, addition-operations are executed to calculate the public key.
In addition, if we have another block with the same’sum later, no more calculation is needed.

Finally, the execution will continue until the end of digits and the public key is returned.

19

Algorithm 1: Left-to-Right EW-MOF

Input: An n-bit binary string K = by.1, by, -++, b1, bo, Where K is a private key and w
Output: A public key Q, where Q = KP
1. Essential pre-computed points pre-computation phase:
1.1 S=Table lookup (w)
1.2 P1=P,Py;=2P, P3s = (3+2S)P, Puuus = (2 + 4S)P
13 i=4,j=5+6S,r=N¢—S
1.4 WhileS>1do
Pi=Pi,+Pyi=1+2,andS=S-1
1.5 Whiler>1do
Pj= Piaeas) ¥ Pouss, J=] + (2+4S),andr=r-1
2. Signed binary representation phase:
2.1 my,=b,,
2.2 Fori=n-1downtoldo
m; = by — by
2.3 mg=-Dhy
3. Public key generation using enhanced window method phase:
31 Q=P
3.2 While n>0 do
321 Ifmp=0thenQ=2Qandn=n-1
3.2.2 Else
g =max(n—w +1,0)
Whilemy=0dog=g+1

wsum = 0
Fori=ntogdo
Q=2Q

wsum = 2wsum + m;

If Puwsum has been calculated
Q=Q + Puysum

Else
calculate Pysum by essential pre-computed points
save Pysum in the sensor node
Q=Q + Puysum

323 n=g-1
3.3 Return Q

20

Figure 9 shows the flowchart of selecting an elliptic curve and a base point (P(x, y)) for
ECC in wireless sensor networks. Firstly, the sink selects an elliptic curve E = y% = x3 +
ax + b over GF(p) where a, b € GF(p) and 4a3 + 27b% # 0. Then, the sink selects a
base point P = (X, y) on the elliptic curve, where x and y are the coordinates of E. When a
sensor node receives the elliptic curve and the base point, it will determine a window size w
and executes the essential pre-computed points pre-computation phase. After this phase, these
essential pre-computed points will be stored in the sensor node. If the elliptic curve E or the
base point P is changed, the essential pre-computed points pre-computation phase needs to be
re-executed and new essential pre-computed points are stored in the sensor node. In this paper,
we assume all computations are performed in the sensor node, since it would be more secure

to do key exchanges and key generations'in.\WSNSs.

21

| Start)

y

The sink selects an elliptic curve E = y? = x* + ax + b over GF (p),
where a,b e GF(p) and 4a° +27b% 20

4
The sink selects a base point 2= (x, y) on the elliptic curve,
where xand y are the coordinates of £

A

When a sensor node receives the elliptic curve and the base point, it selects a window
size w and executes the essential pre-computed points pre-computation phase

After obtaining the essential pre-computed points, these points will
be stored in the sensor node

A

End

Figure 9. Flowchart of selecting an-elliptic curve and a base point for ECC in WSNSs.

Figure 10 shows the flowchart of the public key generation process for a sensor node.
The sensor node generates a private key K and executes the signed binary representation
phase to convert K into m in MOF. Then, according to window size w, m is split into several
blocks. Then, the sensor node checks whether the sum of the block has been saved or not. If
the sum of the block has been saved, the sensor node will compute public key Q using the
proposed enhanced window method. Otherwise, the sensor node will execute addition
operations to derive the sum of the block from essential pre-computed points and save it in the
sensor node. Then, the sensor node computes public key Q using the enhanced window

method. Finally, public key Q is calculated.

22

| Start)

4

Generate a private
key K

Execute the signed binary
representation phase to
convert Kinto min MOF

4

According to window

size w to partition K
into blocks

Public key generation using
| enhanced window method phase

For each block, does
the sum of the block
has been saved in
sensor node

I

I

I

| Execute addition operations
I to derive the sum of the

| block from essential pre-

| |computed points and save it
| in sensor node

I

I

I

I

Compute public key Q using
| enhanced window method

— —— — —— — — — — — — — — — — — — — —

Figure 10. Flowchart of the public key generation process for a sensor node.

In the following, we give an example to illustrate how a sensor node computes a public

key Q. For w = 6, essential pre-computed points = {2P, 4P, 7P 17P, 27P}. Firstly, the sensor

node randomly generates a private key K = 12434877 = (101111011011110110111101)s.

Express K in MOF: m = (111 000 11011 000 11011 000 111),

3P

— 9P ~ 9P — 3P

Note that 3P can be calculated by 7P — 4P, which only needs to be calculated once and 9P can

be calculated by 7P + 2P, which again only needs to be calculated once. The intermediate

values of Q are 3P, 6P, 12P, 24P, 48P, 96P, 192P, 384P, 768P, 759P, 1518P, 3036P, 6072P,

12144P, 24288P, 48576P, 97152P, 194304P, 194295P, 388590P, 777180P, 1554360P,

3108720P, 6217440P, 12434880P, 12434877P

23

The computation cost of arithmetic operations for the above example include 22
doubling operations, 5 addition operations, with two extra addition operations used to
calculate 3P and 9P. Although two extra addition operations are needed, there is no need to
calculate them again at next time. Note that the two extra addition operations will result in
very small increase in the average key generation time since the average extra number of
additions for w = 6 is very small, as shown previously. That is, the time required for the two

extra addition operations in the average key generation time can be neglected.

24

Chapter 5

Performance Evaluation and Discussion

In this chapter, we evaluate the average key generation time of the proposed EW-MOF

and compare it with that of one’s complement.

5.1 Simulation environment setup

We implemented the proposed EW-MOF on the 2.66 GHz Intel Core i5 and used
Multiprecision Integer and Rational Arithmetic C/C++ Library (MIRACL) [13] for elliptic
curves and Basicrypt which is an<ECC-benchmark suite [14] for ECC. MIRACL is a big
number library which implements all of-the primitives necessary to design big number
cryptography into your real-world application [13]. It is-an open source library and can be
used to perform the arithmetic-of elliptic curves. The Basicrypt benchmark package uses the
MIRACL library and it contains standards and-elliptic curve codes for Diffie-Hellman key
exchange, digital signature algorithm, ElGamal and RSA encryption/decryption [14].
Furthermore, the various parameters of elliptic curves are defined in the National Institute of

Standards and Technology (NIST) DSS standard FIPS 186-3 [15].

5.2 Comparison between the proposed EW-MOF and

one’s complement

Figure 11 shows the average key generation time, excluding pre-computation time, of the
binary, MOF, one’s complement, and the proposed EW-MOF methods under different field
sizes for w = 6. The average key generation time is defined as the summation of each key

generation time divided by the number of key generations (N). The field size means the

25

elliptic curves over prime fields that are specified in [15]. The average key generation time of
Binary is the worst because Binary contains the most bits of 1 that involve addition and
doubling operations. The average key generation time of MOF is better than that of Binary
because MOF contains less bits of 1. As to the one’s complement, the average key generation
time is better than that of MOF because one’s complement uses the window method that splits
the private key into blocks so as to reduce the number of addition operations. The proposed
EW-MOF is almost the same as one’s complement because their numbers of blocks are not
much different. As a result, their numbers of addition operations are not much different.
Although the proposed EW-MOF requires extra addition operations, it causes little increase in

the average key generation time.

10
9 s .
/ =—Binary
8 /7
7
-i-MOF
6

4 / (window size 6)
3

=>e= EW-MOF
2 ' ' ' ' ' (proposed) (window
192 224 256 384 521 size 6)

Average key generation time (ms)

. X
./.// / One's complement
—

Field size (bit)

Figure 11. Average key generation time excluding pre-computation time under different

field sizes.

Figure 12 shows the average key generation time, including pre-computation time, of the
one’s complement and the proposed EW-MOF under different field sizes for w = 6. The

average key generation time of the proposed EW-MOF is better than that of the one’s

26

complement because the number of pre-computed points in the one’s complement is larger
than that of the proposed EW-MOF, as shown in Figure 5 and Figure 7. Thus, the
pre-computation time in the one’s complement is longer than that of the proposed EW-MOF.
In summary, in terms of the average key generation time, including pre-computation time,

under different field sizes, for w = 6, the proposed EW-MOF is 24.69% faster than the one’s

complement.
7
é 6.5
o 6
E
"E 5.5 /7
o
B 5 / One's complement
E‘ 4.5 (window size 6)
® 4 _ \ /
>
2 35 / 8- EW-MOF
& 3 /{ (proposed) (window
g g size 6)
=2 25
<
2 T T T T 1
192 224 .256 384 521
Field size (bit)

Figure 12. Average key generation time including pre-computation time under different

field sizes.

Figure 13 shows the average key generation time, excluding pre-computation time, of the
one’s complement and the proposed EW-MOF under different window sizes. We found that
when the window size increases the average key generation time decreases. This is because
when the window size increases the number of blocks will decrease and the number of
addition operations will decrease as well. The average key generation time of the one’s
complement and the proposed EW-MOF are almost the same for w < 6. This matches the

result in section 4.2, where w = 6 is selected for the EW-MOF under 100 times of key

27

generations. For w > 6, the average key generation time of the proposed EW-MOF will

slowly increase. This is because that the proposed EW-MOF has a smaller number of essential

pre-computed points. However, for the same number of pre-computed points, the proposed

EW-MOF can set a bigger window size than one’s complement. Thus, the proposed

EW-MOF can be still faster than the one’s complement in terms of average key generation

time, excluding pre-computation time.

Average e key generation time (ms)

2.8

2.7

2.6

2.5

2.4

2.3

2.2

R

One's complement

DN =i- EW-MOF
> (proposed)

Window size

Figure 13. Average key generation time, excluding pre-computation time, under

different window sizes.

Figure 14 shows the average key generation time, including pre-computation time, of the

one’s complement and the proposed EW-MOF under different window sizes. The average key

generation time of the proposed EW-MOF is better than that of the one’s complement because

the number of pre-computed points in the one’s complement is larger than that of the

proposed EW-MOF, as shown in Figure 7. Note that the average key generation time of the

proposed EW-MOF increases slowly compared to that of the one’s complement as window

28

size increases. This is because the number of essential pre-computed points does not increase
too much in the proposed EW-MOF; however, the number of pre-computed point increases

exponentially in the one’s complement.

30

25 —

20

15 One's complement

10 —8- EW-MOF
(proposed)

Average key generation time (ms)

Window size

Figure 14. Average key generation time, including pre-computation time, under

different-window sizes.

5.3 Discussion

Since the proposed EW-MOF is 24.69% faster than the one’s complement in terms of
average key generation time, the proposed EW-MOF is more power saving than the one’s
complement. That is, the proposed EW-MOF is more feasible than the one’s complement for
wireless sensor networks, which is battery powered, in terms of power saving. Applying the
proposed EW-MOF to the ECC for wireless sensor networks can benefit associated sensor
nodes in terms of less computing and memory needed, and power saving. In addition, the

proposed EW-MOF is also feasible to other mobile and wireless devices for ECC security.

29

Chapter 6

Conclusion

6.1 Concluding remarks

In this paper, we have presented an enhanced window-based mutual opposite form for
scalar multiplication (EW-MOF) that combines MOF with an enhanced window method. The
proposed EW-MOF can largely reduce average key generation time including
pre-computation time and it needs less pre-computation time and memory. Moreover, the
proposed enhanced window method .only requires to calculate essential pre-computed points,
which is better than the original window method that-needs to calculate all pre-computed
points. Simulation results have shown that the proposed EW-MOF is 24.69% faster than the
one’s complement in terms of average key generation time including pre-computation time
under different field sizes. Furthermore, the proposed EW-MOF can use a larger window size
because its number of essential pre-computed points is smaller than the number of
pre-computed points used in the one’s complement. Thus, the average key generation time,
excluding pre-computation time, of the proposed EW-MOF can be still shorter than that of the
one’s complement. Shorter average key generation time implies consuming less power, which
is important for wireless sensor networks that are battery-powered. The proposed EW-MOF
can significantly reduce ECC key generation time and is suitable for wireless sensor networks.
That is, the proposed EW-MOF is more feasible than the one’s complement for wireless

sensor networks in terms of key generation time and power saving.

30

6.2 Future work

The proposed EW-MOF can be applied to key exchange protocols, such as ECDH and
ECDSA, for security and power saving of wireless sensor networks. In addition, we can apply
the proposed EW-MOF to any wireless network that uses elliptic curve cryptography for

reducing key generation time and power consumption.

31

Bibliography

[1] E. K. Wang and Yunming Ye, "An Efficient and Secure Key Establishment Scheme for
Wireless Sensor Network," in Proc. Intelligent Information Technology and Security
Informatics, pp. 511-516, Apr. 2010.

[2] W. Stallings, Cryptography and Network Security- Principles and Practices, 3rd Ed. NJ:
Prentice Hall, 2003.

[3] E. Karthikeyan and P. Balasubramaniam, "Improved Elliptic Curve Scalar Multiplication
Algorithm," in Proc. IEEE International Conference on Information and Automation, pp.
254-257, Dec. 2006.

[4] P. G. Shah, Xu Huang, D. Sharma, "Algorithm Based on One's Complement for Fast
Scalar Multiplication in “ECC for Wireless -Sensor Network,” in Proc. IEEE 24th
International Conference- on Advanced Information Networking and Applications
Workshops, pp. 571-576, Apr. 2010.

[5] V.S. Miller, "Use of Elliptic Curves-in-Cryptography,” in Proceedings of Advances in
Cryptology — CRYPTO '85, vol. 218: Springer-Verlag, pp. 417-426, 1986.

[6] N. Koblitz, "Elliptic Curve Cryptosystems,"” in Proceedings of Mathematics of
Computation, vol. 48, pp. 203-209, 1987.

[7] NIST, DRAFT Special Publication 800-57, Recommendation for Key Management, Mar
2007, Available at

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2 Mar08-2007.pd

f.
[8] A.D. Booth, "A Signed Binary Multiplication Technique,” in Journal of Applied
Mathematics, vol. 4, pp. 236-240, 1951.

[9] F. Morain, J. Olivos, "Speeding Up the Computations on an Elliptic Curve Using

32

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf

Addition—Subtraction Chains,” in Proceedings of RAIRO Theoretical Informatics and
Applications, vol. 24, pp. 531-543, 1990.

[10] K. Okeya, "Signed Binary Representations Revisited,” in Proceedings of CRYPTO 04,
pp. 123-139, 2004.

[11] P. Balasubramaniam and E. Karthikeyan, "Elliptic Curve Scalar Multiplication
Algorithm Using Complementary Recoding,” in Proceedings of Mathematics and
Computation, Jan.2007.

[12] C.C. Chang, Y.T. Kuo, and C.H. Lin, "Fast Algorithms for Common Multiplicand
Multiplication and Exponentiation by Performing Complements,” in Proceeding of 17th
International Conference on Advanced Information Networking and Applications, pp.
807-811, Mar. 2003.

[13] MIRACL, Multiprecision Integer and Rational Arithmetic C/C++ Library, Available at

http://www.shamus.ie/.

[14] Basicrypt, Elliptic Curve . Cryptography Benchmark Suite, Available at

http://www.dii.unisi.it/~giorgi/basicrypt/.

[15] NIST, Digital Signature Standard FIPS PUB 186-3, Available at

http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf, 2009.

[16] J. Lopez and R. Dahab, "An overview of elliptic curve cryptography,” Technical Report,

Institute of Computing, State University of Campinas, Brazil, May 2000.

33

http://www.shamus.ie/
http://www.dii.unisi.it/~giorgi/basicrypt/
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

