
 

  

國 立 交 通 大 學 

資訊科學與工程研究所 

 

碩 士 論 文 
 

 

嵌 入 式 J a v a 加 速 器 系 統 設 計 

Design of Java Accelerator IP for Embedded Systems  

 

 

 

研 究 生：郭瀚文 

指導教授：蔡淳仁  教授 

 

 

中 華 民 國 一 百 年 八 月  



 

嵌入式 Java 加速器系統設計 

Design of Java Accelerator IP for Embedded Systems 

 

研 究 生：郭瀚文          Student：Han-Wen Kuo 

指導教授：蔡淳仁          Advisor：Chun-Jen Tsai 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2011 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國一百年八月 



 

Abstract 

Java Runtime Environment (JRE) is becoming a popular application platform for 

complex multimedia embedded systems today. In this thesis, we present the 

architecture design of a reusable Java accelerator IP for application processors for 

embedded systems. The accelerator IP cooperate with a general purpose processor 

(GPP) core to support the JRE. The GPP core is responsible for running service 

routines to support Java tasks such as I/O requests, dynamic class loading, heap 

memory management, etc. The proposed Java accelerator IP is a double-issue Java 

core in charge of execution of the Java applications. More importantly, it is easy to 

integrate such Java accelerator IP into existing embedded systems both hardware-wise 

and software-wise. On the software side, it does not rely on any full-blown OS (such 

as Linux) running on the GPP. Only a thin kernel that maintains the execution of 

interrupt-driven Java service routines is necessary to support the JRE. On the 

hardware side, the communication between the Java accelerator IP and the GPP core 

is achieved using a memory sharing table and an interrupt-driven mailbox device. The 

proposed Java embedded platform with the Java accelerator IP has been implemented 

on the Xilinx Virtex-5 ML507 FPGA development board.  
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Chapter 1.  Introduction 

1.1 Motivation 

For the past few years, Java is getting considerable attentions from embedded 

system application platform langrage because of the strong portability of applications 

across different operating systems and processors. Adopting Java as a standard 

application langrage also can enjoy the miscellaneous API support. Not to mention the 

fact that the Java language is a well-designed object-oriented programming language 

and up to 40% more productive than C++ [19]. As a result, many embedded 

multimedia systems are Java-based platforms. There are many different Java 

middleware stacks selected by different organizations to support different service 

requirements. Take an example from Java‟s creator Sun Microsystems, the Java 2 

Platform, Micro Edition (J2ME) [9] framework is one of the Java platforms that are 

designed for embedded devices. Another example in recent years is Google‟s Android 

platform. The Android platform includes Java class libraries based on Apache 

Harmony (a Java 5 API compliant but not binary-compatible middleware 

implementation) so most Android applications are written in Java.  

1.2 Java OS Model for Java Accelerator IP Design 

The Java runtime model adopted in this thesis is based on the Java OS model 

[12][13]. Although the intension of the original Java OS model is to use minimal 

native C code to support the complete JRE of a software-based VM, the concept is 

nevertheless very suitable for encapsulation of a hardware Java accelerator as a 

reusable IP for application processor SoCs. The SoC software stack shown in Fig. 1 

illustrates this concept. The proposed Java platform is composed of a generic RISC 
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processor and the Java Accelerator IP (JAIP). Since the Java VM model is based on a 

stack machine, many operations (e.g. I/O) are very inefficient. Therefore, the 

RISC-side software will handles such low-level Java service tasks. The typical service 

tasks include I/O controller management (i.e. management of device drivers), file 

system accesses, physical memory management, communication tasks, management 

of application accelerators (e.g. audio/video codecs), etc. That is, the software of the 

RISC-side provides a hardware abstraction layer (HAL) for the Java platform. On the 

other hand, the JAIP is responsible for all general bytecode execution except the 

bytecode execution relative to typical service tasks. Note that the RISC core does not 

prohibit adoption of a sophisticated OS kernel, and the intercommunication is 

achieved by memory sharing and interrupt. Therefore, the proposed Java platform has 

little dependency on any particular OS kernels and processors. More specifically, it is 

easy to integrate such Java system model into existing embedded systems (both 

hardware-wise and software-wise). 

 

Fig. 1. The concept of JRE encapsulated inside a reusable IP. The 

RISC-side system software is minimized to facilitate integration of the 

Java accelerator into existing application processors. 
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1.3 Scope of this Thesis 

In this thesis, we propose a hardware Java accelerator approach which is a 

reusable IP for application processor SoCs. The proposed JAIP in this thesis is based 

on the work in [2] [4] [6]. The organization of this thesis is as follows. Chapter 2 

discusses some related Java runtime environment designs and describes the previous 

design of the Java embedded platform [2] [6]. Chapter 3 describes the hardware 

architecture of JAIP in detail, while chapter 4 discusses the design of dynamic symbol 

resolution mechanism. The implementation of the proposed JAIP using an FPGA is 

presented in chapter 5, along with some performance analyses and benchmark results. 

Finally, conclusions and discussions are given in chapter 6. 
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Chapter 2.  Previous Work 

2.1 Java VMs for Embedded Systems 

One important characteristic of Java is portability, which means that the 

compiled binary code of Java classes should be executable on any JRE systems 

regardless of its underlying hardware or OS platforms and producing exactly the same 

behaviors. This is achieved by compiling the Java language programs to the 

intermediate codes called Java bytecodes. Java bytecode instructions are analogous to 

machine codes, but usually are executed by a virtual machine (VM) written 

specifically for the host hardware. End-user will use a JRE installed on the target 

device for Java applications. To make clear distinction among various Java 

devices, Sun Microsystems develops three different JRE, Java Platform, Enterprise 

Edition (Java EE), Java Platform, Standard Edition (Java SE), and Java Platform, 

Micro Edition (Java ME). Java ME was formerly known as Java 2 Platform, Micro 

Edition (J2ME)[9]. J2ME is designed specifically for embedded systems. Target 

devices range from industrial controllers to mobile phones and set-top 

boxes. Furthermore, the J2ME has been divided into two base configurations, one to 

fit small mobile devices and one to target towards more capable devices like 

smart-phones and set top boxes. The configuration for small devices is called 

the Connected Limited Device Configuration (CLDC) [10] and the more capable 

configuration is called the Connected Device Configuration (CDC) [11]. 

Traditional JRE is composed of a Java Virtual Machine (JVM) [14] and a set of 

standard class libraries. The software-based Java VM is implemented on non-virtual 

hardware and on standard operating systems. JVM adopts stack architecture and its 

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Operating_system
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organization is shown in Fig. 2. In the Java virtual machine specification, the three 

major components are the class loader subsystem, the runtime data area, and the 

execution engine [7]. The class loader is a mechanism for loading classes or interfaces 

given fully qualified names. The runtime data area is the major memory space that the 

Java VM organizes to execute a program. The execution engine is another mechanism 

that is responsible for executing the instructions contained in the methods of loaded 

classes. More details of the Java class file format is described in the VM specification 

[14]. 

 

Fig. 2. The block diagram of Java virtual machine. 

The Java VM will interpret and execute the Java bytecodes at runtime. However, 

implementing a stack-based virtual machine using an interpreter has a great impact on 

the performance, especially for the embedded processors. The interpreters are slow 

(up to an order of magnitude slowdown) and require memory to store the interpreter 

code. In addition, many operations are expensive for embedded processors, such as 

simulation of a stack-machine, dynamic symbol resolutions, and heavy dynamic 

memory allocations. Therefore, there are many performance and memory constraint 

issues for embedded systems with a regular processor. The solutions for improving 
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the time and space overhead of JRE can be roughly divided into three approaches. 

The Just-in-Time (JIT) compilers, the hardware-based co-processors (e.g. ARM 

Jazelle), and sand-alone Java processors (e.g. picoJava) are common measures for 

embedded environments.  

The execution speed improves significantly by using JIT compilation techniques 

[16] [17] to translate Java bytecodes to native codes at runtime. Although, the speedup 

by the JIT compiler is high, JIT requires extra memory [17] and imposes extra 

compilation overhead for class loading. The compiler itself along with the memory 

footprint for the compilation may require a few megabytes of storage [16]. Therefore, 

this approach is less suitable for embedded devices, which have strong memory 

constraints. An interesting effort is taken on by Google when picking a solution for 

their Android application environment. The Dalvik VM [8] is a register-based virtual 

machine which is not binary compatible with the JVM. Java application class files 

must be converted into Dex file format before execution. It is shown that a 

register-based VM can be 32.3% more efficient than a stack-based VM when 

executing standard benchmarks by an interpreter, at the expense of 25% larger binary 

code size of the benchmark programs [20]. 

It is important to point out that, the implementation of most JRE heavily relies on 

the underlying operating system. However, most Java middleware stacks of JREs 

have already included main functions of a typical operating system. Therefore, 

adopting a complete operating system underneath a JRE is a duplication of system 

functions, which is not a good design philosophy for embedded devices with resource 

constraints. 

Building a purely hardwired Java processor is a nontrivial task, as the  Java VM  

instruction set  is  quite complex. Some instructions are even more complex  than  
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the instructions of a  traditional CISC CPU such as the Intel x86 and Motorola 680x0 

families. There are several Java processor solutions such as picoJava [22], Komodo 

[23], jHISC [24], and JOP [25]. Because the processor is custom-designed to match 

the stack machine model of the JVM, it can deliver better bytecode execution 

performance than that of a general-purpose processor running a Java interpreter. 

However, a single core stack machine designed to support Java complex low-level 

communication and multimedia controls may not be the most proper architecture for 

JRE. After all, many communication and multimedia tasks can be executed more 

efficiently using traditional register-based processor architecture. 

The final approach is the Java co-processors approach used in, for example, 

ARM Jazelle [15]. These proposals use improved stack machines to execute the Java 

bytecodes and used resister-based processor to handle other tasks. Unfortunately, such 

architectures are tied to specific processor architecture and are not generally available 

for other host processors. 

2.2 Double-issue Java Core Proposed by Ko 
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Fig. 3.  Overall Java Processor Architecture. 

Ko et al. [1] [2] proposed a design of double-issue Java Bytecode Execution 

Engine (BEE) core. The architecture of Java bytecode execution engine is shown in 

Fig. 3. The BEE core adopts a four-stage pipeline architecture with translate, fetch, 

decode, and execute stages. The Java BEE core is a stand-alone IP not tied to any host 

processor architecture. Therefore, it is easy to integrate the BEE core into any 

processor that supports interrupt-driven inter-processor communications. The Java 

BEE core chooses two-level stack architecture with three registers stored top three of 

stack items. The stack architecture is shown in Fig. 4. For a double-issue core, the 

BEE executes two microcode instructions per cycle. The Java BEE does not execute 

bytecodes directly. Instead, Ko defines a RISC-like instruction set architecture (ISA), 

and the Java BEE translates a Java bytecode either into one or more instruction 

on-the-fly. 

 

Fig. 4.  A Two-level Stack Cache with Double Issue 
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2.3 Dynamic Class Loading Mechanism Proposed by Hwang 

Hwang et al. proposed a dynamic class loader [5] [6] for the heterogeneous 

dual-core SoC system [3] [4]. In the previous system [1] [2] [3] [4], the class loader 

parses all class files and convert them into runtime information images and reserves 

all resolution information in the constant pool of the image. Hwang also designed a 

dynamic resolution state machine to handle symbol resolution of constant pool data. 

The states of method invocation and field data access do resolution and get 

information which produced by class loader before execution as shown in Fig. 5. This 

state machine controls and changes the program counter for referenced method 

bytecode as well. 

 

Fig. 5. Controller state machine for method invocation resolution in [6]. 
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2.4 Contributions of this Thesis 

Although, the double-issue Java Bytecode Execution Engine (BEE) core 

designed by Ko et al. [1] [2] has many advantages, the BEE„s architecture (e.g. stack 

structure and hazard detection) cannot bear some common combination of instruction 

(e.g. a special combination of two load instructions). The prototype of the dynamic 

class loading mechanism and method area management was first proposed in [6]. 

However, the support of dynamic symbol resolution is not complete. 

In this thesis, we propose a hardware Java accelerator approach which is a 

reusable IP for application processor SoCs. We also propose a Java embedded 

platform with a heterogeneous dual-core design which is composed of a generic RISC 

core and the proposed JAIP. The proposed JAIP in this thesis is based on the BEE [2]. 

Nevertheless, we redesign the BEE to increases both reliability and capability. The 

new design also has a powerful dynamic symbol resolution mechanism which 

supports the interface method invocation and system native method invocation.  
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Chapter 3.  The Hardware Architecture of 

the Java Accelerator IP 

3.1 Overview 

In this chapter, we present the architecture detail of the proposed Java accelerator 

IP (JAIP). Although the JAIP is derived from the architecture described in [1] [2], we 

have redesigned the whole accelerator architecture. Only the double-issue architecture 

design concept, four-stage pipeline design, and part of the instruction set architecture 

are maintained in this new design. The JAIP increases the reliability of the Java core 

and supports more Java langrage‟s object-oriented features. 

 

Fig. 6. Architecture Diagram of the Proposed JAIP. 

This IP is comprised of several parts as shown in Fig. 6. The key components 

include a Java Program Counter controller (JPCC), the Method Area Manager Unit 
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JPCC is a simple logic just like other processor‟s program counter controller. It 

controls a register containing current program count, and conditionally switches the 

input source of the counter register. For performance issue, there is an instruction 

cache like unit named MAMU in the JAIP. The difference between the MAMU and a 

traditional instruction cache is that the MAMU caches a complete class image at a 

time. The implementation of dynamic class loading is achieved by the MAMU and 

the DSRU. The DSRU is another key architecture to support the dynamic resolution 

of the Java language. Java stores the runtime linking-and-loading information in the 

constant pool, but resolving a runtime symbol to a physical address usually takes 

several indirect references. We design a software parser to simplify and reorganize the 

constant pool, so that the JAIP can easily get the resolution information through the 

DSRU. The BEE is the most important circuit in the JAIP. Since all the Java bytecode 

are executed by the BEE, the design of the data path dominates the performance. 

Therefore, we adopt double-issue architecture and pipeline to the BEE. The final part 

is the IPC, an interrupt communication interface between the RISC core and the JAIP. 

When the JAIP requests the RISC core for interrupt services, the IPC prepares the 

arguments or information for the RISC core during the services. The IPC also can 

return the data from the RISC core after the service routine finishes its execution. 

The remaining sections of this chapter describe more details of the hardware 

architecture and discuss the design and implementation principal that makes JAIP 

more solid. Because a complete description of the dynamic resolution mechanism 

involves the design of the software service routines, it will be described in next 

chapter. 
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3.2 Method Area Manager Unit 

This section will introduce the hardware architecture, function, and design 

principal of the MAMU. The MAMU is comprised of three parts, the controller, the 

Method Area Circular Buffer (MACB), and the instruction buffers. The concept of the 

MAMU is similar to an instruction cache. Although the cache block size is of two 

Kbytes, but a class runtime image will be loaded into cache in contiguous cache block 

once it is referenced. The main function of the MAMU is to manage the class runtime 

images stored in the MACB. To achieve this goal, we design the Class Information 

Table and the Circular Buffer Allocation Table, which is maintained by a dynamic 

class loading C code running on the RISC core. And the MAMU loads class runtime 

images into the MACB dynamically base on the two tables. The details of the class 

runtime images and the dynamic class loading C code will be discussed in next 

chapter. 

3.2.1 Two-Level Method Area Design 

In order to keep a balance between performance and resource usage, the JAIP 

adopts a two-level method area design. It treats the DDR-SDRAM as a L2 method 

area, and the MACB is the L1 method area. The MACB is composed of 32 small 

memory blocks that store dynamically loaded class runtime images in FIFO. The Java 

core is designed to only fetch method bytecodes, access non-string constant values, 

and lookup dynamic resolution information from the MACB. That is, a class runtime 

image has to be loaded into the MACB before execution. Since all the local branches 

in a Java method use relative references and are confined within the class image, the 

MACB has to be updated only upon inter-class invocations and returns. Therefore, we 

will encounter one of three conditions in switching to another class: 1. the target class 
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runtime image is store in the MACB, 2. The target class runtime image is not in the 

MACB but in the DDR-SDRAM, and 3. The target class runtime image does not even 

exist upon invocation. The first two conditions are similar to hit and miss of a cache, 

and it will be described clearly in section 3.2.2. The third condition occurs because 

the JAIP supports dynamic class loading. However, due to the DSRU, the situation 

will be eliminated. The class runtime image has already been established by the 

DSRU before the switching operation. More details will be described in section 4.3.1. 

3.2.2 Method Area Manager Unit 

 

Fig. 7. Architecture Diagram of MAMU.  
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MACB memory block ID occupied by the target class from the Class Information 

Table. If the number is not 0xFFFF, it means that the class image has been loaded into 

MACB and the MAMU simply sets the current block pointer to the new one. If the 

number is 0xFFFF, then a cache miss occurs. The controller then gets the class‟s 

address and size, and loads the images from the DDR-SDRAM. The cache 

replacement policy used is the FIFO policy due to its simplicity and reasonable 

performance for embedded applications. When overwriting an MACB memory block, 

the controller renews the Class Information Table base on the Circular Buffer 

Allocation Table. The victim class is eliminated from the Circular Buffer Allocation 

Table as well. The flow chart is showing in Fig. 9. Note that a class runtime image 

might occupy one or several contiguous MACB memory blocks according to its size, 

so the Class Information Table and the current block pointer simply records the first 

MACB memory block‟s ID. The MACB will add the significant 5 bits of the JPC to 

the current block pointer to get the proper block number. 
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Fig. 8. The state machine of MAMU.  

 

Fig. 9. The state machine of MAMU.  
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3.2.3 Instruction buffer 

 

Fig. 10. The Instruction buffer controller. 

Since Java bytecodes are variable length instructions, and the longest instruction 

is 5-byte long, the total length of the instruction buffer must be longer than 40 bits. 

The JAIP‟s bytecode execution engine supports double-issue of instructions. Two 
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3.3 Bytecode Execution Engine 

This section will introduce the kernel of the JAIP -- Bytecode Execution Engine 

(BEE). The BEE is based on the double-issue four-stage pipeline micro-architecture 

proposed by Ko [2]. The overall block diagram of it is shown in Fig. 11.  

 

Fig. 11. The pipeline architecture of the bytecode execution engine. 
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sequence and such bytecodes are called Complex Instructions. Java instruction byte 

sequence may also contain some operand data following a operation bytecode, and 

those operand data bytes are classified as Operand type. 

3.3.1 Translate Stage 

This section describes the first stage of the proposed pipeline architecture. The 

Translate Stage merely translates the bytecodes inside the instruction buffer into the 

microcode information at every clock cycle. The task of Translate Stage is quite 

simple but essential. Because of the variable-length instruction nature of the Java 

bytecode instructions, it is not trivial to fetch two bytecode instructions per cycle. 

Therefore, Java bytecode must be decoded to some degree before the Fetch Stage. 

There are two advantages of performing such early partial decoding of bytecodes: 1. 

The Fetch Stage following the Translate Stage would know how many bytes it has to 

fetch in order to execute a complete instruction with operands. 2. The circuitry for the 

hazard detection unit, operand number controller, etc., can be simplified.  

 

Fig. 12. Architecture Diagram of Translate Stage. 
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pieces of information: the number of Operands behind the OP code (4bits), the 

IsComplex bit (1bit) and a mapping information (8bit). The mapping information 

presents different meanings depending on the instruction type. If the incoming byte is 

a Simple Instruction, the mapping information will be a single microcode instruction 

which passed directly to the Fetch Stage. If the incoming byte is a Complex 

Instruction, the mapping information will be a starting address that points to the 

corresponding microcode sequence in the microcode ROM. Despite the fact that an 

operand data byte does not need to be translated, the translate stage will still map it to 

either a microcode instruction or a microcode ROM address. However, such mistakes 

will be resolved at the Fetch Stage and the corresponding microcode information will 

simply be discarded. The operand values will be extracted directly from the 

instruction buffer at the Decode Stage and the Execute Stage. 

 

Fig. 13. Possible inputs to the translation logic and the decode logic. 

The translation logic reads 16-bit of data from the instruction buffer for mapping 

operations. There are three possible sources for the 16-bit input data as shown in Fig. 

13. The 16-bit input data can come from buffer one alone, from the high byte of buffer 

one and the low byte of buffer two, or from buffer two alone.  
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3.3.2 Fetch Stage 

 

Fig. 14. Architecture Diagram of Fetch Stage. 
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operand type or complex type. If the instruction is of the operand type, it will be 

replaced by a „NOP‟ instruction. If it is of the complex type, the Fetch Stage will 

switch to microcode sequence fetching mode. 

 

1
st
 

Instr. 

2
nd

 

Instr. 

Output instr. 

combination 

S S 1
st
Instr. + 2

nd
Instr. 

S O 1
st
Instr. + nop 

O S nop + 2
nd

Instr. 

O O nop + nop. 

C O 
complex mode 

O C 

Table 1. Possible translated instruction combinations after the 

Translate Stage. Note that S stands for Simple type, C for Complex and O 

for Operand. 

If the two instructions received from the Translate Stage cannot be handled in 

one cycle (i.e. a pipeline hazard occurs), the second instruction has to be stalled 

until next cycles. There are two kinds of hazardous cases: 

1. There is a structure hazard between two Simple Instructions. 

2. One of the two instructions is of the complex type, and the other one is not of 

the operand type. 

 

1
st
 

Instr. 

2
nd

 

Instr. 

Output instr. combination 

Current cycle Next cycle 

S S 
1

st
Instr. + nop 2

nd
Instr. + 3

rd
Instr. 

S C 

C S 
complex mode 2

nd
Instr. + 3

rd
Instr. 

C C 

Table 2. The translation when hazard occurs. Note that S stands for Simple 

type and C for Complex. 
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The situation will be resolved by applying another instruction translation phase 

using the table shown in Table 2. The first instruction will be sent to Decode Stage 

with a „NOP‟ instruction if it is a simple instruction. If it is a complex instruction, the 

Fetch Stage will switch to complex mode and fetches two simple instructions from the 

microcode sequence ROM of the complex instruction. For the second hazardous 

instruction received directly from the Translate Stage, it will be saved in a register and 

combined in next cycle with another instruction (the 3
rd

 instruction shown in Fig. 

3.3-6) obtained from the Translate Stage. The combination of the 2
nd

 and 3
rd

 

instructions will go through the same hazard removal process in next cycle. 

There are two modes in the Fetch Stage, complex mode and normal mode. The 

Fetch Stage Usually is in normal mode. In this mode, The Fetch Stage passes the two 

microcodes, which are obtained directly from the translate stage, to the Decode stage. 

When the Fetch Stage encounters the situation where the first instruction is of the 

complex type or the two instruction bytes are a operand byte followed by a complex 

instruction, it switches to the complex mode. The Fetch Stage will stall JPC and 

instruction buffer properly base on the number of operands so that the following 

operands will be store in buffer completely. Because one of the instructions is of the 

complex type, the corresponding mapping information will be a microcode ROM 

address. The Fetch Stage sends two microcodes fetched from the microcode sequence 

ROM at this address to the Decode stage. The following fetch operations will 

continues until all the microcodes of the corresponding complex instruction are 

fetched. Currently, we do not allow mixed double-issue of a simple instruction 

microcode and a complex instruction microcode. Note that the hazard detection logic 

only processes the two instructions passed from the Translate Stage. Therefore, the 

programmer of the microcode ROM should make sure that there is no hazard situation 
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for every consecutive pair of microcodes in the ROM. The programmer should insert 

proper „NOP‟ instructions whenever necessary. 

3.3.3 Decode Stage 

When the Fetch Stage sends two non-hazardous microcode instructions to the 

Decode Stage and the Decode Stage then generates the corresponding control signals 

and flags. The Decode Stage consists of the operand source MUX, the 

special-instruction decode unit, the normal-instruction decode unit, the flag manager, 

and the branch destination calculation unit as illustrated in Fig. 15.  

 

Fig. 15. Architecture Diagram of Fetch Stage. 
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Fig. 16. Operand positions in the instruction buffer. 

Most of the instructions are decoded by the normal-instruction decode unit, but 

some of them are decoded by the special-instruction decode unit because of their 

sophisticated behavior. For example, the branch instructions may change the JPC 

conditionally. More details of special instructions will be described in Appendix A. 

The flag manager raises the flag according to the instruction to enable other circuits or 

mark a situation. The branch destination calculation is performed in the Decode Stage. 

The calculation usually involves the operands and the stack data, so performing the 

branch destination calculation in Decode Stage is reasonable. 

Due to the nature of on-chip static RAM, the read data will be available in the 

output port one cycle after the addresses are generated. In order to prepare all the data 

before the Execute Stage, the preloading technique is adopted. The memory reading 

control signal is generated in the Decode Stage and associated directly to the address 

port of the stack RAM in the Execute Stage. In the next cycle, the calculation is 

executed without any memory delay because the value in the stack RAM has already 

been extracted. Other signals, such as data path control and store control are 

registered as the traditional pipeline design. 
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3.3.4 Execute Stage 

 

Fig. 17. Data Path of Execute Stage. Note that LD represents the load 

data from stack memory or immediate data. The capital R stands for 

read and W for write. The LV represents local variable register. 

The Execute Stage just performs the control signal from the Decode Stage 

accurately. The data path of it is shown in Fig. 17. Since the Java virtual machine is 

stack machine, the implementation of stack and stack operation is very critical. To 

achieving double issue data path, we design a special two-level stack architecture. 

This stack structure consists of 7 registers and a four-port memory as shown in the 

right part of Fig. 17. Note that storing Java stack directly in memory is different from 

the stack cache architecture which is popular for Java processors. It is necessary to 

update both registers and the stack memory every time the stack pointer is updated 

due to some stack operations. 
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1.3.1.1. Two-level Stack Structure 

The ISA is classified into four functional types: load type, store type, ALU type, 

and special type. Except special type instructions and some ALU type instructions, all 

the instruction can be double-issued. Most of the combinations will merely use the top 

two of the stack elements, but the combination of store and ALU will need three stack 

items (the store stores the first item of stack and ALU needs the second and the third). 

In short, it needs at least three items from stack to perform all the combination. 

Therefore, there are three register store the top three of stack called A, B, and C 

respectively, and there are also the first level of the Java stack. Fig. 18 illustrates how 

each type of the two-instruction combination can be resolved by such design. There 

are two points worth attention. The first one is that the combination of two ALU 

operations is not supported because the latency will be too long if adding an extra 

ALU and the probability of such combination is very low. And the other is that the 

special type has its own data path for each instruction. 

The second level of Java stack is composed of a four-port memory and four local 

variable registers. The four instruction type will affect the stack respectively. The load 

type adds an item to stack. The store type consumes an item from top of the stack. The 

ALU type consumes two items from the stack and adds a new item to the stack. For 

the special instruction, it is not combined with other instruction. Therefore, any 

instruction combinations will update two top-of-the-stack items at most. Take the 

example of the combination of load and load instructions; it will load two local 

variables from stack memory. And it will also store two items into the operand stack 

of the stack memory. As a result, double-issue of two load instructions at the same 

cycle requires the stack memory to be a four-port memory.  
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Fig. 18. Data Path Combination. Note that LD represents the load 

data from stack memory or immediate data, and SD represents the 

data which will be stored in stack memory.  

A general-purpose four-port memory is expensive and not a common feature in 

current VLSI target technologies. The four-port memory we used in the design of 

JAIP is a special-purpose four-port memory. It is constructed by using two dual-port 

on-chip memory blocks organized in an interleaving structure. It has two read ports 

and two write ports. Therefore, if the decode and the execute stages have to open three 

read/write ports of the same memory bank at the same cycle, a pipeline hazard could 

happen. To solve such structure hazard due to memory-port limitation, we have added 
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operand behind, and the others are a combination of OP code and an operand. If the 

double-issue instruction combination is two single loads for example, the operation 

will be loading two data from the local variable register, and store the second and 

third items to each memory bank respectively. If the instruction combination is an OP 

code with an operand, the operation will simply be one load and one store. That is, 

with this design, accesses to the most frequent local variables (based on the Java VM 

model) will not cause structure hazard to the proposed double-issue data path. Note 

that the initialization of the local variable cache for current stack frame happens upon 

method invocation, and restoring operation occurs in return. 
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3.4 Inter-processor Communication Unit 

The communication between the JAIP and the RISC core is achieved using two 

mechanisms. The first one is a memory sharing table called the cross reference table, 

and it will be described in chapter 4. The second one is an interrupt-driven mailbox 

device for low-bandwidth control data exchange. Mailbox is a common 

inter-processor communication (IPC) device for SoC with multiple processor cores. 

 

Fig. 19. Architecture Diagram of IPC Note that the single arrow 

stands for one-way data flow direction, and the double arrows stands 

for the register can be read/written by both sides.  
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passing. The architecture of the mailbox IPC module is shown in Fig. 19. The register 

file of the mailbox is composed of five argument registers and a service ID register. 

The argument registers are copies of the first five of arguments stored in the stack 

memory.  Note that the argument register number five can be read or written by both 

sides because some service will return a value from the RISC core (e.g. The service 

for the bytecode “new” returns an object reference address). The service ID register 

tells the RISC which ISR services it should provide, and it is maintained by the 

Decode Stage (for local branches) or DSRU (for requesting parsing operation), and 

the two circuits also raise interrupt signal. If a complex Java bytecode instruction 

requires a RISC-side service routine to perform some tasks (e.g. a “new” operation), 

the bytecode instruction will be implemented using a microcode sequence that 

involves writing the service ID register in the Decode Unit. The interrupt signal is 

triggered by the 1
st
 instr., and the interrupt function ID is the 2

nd
 instr. The DSRU 

triggered the interrupt signal only for requesting parsing operation, so the interrupt 

function ID is not changed. Note that only the DSRU fills the mailbox register. If the 

requesting service is a parse-load operation, the DSRU will fill directly the register 

itself. If not, the DSRU will control the stack memory in Execute Stage to fill the 

argument registers with the first five arguments. 
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Chapter 4.  Design of Dynamic Symbol 

Resolution Mechanism 

4.1 Runtime Environment 

We have described in detail the hardware design of the propose JAIP. In this 

chapter, we present how the propose Java accelerator IP (JAIP) performs the dynamic 

symbol resolution and how dynamic resolution is accomplished jointly by the JAIP 

and the RISC core. A complete Java runtime environment (JRE) is a sophisticated 

system. There are many key components such as bytecode execution engine, class 

loaders, the class libraries, and so on. If all the key components are implemented in 

software, the integration of Java virtual machine with the rest of the software 

components is simple. Before a class file can be used by a Java application, it must go 

through a process of loading, linking, and initialization [7]. It is not trivial to 

implement a hard-wired Java processor core to perform such a complex process. 

Therefore, for a hardware-assisted JRE, only the bytecode execution engine can be 

reasonably implemented in hardware, and that is the approach taken by the JAIP. To 

construct a complete JRE, we design a series of system-level services running on the 

host RISC processor, which is customized to handle the loading and linking process, 

heap memory management, and I/O operations. These services are implemented as 

interrupt service routines (ISRs). When the JAIP requires some services, an interrupt 

signal will be sent to the RISC core through IPC to enable the corresponding services.  



 33 

 

Fig. 20. The life cycle of proposed Dual-Core Java SoC. 

Fig. 20 shows the system life cycle. At the beginning of the system, a system 
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heap memory and the L2 method area and call ISRs if necessary. After the Java 

application terminates, the JAIP would set a status register bit to inform the RISC core 

to shutdown the whole system. 

4.2 Dynamic Class Loading Mechanism 

This section describes the proposed solution for dynamic class loading which is a 

difficult issue for a hardware-based Java accelerator. As mentioned in section 4.1, a 

class must go through sequential processes of loading, linking, and initialization 

before it can be referenced by other classes. The Java virtual machine specification 

defines that the three processes must taken place in order. For typical computer 

languages, the linking process also resolves all symbols in the object files to physical 

addresses. However, for the Java language, some of the symbols cannot be statically 

resolved during the linking process. This is called dynamic resolution. That is, on the 

class‟s first active use, it must be initialized. Before it can be initialized, it must be 

linked. And before it can be linked, it must be loaded. Note that it is not necessary to 

wait until the class‟s first active use to load and link that class; the class can be loaded 

and linked well ahead of time of its first usage [7]. 
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Fig. 21. Runtime dynamic class loading mechanism. 
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class runtime image with some reference information and renews the Cross Reference 

Table. The format of class runtime image and the detail of Cross Reference Table will 

be described in the following paragraphs. 

Ideally, the class loading operations will take place on all the classes‟ first active 

use. And, according to the Java specification, there are six situations [7] that qualify 

as the active use of a class: 

1. A new instance of a class is created. 

2. The invocation of a static method declared by a class. 

3. The use or assignment of a static field declared by a class or interface, except 

for static fields that are final and initialized by a compile-time constant 

expression. 

4. The invocation of certain reflective methods in the Java API, such as the 

methods in class Class or in classes defined in the java.lang.reflect package. 

5. The initialization of a subclass of a class. 

6. The designation of a class as the initial class (with the main()< method) when 

a Java virtual machine starts up. 

Note that the static field and part of the Java API are not supported in the current 

JAIP, and the class loading operation will be executed when condition 1, 2, 5, and 6 

occurs. 
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Fig. 22. The flow diagram of the customized system class loader. 

Dynamic symbol resolution is executed completely by the hardware. The JAIP 

can resolve all runtime information with the reference information in class runtime 

image by the Dynamic Symbol Resolution Unit (DSRU). The state machine of DSRU 

is shown in Fig. 22. Furthermore, the first step of this mechanism is a one-time 

software execution overhead for each class throughout the life cycle of the JRE. When 

a class is invoked for the second time, the JAIP will simply load the previously 

created class runtime image from the L2 method area without trigger any software 

overhead. The hardware detail of the DSRU‟s state machine will be presented in 

sections 4.3 and 4.4. 
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Fig. 22. The overall state machine of DSRU. 

Although the process of loading and linking is carried out by the system class 

loader software, the initialization is not. There are two types of initializations for a 

class: the first one is static field initialization, which is not supported by the JAIP 

currently, and the other one is non-static object field initialization. The non-static 

object field„s initialization is simply triggered by Java invocation bytecode 

(invokespecial), so it can be perform in JAIP perfectly. The initialization of static field 
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issue will be discussed in chapter 6. 

4.2.1 Cross Reference Table 

The Cross Reference Table is the key of the whole proposed dynamic class 

loading mechanism since it records the detail symbol information for each class. The 

table helps not only the system class loader to collect the runtime information, but 

also gives helps to method invocation, field data access, ldc instruction, new object 

and string operation. The table can be accessed by both the JAIP and the RISC core. 

The entry of Cross Reference Table is shown in Table 3. This table has first been 

proposed in [6]. We improve the structure of the table in order to support more Java 

language features. 

 

Table 3. Cross reference table structure. Constant data in the literal pool of the 

class file are also stored in this table. 

When the system class loader recognizes a new class, it will allocate a new 

global class ID and creates a table space for the class. A basic table field includes 

class name, class path name, parent‟s ID, image start address of external memory, and 

image size. A class‟s table will be filled with new information in one of two situations. 

The first one is that the system class loader has just parsed the class. And the other 

Cross reference table

Class [x]

Attributes Class ID , Class name, image address, etc

Parent’s ID Class ID

Object Size Size (byte)

IsParsed 1 or 0

Interface Info IsInterface (1 or 0) Interface Count Interface List

Field Data[i] Field Name Class ID & Field Offset Static Field Address

Method[i] Method Name Class ID & Method Offset

Ldc[i] Data Type

String Pool The whole string data stored in constant pool

String Pool Offset[i] The offset for each string

http://tw.dictionary.yahoo.com/dictionary?p=racagnize


 40 

one is that the class that is being parsed refers to an unparsed class. During the 

execution, the JAIP can directly access the expected information for usage. Sections 

4.3 and 4.4 will describe how the JAIP use the information of the Cross Reference 

Table to do method invocations and field data accesses. 

4.2.2 Class Runtime Image Format 

The detail structure of the class runtime image of a single class is shown in Fig. 

23. This image format can be divided into four parts. The first part contains the image 

header and it always is 0x4D4D4553 which is the ASCII codes of “mmes”. The 

second part is the Class Symbol Table. The entry size of this table is 16 bits, and each 

entry corresponds to a constant pool entry of the original class. Therefore, the number 

of entry is the same. 

 

Fig. 23. The region diagram of Class Runtime Image format. 
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entry‟s corresponding constant pool entry is of CONSTANT_Class type, 

CONSTANT_Fieldref_info type, CONSTANT_Methodref_info type, 

CONSTANT_InterfaceMethodref_info type, CONSTANT_String_info type, or 

CONSTANT_Integer_info type, the Class Symbol Table entry will store an offset to 

the image and indicates corresponding reference information below. Therefore, the 

DSRU can directly identify the target reference information. The content of reference 

information depends on the corresponding constant pool entry. If the constant pool 

entry is of CONSTANT_Fieldref_info type, CONSTANT_Methodref_info type, or 

CONSTANT_InterfaceMethodref_info type, the reference information will be a 32 

bits memory address pointing to the Cross Reference Table entry. And, by indirect 

reference, the DSRU can obtain the resolution information. If the constant pool entry 

is of CONSTANT_Class type, CONSTANT_String_info type, or 

CONSTANT_Integer_info type, the reference information will be a 32-bit class 

information which will be sent to the RISC core as an argument. The dynamic 

reference flow is shown in Fig. 24. The last part is the method code data. The method 

bytecode, argument numbers, local variable numbers, and max stack numbers all are 

stored in this part.  

 

Fig. 24. The reference flow of Class Runtime Image. 
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4.3 Method Invocation Mechanism 

This section introduces the method invocation mechanism of the JAIP. If a class 

method refers to another, the will be a method invocation instruction in the class 

method bytecode region. A method invocation bytecode is composed of an OP code 

and a 16 bits index-byte indicating a CONSTANT_Methodref_info or 

CONSTANT_InterfaceMethodref_info entry in the constant pool. The traditional Java 

virtue machine will distinguish the target class and method depending on the entry‟s 

data structure. There are four types of method invocation bytecodes, including 

invokestatic, invokeinterface, invokespecial, and invokevirtual. The invokestatic 

instruction refers to a class‟s static method directly. The other three depend on their 

object references. The invokeinterface instruction refers to an interface method only. 

The invokespecial instruction invokes a super-class method, private method or 

instance initializing method. And the invokevirtual instruction is used for a normal 

class method reference. The proposed JAIP provides three approaches to support these 

invocations. Although, the functions of the invocations are different, the JAIP 

executes them with similar procedures. Because JAIP‟s system class loader has 

reconstructed the constant pool and replaced it by the Class Symbol Table and the 

reference information. Therefore, all runtime method reference information is 

resolved by the Dynamic Symbol Resolution Unit (DSRU). It also is the second step 

of the proposed dynamic class loading mechanism. 

Most of the invocations are classified into the normal method invocation, 

because the system class loader has completed most static symbol resolutions. As a 

result, the remaining operations of the invokestatic, invokespecial and invokevirtual 

instructions are the same. Nevertheless, the invokeinterface has a critical difference 

from the others, which will be explained in section 4.3.2. Another method invocation 
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challenge is that Java supports calling C code from Java class method called native 

invocation, and many system class implementations also require native method 

invocations. The details of the native method support will be described in section 

4.3.3. 

4.3.1 Normal Method Invocation 

 

Fig. 25. The reference flow of Normal Method Invocation. 

After static symbol resolutions performed by the system class loader, most 

method invocations are normal method invocations. Therefore, optimization of 

normal invocations is crucial for the efficiency of Java application execution. The 

reference flow of normal method invocation is shown in Fig. 25. The method 

invocation bytecode is composed of an OP code and a 16-bit index, and the 16-bit 

index now indicates a Class Symbol Table entry. A 32-bit reference pointer in the 

4D4D 4553 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0044 0000

0000 0000 0000 0000 0000 0000 003C 0000

0040 0000 0000 0000 0000 0000 0063 18D4

0063 18D8 0063 18C8 0001 0001 0001 0001

2AB7 000C B100 0001 0003 0002 0003 2A1B

B500 142A 1CBC 0AB5 0016 B100

… … …

Class [x]

… …

Field Data[i] … Class ID & Field Offset Static Field Address

Method[i] … Class ID & Method Offset

… …

… … …

C
la

ss ru
n

tim
e im

a
g

e
C

ro
ss R

eferen
ce T

a
b

le

OP code index-byte



 44 

Class Symbol Table will be located. The reference pointer is a 32-bit memory address 

pointing to a Cross Reference Table entry. And, by indirect reference, the DSRU get 

the 32-bit resolution information which is a class‟s ID and a method offset. If the 

significant 8 bits of the resolution information are 0xFF, this method invocation is a 

native method invocation. If not, then the DSRU checks the method offset. If the 

method offset is zero, it means that the target class‟s runtime image has not been 

generated yet. Then the DSRU will trigger the system class loader through the IPC. 

After the parse-loading is finished, the system class loader will return the correct 

method offset to the DSRU. No matter where the DSRU receives the method offset, it 

will get into next state, and check whether the target class is cached by the MACB or 

not. The MAMU will load the target class if necessary. After renewing the SP, VP and 

IPC, the whole invocation completes.  

 

Fig. 26. The Normal Method Invocation state machine of DSRU. 

The Fig. 26 describes the state machine of the DRSU during normal method 

invocation. The first two stages are the Get_entry1 and Get_entry2, which locates the 

Class Symbol Table entry. The Ref info stage then loads the reference information. 
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The Cross Ref table access stage access the Cross Reference Table entry. If the 

method offset is zero, the stage machine will enter the Illegal Offset and trigger the 

system class loader. If the method offset is non-zero or the parse-loading is finished, 

the state machine then enters the class loading stage and loads the target class image if 

necessary. The final stage is Stack Initialization, and the stage renews the SP, VP, and 

IPC. 

4.3.2 Interface Method Invocation 

The main difference between an interface method invocation and others is that 

the target class cannot be identified until runtime. The traditional Java virtue machine 

will distinguish the target class and method depending on two pieces of information. 

The first one is the CONSTANT_InterfaceMethodref_info entry‟s data structure, and 

the other one is the object instance. The JAIP‟s class loader still can obtain the method 

name of the interface from the constant pool. However, the object instance is 

established during runtime. Obviously, the system class loader cannot complete 

symbol resolution and locate the physical address of the method. Therefore, we design 

an interface method linking list to resolve this problem. The interface method linking 

list is shown in Fig. 27. 

 

Fig. 27. The Interface Method Linking List format. 

The Interface list is maintained by the class loader. When the class is first 

referred, the system class loader will analyze the class‟s constant pool. If the class 
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implements any interface, the system class loader will create a list node for each 

method in the interface and fill out the node. The first class ID in a list node content is 

the class which implements the interface. The second class ID is the class which 

contains the physical implementation of the interface method. The JAIP can renew the 

JPC according to the method offset. The last entry is pointing to the next node of the 

link list.  

 

Fig. 28. The reference flow of interface method invocation. 

Similar to the normal method invocation, the interface invocation bytecode is 
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32-bit memory address pointing to the first node of the interface list. After the two 
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DSRU locate the correct interface list node and takes the data from its second entry. 
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After renewing the SP, VP, and IPC, the whole invocation completes. The reference 

flow of interface method invocation is shown in Fig. 28. 

The Fig. 29 describes the state machine of DRSU during interface method 

invocation. In the first stage “Interface Obj ID,” the DSRU will recognize the object 

instance‟s class ID. The following three stages are the same as in the normal method 

invocations. The “Interface list ID” stage compares the object instance‟s class ID with 

the first entry of link list node. If the ID is not the same, the DSRU will enter the 

“Interface next list” stage to move on to the next node. If the ID hits, the DSRU will 

enter “Interface Offset” stage to get the class ID and method offset. And the remaining 

stages are the same as in the normal method invocations.  

 

Fig. 29. The interface method invocation state machine of DSRU. 
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4.3.3 Native Method Invocation 

The beginning of the native method invocation is exactly the same as in the 

normal method invocations. And the reference flow of it is shown in Fig. 30. The 

difference is in the resolution information which the DSRU receives. If the most 

significant byte of the resolution information is 0xFF, the DSRU will initiate native 

method invocation. The resolution information is composed of 4 parts. The first part is 

the start byte 0xFF which signals a native method invocation. The follow byte is the 

number of arguments the native call needs. The third part is the number of arguments 

the native call will return. The final part is the interrupt service ID of the native call 

because currently all native calls are implemented in ISRs.  

 

Fig. 30. The reference flow of Native Method Invocation. 
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argument number of the native call. If the native call needs no argument, then the 

stack does not need adjustment. If the native call needs 1, 2, or 3 arguments, then the 

stack needs to pop 1, 2, or 3 items. If the native call needs more than 3 arguments, it 

needs to pop 3 items from stack and export the arguments (except the top three of 

stack) to the inter-processor communication unit (IPC). After the argument is handled 

properly, the DSRU will raise the interrupt with the interrupt service ID of the native 

call. Once the interrupt returns, the stack needs to pop the arguments that have been 

used if the number of argument is more than three. This operation is implemented by 

adjusting the stack SP. The stack needs another adjustment because the native 

function may have returned values. If there is no return value, it will pop the top three 

items of stack. And if there are 1or 2 return values, the stack needs to pop 2 or 1 item. 

After that, the whole native invocation process completes. 
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Fig. 31. The native method invocation state machine of DSRU. 

Fig. 31 shows the state machine of the DRSU during a native method invocation. 

The “Stack Adjusting 1, 2, and 3” stage are the pop operation. The DSRU will export 

arguments to the IPC in the “Arg Exporting” stage. During the native call execution, 

the DSRU will be stalled in the “Native interrupt” stage. The “Sp Adjusting” stage is 

the operation of popping the argument that has been used. The “Stack Adjusting 

Return 1 and 2” stages perform stack adjustment operations to handle the return 

values. 
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4.4 Field Data Access Mechanism 

Because of the JAIP‟s system class loader, the operation of field data accesses is 

very similar to that of normal method invocations. The reference flow of it is shown 

in Fig. 32. The difference is in that the resolution information which the DSRU 

receives is an object field offset. By adding the object field offset to the object 

reference address, the JAIP can easily access the object field data. Fig. 33 shows the 

state machine of DRSU during a field access. The DSRU will raise master-store 

signal in the “Field Store” stage and raise master-load signal in the “Field Load” 

stage. 

 

Fig. 32. The reference flow of field data accessing. 
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Fig. 33. The field data accessing state machine of DSRU. 
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Chapter 5.  Experimental Results 

5.1 The Proposed System Implementation 

 

Fig. 34. The field data accessing state machine of DSRU. Note that there 

are three possible connections between Java heap and JAIP. However, 

only one of them will be adopted when synthesizing. 
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development platform and ISE. We create an implementation platform from Base 

System Builder (BSP) wizard of Xilinx Platform Studio (EDK XPS) as shown in Fig. 

34. We adopt PowerPC 440 as the RISC host processor. The RTL model of the JAIP is 

written in VHDL and synthesized by Xilinx XST. The synthesis report is shown in 

Table 4. Both the JAIP and the system bus (PLB [27]) frequency are set to 100 MHz.  

 

Table 4. Synthesis report of the design on an XC5VF70T device. 

 

5.2 Performance Evaluation of JAIP 

This section compares the performance between the CVM running on the RISC 

core alone and our proposed Java core. We use the Embedded Caffeine Mark (ECM) 

3.0, two programs that perform a long-chain of method invocations (CHAIN_40 and 

CHAIN_28), and a program that calculates  to 500 digits (PI) for benchmarking. 

Sun‟s CVM with Just-In-Time (JIT) compilation acceleration is used as a comparison 

point against the proposed JAIP. JIT is a common software VM acceleration technique  

The CVM-JIT interpreter also executes on the same Xilinx ML-405 development 

board using the PowerPC 405 core at 100 MHz. 

5.2.1 ECM Benchmark Analysis 

However, in order to approach the real application testing, we have performed 

Selected Device : 5vfx70tff1136-1

Number of Slices: 9252(3528) out of 44800 20(7)% 

Number of Slice 6 input LUTs: 8755(4044) out of 44800 19(9)% 

Number used as logic: 8390(4404)

Number of IOs: 212(0)

Number of bonded IOBs: 120 (0)   out of 640 18%  

Number of Block RAM/FIFO 35 (19)    out of 148 23(12)% 

Number using Block RAM only 35(19)

Number of PPC440: 1          out of 1 100%

Minimum period: 10.681ns Maximum Frequency: 93.624MHz

The value of parentheses is only Java execution engine
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instruction distribution analysis on five benchmark programs (LOGIC, LOOP, SIEVE, 

METHOD, and STRING) from ECM according to the classifications in Table 5.The 

distribution of bytecode instructions are shown in Fig. 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Classification of Java bytecode instructions. 

 

Bytecode 

classification 

Description Examples 

Local 

variables 

accessing 

loads or store data from local 

variables into stack  
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Stack allows for push or pop data into the 

stack 
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pop 

ALU arithmetic or logic instruction iadd 
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Method 

invocation 

method call 

(need Dynamic resolution) 

invokevirtual 

Branches condition branch or jump, and return ifne 

goto 

return 

Instructions 

that invoke 

RISC service 

The instruction is implemented with 

interrupt but does not belong to any 

upper class. 

new 

ldc 
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Fig. 35. Instruction distribution of ECM programs. 

5.2.2 Performance of ECM Benchmarks 

The benchmark result is shown in Fig. 36. The CVM Java VM interpreter is 

running on the PowerPC 405 CPU under MontaVista Linux. It is important to point 
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CVM-JIT. Since the proposed JAIP does not have any data cache, it would be in great 
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in SDRAM frequently. However, the proposed architecture has the flexibility of 

allocating Java heap to one of three possible memory areas: external SDRAM, 

on-chip SRAM accessible via system bus, or on-chip SRAM connected exclusively to 

the Java core (i.e., the fast Java heap illustrated in Fig. 34). We use the fast Java heap 

for object storage in this thesis to simulate the case with a data cache.  

 

Field accesses
1.48%

Local variable
accesses
35.19%

Branch
35.18%

Stack
26.67%

ALU, 1.48%

LOGIC

Field accesses
1.48%

Local variable
accesses
35.19%

Branch
35.18%

Stack
26.67%

ALU, 1.48%

LOGIC

Field accesses
17.93%

Local variable
accesses
43.54%

Memory

accesses

10.18%

Branch
7.83%

ALU
15.38%

Stack
5.13%

LOOP

Field accesses
17.93%

Local variable
accesses
43.54%

Memory

accesses

10.18%

Branch
7.83%

ALU
15.38%

Stack
5.13%

LOOP SIEVE

Field

accesses
10.56%

Local variable
accesses
40.84%

Memory

accesses
10.20%

Branch
23.12%

ALU
10.34%

Stack
4.94%

iastore
0.07% SIEVE

Field

accesses
10.56%

Local variable
accesses
40.84%

Memory

accesses
10.20%

Branch
23.12%

ALU
10.34%

Stack
4.94%

iastore
0.07%  

METHOD

Method

invocation

5.63%

Local variable

accesses

52.20%

Branch

15.58%

ALU

18.09%

Stack

2.81%

iinc

0.06%

Field accesses

5.69%

METHOD

Method

invocation

5.63%

Local variable

accesses

52.20%

Branch

15.58%

ALU

18.09%

Stack

2.81%

iinc

0.06%

Field accesses

5.69%

STRING

Field accesses

16.01%

Method

invocation

16.07%

Local variable

accesses

35.64%

Branch

12.90%

ALU

9.53%

Stack

9.85%

STRING

Field accesses

16.01%

Method

invocation

16.07%

Local variable

accesses

35.64%

Branch

12.90%

ALU

9.53%

Stack

9.85%

 



 57 

 

Fig. 36. ECM benchmark results. Higher number means better 

performance.  

Fig. 36 shows the ECM performance of CVM (Java interpreter-only), CVM-JIT 

(Java interpreter with JIT enabled), and the proposed JAIP, respectively. The 

calculation of each benchmark is described as follow: Sieve compute prime number 

below “512”. Logic changes the Boolean logic state 2400 times. Method calls 

recursive method invocation for a total of 10060 times. Loop counts the Fibonacci 

sequence below 64 for a total of 4036 iterations.  

In the Fig. 36, the JAIP only outperforms CVM-JIT on the LOGIC benchmark. 

The reason is that the three benchmarks, SIEVE, LOOP, and METHOD, have control 

structure that can be optimized by the JIT compiler very efficiently.  

The reason for the low performance in STRING benchmark is quite simple; the 

string manipulation operations are implemented on the RISC side as ISRs in current 

implementation,.  That is, every string operation is an IPC request to the RISC core, 
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and the overhead is significant. Therefore, if the target application of JAIP requires a 

lot of string manipulation, the instruction set of the microcodes of JAIP should be 

extended to facilitate direct string manipulation within the Java core. 

5.2.3 Performance of the long-chain of method invocation and the 

PI test program Benchmarks 

The performance of CVM, CVM-JIT, and JAIP on these programs is shown in 

Fig. 37. 

According to the performance result of the ECM, we assume that JIT does not 

work well for short burst, sporadic program behaviors (for example, the control 

branches in the LOGIC benchmark). Therefore, we added two more test programs 

here to demonstrate that the proposed JAIP does perform better than CVM-JIT when 

the control structure of the program is hard to optimize by a JIT compiler.  

 

Fig. 37. CHAIN and PI benchmark results. Lower number means better 

performance. 

The first one is similar to the METHOD benchmark of ECM. However, instead 
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of performing recursive method invocation, we perform a long chain of method 

invocations across 40 (CHAIN_40) or 28 (CHAIN_28) small classes repeatedly. For 

the CHAIN_40 test, there is a main class and forty different small classes. Each small 

class has only one tiny method. The main class calls the only method in class one, 

which calls the only method in class two, and so on. Until the fortieth class‟ only 

method is called, this method will call back to the method in class one. This cyclic 

invocation behavior continues until 100 method calls have been made. Then, the 100
th

 

calls returns to its caller and so on until the main functions is reached. The main class 

repeats the cyclic call for 1000 times. This test is designed to test the efficiency of the 

proposed method area circular buffer design. Since current implementation has 32 

blocks, it can accommodates up to 32 classes (if each one is smaller than 2KB) before 

some class images get flushed. Hence, for CHAIN_40, every method calls involves a 

runtime image transfer from SDRAM to MACB. For the CHAIN_28 test, the call 

numbers are the same as CHAIN_40 (i.e. 100  1000), but there are only 28 different 

classes in the cyclic call so only the first 28 calls involves runtime image transfer. 

In this case, JAIP runs much faster than both CVM and CVM-JIT. More 

importantly, CVM-JIT performs even worse than the CVM interpreter. It is evident 

that if the control structure of a program cannot be optimized by the JIT compiler and 

the amount of computation in the program is little, JIT compilation overhead would 

not be negligible. For JAIP, CHAIN_28 runs much faster than CHAIN_40 deservedly 

because of constant flushing (only 28 times for each of the small class).  

The second program is a PI test program. The PI test program calculates  to 

500 digits and repeats the calculation for three times. This program has higher 

double-issue ratio of the instructions. For the PI benchmark, JAIP still performs the 

best. This program has intense calculation that can be speed up by double-issue 

architecture. To make the point clear, we have recorded the percentage of (microcode) 



 60 

instructions that are double-issued in JAIP for the benchmark programs. The results 

are shown in Table 6. Note that this double-issue gain is achieved with simple, 

inexpensive circuitry. 

 SIEVE LOOP LOGIC METHOD PI 

% of double-issue 8.67 4.86 9.75 29.41 36.99 

Table 6. Percentage of double-issued instructions. 
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Chapter 6.  Conclusions and Future Works 

In this paper, we have proposed the detail of architecture design to facilitate the 

encapsulation of a Java core as a reusable accelerator IP. With the proposed 

architecture, the Java accelerator IP can be integrated into an application processor 

SoC easily. The key architecture that enables host processor invocation of the Java 

accelerator is the Method Area Manager Unit and its associated two-level method area 

memory hierarchy. 

For system software integration with the RISC core, mailbox-driven ISRs on the 

RISC side are used to modularize the integration effort. The design of the software 

stack of the JRE follows the concept of the JavaOS model. 

For the bytecode execution engine, we have also proposed the two-level stack 

architecture with local variable cache. With this stack architecture, we can implement 

a double-issue pipeline with small hardware cost. The implementation out-performs 

CVM-JIT when the computation and/or control structure of the program is difficult 

for JIT compilers to optimize. 

In the future, there are many issues for complete support of JVM for embedded 

systems. We will improve the Method Area Manager Unit and the two-level method 

area memory hierarchy by a “single method caching mechanism”. The main 

difference is that in current design the Method Area Manager Unit manages the 

method area by a unit of a complete class. However, some Java classes will be 

parse-loaded into JAIP just to execute one (or few) method in the class. If the cache 

block of Method Area Circular Buffer stores just a single method, the cache memory 

will be used more efficiently. 

Another issue is that the JAIP is not capable of multi-threading so far. To support 
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multi-thread in hardware directly, hardware-based context switching should be 

implemented within JAIP. To decrease the overhead of context switching, multiple 

copies of the original two-level stack architecture will be used. Each copy of the 

original stack architecture will contain only a thread stack. The original two-level 

stack architecture is maintained as a working frame, and the complete stack data is 

stored in external memory. The swap-in and swap-out of working frame will occur 

and overlap with the execution time of another thread so that the physical overhead of 

a context switch will be reduced to just a few cycles. The RISC-side will be 

responsible for thread scheduling. On the other hand, multiple copies of register files 

will be used to save the internal registers (e.g. JPC, current class ID, etc.).  
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