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摘要 
 延遲鎖定迴路具有消除時脈歪斜的功能，目前已被廣泛應用於各種系統的同

步電路，用以提供一個穩定的系統時脈。本篇論文提出了可使用軟體來控制並達

到相位鎖定的軟體定義之延遲鎖定迴路平台(SDDLL)。此平台同時具有消除時脈

歪斜、多相位的時脈輸出以及工作週期校正等功能，以 WISHBONE bus 結合了

OPENRISC 的 or1200 CPU 以及全數位式延遲鎖定迴路的數個 IP。CPU 可以進行軟

體指令的執行與運算，在平台的應用以及規格改變時，只需要修改軟體便可符合

規格，避免掉重新設計硬體的流程，減少時間及金錢的消耗，提升了重複利用度

以及彈性。此平台所有的矽智財是建立在 TSMC65nm GP 1P6M 製程下，軟體部分

則是使用 gcc 以及 GNU toolchain 來實作。 
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Abstract 
Delay-locked loop can do clock deskew, and it is widely applied to the 

synchronous circuits on various hardware systems nowadays. It can provide a stable 

system clock. In this paper, a software-controllable and phase-lockable platform of 

software-defined delay-locked loop(SDDLL) is proposed. This platform can do clock 

deskew, multiphase output clock and duty cycle calibration. It is combined of 

OPENRISC or1200 CPU and several intellectual properties in all-digital delay-locked 

loop. CPU can execute the software instructions and do many operations. When the 

application or specification of the platform is changed, it only needs to modify the 

software and the platform still meet the new specification. The DLL can avoid the 

procedure of the hardware redesign, so the verification of locking strategy can be 

faster due to the reusability and the flexibility of software. All of the silicon IPs of the 

platform are fabricated in TSMC65nm GP 1P6M process, And the software are 

implemented by gcc and GNU toolchain.  
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Chapter 1   

Introduction 
 

 

1.1. Thesis Motivation 

 Delay-locked loop has been widely used for synchronous circuits between the system 

chips. There are several kinds of delay-locked loops, such as Analog DLL, Digital DLL 

(DDLL), All-digital DLL (ADDLL). ADDLL means that all of the components are digital. In 

general, all-digital approach has higher portability and shorter design cycle and fast-locking 

property. But when the application or control strategy is changed, DLL have to do hardware 

redesign. It spends a lot of time for simulation, synthesis, layout and verification for IC design 

standard flow. Therefore, the Software-defined Delay-locked Loop (SDDLL) is proposed. 

DLL can use software to control the delay-locked loop. The platform of SDDLL integrated 

with CPU and all IPs for delay-locked loop just like an embedded system. Software has 

flexibility and the time for development is shorter. Hence, SDDLL has flexibility and 

reusability. And the redesign cost can be alleviated. 

 

1.2. Thesis Contribution 

The proposed platform of SDDLL can control the delay locked loop via the software. It 

is just like an embedded system hardware-software codesign. The platform can do 

clock-deskewing, multiphase output clock and duty cycle calibration. The software can be 

optimized to reduce the redundancy cycles for phase tracking procedure. When the 

application or the specification is changed, DLL can modify the software to fit the new 

condition. 
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1.3. Thesis Organization 

Section 2 shows the overview of conventional ADDLL and SDDLL. Section 3 illustrates 

the architecture of the proposed SDDLL. Section 4 illustrates the control strategy of the 

proposed SDDLL and the simulation result. Section 5 presents conclusions and future works. 
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Chapter 2   

Overview of SDDLL 

 

 

The characteristics of the proposed SDDLL are software controllability and 

programmability. SDDLL combines the CPU and the silicon IPs of the delay-locked loop, so 

the hardware and software can work in coordination with each other. All of the components 

will be discussed as follows. 

 

2.1.  Basic Concept 

There are several types of delay-locked loop. On the whole, all-digital approach has the 

fast-locking feature and higher tolerance to process variation and the supply voltage, but its 

skew and jitter are more serious relatively. However, for SoC implementation, all-digital 

approach is more suitable due to the compatibility for integration system and the insensitivity 

to supply noise. So All-digital Delay-locked Loop(ADDLL) is chosen as the basic DLL IPs 

for the platform of the proposed SDDLL. 

Delay-locked loop can generate an output clock whose phase is related to the reference 

clock via a delay chain. Therefore, the delay time should be integral multiples of reference 

clock’s period when the DLL is locking. 

NnnTnT refdelay  ,1,*                 (1) 

delayT  is the total delay time of the delay chain when the phase is locking, and refT  is 

the clock period of the reference clock.  

The conventional All-digital Delay-locked Loop contained several components, such as 

Phase Detector (PD), Digital-controlled Delay Line (DCDL) and the control unit for DCDL. 
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Digital-controlled Delay Line

Control Unit
Phase 

Detector
Up

Control signal

Down

Output clockReference clock

 

Fig. 1. Basic block diagram of ADDLL. 

 

The architecture of ADDLL is shown in Fig.1. The Phase Detector compares the phase 

relation between the reference and output clock. The control unit can change the digital signal 

to adjust the delay time of DCDL according to the output of Phase Detector.  If the output 

clock is leading the reference clock, the control unit can extend the delay time of DCDL. On 

the contrary, if the output clock is lagging the reference clock, the control unit can shorten the 

delay time of DCDL. Fig. 2 shows that an illustration of phase tracking for the 4-bit DCDL. 

Assume that the intrinsic delay of DCDL is 1ns, and the After appropriate phase tracking for 

the delay time of DCDL, the DLL should be locking. 
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(a) 

 



 

 5 

CLKref

CLKout

Control bits 0011 0101 0100
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delay

Phase comparison
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Phase comparison

(Lag)
Phase comparison

(Lock)

6ns

delay

5ns delay

 

(b) 

Fig. 2. The delay adjustment of DLL. 

(a)The example 4-bit delay line.  

(b)The timing diagram of phase tracking when the input clock period is 5ns. 

 

In consideration of the actual conditions, phase-tracking has some tough questions to 

solve. Because of the influence of input jitter and intrinsic jitter of DCDL and the dead zone 

of PD, it is more difficult to achieve lock state. This design should consider these unideal 

effects. If the DLL is in the locking state, there is still a few phase error. In general, the 

amount of phase error is associated with the resolution of DCDL. 

 

 

 

 

2.2. Locking Issue 

2.2.1. False-locking 

False-locking is also called Stuck-locking. False-locking will cause the DLL could not 

achieve the phase-locking state permanently. If the initial delay of DCDL is shorter than half 

of input clock period, then false-locking occurs.  
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    r e fi n i t TT *
2

1
                 (2) 

initT  is the initial delay of DCDL, refT  is the period of reference clock. If the inequality 

(2) is true, the false-locking occurs. Fig. 3 shows the result of false-locking.  

 

CLKref

CLKout

Control bits 0001 0000

Phase comparison

(Lag)

Phase comparison

(Lag)

2ns 1ns

 

Fig. 3. The timing diagram of false-locking when the input clock period is 5ns. 

 

Because the initial delay is shorter than half of reference clock, the phase of output clock is 

more near the original one. Therefore, PD determines that the output clock is lagging. The 

delay should be shorter. At last, the control signal should be zero, that is, the delay will be the 

shortest. However, DLL still could not lock because it is impossible for DCDL to be zero 

delay. Therefore, the clock-deskew function of DLL is also meaningless. The DLL design 

have to avoid the occurrence of the false-locking. 

 

2.2.2. Harmonic-locking 

Harmonic-locking actually can successfully lock the phase in the end. It means that the 

delay time of DCDL is larger than one reference cycle. Although DLL is still able to lock, the 

longer delay path will increase the intrinsic jitter of DCDL. Furthermore, if the DLL has 

multiphase applications, then the harmonic-locking is not allowed. The reason is that DLL 

needs to divide one reference cycle delay into multi-part to generate the multiphase output 
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clock. 

The result of Harmonic-locking is as follows. 

NnnTnT refdelay  ,2,*               (3) 

delayT  is the total delay time of the delay chain when the phase is locking, and refT  is 

the clock period of the reference clock. Moreover, The condition that brings about 

Harmonic-locking is as follows. 

     r e finit TT *
2

3
                    (4) 

initT  is the initial delay of DCDL. When the inequality (4) is true, the delay time will 

approach two or more reference cycles. The timing diagram is shown in Fig 4. 

 

CLKref

CLKout

Control bits 1010 1000

Phase comparison

(Lead)

Phase comparison

(Lag)

8ns

Phase comparison

(Lock)

1001

10ns11ns

 

Fig. 4. The timing diagram of Harmonic-locking when the input clock period is 5ns. 

 

The final delay time in Fig. 4 is two reference clock cycles. It can notice that the DLL 

also need more than two cycles to adjust the delay time of DCDL because it must wait about 

two reference clock cycles to detect the real delayed phase for each tuning. Apart from this, 

Harmonic-locking is not that big problem when DLL does not provide multiphase 

applications. If the false-tracking and harmonic-tracking should be avoided, the DLL should 

fulfill the following condition. 

                        refinitref TTT *
2

3
*

2

1
                              (5) 
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2.3. Locking Strategy 

The locking strategy of Digital DLL can be divided into several categories. The most 

conventional method is the sequential search algorithm, i.e., the shift register-controlled DLL 

and the counter-controlled DLL. But the lock-in time of DLL increases exponentially with the 

number of control bits. The second one is the successive-approximation register-controlled 

DLL (SARDLL). The strategy of SARDLL is like the binary search algorithm, so its lock-in 

time can be shorter. The last one is Time-to-digital Converter (TDC) scheme. TDC can 

roughly estimate the input clock period and use a digital output to represent it. According to 

the digital output, The DLL can set up the delay of DCDL. TDC can achieve the shortest 

lock-in time at the cost of area and power. In this work, the SDDLL will adopt the above 

methods. 

2.3.1. TDC 

The architecture of TDC is shown in Fig. 5. TDC can measure an input pulse and give a 

corresponding digital output via a cascaded counter and D-type flip-flops.  

 

AO21D4

#1

AO21D4

#2

AO21D4

#n

0 00 0 0 0

Q

Q
SET

CLR

D

L

TDC 

cascaded

counter

CLK

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

TDC Encoder

CLK CLK CLK CLK

Quantization output  

Fig. 5. The architecture of TDC. 

 

The effect of TDC scheme can help the DLL lock faster. If the mapping from TDC to 
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DCDL is appropriate. The initial delay time of DCDL can approach one reference clock 

period quickly, so DLL can achieve faster phase-locking. Moreover, the locking issues will 

not take place due to the appropriate initial delay. TDC is used to accelerate phase-locking and 

solve the conventional locking issues. 

 

2.3.2. Pulse Amplifier with One Pulse Lock 

TDC has its minimum measurable pulse width because of the setup time of D-type 

flip-flops and a little gate delay. If the input pulse is too short, the TDC cannot detect the 

existence of input pulse. Therefore, this design adopt the Pulse Amplifier to extend the narrow 

pulse to avoid the input pulse violation of TDC. Fig. 6 shows the architecture of Pulse 

Amplifier.  

Delay Path

RB

D Q

RB

D Q

Error_set

INPUT_PULSE

1 1

OUTPUT_PULSE

 
 

Fig. 6. The architecture of Pulse Amplifier with One Pulse Lock. 

 

If the input pulse is too narrow, the Pulse Amplifier can extend the length of input pulse 

to the total delay path and output the new pulse. It solves the input violation problem of TDC. 

The Pulse Amplifier can also filter the other pulses after the first pulse via the control of 

Error_set, that is, the function of one pulse lock. 
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Chapter 3   

The Architecture of The Proposed SDDLL 

 

 

SDDLL combines the Or1200 CPU and DLL IPs via the WISHBONE bus. Resolution, 

range of operating frequency and lock-in time are important performance for DLL, so they 

should be take into account in the DLL design. 

It is a big challenge for SDDLL to keep the above performance factor with the 

communication of hardware and software. The proposed SDDLL supply multiphase output 

clock and duty cycle calibration, so a multiphase DCDL and duty cycle correctors are adopted 

in this work.  

The organization of this section is as follow. Section 3.1 introduce the basic concept of 

SDDLL. Section 3.2 shows the architecture of the proposed SDDLL and the communication 

interface of hardware and software. Section 3.3 shows the detailed silicon IPs of the hardware 

part of DLL. 

 

3.1. Basic Concept of SDDLL 

In the conventional ADDLL, the control unit implements the control strategy and adjusts 

the control signal to change the delay time of DCDL. The main idea of SDDLL is that 

replacing the control unit by CPU and software. Let CPU execute the control strategy and 

tune the delay chain because the software has more flexibility and portability. SDDLL is just 

like an embedded hardware and software codesign. There are several CPUs in many systems 

nowadays. If some of them are idle, DLL can also steal the CPU to do phase-tracking for DLL. 

The control strategy can be modified for different usages easily, but we should be careful for 
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the software code writing.   

 

Digital-controlled Delay Line

Phase 

Detector
Up

Control signal

Down

Output clockReference clock

CPU

(Control Unit)

Bus interface

Remaining DLL

Software

 

Fig. 3.1. The basic concept of SDDLL. 

 

This design will use the WISHBONE bus to integrate the CPU and the other DLL IP. The 

software will be put in the Flash. The CPU will read the software via the bus and execute it, 

and the CPU can also exchange data with DLL via the bus. Therefore, the CPU can control 

the delay line in the DLL block.  

 

3.2. The Architecture of SDDLL 

The or1200 CPU provides the bus interface for WISHBONE bus. This work selects 

compatible WISHBONE bus to integrate the CPU and all the silicon IPs. The WISHBONE 

bus is a master-slave interface and asynchronous access mechanism. The or1200 CPU is the 

master, and it can make a request to the slave for read or write. The architecture is shown in 

Fig. 3.2. 

The software is compiled by GNU toolchain first, and the compiled machine code is 

stored into the read-only flash. After the system is reset, CPU will access the instructions from 
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the flash and execute it. CPU can do memory access for data read and write to complete all of 

the instructions. CPU can also communicate with the DLL via the bus, so they can exchange 

the information just like TDC output, phase state and digital control signal. SACA is in charge 

of the system clock generator. The system clock is transferred to all of the blocks via the 

WISHBONE bus. 

 

WISHBONE bus

Instruction 

WISHBONE bus interface

Data

WISHBONE bus interface

Master 1 Master 2

DLLSACAFlash & Memory

Slave 1 Slave 2 Slave 3

Or1200 

CPU

Software

In Flash

system clock

instruction 

reading 

Control DLL and 

exchange data

 

Fig. 3.2. The architecture and data flow of SDDLL platform. 

 

3.2.1. CPU 

The control unit is replaced with the or1200 CPU. The or1200 CPU is a free open source, 

released by OpenCores. The or1200 is 32-bit scalar RISC structure with the Harvard 

architecture, so Or1200 do instruction and data access separately. The used Or1200 is an 

uni-core CPU.  

In this work, This design enables a 1K instruction cache in order to reducing the number 

of instruction access. In general, one bus access needs three system cycles to handle it. But if 

there is a cache hit, the instruction access only spends one system cycle. Otherwise, cache 

miss needs the miss penalty to recover the missing instruction. Or1200 will fetch the after 
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four instructions for miss penalty, so it needs twelve system cycles. 

The data cache is disabled because the repeated data access for the same address is rare. 

And the address is not continuous, so enabling the data cache is not worth. 

The gate count of CPU with 1KB instruction cache is about 150K in TSMC 65nm 

process. The reason why choosing Or1200 is that it is an open source and has implemented in 

various commercial systems. 

 

Instruction

 wishbone bus interface
Data

 wishbone bus interface

Instruction 

cache

(1KB enabled)

Instruction 

MMU

(disabled)

Data

 cache

(disabled)

Data

 MMU

(disabled)

Programmable 

Interrupt 

Controller

Tick Timer
Power 

Management

Or1200 CPU

 

Fig. 3.3. The overview of OPENRISC Or1200. 

 

3.2.2. BUS 

Or1200 provides WISHBONE bus interface. The WISHBONE bus has high 

compatibility because it is an asynchronous bus. That is, it choose the hand-shaking 

mechanism for the communication. The master make a request with the access address. The 

bus will transform the request to the related slave. The slave will give an ack back to master, 

and then the data transition starts. 

 

3.2.3. Semi Asynchronous Clock Access (SACA) 

The SACA is used to be a system clock generator for CPU computation. It will transfer 
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the system clock via the WISHBONE bus. SACA can multiply the clock frequency with a 

digital control signal. SACA can apply better performance in circuit noise environment and 

power consumption. 

 

Ref. clk

SACA clk

8 cycles

 

Fig. 3.4. An example of SACA. 

 

3.3. The Hardware Architecture of DLL 

The hardware of DLL is the key part of the SDDLL. It has the function of clock deskew, 

multiphase output clock and duty cycle calibration. The architecture of DLL is shown in Fig. 

3.5. 

In this work, an 8-stage Multiphase Delay Line is chosen. The DCDL with larger stage 

number can generate more multiphase output clock. But if the stage number is too larger, the 

highest frequency will be limited by the intrinsic delay of Multiphase DCDL. 8 is also an 

even number. It can easily generate half delay of the total DCDL. It is good for duty cycle 

calibration, so 8-stage is chosen. 

DLL can communicate with CPU via the WISHBONE bus. DLL transfer the information 

of the phase state (Lead or Lag) and the TDC-measured output for extended reference clock 

and phase error. 

    The CPU will execute the instructions to decide the next digital control signal according 

to the information from DLL, and transfer the digital control signal back to the DLL. 

Therefore, The delay of Multiphase DCDL will change. 
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Filter
8-stage 

Multi-phase Delay Line

bus

Clock Extender

PFD

OPL_PA TDC

Duty Cycle Corrector

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3 P4 P5 P6 P7

Extended Pulse

Phase Error

Lead

Lag

TDC output

MUX

Ref. clk

Multiphase 

output clock

Digital control 

signal

 

Fig. 3.5. The architecture and the data flow of DLL. 

 

The relation of extended pulse and reference clock is shown in Fig. 3.6.  

The clock extender is just like a divide-by-2 frequency divider. The length of extended 

pulse is the whole reference cycle. TDC can measure the pulse to help the delay of DCDL be 

near one reference cycle in the first step.  

 

Reference clock

Extended Pulse

 

Fig. 3.6. The waveform of reference clock and extended pulse. 
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As mentioned in Chapter 2, the Pulse Amplifier with One Pulse Lock (OPL_PA) is 

applied to prevent the input pulse violation of TDC. It can lengthen the narrow pulse so as to 

meet the limitation of the minimum pulse for TDC.  

With the pulse amplifier, TDC can measure every kind of pulse. DLL can use TDC to 

measure the reference clock cycle and the phase error. It can help the SDDLL accelerate the 

speed of phase-locking.  

DLL transfer the information to CPU, and then the software that executed by CPU will 

make decisions. CPU will transfer the result of digital control signal back to DLL, and the 

signal can control the delay time of Multiphase DCDL. 

 

3.3.1 Multiphase DCDL 

The 8-stage Multiphase DCDL is the coarse-fine structure. It has eight equivalent delay 

chains. Each delay chain can be divided into two parts. i.e., Coarse delay line and Fine delay 

line. The architecture of Multiphase DCDL is shown in Fig. 3.7. 
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Delay 
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Delay 

Line

8-stage Multiphase output clock

P0 P1 P2 P3 P4 P5 P6 P7

Ref. clk

 

Fig. 3.7. The architecture of 8-stage Multiphase DCDL. 

 

P0~P7 are the multiphase output clock, and the delay of each delay line should be 1/8 
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reference clock cycle. The total delay of Multiphase DCDL is one reference cycle when DLL 

is locking 

The design of 8-stage Multiphase DCDL should give consideration to the higher 

operating frequency, the wider frequency range, the higher resolution and the lower intrinsic 

jitter. This is a hard design issue and a big challenge in 8-stage multiphase delay line. The 

consideration of intrinsic delay should be as short as possible due to the consideration of 

higher operating frequency. Each delay line should be the same because each delay between 

the multiphase output clock must be precisely equivalent. The rise/fall time unbalance of 

delay chain may affect the highest operating frequency. This case should be avoided. 

Fig. 3.8 shows the waveform of 8-stage Multiphase DCDL when DLL is locking. Each 

delay between Multiphase clocks is about 1/8 reference clock cycle. 

P0

P1

P2

P3

P4

P5

P6

P7

Ref. clk

 

Fig. 3.8. The waveform of 8-stage Multiphase DCDL. 

 

For the multiphase applications, the total delay of DCDL should be just right one 

reference clock in order to generate eight multiphase output clock. The frequency range of 

this 8-stage Multiphase delay line is 1.035MHz ~ 161.29MHz. i.e., the delay range is 6.2ns ~ 



 

 18 

966.183ns. The resolution of the 8-stage Multiphase DCDL is 90fs. 

Table 1. The specification of one delay line 

 Coarse delay line Fine delay line 

C1 C2 F1 F2 F3 

Used 

elements 

AO21D4 & 

counter 

AO21D4 2 parallel 

AOI 

AOI OAI 

Control 

bits 

7 5 4 4 4 

Stage 128 32 16 16 16 

Resolution 0.95ns 20.32ps 1.516ps 133.22fs 11.53fs 

 

3.3.2. Coarse Delay Line 

The coarse delay line [2] can be divided into two parts. The first part (C1 delay line) is 

composed of several delay cells (AO21D4) and a counter. The differential circuit will 

generate a narrow pulse for the positive edge and negative edge of input clock. The narrow 

pulse will trigger the count of delay chain. The counter will count up to C1, and the count 

stops. The output of counter will be 1 simultaneously. And then D-type flip-flop and counter 

will be reset. The output of counter will be 0 soon. Therefore, the output of counter will be a 

narrow pulse, too. The counter will wait the next pulse to trigger the count function. The 

counter scheme can extend the frequency range with a smaller area. 

The second part (C2 delay line) is a selectable delay path. It can choose one path with the 

control signal, so it can decide the length of delay path. The frequency divider is adopted to 

recover the waveform of input clock and solve the problem of rise/fall time unbalance for C2 

delay line. 

 

3.3.3. Fine Delay Line 

In this work, The fine delay line is composed of the variable capacitive delay elements. 
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The parallel gates are used as the parallel capacitors on the loading line. The control signal 

can switch the capacitors in parallel. The number of parallel capacitors may affect the delay 

time because RC . In this work, the Fine delay line is composed of three components, F1 

delay line, F2 delay line and F3 delay line. The F3 delay line has the highest resolution among 

them. The architecture of Fine-delay line is shown in Fig 3.10. 

 

F1[15]

AOI21D4

F1[1] F1[0]

AOI21D4

AOI21D4

AOI21D4

AOI21D4

AOI21D4

NOT Gate

NOT Gate

AOI31D1

F2[1] F2[0]F2[15]

1
AOI31D1

1
AOI31D1

1

F3[15]

OAI21D0 OAI21D0 OAI21D0

F3[1] F3[0]

NOT Gate BUFFER

 

Fig. 3.9. The architecture of fine delay line. 

 

The NOT gate is adopted to drive the parallel capacitors and the buffer also has the 

isolation function. The change of driving ability and capacity loading can cause different 

delay time. This method is good at lower power consumption and higher resolution, but it is 

very sensitive to capacity loading. It is more difficult for layout issues. 
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Power
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Fig. 3.10. The transistor-level representation for AOI21D4. 

 

For the selection of fine cells, the transistor-level should be considered. This design 

should check that there are parallel capacitors in the structure of fine cells. Moreover, because 

the output of the parallel gates is floating, if the logic of output is not fixed, the noise will 

cause very severe intrinsic jitter. No matter the switch is on or off, the output of parallel gate 

should not change with the logic of loading line. 

 

3.3.4. Duty Cycle Corrector 

Because the duty cycle of Multiphase DCDL is maybe not 50-50 duty cycle, the duty 

cycle calibration is required. Duty cycle calibration needs the clock delayed with half delay 

time. The 8 output clocks can be divided into 4 groups. The phase difference of two clocks in 

each group is right half of one reference clock when DLL is locking. They can compensate the 

duty cycle with each other. The architecture of Duty Cycle Corrector and its sub-unit is shown 

in Fig. 3.12 and Fig 3.13.. 
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Fig. 3.11. The architecture of Duty Cycle Corrector. 
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Fig. 3.12. The architecture of Duty Cycle Corrector Unit. 

 

When the DLL is locking, the phase difference of C1 and C2 should be half of one 

reference clock cycle. When the positive edge of C1 is encountered, SR Latch will set the 

output. After half of one reference clock cycle, the positive edge of C2 is encountered, SR 

latch will clear the output. At last, it compensates the C1 clock to the 50-50 cycle. The 

example waveform of DCC is shown in Fig. 3.14. 
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C1

C2

Narrow pulse of C1

Narrow pulse of C2

Corrected clock

Set Clear

 

Fig. 3.13. The example waveform of duty cycle calibration. 

 

3.4. The Hardware Specification of SDDLL 

The hardware specification is shown in Table 2. All of the silicon IPs is fabricated in 

TSMC 65nm 1P6M process. 

Table 2. Hardware Specification 

Item Description 

Process TSMC 65nm 1P6M Process 

CPU 

OpenRISC or1200  

Maximum clock frequency: 250MHz 

1KB instruction cache enabled 

Gate count: 150k  

Bus 

WISHBONE bus  

Architecture: shared bus 

Maximum clock frequency: 250MHz 

TDC Resolution: 20ps 

PFD 
Minimum error pulse: 200ps 

Minimum detectable clock difference: 45ps 

Multiphase DCDL 
Frequency range: 0.517MHz ~ 143.678MHz 

Resolution: 90fs 

Reference clock Frequency range: 0.517MHz ~ 143.678MHz 

SACA 
103~1231MHz of 64 stage 

Each stage: 140ps 

Memory Address space: 8MB 

Flash Address space: 8MB 
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Chapter 4   

The Control Strategy of The Proposed 

SDDLL  
 

 

In this section, the algorithm of SDDLL is discussed. Section 4.1 shows the flow of 

algorithm. Section 4.2 shows some software design issues. Section 4.3 shows the simulation 

results. 

4.1. Control Strategy 

The locking strategy adopts TDC scheme, prune-and-search, and sequential search. The 

algorithm can also be divided into two parts, coarse-tune and fine-tune. They can control the 

coarse delay line and fine delay line relatively. The specification of control signal is shown in 

Fig. 4.1, and an example of coarse-fine tuning is shown in Fig. 4.2. 

 

F2 F3F1

03711

C2C1

1623

Fine partCoarse part

24-bit Control signal

 for Multiphase DCDL

7-bit 5-bit 4-bit 4-bit 4-bit

 

Fig. 4.1. The coarse and fine part of control signal. 
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Coarse-tune Fine-tuneStart LockLock?
Yes

No

Control the coarse part Control the fine part

 

Fig. 4.2. An example state diagram of the coarse-fine tuning.  

 

The algorithm should consider the possibility in various situations just like Process, 

Voltage and Temperature(PVT) variation and the unfavorable effects in real digital circuits 

just like jitter and noise.  

The state diagram of algorithm is shown in Fig. 4.3. The algorithm will do TDC mapping 

for the reference clock cycle to accelerate the locking algorithm and avoid the locking issues. 

If the output of TDC for the phase error measurement is smaller than 10, this means the phase 

error is small enough. Therefore, the algorithm gets into the fine-tune state. Due to the 

consideration of some error in measurements, the algorithm selects 10 rather than 0. If the 

output of TDC for phase error measurements is larger than 60, that is, the phase error is still 

large, the algorithm can do TDC mapping for phase error to compensate the remaining phase 

error. Otherwise, the algorithm do sequential search for coarse-tune. 

The fine-tune do prune-and-search first and then check whether DLL is locking. If not, 

the software do sequential search for fine-tune. Otherwise, if there are continuous alternating 

phase state, i.e., the sequence of alternating lead and lag, this means DLL is locking. The DLL 

stops tuning to reduce the power consumption. If the phase error is larger again, the algorithm 

comes back to the coarse-tune state. 
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Fig. 4.3. The state diagram of SDDLL’s control strategy. 

 

The prune-and-search adopts the searching strategy like the binary search. Because in the 

fine-tune state, the phase error is hard to be measured by TDC. The software can only tune the 

delay time according to the phase state. 

Fig. 4.3 shows the TDC mapping. It assumes that the delay line is linear. The design can 

estimate the ratio of TDC output and control signal of DCDL. After that, the TDC output can 

be mapped to control signal of DCDL linearly. But actually, the delay line is non-linear, so the 

linear mapping will cause a little error. 
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Fig. 4.5 shows the flow of Prune-and-Search [1]. It will halve the searching range for 

each tune. Hence, it is a common method to let the locking algorithm converge and lock. 

 

Delay time

Minimum Maximum

StartTime

 

Fig. 4.5. The flow of Prune-and-Search. 

 

 

The jitter will affect the locking accuracy, so the filter is added to reduce the effect of 

jitter. 8-order Moving-average filter is adopted in this work. 

 

 

4.2. Software Design Issues 

4.2.1. Redundancy Cycle  

Because the SDDLL provides the multiphase applications, the current algorithm of 

SDDLL will let the delay time of DCDL be one reference clock cycle. Therefore, each tune at 

least needs to pass through two positive edge of reference clock. After a tuning, the control 

signal will update. The algorithm must wait for about one cycle delay to get the new 

information for the phase relation. After the second positive edge, the algorithm can do the 

next tuning. In general, it spends two reference cycles for one tuning. However, if it spends 
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more cycles for one tuning, then there are redundancy cycles in the software-executing. The 

redundancy cycles have to be reduced as less as possible.  

Fig. 4.5 and Fig 4.6 show that the example waveform of SDDLL with and without 

redundancy cycles. 
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Fig. 4.6. The tuning without redundancy cycles. 
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Fig. 4.7. The tuning with redundancy cycles. 
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If the algorithm-writing is too complicated, the executing time must increase. It is 

possible to generate the redundancy cycles. It must be careful for algorithm-writing.  

Fig. 4.7 and Fig 4.8 show a method that reduces the redundancy cycles. In the view of 

software, the software writing is usually a sequential procedure. But for SDDLL, it will spend 

some time to wait the new phase state after each tune. There is a spin-lock for the new phase 

state. But the time for waiting is totally wasted. Therefore, in this work, the algorithm is 

rearranged. When DLL is waiting, the software can do the calculation without dependency 

first. It can steal some time to do useful execution rather than just a spin-lock. 

Update 
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Waiting

(Wait for the new 

 phase state)

Calculations and 
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(Lead)
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Delay = Delay +1

Else if(Lag)

Delay = Delay -1

 

Fig. 4.8. The software-executing flow without code rearrangement. 
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Fig. 4.9. The software-executing flow with code rearrangement. 

 

The method can reduce most of the redundancy cycles. The different way of 

software-writing also causes different efficiency. The performance of algorithm can be better 

via the code enhancement. 

 

4.2.2. Software Environment  

 

Software environment that used in SDDLL lists in table 3. C language is chosen to 

develop the algorithm, and the gcc compiler combines the compiler and assembler. It can 

compile the C code to machine code. CPU can execute the machine code to do the 
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phase-tracking algorithm. 

 

Table 3. Software environment 

Item Description 

Development language C  

Cross compiler gcc 3.4.4 for OpenRISC 32 bit architecture 

Host 
CentOS release 5.2  

Kernel version: 2.6.18-92.1.17.el5 

 

                    

4.3. Simulation Result 

This section shows the simulation result of the SDDLL controller. The simulation setting 

and report lists in table 4. The simulation waveform is presented at fig.4.7. 

There are 8-stage Multiphase output clocks. The delay of each stage should be 1/8 reference 

clock.  

 

Table 4. Simulation setting and report 

Item Description 

System clock 

period 
227.27MHz 

Reference clock 

period 
1.052MHz 1.25MHz 

Lock-in time About 48 reference cycles About 52 reference cycles 

Phase error when 

locking 
16fs 48fs 
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The last phase error when DLL is locking is 16fs for the simulation with SDDLL 

controller when the reference clock is 1.052MHz. DCDL_out_1 ~ DCDL_out_8 are the 

outputs of 8-stage multiphase DCDL. DCDL_out_8 is the last output clock, and its phase 

should be the same as the reference clock. 

 

 

 

(a) 
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(b) 

 

Fig. 4.10. The waveforms of simulation result.  

(a)The frequency of ref. clock is 1.052MHz 

(b)The frequency of ref. clock is 1.25MHz 

 

 

 

 

 

 

 

 

 

 

The filter adopted in this work is 8-order Moving-average filter. Filter is used to reduce 
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the effect of jitter and noise to help the locking for SDDLL. The Filter_control is the control 

signal via the filter. The DCDL choose the Filter_control as the control signal. Because the 

filter will reduce the high frequency part of signal. The loop gain of DLL will also be 

lightened, so the locking time will be more longer. 

 

 

(a) 
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(b) 

Fig. 4.11. The waveforms of simulation result with an enabled 8-order Moving- average filter. 

(a)The frequency of ref. clock is 1.052MHz 

(b)The frequency of ref. clock is 1.25MHz 
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The pre-sim of 8-stage DCDL is shown as follows. The frequency of input clock is 100MHz 

in the simulation. DCDL_1~DCDL_8 are the outputs of 8-stage DCDL. There are several 

control signals for 8-stage DCDL. C1 and C2 are used for Coarse-tuning, and F1, F2, F3 are 

used for Fine-tuning. 

 

 

(a) 
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(b) 

 

Fig.4.12. The pre-sim of 8-stage Digital-controlled Delay Line. 

(a)The control signal of DCDL is zero.  (b)The control signal, C1 is 1. 
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The post-sim of 8-stage DCDL is shown in Fig 4.13. dcdl_1~dcdl_8 are the outputs of 8-stage 

DCDL. Hspice is adopted in the post-sim in this work. 

 

 

(a) 
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(b) 

 

Fig. 4.13. The post-sim of 8-stage Digital-controlled Delay Line. 

(a)The control signal of DCDL is zero.  (b)The control signal, C1 is 1. 
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Chapter 5  

Conclusion and Future Work 
 

 

If this work, the specification of Multiphase DCDL is still an key component. The 

highest operating frequency and the intrinsic jitter are important performance. Especially the 

intrinsic jitter will affect the performance of phase-locking. If Multiphase DCDL can be 

enhanced, the performance should be improved. 

The software controller can control the DLL to be phase-locking, but there are still some 

redundancy cycles. If the algorithm or the assembly code can be optimized more strongly, the 

lock-in time should also be reduced 
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