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Abstract

Delay-locked loop can do clock deskew, and it is widely applied to the
synchronous circuits on various hardware systems nowadays. It can provide a stable
system clock. In this paper, a software-controllable and phase-lockable platform of
software-defined delay-locked loop(SDDLL) is proposed. This platform can do clock
deskew, multiphase output clock and duty cycle calibration. It is combined of
OPENRISC 0r1200 CPU and several intellectual properties in all-digital delay-locked
loop. CPU can execute the software instructions and do many operations. When the
application or specification of the platform is changed, it only needs to modify the
software and the platform still meet the new specification. The DLL can avoid the
procedure of the hardware redesign, so the verification of locking strategy can be
faster due to the reusability and the.flexibility of'software. All of the silicon IPs of the
platform are fabricated in TSMC65nm GP-1P6M: process, And the software are

implemented by gcc and GNU toolchain:
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Chapter 1
Introduction

1.1. Thesis Motivation

Delay-locked loop has been widely used for synchronous circuits between the system
chips. There are several kinds of delay-locked loops, such as Analog DLL, Digital DLL
(DDLL), All-digital DLL (ADDLL). ADDLL means that all of the components are digital. In
general, all-digital approach has higher portability and shorter design cycle and fast-locking
property. But when the application or control strategy is changed, DLL have to do hardware
redesign. It spends a lot of time for simulation; synthesis, layout and verification for IC design
standard flow. Therefore, the Software-defined Delay=locked Loop (SDDLL) is proposed.
DLL can use software to control the-delay-locked. loop. The platform of SDDLL integrated
with CPU and all IPs for delay-locked“loop-justilike an embedded system. Software has
flexibility and the time for development is shorter. Hence, SDDLL has flexibility and

reusability. And the redesign cost can be alleviated.

1.2. Thesis Contribution

The proposed platform of SDDLL can control the delay locked loop via the software. It
is just like an embedded system hardware-software codesign. The platform can do
clock-deskewing, multiphase output clock and duty cycle calibration. The software can be
optimized to reduce the redundancy cycles for phase tracking procedure. When the
application or the specification is changed, DLL can modify the software to fit the new

condition.



1.3. Thesis Organization

Section 2 shows the overview of conventional ADDLL and SDDLL. Section 3 illustrates
the architecture of the proposed SDDLL. Section 4 illustrates the control strategy of the

proposed SDDLL and the simulation result. Section 5 presents conclusions and future works.



Chapter 2
Overview of SDDLL

The characteristics of the proposed SDDLL are software controllability and
programmability. SDDLL combines the CPU and the silicon IPs of the delay-locked loop, so
the hardware and software can work in coordination with each other. All of the components

will be discussed as follows.

2.1. Basic Concept

There are several types of delay-locked loop. On the whole, all-digital approach has the
fast-locking feature and higher tolerance to_proeess variation and the supply voltage, but its
skew and jitter are more serious relatively. However,: for SoC implementation, all-digital
approach is more suitable due to the compatibility faor-integration system and the insensitivity
to supply noise. So All-digital Delay-locked Loop(ADDLL) is chosen as the basic DLL IPs
for the platform of the proposed SDDLL.

Delay-locked loop can generate an output clock whose phase is related to the reference
clock via a delay chain. Therefore, the delay time should be integral multiples of reference

clock’s period when the DLL is locking.

T nN*T ., n>1 neN @

delay = ref 1

T

seray 1S the total delay time of the delay chain when the phase is locking, and T, is

the clock period of the reference clock.
The conventional All-digital Delay-locked Loop contained several components, such as

Phase Detector (PD), Digital-controlled Delay Line (DCDL) and the control unit for DCDL.



Reference clock Output clock

D

P Digital-controlled Delay Line >

Control signal
|

Phase .
Detector | o= Control Unit
D OWN=P
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Fig. 1. Basic block diagram of ADDLL.

The architecture of ADDLL is shown in Fig.1. The Phase Detector compares the phase
relation between the reference and output Clock.-The control unit can change the digital signal
to adjust the delay time of DCDL accerding to the output of Phase Detector.  If the output
clock is leading the reference clock, the‘cantrol unit.can extend the delay time of DCDL. On
the contrary, if the output clock is lagging the reference clock, the control unit can shorten the
delay time of DCDL. Fig. 2 shows that an illustration of phase tracking for the 4-bit DCDL.
Assume that the intrinsic delay of DCDL is 1ns, and the After appropriate phase tracking for

the delay time of DCDL, the DLL should be locking.

Control Signal 0000 0001 0010 0011 1111

Delay Time 1ns 2ns 3ns 4ns 16ns

(@)



Phase comparison ~ Phase comparison  Phase comparison
(Lead) (Lag) (Lock)

CLKref

CLKout

Control bits < 0011 >< 0101 >< 0100
(b)

Fig. 2. The delay adjustment of DLL.

(@)The example 4-bit delay line.

(b)The timing diagram of phase tracking when the input clock period is 5ns.

In consideration of the actual conditions; phase-tracking has some tough questions to
solve. Because of the influence of input jitter and intrinsic jitter of DCDL and the dead zone
of PD, it is more difficult to achieve lock state.This design should consider these unideal
effects. If the DLL is in the locking state; there.is-still a few phase error. In general, the

amount of phase error is associated with the resolution of DCDL.

2.2. Locking Issue
2.2.1. False-locking

False-locking is also called Stuck-locking. False-locking will cause the DLL could not
achieve the phase-locking state permanently. If the initial delay of DCDL is shorter than half

of input clock period, then false-locking occurs.



Tini-<r l*Tre (2)
2
T.... Isthe initial delay of DCDL, T, is the period of reference clock. If the inequality

(2) is true, the false-locking occurs. Fig. 3 shows the result of false-locking.

Phase comparison Phase comparison
(Lag) (Lag)

CLKref

2ns\ 1nsY

CLKout I—
Control bits < 0001 >< 0000

Fig. 3. The timing diagram of false=locking when the input clock period is 5ns.

Because the initial delay is shorter than half-of reference clock, the phase of output clock is
more near the original one. Therefore, PD determines that the output clock is lagging. The
delay should be shorter. At last, the control signal should be zero, that is, the delay will be the
shortest. However, DLL still could not lock because it is impossible for DCDL to be zero
delay. Therefore, the clock-deskew function of DLL is also meaningless. The DLL design

have to avoid the occurrence of the false-locking.

2.2.2. Harmonic-locking

Harmonic-locking actually can successfully lock the phase in the end. It means that the
delay time of DCDL is larger than one reference cycle. Although DLL is still able to lock, the
longer delay path will increase the intrinsic jitter of DCDL. Furthermore, if the DLL has
multiphase applications, then the harmonic-locking is not allowed. The reason is that DLL

needs to divide one reference cycle delay into multi-part to generate the multiphase output



clock.

The result of Harmonic-locking is as follows.

T nN*T ., n>2, neN 3)

delay = ref 7

T

delay 1S the total delay time of the delay chain when the phase is locking, and T is

the clock period of the reference clock. Moreover, The condition that brings about

Harmonic-locking is as follows.

T §*Tr ef (4)

init =

T..;. IS the initial delay of DCDL. When the inequality (4) is true, the delay time will

approach two or more reference cycles. The timing diagram is shown in Fig 4.

Phase comparison Phase comparison Phase comparison
(Lead) (Lag) (Lock)

CLKref ‘ | | |

CLKout

Control bits < 1010 >< 1000 >< 1001

Fig. 4. The timing diagram of Harmonic-locking when the input clock period is 5ns.

The final delay time in Fig. 4 is two reference clock cycles. It can notice that the DLL

also need more than two cycles to adjust the delay time of DCDL because it must wait about

two reference clock cycles to detect the real delayed phase for each tuning. Apart from this,

Harmonic-locking is not that big problem when DLL does not provide multiphase

applications. If the false-tracking and harmonic-tracking should be avoided, the DLL should

fulfill the following condition.

-

_*Tref < Tinit < g*Tref (5)

N



2.3. Locking Strategy

The locking strategy of Digital DLL can be divided into several categories. The most
conventional method is the sequential search algorithm, i.e., the shift register-controlled DLL
and the counter-controlled DLL. But the lock-in time of DLL increases exponentially with the
number of control bits. The second one is the successive-approximation register-controlled
DLL (SARDLL). The strategy of SARDLL is like the binary search algorithm, so its lock-in
time can be shorter. The last one is Time-to-digital Converter (TDC) scheme. TDC can
roughly estimate the input clock period and use a digital output to represent it. According to
the digital output, The DLL can set up the delay of DCDL. TDC can achieve the shortest
lock-in time at the cost of area and power. In this work, the SDDLL will adopt the above
methods.

2.3.1. TDC

The architecture of TDC is shown in Fig. 5. TDC ecan measure an input pulse and give a

corresponding digital output via a cascaded-counter-and D-type flip-flops.

TDC
D = Q cascaded—
AO21D4 AO21D4 AO21D4 counter
i L CLR 6
CLK — |i [ =i | § [ 7=}
#1 #2 #n
OU 0 ‘O‘ 0‘0‘
) D" ol— b g b 0
CLK q WCLK -3 CLK . QW CLK - QW
l TDC Encoder M
L

Quantization output

Fig. 5. The architecture of TDC.

The effect of TDC scheme can help the DLL lock faster. If the mapping from TDC to



DCDL is appropriate. The initial delay time of DCDL can approach one reference clock
period quickly, so DLL can achieve faster phase-locking. Moreover, the locking issues will
not take place due to the appropriate initial delay. TDC is used to accelerate phase-locking and

solve the conventional locking issues.

2.3.2. Pulse Amplifier with One Pulse Lock

TDC has its minimum measurable pulse width because of the setup time of D-type
flip-flops and a little gate delay. If the input pulse is too short, the TDC cannot detect the
existence of input pulse. Therefore, this design adopt the Pulse Amplifier to extend the narrow
pulse to avoid the input pulse violation of TDC. Fig. 6 shows the architecture of Pulse

Amplifier.

OUTPUT_PULSE

Error_setib%

Delay Path

Fig. 6. The architecture of Pulse Amplifier with One Pulse Lock.

If the input pulse is too narrow, the Pulse Amplifier can extend the length of input pulse
to the total delay path and output the new pulse. It solves the input violation problem of TDC.
The Pulse Amplifier can also filter the other pulses after the first pulse via the control of

Error_set, that is, the function of one pulse lock.



Chapter 3
The Architecture of The Proposed SDDLL

SDDLL combines the Or1200 CPU and DLL IPs via the WISHBONE bus. Resolution,
range of operating frequency and lock-in time are important performance for DLL, so they
should be take into account in the DLL design.

It is a big challenge for SDDLL to keep the above performance factor with the
communication of hardware and software. The proposed SDDLL supply multiphase output
clock and duty cycle calibration, so a multiphase. DCDL and duty cycle correctors are adopted
in this work.

The organization of this section is as follow. Section 3.1 introduce the basic concept of
SDDLL. Section 3.2 shows the architecture of the proposed SDDLL and the communication
interface of hardware and software. Section 3.3 shows the detailed silicon IPs of the hardware

part of DLL.

3.1. Basic Concept of SDDLL

In the conventional ADDLL, the control unit implements the control strategy and adjusts
the control signal to change the delay time of DCDL. The main idea of SDDLL is that
replacing the control unit by CPU and software. Let CPU execute the control strategy and
tune the delay chain because the software has more flexibility and portability. SDDLL is just
like an embedded hardware and software codesign. There are several CPUs in many systems
nowadays. If some of them are idle, DLL can also steal the CPU to do phase-tracking for DLL.

The control strategy can be modified for different usages easily, but we should be careful for

10



the software code writing.

Reference clock Output clock

D

P Digital-controlled Delay Line >

Remaining DLL ‘ )
Control signal

CPU
(Control Unit)

Phase
Detector

[ ]
|
v}
o)
=

—
—

cccccSecfleccnaa

Bus interface

Fig. 3.1. The basic.concept-of SDDLL.

This design will use the WISHBONE:bus to integrate the CPU and the other DLL IP. The
software will be put in the Flash. The CPU will read the software via the bus and execute it,
and the CPU can also exchange data with DLL via the bus. Therefore, the CPU can control

the delay line in the DLL block.

3.2. The Architecture of SDDLL

The 0or1200 CPU provides the bus interface for WISHBONE bus. This work selects
compatible WISHBONE bus to integrate the CPU and all the silicon IPs. The WISHBONE
bus is a master-slave interface and asynchronous access mechanism. The or1200 CPU is the
master, and it can make a request to the slave for read or write. The architecture is shown in
Fig. 3.2.

The software is compiled by GNU toolchain first, and the compiled machine code is

stored into the read-only flash. After the system is reset, CPU will access the instructions from

11



the flash and execute it. CPU can do memory access for data read and write to complete all of
the instructions. CPU can also communicate with the DLL via the bus, so they can exchange
the information just like TDC output, phase state and digital control signal. SACA is in charge
of the system clock generator. The system clock is transferred to all of the blocks via the

WISHBONE bus.

instruction 0Or1200 Control DLL and
reading f CPU T exchange data
Instruction Data
WISHBONE bus jfiterface WISHHRONE bus interface
A / \ A
y \
Master 1/ \Master 2
h 4 V\
/—/ WISHBONE bus \
/ N\
A \
system clock
Software | | Slave 1 Slave 2 il Slave 3
In Flash ° v
Flash & Memory SACA DLL

Fig. 3.2. The architecture and data flow of SDDLL platform.

3.2.1. CcrPU

The control unit is replaced with the or1200 CPU. The or1200 CPU is a free open source,
released by OpenCores. The or1200 is 32-bit scalar RISC structure with the Harvard
architecture, so Or1200 do instruction and data access separately. The used Or1200 is an
uni-core CPU.

In this work, This design enables a 1K instruction cache in order to reducing the number
of instruction access. In general, one bus access needs three system cycles to handle it. But if
there is a cache hit, the instruction access only spends one system cycle. Otherwise, cache

miss needs the miss penalty to recover the missing instruction. Or1200 will fetch the after

12



four instructions for miss penalty, so it needs twelve system cycles.

The data cache is disabled because the repeated data access for the same address is rare.
And the address is not continuous, so enabling the data cache is not worth.

The gate count of CPU with 1KB instruction cache is about 150K in TSMC 65nm
process. The reason why choosing Or1200 is that it is an open source and has implemented in

various commercial systems.

Programmable T
Interrupt Tick Timer
Management
Controller
| L |
Or1200 CPU
| | | 1
Instruction Instruction Data Data
cache MMU cache MMU
(1KB enabled) (disabled) (disabled) (disabled)
Instruction Data
wishbone bus interface wishbone bus interface

Fig. 3.3. The overview of OPENRISC Or1200.

3.2.2. BUS

Or1200 provides WISHBONE bus interface. The WISHBONE bus has high
compatibility because it is an asynchronous bus. That is, it choose the hand-shaking
mechanism for the communication. The master make a request with the access address. The
bus will transform the request to the related slave. The slave will give an ack back to master,

and then the data transition starts.

3.2.3. Semi Asynchronous Clock Access (SACA)

The SACA is used to be a system clock generator for CPU computation. It will transfer

13



the system clock via the WISHBONE bus. SACA can multiply the clock frequency with a
digital control signal. SACA can apply better performance in circuit noise environment and

power consumption.

Ref.clkl |
SACAcIk|||||||||||||||| |

*----------------------»
8 cycles

Fig. 3.4. An example of SACA.

3.3. The Hardware Architecturerof DLL

The hardware of DLL is the key-part.of the SDDLL. It has the function of clock deskew,
multiphase output clock and duty cycle“calibration:“The architecture of DLL is shown in Fig.
3.5.

In this work, an 8-stage Multiphase Delay Line is chosen. The DCDL with larger stage
number can generate more multiphase output clock. But if the stage number is too larger, the
highest frequency will be limited by the intrinsic delay of Multiphase DCDL. 8 is also an
even number. It can easily generate half delay of the total DCDL. It is good for duty cycle
calibration, so 8-stage is chosen.

DLL can communicate with CPU via the WISHBONE bus. DLL transfer the information
of the phase state (Lead or Lag) and the TDC-measured output for extended reference clock
and phase error.

The CPU will execute the instructions to decide the next digital control signal according
to the information from DLL, and transfer the digital control signal back to the DLL.

Therefore, The delay of Multiphase DCDL will change.

14



Multiphase

output clock
POT PlT PZT PST P4T PST PGT P7T

Duty Cycle Corrector

po|l P1] P2 P3| pPa| ps pe| P7 P

Digital contrg
8-stage signal

Multi-phase Delay Line N Filter

A —
Ref. clk

bus

1 Clock Extender ] Extended Pulse

N DC TDC output

MUX OPL_PA i
d NN
Phase Error
_’ -
PFD

Lead
Lag

Fig. 3.5. The architecture and the'data flow of DLL.

The relation of extended pulse and reference clock is shown in Fig. 3.6.
The clock extender is just like a divide-by-2 frequency divider. The length of extended
pulse is the whole reference cycle. TDC can measure the pulse to help the delay of DCDL be

near one reference cycle in the first step.

Reference clock

Extended Pulse

Fig. 3.6. The waveform of reference clock and extended pulse.
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As mentioned in Chapter 2, the Pulse Amplifier with One Pulse Lock (OPL_PA) is
applied to prevent the input pulse violation of TDC. It can lengthen the narrow pulse so as to
meet the limitation of the minimum pulse for TDC.

With the pulse amplifier, TDC can measure every kind of pulse. DLL can use TDC to
measure the reference clock cycle and the phase error. It can help the SDDLL accelerate the
speed of phase-locking.

DLL transfer the information to CPU, and then the software that executed by CPU will
make decisions. CPU will transfer the result of digital control signal back to DLL, and the

signal can control the delay time of Multiphase DCDL.

3.3.1 Multiphase DCDL

The 8-stage Multiphase DCDL is the coarse-fine structure. It has eight equivalent delay
chains. Each delay chain can be divided:into two parts. i.e., Coarse delay line and Fine delay

line. The architecture of Multiphase DCDL is shown in Fig. 3.7.

Coarse Fine
T Delay Line Delay Line T
Ref. clk | Delay ’ Delay ’ Delay Delay Delay Delay Delay Delay
Line ) Line Line Line Line Line Line ) Line
v v
PO P1 P2 P3 P4 P5 P6 p7

8-stage Multiphase output clock

Fig. 3.7. The architecture of 8-stage Multiphase DCDL.

PO~P7 are the multiphase output clock, and the delay of each delay line should be 1/8

16



reference clock cycle. The total delay of Multiphase DCDL is one reference cycle when DLL
is locking

The design of 8-stage Multiphase DCDL should give consideration to the higher
operating frequency, the wider frequency range, the higher resolution and the lower intrinsic
jitter. This is a hard design issue and a big challenge in 8-stage multiphase delay line. The
consideration of intrinsic delay should be as short as possible due to the consideration of
higher operating frequency. Each delay line should be the same because each delay between
the multiphase output clock must be precisely equivalent. The rise/fall time unbalance of
delay chain may affect the highest operating frequency. This case should be avoided.

Fig. 3.8 shows the waveform of 8-stage Multiphase DCDL when DLL is locking. Each

delay between Multiphase clocks is about 1/8 reference clock cycle.

S 8 I s IR i 55 ey G B
S S e 0 s I s 55 I e HE
ST ] i i | 11
RS T ey N 4 N N O 3
SO S N T o O e
i FL L LT L LT
S s I s I s I ey N

Fig. 3.8. The waveform of 8-stage Multiphase DCDL.

For the multiphase applications, the total delay of DCDL should be just right one
reference clock in order to generate eight multiphase output clock. The frequency range of

this 8-stage Multiphase delay line is 1.035MHz ~ 161.29MHz. i.e., the delay range is 6.2ns ~

17



966.183ns. The resolution of the 8-stage Multiphase DCDL is 90fs.

Table 1. The specification of one delay line

Coarse delay line Fine delay line
Cl C2 F1 F2 F3
Used A021D4 & AO021D4 | 2 parallel AOI OAl
elements counter AOI
Control 7 5 4 4 4
bits
Stage 128 32 16 16 16
Resolution 0.95ns 20.32ps 1.516ps 133.22fs | 11.53fs

3.3.2. Coarse Delay Line

The coarse delay line [2] can be divided-into‘two parts. The first part (C1 delay line) is
composed of several delay cells (AO21D4) and-a''counter. The differential circuit will
generate a narrow pulse for the positive edge‘and-negative edge of input clock. The narrow
pulse will trigger the count of delay chain:;The-counter will count up to C1, and the count
stops. The output of counter will be 1 simultaneously. And then D-type flip-flop and counter
will be reset. The output of counter will be 0 soon. Therefore, the output of counter will be a
narrow pulse, too. The counter will wait the next pulse to trigger the count function. The
counter scheme can extend the frequency range with a smaller area.

The second part (C2 delay line) is a selectable delay path. It can choose one path with the
control signal, so it can decide the length of delay path. The frequency divider is adopted to
recover the waveform of input clock and solve the problem of rise/fall time unbalance for C2

delay line.

3.3.3. Fine Delay Line

In this work, The fine delay line is composed of the variable capacitive delay elements.
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The parallel gates are used as the parallel capacitors on the loading line. The control signal
can switch the capacitors in parallel. The number of parallel capacitors may affect the delay

time because 7 =RC . In this work, the Fine delay line is composed of three components, F1
delay line, F2 delay line and F3 delay line. The F3 delay line has the highest resolution among

them. The architecture of Fine-delay line is shown in Fig 3.10.

NOT Gate

™o

L

FHL_:DLD Lm_:DLD F1{0] :&D
AOI21D4 AOI21D4 AOI21D4
AOI21D4 AOI21D4 AOI21D4

\_Ng?ate
F2[15] \:i ? F2[1]L .............................. F2[0] \:1 >_‘
1

1
AOI31D1 AOI31D1 AOI31D1

NOT Gate BUFFER
™o

- L Fa[0) B
=t DOt — o o,

OAI21D0 OAI21D0 OAI21D0

Fig. 3.9. The architecture of fine delay line.

The NOT gate is adopted to drive the parallel capacitors and the buffer also has the
isolation function. The change of driving ability and capacity loading can cause different
delay time. This method is good at lower power consumption and higher resolution, but it is

very sensitive to capacity loading. It is more difficult for layout issues.
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Sl I
o

Ground

Fig. 3.10. The transistor-level representation for AO121D4.

For the selection of fine cells, the transistor-level should be considered. This design
should check that there are parallel capacitors.in the structure of fine cells. Moreover, because
the output of the parallel gates is floating,-if the‘logic of output is not fixed, the noise will
cause very severe intrinsic jitter. No matter the switch is on or off, the output of parallel gate

should not change with the logic of loadingline.

3.3.4. Duty Cycle Corrector

Because the duty cycle of Multiphase DCDL is maybe not 50-50 duty cycle, the duty
cycle calibration is required. Duty cycle calibration needs the clock delayed with half delay
time. The 8 output clocks can be divided into 4 groups. The phase difference of two clocks in
each group is right half of one reference clock when DLL is locking. They can compensate the
duty cycle with each other. The architecture of Duty Cycle Corrector and its sub-unit is shown

in Fig. 3.12 and Fig 3.13..
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Fig. 3.11. The architecture of Duty Cycle Corrector.

C1

(Major clock) |

Cc2
(Minor clock)

Narrow Pulse
Generator

Corrected

Narrow Pulse
Generator

SR Latch

clock

Q— »

When the DLL is locking, the phase difference of C1 and C2 should be half of one
reference clock cycle. When the positive edge of C1 is encountered, SR Latch will set the
output. After half of one reference clock cycle, the positive edge of C2 is encountered, SR

latch will clear the output. At last, it compensates the C1 clock to the 50-50 cycle. The

Fig. 3.12. The architecture of Duty Cycle Corrector Unit.

example waveform of DCC is shown in Fig. 3.14.
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Narrow pulse of C1 _I : _I _I | |
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Corrected clock
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Fig. 3.13. The example waveform of duty cycle calibration.

3.4. The Hardware Specification of SDDLL

The hardware specification is shown in Table 2. All of the silicon IPs is fabricated in
TSMC 65nm 1P6M process.

Table 2: Hardware Specification

Item Description

Process TSMC:65nm 1P6M Process

OpenRISC 0r1200
Maximum clock frequency: 250MHz

CPU . .
1KB instruction cache enabled
Gate count: 150k
WISHBONE bus
Bus Architecture: shared bus
Maximum clock frequency: 250MHz
TDC Resolution: 20ps
PED Minimum error pulse: 200ps

Minimum detectable clock difference: 45ps

. Frequency range: 0.517MHz ~ 143.678MHz
Multiphase DCDL a _ yrang
Resolution: 90fs

Reference clock Frequency range: 0.517MHz ~ 143.678MHz
103~1231MHz of 64 stage
SACA J
Each stage: 140ps
Memory Address space: SMB
Flash Address space: 8MB
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Chapter 4
The Control Strategy of The Proposed
SDDLL

In this section, the algorithm of SDDLL is discussed. Section 4.1 shows the flow of
algorithm. Section 4.2 shows some software design issues. Section 4.3 shows the simulation

results.
4.1. Control Strategy

The locking strategy adopts TDC scheme, prune-and-search, and sequential search. The
algorithm can also be divided into two_ parts, coarse=tune and fine-tune. They can control the
coarse delay line and fine delay line relatively. The specification of control signal is shown in

Fig. 4.1, and an example of coarse-fine tuning is:shown.in Fig. 4.2.

24-bit Control signal
for Multiphase DCDL

: Coarse part : Fine part :
1 i >
123 16 Y11 7 3 o?!
Ci1 C2 F1 F2 F3
7-bit 5-bit 4-bit 4-bit 4-bit

Fig. 4.1. The coarse and fine part of control signal.
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Control the coarse part  Control the fine part

. Yes
Fine-tune t Lock

No

Start

v

Coarse-tune

v

A

Fig. 4.2. An example state diagram of the coarse-fine tuning.

The algorithm should consider the possibility in various situations just like Process,
\oltage and Temperature(PVT) variation and the unfavorable effects in real digital circuits
just like jitter and noise.

The state diagram of algorithm is shown ingFig. 4.3. The algorithm will do TDC mapping
for the reference clock cycle to accelerate the locking algorithm and avoid the locking issues.
If the output of TDC for the phase error measurement is smaller than 10, this means the phase
error is small enough. Therefore, the algorithm gets into the fine-tune state. Due to the
consideration of some error in measurements, the algorithm selects 10 rather than 0. If the
output of TDC for phase error measurements is larger than 60, that is, the phase error is still
large, the algorithm can do TDC mapping for phase error to compensate the remaining phase
error. Otherwise, the algorithm do sequential search for coarse-tune.

The fine-tune do prune-and-search first and then check whether DLL is locking. If not,
the software do sequential search for fine-tune. Otherwise, if there are continuous alternating
phase state, i.e., the sequence of alternating lead and lag, this means DLL is locking. The DLL
stops tuning to reduce the power consumption. If the phase error is larger again, the algorithm

comes back to the coarse-tune state.
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Measure the ref.
P clock period
(TDC mapping)

Coarse-tune
:
TDC output of
’ hase error > 80

Yes

TDC output of
phase error < 10

v

Compensate
the phase error
(TDC mapping)

Tuning with
one coarse unit

Fine-tune

Tuning with
one fine unit

Prune-and-Search

v
v
r 3

Yes TDC output of

phase error > 10

4 times of {Lead, Lag}

...................................................................................................................

Fig. 4.3. The state diagram of SDDLL’s control strategy.

The prune-and-search adopts the searching strategy like the binary search. Because in the
fine-tune state, the phase error is hard to be measured by TDC. The software can only tune the
delay time according to the phase state.

Fig. 4.3 shows the TDC mapping. It assumes that the delay line is linear. The design can
estimate the ratio of TDC output and control signal of DCDL. After that, the TDC output can
be mapped to control signal of DCDL linearly. But actually, the delay line is non-linear, so the

linear mapping will cause a little error.
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Fig. 4.5 shows the flow of Prune-and-Search [1]. It will halve the searching range for

each tune. Hence, it is a common method to let the locking algorithm converge and lock.

Maximum

)

Minimum

C Delay time

Time Start

Fig. 4.5. The flow of Prune-and-Search.

The jitter will affect the locking accuracy, so the filter is added to reduce the effect of

jitter. 8-order Moving-average filter is adopted in this work.

4.2. Software Design Issues

4.2.1. Redundancy Cycle

Because the SDDLL provides the multiphase applications, the current algorithm of
SDDLL will let the delay time of DCDL be one reference clock cycle. Therefore, each tune at
least needs to pass through two positive edge of reference clock. After a tuning, the control
signal will update. The algorithm must wait for about one cycle delay to get the new
information for the phase relation. After the second positive edge, the algorithm can do the

next tuning. In general, it spends two reference cycles for one tuning. However, if it spends
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more cycles for one tuning, then there are redundancy cycles in the software-executing. The
redundancy cycles have to be reduced as less as possible.
Fig. 4.5 and Fig 4.6 show that the example waveform of SDDLL with and without

redundancy cycles.
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Fig. 4.6. The tuning without redundancy cycles.
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Fig. 4.7. The tuning with redundancy cycles.
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If the algorithm-writing is too complicated, the executing time must increase. It is

possible to generate the redundancy cycles. It must be careful for algorithm-writing.

Fig. 4.7 and Fig 4.8 show a method that reduces the redundancy cycles. In the view of

software, the software writing is usually a sequential procedure. But for SDDLL, it will spend

some time to wait the new phase state after each tune. There is a spin-lock for the new phase

state. But the time for waiting is totally wasted. Therefore, in this work, the algorithm is

rearranged. When DLL is waiting, the software can do the calculation without dependency

first. It can steal some time to do useful execution rather than just a spin-lock.

If(Lead)

Delay = Delay +1
Else if(Lag)
Delay = Delay -1

7'y

Update
control signal

Waiting
(Wait for the new
phase state)

Calculations and
Decisions
Waiting
Update
control signal

Phase
Comparison

(Lead)

CLKref J | l

N
Seo
e

CLKout |

Control < 1000 >
bits

0100

Fig. 4.8. The software-executing flow without code rearrangement.
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Tmpl = Delay +1
Tmp2 = Delay -1

If(Lead)

Delay = Tmpl
Else if(Lag)
Delay = Tmp2

The next update of
control signal

CLKout

Control <
bits

A A
[} [}
L} L}
: :
Decisions
Updat_e Calculations Waiting | Update | Calculations { Waiting
control signa
control
signal
| |
Phase ' '
Comeparison | |
j(Lead) )
c e .
[ |
< e .
CLKref J | I | 1 I J I
N . . .
\ghelay 1 e )
----- “ond O .
| L [ie] :
’
] .
"
! " I
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=i |
"
1000 >< o1do # >/ ! o101
TV .4 N 1
U I
o~ I
| |

Fig. 4.9. The software-executing flow with code rearrangement.

The method can reduce most of the redundancy cycles. The different way of

software-writing also causes different efficiency. The performance of algorithm can be better

via the code enhancement.

4.2.2. Software Environment

Software environment that used in SDDLL lists in table 3. C language is chosen to

develop the algorithm, and the gcc compiler combines the compiler and assembler. It can

compile the C code to machine code. CPU can execute the machine code to do the
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phase-tracking algorithm.

Table 3. Software environment

Item Description

Development language | C

Cross compiler gcc 3.4.4 for OpenRISC 32 bit architecture

CentOS release 5.2

Host Kernel version: 2.6.18-92.1.17.el5

4.3. Simulation Result

This section shows the simulation result of the SDDLL controller. The simulation setting
and report lists in table 4. The simulation waveformyis presented at fig.4.7.
There are 8-stage Multiphase output clocks. The delay-of each stage should be 1/8 reference

clock.

Table 4. Simulation setting and report

Item Description

System clock
_ 227.27TMHz
period

Reference clock
] 1.052MHz 1.25MHz
period

Lock-in time About 48 reference cycles About 52 reference cycles

Phase error when
16fs 48fs

locking
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The last phase error when DLL is locking is 16fs for the simulation with SDDLL
controller when the reference clock is 1.052MHz. DCDL_out 1 ~ DCDL_out_8 are the
outputs of 8-stage multiphase DCDL. DCDL _out_8 is the last output clock, and its phase

should be the same as the reference clock.
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Fig. 4.10. The-waveforms of simulation result.

(a)The frequency of-ref.clock is 1.052MHz
(b)The frequency of ref. clock is 1.25MHz

The filter adopted in this work is 8-order Moving-average filter. Filter is used to reduce
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the effect of jitter and noise to help the locking for SDDLL. The Filter_control is the control
signal via the filter. The DCDL choose the Filter_control as the control signal. Because the
filter will reduce the high frequency part of signal. The loop gain of DLL will also be

lightened, so the locking time will be more longer.
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(b)
Fig. 4.11. The waveforms of simulation result with an enabled 8-order Moving- average filter.

(a)The frequency.of ref. clock is 1.052MHz
(b)The frequency of ref. clock is 1.25MHz
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The pre-sim of 8-stage DCDL is shown as follows. The frequency of input clock is 100MHz
in the simulation. DCDL_1~DCDL_8 are the outputs of 8-stage DCDL. There are several

control signals for 8-stage DCDL. C1 and C2 are used for Coarse-tuning, and F1, F2, F3 are
used for Fine-tuning.

(@)
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Fig.4.12. The pre-sim of 8-stage Digital-controlled Delay Line.

(a)The control signal of DCDL is zero. (b)The control signal, C1 is 1.



The post-sim of 8-stage DCDL is shown in Fig 4.13. dcdl_1~dcdl_8 are the outputs of 8-stage

DCDL. Hspice is adopted in the post-sim in this work.
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Fig. 4.13. The post-sim of 8-stage Digital-controlled Delay Line.

(a)The control signal of DCDL is zero. (b)The control signal, C1 is 1.
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Chapter 5
Conclusion and Future Work

If this work, the specification of Multiphase DCDL is still an key component. The
highest operating frequency and the intrinsic jitter are important performance. Especially the
intrinsic jitter will affect the performance of phase-locking. If Multiphase DCDL can be
enhanced, the performance should be improved.

The software controller can control the DLL to be phase-locking, but there are still some
redundancy cycles. If the algorithm or the assembly code can be optimized more strongly, the

lock-in time should also be reduced
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