

國立交通大學

資訊科學與工程研究所

碩 士 論 文

軟體化延遲鎖定迴路之研究與實作

The Study of Software-defined Delay-locked Loop

and Its Implementation

研 究 生：洪崇文

指導教授：許騰尹 教授

中 華 民 國 一 百 年 七 月

軟 體 化 延 遲 鎖 定 迴 路 之 研 究 與 實 作

The Study of Software-defined Delay-locked Loop and Its

Implementation

研 究 生：洪崇文 Student：Chung-Wen Hong

指導教授：許騰尹 Advisor：Terng-Yin Hsu

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

 i

摘要
 延遲鎖定迴路具有消除時脈歪斜的功能，目前已被廣泛應用於各種系統的同

步電路，用以提供一個穩定的系統時脈。本篇論文提出了可使用軟體來控制並達

到相位鎖定的軟體定義之延遲鎖定迴路平台(SDDLL)。此平台同時具有消除時脈

歪斜、多相位的時脈輸出以及工作週期校正等功能，以 WISHBONE bus 結合了

OPENRISC 的 or1200 CPU 以及全數位式延遲鎖定迴路的數個 IP。CPU 可以進行軟

體指令的執行與運算，在平台的應用以及規格改變時，只需要修改軟體便可符合

規格，避免掉重新設計硬體的流程，減少時間及金錢的消耗，提升了重複利用度

以及彈性。此平台所有的矽智財是建立在 TSMC65nm GP 1P6M 製程下，軟體部分

則是使用 gcc 以及 GNU toolchain 來實作。

 ii

Abstract
Delay-locked loop can do clock deskew, and it is widely applied to the

synchronous circuits on various hardware systems nowadays. It can provide a stable

system clock. In this paper, a software-controllable and phase-lockable platform of

software-defined delay-locked loop(SDDLL) is proposed. This platform can do clock

deskew, multiphase output clock and duty cycle calibration. It is combined of

OPENRISC or1200 CPU and several intellectual properties in all-digital delay-locked

loop. CPU can execute the software instructions and do many operations. When the

application or specification of the platform is changed, it only needs to modify the

software and the platform still meet the new specification. The DLL can avoid the

procedure of the hardware redesign, so the verification of locking strategy can be

faster due to the reusability and the flexibility of software. All of the silicon IPs of the

platform are fabricated in TSMC65nm GP 1P6M process, And the software are

implemented by gcc and GNU toolchain.

 iii

Acknowledgement
要感謝的人非常多，首先我想感謝指導教授許騰尹老師，老師總是在各方面

給我適當的建議，不只是研究上，連做事情的方式上也總能點出我的缺點，因此

才有這篇論文的產生，十分感謝老師，我學到了不少東西，再來是 ISIP 的博士

班學長們，學長們也在各方面給了我莫大的幫助，以及實驗室的學長姐、同學與

學弟妹們，謝謝大家給了我很多的鼓勵，最後要感謝父母兄長及朋友，沒有他們，

便不會有今日的我了，在此致上我最真摯的謝意給以上所有人。

 洪崇文

謹誌

 民國一百年七月

 iv

Table of Contents
摘要... i

Abstract ... ii

Acknowledgement .. iii

Table of Contents .. iv

List of Figures .. vi

List of Tables ... vii

Chapter 1 Introduction .. 1

1.1. Thesis Motivation ... 1

1.2. Thesis Contribution ... 1

1.3. Thesis Organization .. 2

Chapter 2 Overview of SDDLL .. 3

2.1. Basic Concept ... 3

2.2. Locking Issue .. 5

2.2.1. False-locking .. 5

2.2.2. Harmonic-locking .. 6

2.3. Locking Strategy ... 8

2.3.1. TDC .. 8

2.3.2. Pulse Amplifier with One Pulse Lock .. 9

Chapter 3 The Architecture of The Proposed SDDLL ... 10

3.1. Basic Concept of SDDLL ... 10

3.2. The Architecture of SDDLL ... 11

3.2.1. CPU .. 12

3.2.2. BUS .. 13

3.2.3. Semi Asynchronous Clock Access (SACA) 13

3.3. The Hardware Architecture of DLL .. 14

3.3.1 Multiphase DCDL ... 16

3.3.2. Coarse Delay Line.. 18

3.3.3. Fine Delay Line.. 18

3.3.4. Duty Cycle Corrector ... 20

3.4. The Hardware Specification of SDDLL ... 22

Chapter 4 The Control Strategy of The Proposed SDDLL 23

4.1. Control Strategy .. 23

4.2. Software Design Issues ... 26

4.2.1. Redundancy Cycle ... 26

4.2.2. Software Environment ... 29

4.3. Simulation Result .. 30

 v

Chapter 5 Conclusion and Future Work ... 39

Reference .. 40

 vi

List of Figures
Fig. 1. Basic block diagram of ADDLL. .. 4

Fig. 2. The delay adjustment of DLL. .. 5

Fig. 3. The timing diagram of false-locking when the input clock period is 5ns. 6

Fig. 4. The timing diagram of Harmonic-locking when the input clock period is 5ns. . 7

Fig. 5. The architecture of TDC. .. 8

Fig. 6. The architecture of Pulse Amplifier with One Pulse Lock. 9

Fig. 3.1. The basic concept of SDDLL. ... 11

Fig. 3.2. The architecture and data flow of SDDLL platform. 12

Fig. 3.3. The overview of OPENRISC Or1200. .. 13

Fig. 3.4. An example of SACA. ... 14

Fig. 3.5. The architecture and the data flow of DLL. .. 15

Fig. 3.6. The waveform of reference clock and extended pulse. 15

Fig. 3.7. The architecture of 8-stage Multiphase DCDL. .. 16

Fig. 3.8. The waveform of 8-stage Multiphase DCDL. ... 17

Fig. 3.9. The architecture of fine delay line. .. 19

Fig. 3.10. The transistor-level representation for AOI21D4. 20

Fig. 3.11. The architecture of Duty Cycle Corrector.. 21

Fig. 3.12. The architecture of Duty Cycle Corrector Unit. .. 21

Fig. 3.13. The example waveform of duty cycle calibration. 22

Fig. 4.1. The coarse and fine part of control signal. .. 23

Fig. 4.2. An example state diagram of the coarse-fine tuning. 24

Fig. 4.3. The state diagram of SDDLL’s control strategy. ... 25

Fig. 4.5. The flow of Prune-and-Search. .. 26

Fig. 4.6. The tuning without redundancy cycles. ... 27

Fig. 4.7. The tuning with redundancy cycles. .. 27

Fig. 4.8. The software-executing flow without code rearrangement. 28

Fig. 4.9. The software-executing flow with code rearrangement. 29

Fig. 4.10. The waveforms of simulation result. ... 32

Fig. 4.11. The waveforms of simulation result with an enabled 8-order Moving-

average filter... 34

Fig.4.12. The pre-sim of 8-stage Digital-controlled Delay Line. 36

Fig. 4.13. The post-sim of 8-stage Digital-controlled Delay Line. 38

 vii

List of Tables
Table 1. The specification of one delay line .. 18

Table 2. Hardware Specification .. 22

Table 3. Software environment .. 30

Table 4. Simulation setting and report ... 30

 1

Chapter 1

Introduction

1.1. Thesis Motivation

 Delay-locked loop has been widely used for synchronous circuits between the system

chips. There are several kinds of delay-locked loops, such as Analog DLL, Digital DLL

(DDLL), All-digital DLL (ADDLL). ADDLL means that all of the components are digital. In

general, all-digital approach has higher portability and shorter design cycle and fast-locking

property. But when the application or control strategy is changed, DLL have to do hardware

redesign. It spends a lot of time for simulation, synthesis, layout and verification for IC design

standard flow. Therefore, the Software-defined Delay-locked Loop (SDDLL) is proposed.

DLL can use software to control the delay-locked loop. The platform of SDDLL integrated

with CPU and all IPs for delay-locked loop just like an embedded system. Software has

flexibility and the time for development is shorter. Hence, SDDLL has flexibility and

reusability. And the redesign cost can be alleviated.

1.2. Thesis Contribution

The proposed platform of SDDLL can control the delay locked loop via the software. It

is just like an embedded system hardware-software codesign. The platform can do

clock-deskewing, multiphase output clock and duty cycle calibration. The software can be

optimized to reduce the redundancy cycles for phase tracking procedure. When the

application or the specification is changed, DLL can modify the software to fit the new

condition.

 2

1.3. Thesis Organization

Section 2 shows the overview of conventional ADDLL and SDDLL. Section 3 illustrates

the architecture of the proposed SDDLL. Section 4 illustrates the control strategy of the

proposed SDDLL and the simulation result. Section 5 presents conclusions and future works.

 3

Chapter 2

Overview of SDDLL

The characteristics of the proposed SDDLL are software controllability and

programmability. SDDLL combines the CPU and the silicon IPs of the delay-locked loop, so

the hardware and software can work in coordination with each other. All of the components

will be discussed as follows.

2.1. Basic Concept

There are several types of delay-locked loop. On the whole, all-digital approach has the

fast-locking feature and higher tolerance to process variation and the supply voltage, but its

skew and jitter are more serious relatively. However, for SoC implementation, all-digital

approach is more suitable due to the compatibility for integration system and the insensitivity

to supply noise. So All-digital Delay-locked Loop(ADDLL) is chosen as the basic DLL IPs

for the platform of the proposed SDDLL.

Delay-locked loop can generate an output clock whose phase is related to the reference

clock via a delay chain. Therefore, the delay time should be integral multiples of reference

clock’s period when the DLL is locking.

NnnTnT refdelay  ,1,* (1)

delayT is the total delay time of the delay chain when the phase is locking, and refT is

the clock period of the reference clock.

The conventional All-digital Delay-locked Loop contained several components, such as

Phase Detector (PD), Digital-controlled Delay Line (DCDL) and the control unit for DCDL.

 4

Digital-controlled Delay Line

Control Unit
Phase

Detector
Up

Control signal

Down

Output clockReference clock

Fig. 1. Basic block diagram of ADDLL.

The architecture of ADDLL is shown in Fig.1. The Phase Detector compares the phase

relation between the reference and output clock. The control unit can change the digital signal

to adjust the delay time of DCDL according to the output of Phase Detector. If the output

clock is leading the reference clock, the control unit can extend the delay time of DCDL. On

the contrary, if the output clock is lagging the reference clock, the control unit can shorten the

delay time of DCDL. Fig. 2 shows that an illustration of phase tracking for the 4-bit DCDL.

Assume that the intrinsic delay of DCDL is 1ns, and the After appropriate phase tracking for

the delay time of DCDL, the DLL should be locking.

Control Signal

Delay Time

0000

1ns

0001

2ns

0010

3ns

0011

4ns

1111

16ns

(a)

 5

CLKref

CLKout

Control bits 0011 0101 0100

4ns

delay

Phase comparison

(Lead)

Phase comparison

(Lag)
Phase comparison

(Lock)

6ns

delay

5ns delay

(b)

Fig. 2. The delay adjustment of DLL.

(a)The example 4-bit delay line.

(b)The timing diagram of phase tracking when the input clock period is 5ns.

In consideration of the actual conditions, phase-tracking has some tough questions to

solve. Because of the influence of input jitter and intrinsic jitter of DCDL and the dead zone

of PD, it is more difficult to achieve lock state. This design should consider these unideal

effects. If the DLL is in the locking state, there is still a few phase error. In general, the

amount of phase error is associated with the resolution of DCDL.

2.2. Locking Issue

2.2.1. False-locking

False-locking is also called Stuck-locking. False-locking will cause the DLL could not

achieve the phase-locking state permanently. If the initial delay of DCDL is shorter than half

of input clock period, then false-locking occurs.

 6

 r e fi n i t TT *
2

1
 (2)

initT is the initial delay of DCDL, refT is the period of reference clock. If the inequality

(2) is true, the false-locking occurs. Fig. 3 shows the result of false-locking.

CLKref

CLKout

Control bits 0001 0000

Phase comparison

(Lag)

Phase comparison

(Lag)

2ns 1ns

Fig. 3. The timing diagram of false-locking when the input clock period is 5ns.

Because the initial delay is shorter than half of reference clock, the phase of output clock is

more near the original one. Therefore, PD determines that the output clock is lagging. The

delay should be shorter. At last, the control signal should be zero, that is, the delay will be the

shortest. However, DLL still could not lock because it is impossible for DCDL to be zero

delay. Therefore, the clock-deskew function of DLL is also meaningless. The DLL design

have to avoid the occurrence of the false-locking.

2.2.2. Harmonic-locking

Harmonic-locking actually can successfully lock the phase in the end. It means that the

delay time of DCDL is larger than one reference cycle. Although DLL is still able to lock, the

longer delay path will increase the intrinsic jitter of DCDL. Furthermore, if the DLL has

multiphase applications, then the harmonic-locking is not allowed. The reason is that DLL

needs to divide one reference cycle delay into multi-part to generate the multiphase output

 7

clock.

The result of Harmonic-locking is as follows.

NnnTnT refdelay  ,2,* (3)

delayT is the total delay time of the delay chain when the phase is locking, and refT is

the clock period of the reference clock. Moreover, The condition that brings about

Harmonic-locking is as follows.

 r e finit TT *
2

3
 (4)

initT is the initial delay of DCDL. When the inequality (4) is true, the delay time will

approach two or more reference cycles. The timing diagram is shown in Fig 4.

CLKref

CLKout

Control bits 1010 1000

Phase comparison

(Lead)

Phase comparison

(Lag)

8ns

Phase comparison

(Lock)

1001

10ns11ns

Fig. 4. The timing diagram of Harmonic-locking when the input clock period is 5ns.

The final delay time in Fig. 4 is two reference clock cycles. It can notice that the DLL

also need more than two cycles to adjust the delay time of DCDL because it must wait about

two reference clock cycles to detect the real delayed phase for each tuning. Apart from this,

Harmonic-locking is not that big problem when DLL does not provide multiphase

applications. If the false-tracking and harmonic-tracking should be avoided, the DLL should

fulfill the following condition.

 refinitref TTT *
2

3
*

2

1
 (5)

 8

2.3. Locking Strategy

The locking strategy of Digital DLL can be divided into several categories. The most

conventional method is the sequential search algorithm, i.e., the shift register-controlled DLL

and the counter-controlled DLL. But the lock-in time of DLL increases exponentially with the

number of control bits. The second one is the successive-approximation register-controlled

DLL (SARDLL). The strategy of SARDLL is like the binary search algorithm, so its lock-in

time can be shorter. The last one is Time-to-digital Converter (TDC) scheme. TDC can

roughly estimate the input clock period and use a digital output to represent it. According to

the digital output, The DLL can set up the delay of DCDL. TDC can achieve the shortest

lock-in time at the cost of area and power. In this work, the SDDLL will adopt the above

methods.

2.3.1. TDC

The architecture of TDC is shown in Fig. 5. TDC can measure an input pulse and give a

corresponding digital output via a cascaded counter and D-type flip-flops.

AO21D4

#1

AO21D4

#2

AO21D4

#n

0 00 0 0 0

Q

Q
SET

CLR

D

L

TDC

cascaded

counter

CLK

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

TDC Encoder

CLK CLK CLK CLK

Quantization output

Fig. 5. The architecture of TDC.

The effect of TDC scheme can help the DLL lock faster. If the mapping from TDC to

 9

DCDL is appropriate. The initial delay time of DCDL can approach one reference clock

period quickly, so DLL can achieve faster phase-locking. Moreover, the locking issues will

not take place due to the appropriate initial delay. TDC is used to accelerate phase-locking and

solve the conventional locking issues.

2.3.2. Pulse Amplifier with One Pulse Lock

TDC has its minimum measurable pulse width because of the setup time of D-type

flip-flops and a little gate delay. If the input pulse is too short, the TDC cannot detect the

existence of input pulse. Therefore, this design adopt the Pulse Amplifier to extend the narrow

pulse to avoid the input pulse violation of TDC. Fig. 6 shows the architecture of Pulse

Amplifier.

Delay Path

RB

D Q

RB

D Q

Error_set

INPUT_PULSE

1 1

OUTPUT_PULSE

Fig. 6. The architecture of Pulse Amplifier with One Pulse Lock.

If the input pulse is too narrow, the Pulse Amplifier can extend the length of input pulse

to the total delay path and output the new pulse. It solves the input violation problem of TDC.

The Pulse Amplifier can also filter the other pulses after the first pulse via the control of

Error_set, that is, the function of one pulse lock.

 10

Chapter 3

The Architecture of The Proposed SDDLL

SDDLL combines the Or1200 CPU and DLL IPs via the WISHBONE bus. Resolution,

range of operating frequency and lock-in time are important performance for DLL, so they

should be take into account in the DLL design.

It is a big challenge for SDDLL to keep the above performance factor with the

communication of hardware and software. The proposed SDDLL supply multiphase output

clock and duty cycle calibration, so a multiphase DCDL and duty cycle correctors are adopted

in this work.

The organization of this section is as follow. Section 3.1 introduce the basic concept of

SDDLL. Section 3.2 shows the architecture of the proposed SDDLL and the communication

interface of hardware and software. Section 3.3 shows the detailed silicon IPs of the hardware

part of DLL.

3.1. Basic Concept of SDDLL

In the conventional ADDLL, the control unit implements the control strategy and adjusts

the control signal to change the delay time of DCDL. The main idea of SDDLL is that

replacing the control unit by CPU and software. Let CPU execute the control strategy and

tune the delay chain because the software has more flexibility and portability. SDDLL is just

like an embedded hardware and software codesign. There are several CPUs in many systems

nowadays. If some of them are idle, DLL can also steal the CPU to do phase-tracking for DLL.

The control strategy can be modified for different usages easily, but we should be careful for

 11

the software code writing.

Digital-controlled Delay Line

Phase

Detector
Up

Control signal

Down

Output clockReference clock

CPU

(Control Unit)

Bus interface

Remaining DLL

Software

Fig. 3.1. The basic concept of SDDLL.

This design will use the WISHBONE bus to integrate the CPU and the other DLL IP. The

software will be put in the Flash. The CPU will read the software via the bus and execute it,

and the CPU can also exchange data with DLL via the bus. Therefore, the CPU can control

the delay line in the DLL block.

3.2. The Architecture of SDDLL

The or1200 CPU provides the bus interface for WISHBONE bus. This work selects

compatible WISHBONE bus to integrate the CPU and all the silicon IPs. The WISHBONE

bus is a master-slave interface and asynchronous access mechanism. The or1200 CPU is the

master, and it can make a request to the slave for read or write. The architecture is shown in

Fig. 3.2.

The software is compiled by GNU toolchain first, and the compiled machine code is

stored into the read-only flash. After the system is reset, CPU will access the instructions from

 12

the flash and execute it. CPU can do memory access for data read and write to complete all of

the instructions. CPU can also communicate with the DLL via the bus, so they can exchange

the information just like TDC output, phase state and digital control signal. SACA is in charge

of the system clock generator. The system clock is transferred to all of the blocks via the

WISHBONE bus.

WISHBONE bus

Instruction

WISHBONE bus interface

Data

WISHBONE bus interface

Master 1 Master 2

DLLSACAFlash & Memory

Slave 1 Slave 2 Slave 3

Or1200

CPU

Software

In Flash

system clock

instruction

reading

Control DLL and

exchange data

Fig. 3.2. The architecture and data flow of SDDLL platform.

3.2.1. CPU

The control unit is replaced with the or1200 CPU. The or1200 CPU is a free open source,

released by OpenCores. The or1200 is 32-bit scalar RISC structure with the Harvard

architecture, so Or1200 do instruction and data access separately. The used Or1200 is an

uni-core CPU.

In this work, This design enables a 1K instruction cache in order to reducing the number

of instruction access. In general, one bus access needs three system cycles to handle it. But if

there is a cache hit, the instruction access only spends one system cycle. Otherwise, cache

miss needs the miss penalty to recover the missing instruction. Or1200 will fetch the after

 13

four instructions for miss penalty, so it needs twelve system cycles.

The data cache is disabled because the repeated data access for the same address is rare.

And the address is not continuous, so enabling the data cache is not worth.

The gate count of CPU with 1KB instruction cache is about 150K in TSMC 65nm

process. The reason why choosing Or1200 is that it is an open source and has implemented in

various commercial systems.

Instruction

 wishbone bus interface
Data

 wishbone bus interface

Instruction

cache

(1KB enabled)

Instruction

MMU

(disabled)

Data

 cache

(disabled)

Data

 MMU

(disabled)

Programmable

Interrupt

Controller

Tick Timer
Power

Management

Or1200 CPU

Fig. 3.3. The overview of OPENRISC Or1200.

3.2.2. BUS

Or1200 provides WISHBONE bus interface. The WISHBONE bus has high

compatibility because it is an asynchronous bus. That is, it choose the hand-shaking

mechanism for the communication. The master make a request with the access address. The

bus will transform the request to the related slave. The slave will give an ack back to master,

and then the data transition starts.

3.2.3. Semi Asynchronous Clock Access (SACA)

The SACA is used to be a system clock generator for CPU computation. It will transfer

 14

the system clock via the WISHBONE bus. SACA can multiply the clock frequency with a

digital control signal. SACA can apply better performance in circuit noise environment and

power consumption.

Ref. clk

SACA clk

8 cycles

Fig. 3.4. An example of SACA.

3.3. The Hardware Architecture of DLL

The hardware of DLL is the key part of the SDDLL. It has the function of clock deskew,

multiphase output clock and duty cycle calibration. The architecture of DLL is shown in Fig.

3.5.

In this work, an 8-stage Multiphase Delay Line is chosen. The DCDL with larger stage

number can generate more multiphase output clock. But if the stage number is too larger, the

highest frequency will be limited by the intrinsic delay of Multiphase DCDL. 8 is also an

even number. It can easily generate half delay of the total DCDL. It is good for duty cycle

calibration, so 8-stage is chosen.

DLL can communicate with CPU via the WISHBONE bus. DLL transfer the information

of the phase state (Lead or Lag) and the TDC-measured output for extended reference clock

and phase error.

 The CPU will execute the instructions to decide the next digital control signal according

to the information from DLL, and transfer the digital control signal back to the DLL.

Therefore, The delay of Multiphase DCDL will change.

 15

Filter
8-stage

Multi-phase Delay Line

bus

Clock Extender

PFD

OPL_PA TDC

Duty Cycle Corrector

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Extended Pulse

Phase Error

Lead

Lag

TDC output

MUX

Ref. clk

Multiphase

output clock

Digital control

signal

Fig. 3.5. The architecture and the data flow of DLL.

The relation of extended pulse and reference clock is shown in Fig. 3.6.

The clock extender is just like a divide-by-2 frequency divider. The length of extended

pulse is the whole reference cycle. TDC can measure the pulse to help the delay of DCDL be

near one reference cycle in the first step.

Reference clock

Extended Pulse

Fig. 3.6. The waveform of reference clock and extended pulse.

 16

As mentioned in Chapter 2, the Pulse Amplifier with One Pulse Lock (OPL_PA) is

applied to prevent the input pulse violation of TDC. It can lengthen the narrow pulse so as to

meet the limitation of the minimum pulse for TDC.

With the pulse amplifier, TDC can measure every kind of pulse. DLL can use TDC to

measure the reference clock cycle and the phase error. It can help the SDDLL accelerate the

speed of phase-locking.

DLL transfer the information to CPU, and then the software that executed by CPU will

make decisions. CPU will transfer the result of digital control signal back to DLL, and the

signal can control the delay time of Multiphase DCDL.

3.3.1 Multiphase DCDL

The 8-stage Multiphase DCDL is the coarse-fine structure. It has eight equivalent delay

chains. Each delay chain can be divided into two parts. i.e., Coarse delay line and Fine delay

line. The architecture of Multiphase DCDL is shown in Fig. 3.7.

Coarse

Delay Line

Fine

Delay Line

Delay

Line

Delay

Line

Delay

Line

Delay

Line

Delay

Line

Delay

Line

Delay

Line

Delay

Line

8-stage Multiphase output clock

P0 P1 P2 P3 P4 P5 P6 P7

Ref. clk

Fig. 3.7. The architecture of 8-stage Multiphase DCDL.

P0~P7 are the multiphase output clock, and the delay of each delay line should be 1/8

 17

reference clock cycle. The total delay of Multiphase DCDL is one reference cycle when DLL

is locking

The design of 8-stage Multiphase DCDL should give consideration to the higher

operating frequency, the wider frequency range, the higher resolution and the lower intrinsic

jitter. This is a hard design issue and a big challenge in 8-stage multiphase delay line. The

consideration of intrinsic delay should be as short as possible due to the consideration of

higher operating frequency. Each delay line should be the same because each delay between

the multiphase output clock must be precisely equivalent. The rise/fall time unbalance of

delay chain may affect the highest operating frequency. This case should be avoided.

Fig. 3.8 shows the waveform of 8-stage Multiphase DCDL when DLL is locking. Each

delay between Multiphase clocks is about 1/8 reference clock cycle.

P0

P1

P2

P3

P4

P5

P6

P7

Ref. clk

Fig. 3.8. The waveform of 8-stage Multiphase DCDL.

For the multiphase applications, the total delay of DCDL should be just right one

reference clock in order to generate eight multiphase output clock. The frequency range of

this 8-stage Multiphase delay line is 1.035MHz ~ 161.29MHz. i.e., the delay range is 6.2ns ~

 18

966.183ns. The resolution of the 8-stage Multiphase DCDL is 90fs.

Table 1. The specification of one delay line

 Coarse delay line Fine delay line

C1 C2 F1 F2 F3

Used

elements

AO21D4 &

counter

AO21D4 2 parallel

AOI

AOI OAI

Control

bits

7 5 4 4 4

Stage 128 32 16 16 16

Resolution 0.95ns 20.32ps 1.516ps 133.22fs 11.53fs

3.3.2. Coarse Delay Line

The coarse delay line [2] can be divided into two parts. The first part (C1 delay line) is

composed of several delay cells (AO21D4) and a counter. The differential circuit will

generate a narrow pulse for the positive edge and negative edge of input clock. The narrow

pulse will trigger the count of delay chain. The counter will count up to C1, and the count

stops. The output of counter will be 1 simultaneously. And then D-type flip-flop and counter

will be reset. The output of counter will be 0 soon. Therefore, the output of counter will be a

narrow pulse, too. The counter will wait the next pulse to trigger the count function. The

counter scheme can extend the frequency range with a smaller area.

The second part (C2 delay line) is a selectable delay path. It can choose one path with the

control signal, so it can decide the length of delay path. The frequency divider is adopted to

recover the waveform of input clock and solve the problem of rise/fall time unbalance for C2

delay line.

3.3.3. Fine Delay Line

In this work, The fine delay line is composed of the variable capacitive delay elements.

 19

The parallel gates are used as the parallel capacitors on the loading line. The control signal

can switch the capacitors in parallel. The number of parallel capacitors may affect the delay

time because RC . In this work, the Fine delay line is composed of three components, F1

delay line, F2 delay line and F3 delay line. The F3 delay line has the highest resolution among

them. The architecture of Fine-delay line is shown in Fig 3.10.

F1[15]

AOI21D4

F1[1] F1[0]

AOI21D4

AOI21D4

AOI21D4

AOI21D4

AOI21D4

NOT Gate

NOT Gate

AOI31D1

F2[1] F2[0]F2[15]

1
AOI31D1

1
AOI31D1

1

F3[15]

OAI21D0 OAI21D0 OAI21D0

F3[1] F3[0]

NOT Gate BUFFER

Fig. 3.9. The architecture of fine delay line.

The NOT gate is adopted to drive the parallel capacitors and the buffer also has the

isolation function. The change of driving ability and capacity loading can cause different

delay time. This method is good at lower power consumption and higher resolution, but it is

very sensitive to capacity loading. It is more difficult for layout issues.

 20

Power

Ground

ZN

BBBBA1

A2

B

A1 A2

Fig. 3.10. The transistor-level representation for AOI21D4.

For the selection of fine cells, the transistor-level should be considered. This design

should check that there are parallel capacitors in the structure of fine cells. Moreover, because

the output of the parallel gates is floating, if the logic of output is not fixed, the noise will

cause very severe intrinsic jitter. No matter the switch is on or off, the output of parallel gate

should not change with the logic of loading line.

3.3.4. Duty Cycle Corrector

Because the duty cycle of Multiphase DCDL is maybe not 50-50 duty cycle, the duty

cycle calibration is required. Duty cycle calibration needs the clock delayed with half delay

time. The 8 output clocks can be divided into 4 groups. The phase difference of two clocks in

each group is right half of one reference clock when DLL is locking. They can compensate the

duty cycle with each other. The architecture of Duty Cycle Corrector and its sub-unit is shown

in Fig. 3.12 and Fig 3.13..

 21

Duty Cycle

Corrector

Unit

P0 P4

New P0

Duty Cycle

Corrector

Unit

P1 P5

New P1

Duty Cycle

Corrector

Unit

P2 P6

New P2

Duty Cycle

Corrector

Unit

P3 P7

New P3

Duty Cycle

Corrector

Unit

P4 P0

New P4

Duty Cycle

Corrector

Unit

P5 P1

New P5

Duty Cycle

Corrector

Unit

P6 P2

New P6

Duty Cycle

Corrector

Unit

P7 P3

New P7

C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

Fig. 3.11. The architecture of Duty Cycle Corrector.

Narrow Pulse

Generator

Narrow Pulse

Generator

SR Latch

(Major clock)

(Minor clock)

S

R

Q

E

0

Corrected

clock
C1

C2

Fig. 3.12. The architecture of Duty Cycle Corrector Unit.

When the DLL is locking, the phase difference of C1 and C2 should be half of one

reference clock cycle. When the positive edge of C1 is encountered, SR Latch will set the

output. After half of one reference clock cycle, the positive edge of C2 is encountered, SR

latch will clear the output. At last, it compensates the C1 clock to the 50-50 cycle. The

example waveform of DCC is shown in Fig. 3.14.

 22

C1

C2

Narrow pulse of C1

Narrow pulse of C2

Corrected clock

Set Clear

Fig. 3.13. The example waveform of duty cycle calibration.

3.4. The Hardware Specification of SDDLL

The hardware specification is shown in Table 2. All of the silicon IPs is fabricated in

TSMC 65nm 1P6M process.

Table 2. Hardware Specification

Item Description

Process TSMC 65nm 1P6M Process

CPU

OpenRISC or1200

Maximum clock frequency: 250MHz

1KB instruction cache enabled

Gate count: 150k

Bus

WISHBONE bus

Architecture: shared bus

Maximum clock frequency: 250MHz

TDC Resolution: 20ps

PFD
Minimum error pulse: 200ps

Minimum detectable clock difference: 45ps

Multiphase DCDL
Frequency range: 0.517MHz ~ 143.678MHz

Resolution: 90fs

Reference clock Frequency range: 0.517MHz ~ 143.678MHz

SACA
103~1231MHz of 64 stage

Each stage: 140ps

Memory Address space: 8MB

Flash Address space: 8MB

 23

Chapter 4

The Control Strategy of The Proposed

SDDLL

In this section, the algorithm of SDDLL is discussed. Section 4.1 shows the flow of

algorithm. Section 4.2 shows some software design issues. Section 4.3 shows the simulation

results.

4.1. Control Strategy

The locking strategy adopts TDC scheme, prune-and-search, and sequential search. The

algorithm can also be divided into two parts, coarse-tune and fine-tune. They can control the

coarse delay line and fine delay line relatively. The specification of control signal is shown in

Fig. 4.1, and an example of coarse-fine tuning is shown in Fig. 4.2.

F2 F3F1

03711

C2C1

1623

Fine partCoarse part

24-bit Control signal

 for Multiphase DCDL

7-bit 5-bit 4-bit 4-bit 4-bit

Fig. 4.1. The coarse and fine part of control signal.

 24

Coarse-tune Fine-tuneStart LockLock?
Yes

No

Control the coarse part Control the fine part

Fig. 4.2. An example state diagram of the coarse-fine tuning.

The algorithm should consider the possibility in various situations just like Process,

Voltage and Temperature(PVT) variation and the unfavorable effects in real digital circuits

just like jitter and noise.

The state diagram of algorithm is shown in Fig. 4.3. The algorithm will do TDC mapping

for the reference clock cycle to accelerate the locking algorithm and avoid the locking issues.

If the output of TDC for the phase error measurement is smaller than 10, this means the phase

error is small enough. Therefore, the algorithm gets into the fine-tune state. Due to the

consideration of some error in measurements, the algorithm selects 10 rather than 0. If the

output of TDC for phase error measurements is larger than 60, that is, the phase error is still

large, the algorithm can do TDC mapping for phase error to compensate the remaining phase

error. Otherwise, the algorithm do sequential search for coarse-tune.

The fine-tune do prune-and-search first and then check whether DLL is locking. If not,

the software do sequential search for fine-tune. Otherwise, if there are continuous alternating

phase state, i.e., the sequence of alternating lead and lag, this means DLL is locking. The DLL

stops tuning to reduce the power consumption. If the phase error is larger again, the algorithm

comes back to the coarse-tune state.

 25

Start

Measure the ref.

clock period

(TDC mapping)

TDC output of

phase error < 10
Yes

TDC output of

phase error > 80

Compensate

the phase error

(TDC mapping)

Tuning with

one coarse unit

No

Yes

No

Prune-and-Search
Tuning with

one fine unit

TDC output of

phase error > 10

NoYes
4 times of {Lead, Lag}

No

Coarse-tune

Fine-tune

Lock

Yes

Fig. 4.3. The state diagram of SDDLL’s control strategy.

The prune-and-search adopts the searching strategy like the binary search. Because in the

fine-tune state, the phase error is hard to be measured by TDC. The software can only tune the

delay time according to the phase state.

Fig. 4.3 shows the TDC mapping. It assumes that the delay line is linear. The design can

estimate the ratio of TDC output and control signal of DCDL. After that, the TDC output can

be mapped to control signal of DCDL linearly. But actually, the delay line is non-linear, so the

linear mapping will cause a little error.

 26

Fig. 4.5 shows the flow of Prune-and-Search [1]. It will halve the searching range for

each tune. Hence, it is a common method to let the locking algorithm converge and lock.

Delay time

Minimum Maximum

StartTime

Fig. 4.5. The flow of Prune-and-Search.

The jitter will affect the locking accuracy, so the filter is added to reduce the effect of

jitter. 8-order Moving-average filter is adopted in this work.

4.2. Software Design Issues

4.2.1. Redundancy Cycle

Because the SDDLL provides the multiphase applications, the current algorithm of

SDDLL will let the delay time of DCDL be one reference clock cycle. Therefore, each tune at

least needs to pass through two positive edge of reference clock. After a tuning, the control

signal will update. The algorithm must wait for about one cycle delay to get the new

information for the phase relation. After the second positive edge, the algorithm can do the

next tuning. In general, it spends two reference cycles for one tuning. However, if it spends

 27

more cycles for one tuning, then there are redundancy cycles in the software-executing. The

redundancy cycles have to be reduced as less as possible.

Fig. 4.5 and Fig 4.6 show that the example waveform of SDDLL with and without

redundancy cycles.

1000 0100 0110

CLKref

CLKout

Control

bits

Phase

Comparison

delay

2 reference clock

Phase

Comparison

delay

Fig. 4.6. The tuning without redundancy cycles.

1000 0100 0110

CLKref

CLKout

Control

bits

Phase

Comparison

delay

3 reference clock

Phase

Comparison

delay

Fig. 4.7. The tuning with redundancy cycles.

 28

If the algorithm-writing is too complicated, the executing time must increase. It is

possible to generate the redundancy cycles. It must be careful for algorithm-writing.

Fig. 4.7 and Fig 4.8 show a method that reduces the redundancy cycles. In the view of

software, the software writing is usually a sequential procedure. But for SDDLL, it will spend

some time to wait the new phase state after each tune. There is a spin-lock for the new phase

state. But the time for waiting is totally wasted. Therefore, in this work, the algorithm is

rearranged. When DLL is waiting, the software can do the calculation without dependency

first. It can steal some time to do useful execution rather than just a spin-lock.

Update

control signal

Waiting

(Wait for the new

 phase state)

Calculations and

Decisions

Update

control signal

1000 0100 0101

CLKref

CLKout

Control

bits

Phase

Comparison

delay

Waiting

(Lead)

If(Lead)

Delay = Delay +1

Else if(Lag)

Delay = Delay -1

Fig. 4.8. The software-executing flow without code rearrangement.

 29

Update

control signa
Waiting

Decisions

Update

control

signal

1000 0100 0101

CLKref

CLKout

Control

bits

Phase

Comparison

delay

Waiting

(Lead)

Calculations Calculations

If(Lead)

Delay = Tmp1

Else if(Lag)

Delay = Tmp2

The next update of

control signal
Tmp1 = Delay +1

Tmp2 = Delay -1

Fig. 4.9. The software-executing flow with code rearrangement.

The method can reduce most of the redundancy cycles. The different way of

software-writing also causes different efficiency. The performance of algorithm can be better

via the code enhancement.

4.2.2. Software Environment

Software environment that used in SDDLL lists in table 3. C language is chosen to

develop the algorithm, and the gcc compiler combines the compiler and assembler. It can

compile the C code to machine code. CPU can execute the machine code to do the

 30

phase-tracking algorithm.

Table 3. Software environment

Item Description

Development language C

Cross compiler gcc 3.4.4 for OpenRISC 32 bit architecture

Host
CentOS release 5.2

Kernel version: 2.6.18-92.1.17.el5

4.3. Simulation Result

This section shows the simulation result of the SDDLL controller. The simulation setting

and report lists in table 4. The simulation waveform is presented at fig.4.7.

There are 8-stage Multiphase output clocks. The delay of each stage should be 1/8 reference

clock.

Table 4. Simulation setting and report

Item Description

System clock

period
227.27MHz

Reference clock

period
1.052MHz 1.25MHz

Lock-in time About 48 reference cycles About 52 reference cycles

Phase error when

locking
16fs 48fs

 31

The last phase error when DLL is locking is 16fs for the simulation with SDDLL

controller when the reference clock is 1.052MHz. DCDL_out_1 ~ DCDL_out_8 are the

outputs of 8-stage multiphase DCDL. DCDL_out_8 is the last output clock, and its phase

should be the same as the reference clock.

(a)

 32

(b)

Fig. 4.10. The waveforms of simulation result.

(a)The frequency of ref. clock is 1.052MHz

(b)The frequency of ref. clock is 1.25MHz

The filter adopted in this work is 8-order Moving-average filter. Filter is used to reduce

 33

the effect of jitter and noise to help the locking for SDDLL. The Filter_control is the control

signal via the filter. The DCDL choose the Filter_control as the control signal. Because the

filter will reduce the high frequency part of signal. The loop gain of DLL will also be

lightened, so the locking time will be more longer.

(a)

 34

(b)

Fig. 4.11. The waveforms of simulation result with an enabled 8-order Moving- average filter.

(a)The frequency of ref. clock is 1.052MHz

(b)The frequency of ref. clock is 1.25MHz

 35

The pre-sim of 8-stage DCDL is shown as follows. The frequency of input clock is 100MHz

in the simulation. DCDL_1~DCDL_8 are the outputs of 8-stage DCDL. There are several

control signals for 8-stage DCDL. C1 and C2 are used for Coarse-tuning, and F1, F2, F3 are

used for Fine-tuning.

(a)

 36

(b)

Fig.4.12. The pre-sim of 8-stage Digital-controlled Delay Line.

(a)The control signal of DCDL is zero. (b)The control signal, C1 is 1.

 37

The post-sim of 8-stage DCDL is shown in Fig 4.13. dcdl_1~dcdl_8 are the outputs of 8-stage

DCDL. Hspice is adopted in the post-sim in this work.

(a)

 38

(b)

Fig. 4.13. The post-sim of 8-stage Digital-controlled Delay Line.

(a)The control signal of DCDL is zero. (b)The control signal, C1 is 1.

 39

Chapter 5

Conclusion and Future Work

If this work, the specification of Multiphase DCDL is still an key component. The

highest operating frequency and the intrinsic jitter are important performance. Especially the

intrinsic jitter will affect the performance of phase-locking. If Multiphase DCDL can be

enhanced, the performance should be improved.

The software controller can control the DLL to be phase-locking, but there are still some

redundancy cycles. If the algorithm or the assembly code can be optimized more strongly, the

lock-in time should also be reduced

 40

Reference

[1] Terng-Yin Hsu, Wei-Chi Lai, Yuan-Te Liao “A Cost-Effective Preamble-Assisted

Engine with Skew Calibrator for Frequency-Dependant I/Q Imbalance in 4x4

MIMO-OFDM Modem”

[2] Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee ”An all-digital phase-locked

loop(ADPLL)-based clock recovery circuit” Solid-State Circuits, IEEE Journal of

Volume 34, Issue 8, Aug. 1999 Page(s):1063-1073

[3] Ching-Che Chung, Chen-Yi Lee “A New DLL-Based Approach for All-Digital

Multiphase Clock Generation” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.

39, NO. 3, MARCH 2004

[4] Jung-Chin Lai, Terng-Yin Hsu” The study of Wideband, Cell-based Digital Controlled

Oscillator and its Implementation” Thesis CS, NCTU 2007.

[5] Chang-Ying Chuang, Terng-Yin Hsu” The Study of Software-defined Phase-locked

loop ” Thesis CS, NCTU 2008.

[6] Ze-Bin Huang, Terng-Yin Hsu ”The Study of MIMO Software-defined Phase-locked

Loop”Thesis CS, NCTU 2009

[7] “OpenRISC 1200 IP Core Specification” Rev. 0.7, Sep 6, 2001

[8] “OpenRISC 1000 Architecture Manual “July 13, 2004

[9] “WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores”

Revision: B.3, Released: September 7, 2002

[10] Rong-Jyi Yang, Shen-Iuan Liu “A 40–550 MHz Harmonic-Free All-Digital Delay-Locked Loop

Using a Variable SAR Algorithm” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42,

 41

NO. 2, FEBRUARY 2007

[11] Guang-Kaai Dehng, Jyh-Woei Lin, Shen-Iuan Liu “A Fast-lock Mixed-mode DLL Using a

2-b SAR Algorithm” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 10,

OCTOBER 2001

[12] Lei Wang, Leibo Liu, Hongyi Chen “A Fast-Locking and Wide-Range Reversible SAR

DLL” Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 24-27

May 2009, Page(s): 992 – 995

[13] Chulwoo Kim, In-Chul Hwang, Sung-Mo (Steve) Kang “A Low-Power Small-Area 7.28-ps-Jitter

1-GHz DLL-Based Clock Generator” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.

37, NO. 11, NOVEMBER 2002

[14] Yi-Ming Chang, Ming-Hung Chang, Wei Hwang “A 2.1-_W 0.3V-1.0V Wide Locking Range

Multiphase DLL Using Self- Estimated SAR Algorithm” SOC Conference, 2009. SOCC 2009.

IEEE International 9-11 Sept. 2009 ,Page(s): 115 - 118

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5076158
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379508
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5379508

