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利用運算重排發揮 H.264 中去方塊濾波器的平行度 

 

學生：王薏婷         指導教授：鍾崇斌  博士 

國立交通大學資訊科學與工程研究所碩士班 

摘要 

在 H.264 影像壓縮標準中，去方塊濾波器的計算量大約占整體解碼器的三分之一。

隨著多工處理器將成為未來系統設計的趨勢，若可把去方塊濾波器內的運算良好

的分配到各個處理單元，則可以省下計算時間。在這篇論文中，我們提出了兩個

粒度來做平行處理的單位，第一是 H.264 去方塊濾波器所使用的基本單位 16 像

素長的邊，第二是根據分析去方塊濾波器所能達到的最高平行度所使用的最小基

本單位 4 像素長的邊。此外，在此篇論文中我們提出一個方法使得在硬體資源受

限的情況下，盡可能地充分利用所擁有的硬體資源，以及符合我們設計所需要的

去方塊濾波器硬體需求。在硬體無限制下，對 1920×1080 與 1080×1920 這兩種形

狀的圖片做去方塊濾波，16 像素長的邊這個粒度的處理順序與二維波前方式所

提出來的處理順序相比所得到的加速分別為 1.57 與 2.15 倍，4 像素長的邊這個

粒度的處理順序與二維波前方式所提出來的處理順序相比所得到的加速分別為

1.92 與 2.44 倍。另外，我們的方法可使處理時間成正比於圖片大小的平方根(在

一樣的圖片長寬比下)。 
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Abstract 

In the H.264 video compression standard, the deblocking filter contributes about 

one-third of all computation in the decoder. With multi-processor architectures 

becoming the future trend of system design, computation time reduction can be 

achieved if the deblocking filter well apportions its operations to multiple processing 

elements. In this paper, we apply a 16 pixel long boundary, the basic unit for 

deblocking in the H.264 standard and a 4 pixel long boundary as the basis for 

analyzing and exploiting possible parallelism in deblocking filtering. Moreover, a 

possible compromise to fully utilize limited hardware resources and hardware 

architectural requirements for deblocking are also proposed in this paper. Compared 

with the 2D wave-front method order for deblocking both 1920*1080 and 1080*1920 

pixel sized frames, the 16 pixel long boundary method gains speedups of 1.57 and 

2.15 times given an un-limited number of processing elements respectively, and the 4 

pixel long boundary method gains speedups of 1.92 and 2.44 times given an 

un-limited number of processing elements respectively. Using this approach, the 

execution time of the deblocking filter is proportional to the square root of the growth 

of the frame size (keeping the same width/height ratio), pushing the boundary of 

practical real-time deblocking of increasingly larger video sizes. 
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Chapter 1 Introduction 

The H.264 standard provides acceptable image quality combined with a reduction 

in bit-rate compared with existing video compression standards. Besides this, it can 

also provide higher adaptability and better error resilience for a wider range of 

applications. With regards to the compression rate, the bit rate of H.264 is almost 50% 

lower than that of the MPEG-2, H.263v2 and MPEG-4 Advanced Simple Profile 

video compression standards for the same picture quality [7]. 

Deblocking is intended to smooth block-edge artifacts caused by the decoding 

process and enhance picture quality. In the encoding process, the H.264 encoder uses 

the macroblock (MB, 16x16 pixel square) as the basic coding unit. Quantization of 

the macroblocks causes visual discontinuities between the edges of decoded 

macroblocks. Pixels located on macroblock boundaries with a similar value may for 

the above reason be decoded with a larger difference in values, resulting in a decline 

in picture quality. Therefore, the purpose of deblocking is to smooth block artifacts 

caused by the decoding process to enhance picture quality. Another advantage of 

deblocking is to increase coding efficiency. Decoded and deblocked images will be 

referenced later, and because the picture is of higher quality, there will be a reduction 

in the encoded bit rate. 

Deblocking filtering accounts for one-third of all computation in the decoder [1]. 

With multi-core becoming the trend, if deblocking can be processed using a 

multi-core parallel processing architecture, the processing can be distributed to 

different computing processing elements (PEs) to address and reduce execution time. 

Currently parallel processing of deblocking focuses on parallelization at the MB-level. 
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We find that parallelizing deblocking at a finer granularity can be developed 

according to our presented design. 

We analyze the deblocking order to obtain the dependency between the various 

boundaries, and then propose an execution order, with execution of deblocking in this 

order giving higher parallelism.  

The rest of this paper is organized as follows. In chapter 2, we would introduce the 

background of the deblocking filter and related work for deblocking filter 

parallelization. In chapter 3, we would show our parallelized design. Chapter 4 would 

analyze the proposed method and compares it with related works. Chapter 5 would 

shows our proposed hardware architectural requirements. Finally, the conclusion is 

given along with further work.
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Chapter 2 Background and Related work 

2.1 Background 

The deblocking filter is used in order to smooth block-edge artifacts. Figure 2-1(b) 

shows a block-edge artifact caused by a large difference in pixel values. The pixels 

P0~P3 and Q0~Q3 in Figure 2-1(b) can be located either vertically or horizon-tally as 

shown in Figure 2-1(a)[6]. A deblocking filter is applied on the P0~P3 and Q0~Q3 

pixel values to make these eight values visually smooth. The pixel value distribution 

after applying the deblocking filter is shown in Figure 2-1(c). 

 

Figure 2-1 (a) Affected pixels in deblocking [6] (b) The pixel values before 

deblocking filtering; the P0~P3 and Q0~Q3 pixel value gap causes a visual 

discontinuity. (c) After deblocking filtering; the pixel values are now smooth. 

Deblocking is needed for both MB boundaries and 4*4 block boundaries. As the 

MB is the basic coding unit in H.264, block-edge artifacts occur easily at MB 

boundaries. In addition, there are some coding modes using 4*4 blocks for inter 
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prediction and intra prediction. For these cases deblocking is needed to smooth the 

block-edge artifacts. 

The MB deblocking internal (intra MB) execution order as defined by the H.264 

standard is shown in Figure 2-2(a). Execution starts by deblocking a column of pixels 

moving horizontally left to right, and then a row of pixels moving vertically top to 

bottom. The inter MB execution order is shown in Figure 2-2(b), and moves from left 

to right, top to bottom. 

 

Figure 2-2 (a) Intra MB order. (b) Inter MB order. 

Although the H.264 standard defines the deblocking order as shown above, as 

long as the final decoding results in the correct output, the above order can be 

changed. Changing the order in which the calculation is performed is an opportunity 

for parallelizing deblocking filtering. We propose a conceptual design to improve the 

parallelizability of the deblocking filter. 

2.2 Related Work 

The 2D wave-front method is based on using the MB as a unit for parallelization 

[2]. In Figure 2-3(a), according to the deblocking order, we find the current MB has a 

data dependency on the Upper, Upper-Right and Left MBs. So when using a MB as 
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the parallelization unit, the Upper, Upper-Right and Left MB must be deblocked 

before the Current MB. In Figure 2-3(b), MBs that can be processed simultaneously 

are numbered together. 

 

Figure 2-3 (a) Data dependencies in inter MB deblocking. (b) MBs that can be 

processed simultaneously. 

According to this observation, this method does not have a fixed degree of 

parallelism. The degree of parallelism initially steadily increases. Some wind up time 

is needed before reaching maximum parallelism. After maintaining maximum 

parallelism for some time, the degree of parallelism will begin to steadily decrease. In 

Figure 2-4, the units of time are in terms of the time to deblock one MB, and the 

frame size is 1920*1080. 

The 2D wave-front method’s maximum parallelism and required wind up time and 

wind down time can be expressed by the equations: 

   𝑖          𝑒 𝑖   ( )   𝑖 (⌈
 

 
  ⌉    ) (1) 

  𝑖 𝑑     𝑖 𝑒   𝑑  𝑒𝑔  𝑑𝑖 𝑔  𝑖 𝑒    (   ) (2) 

MW: # of columns of MBs in frame. 

MH: # of rows of MBs in frame. 

Where the wind up and wind down time are in units of time required for deblocking a 

MB. 
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In theory, for this method the maximum parallelism should be equal to the total 

number of MBs in a column which is 68 in the above example, but from Figure 2-4 

the maximum parallelism is 60, which is less. The reason for this is the frame aspect 

ratio. The first row of MBs has finished being processed, yet the last row of MBs has 

not yet begun to be processed, resulting in the degree of parallelization unable to 

reach the theoretical maximum. 

 

Figure 2-4 The idealize computation execution time and parallelism relationship. 

The vertical axis is the number of MBs processed in parallel, the horizontal axis is 

time. The time unit here is time required for deblocking a MB. 

The 3D wave-front method [3] is based on the 2D wave-front method, but also 

uses inter frame parallelism, meaning more MBs can be processed in parallel. This 

method can significantly enhance the parallelism. In Figure 2-5 [4], the dark gray 

MBs can be processed in parallel. 

The 3D wave-front method is used with the 2D wave-front method. The 2D 

wave-front method is used for intra frame parallelization, while the 3D wave-front 

method is used for inter frame parallelization. The 2D wave-front method parallelizes 

at the MB-level, which is larger than the basic deblocking unit in the H.264 standard. 

Can deblocking at a finer granularity increase the amount of parallelism, and still be 
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combined with the 3D wave-front method to further increase the parallelism? We will 

explain this in the following sections. 

 

Figure 2-5 The dark gray MBs can be processed in parallel[3].

MBs processed

MBs to be processed

MBs in flight

16
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Chapter 3 Algorithm 

3.1 16 Pixel Long Boundary Method 

Analyzing applications at a finer granularity usually opens extra opportunities for 

parallelization. In H.264, the standard defines the order for deblocking using a 16 

pixel long boundary as its basic unit.  As a result, in this section we analyze the data 

dependencies within the deblocking filter, and then propose our deblocking order and 

design. When deblocking a 16 pixel long boundary, in total it will affect eight 4x4 

blocks adjacent to the boundary. Figure 3-1(a) shows the affected blocks when we 

deblock a vertical 16 pixel long boundary, and Figure 3-1(b) shows the case for a 

horizontal boundary. 

 

Figure 3-1 Gray blocks are the affected 4x4 blocks when deblocking a (a) vertical 

and (b) horizontal 16 pixel long boundary 

We separate the data dependencies when using a 16 pixel long boundary for 

deblocking into 3 cases: 

Case 1: Intra MB 16 pixel long boundary data dependencies. 

In Figure 3-2(a), the result after deblocking MBb1 (boundary b1) is input into the 

deblocking filter for MBb2, with that result then becoming the input into the 

(a) (b)
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deblocking filter for MBb3 and so on. Through this analysis the data dependency chain 

is MBb1MBb2MBb3MBb4 and MBb5MBb6MBb7MBb8. Moreover, the 

deblocking result of MBb4 is input to MBb5, so the data dependency chain for intra 

MB deblocking is MBb1MBb2MBb3MBb4MBb5MBb6MBb7MBb8 as 

shown in Figure 3-2(b). 

 

Figure 3-2 (a) Intra MB deblocking execution order, the gray blocks are data 

dependencies from boundary 4 to boundary 5. (b) The data dependency chain for intra 

MB deblocking. 

Case 2: Same row inter-MB 16 pixel long boundary data dependencies. 

In Figure 3-3, part of the deblocking result of Current MBb8 (the gray blocks) is 

the deblocking input to Right MBb1, so Right MBb1 depends on Current MBb8. In 

other words, Right MBb1 can begin execution after the Current MBb8 has completed 

execution. This shows that using 16 pixel long boundaries, MBs within the same row 

cannot be deblocked at the same time. 

 

Figure 3-3 The deblocking data dependency chain for MBs in the same row. 

b1 b2 b3 b4
b6

b7

b8

b5

(a) (b)

16 16

Current MB Right MB
16
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Case 3: Adjacent row inter-MB 16 pixel long boundary data dependencies. 

In Figure 3-4, the deblocking input of Current MBb5 needs 4 4x4 blocks from 

Upper MB (gray blocks). According to Case 2, we find that the dark gray block is the 

last to be modified. The dark gray block is modified by deblocking Upper-right MBb1 

after which it is able to become the deblocking input to Current MBb5. Therefore, 

Current MBb5 depends on Upper-right MBb1, with the data dependency chain shown 

as a black arrow in Figure 3-4. 

 

Figure 3-4 The data dependency chain between adjacent rows of MBs. 

According to the above 3 cases, we propose a new execution order. This order 

fulfills the required data dependencies whilst providing an extra degree of deblocking 

parallelism. The time that deblocking is performed on each 16 pixel long boundary is 

shown in Figure 3-5. If the time of execution for deblocking Current MBb1 is t, by the 

above Case 2 the execution time of Right MBb2 is t+9, by Case 3 the execution time 

of Lower MBb5 is also t+9, and by Case 1 the execution time of Lower MBb1 is t+5. 

If the time of execution of Current MBb1 is t, it shows in Figure 3-6 the execution 

time of Lower MBb1 is t+5 in 16 pixel long boundary method order, and the execution 

time of Lower MBb1 is t+16 in the 2D wave-front method.  

Current MB

Upper MB Upper-right 
MBMB Rowx

MB Rowx+1

16
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Figure 3-5 Proposed execution order. 

 

Figure 3-6 Timing difference of the 16 pixel long boundary method order and the 

2D wave-front method order. 

According to Case 2 mentioned above, when deblocking on 16 pixel long 

boundaries within the same MB row, MBs cannot be deblocked at the same time. As a 

result, we can assign one PE to each row of MBs. Due to the relationship between the 

number of PEs and the aspect of the frame to be deblocked, there are two cases that 

can occur: 
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Case I: Degree of parallelism depends on frame aspect  

Assuming there are more PEs than needed, the degree of parallelism will be 

limited only by the frame aspect. While processing 16 pixels horizontally (the width 

of one MB) takes 8 stages, processing 16 pixels vertically takes only 5 stages in the 

proposed order.  As a result, deblocking of the first row of MBs will finish before 

starting the last row of MBs, if the number of rows of MBs is less than (8/5) × the 

number of columns of MBs in a frame. We categorize the effects of frame aspect ratio 

into the following two situations: 

i. # rows of MBs in frame ≤ 8/5 * # columns of MBs in frame (Degree of parallelism 

limited by # rows of MBs in frame) 

In this situation, the maximum parallelism is equal to the number of rows of MBs 

in the frame. Our method has a wind up and wind down time similar to the 2D 

wave-front method. A diagram is shown in Figure 3-7 to help explain. The upper-left 

gray region is the starting up of the deblocking filter, and the lower-right gray region 

is the finishing of the deblocking filter. In these regions, the deblocking filter is not 

able to reach maximum parallelism. The white region is where the deblocking filter is 

able to reach maximum parallelism. The degree of parallelism and timing relationship 

diagram is shown in Figure 3-8. 

 

Figure 3-7 Zones of wind up and wind down of deblocking order. 
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Figure 3-8 The idealize computation execution time and degree of parallelism 

relationship diagram. The time unit is the time required for deblocking a 16 pixel long 

boundary. 

ii. # rows of MBs in frame > 8/5 * # columns of MBs in frame (Degree of parallelism 

limited by # columns of MBs in frame) 

In this situation shown in Figure 3-9(a), the degree of parallelism is equal to the 

number of rows of MBs that can start their deblocking before the deblocking has 

completed for the first row of MBs. As explained in the beginning of case I, if the 

ratio of the height to width is larger than 8/5, the degree of parallelism will be limited 

by the frame width. The degree of parallelism and timing relationship diagram is 

shown in Figure 3-9(b). 
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Figure 3-9 (a) The degree of parallelism is limited when the frame height is larger 

than 8/5 times of the frame width. (b) The idealize computation execution time and 

degree of parallelism relationship diagram. 

Case II: # of PEs not enough for maximum parallelism. 

In this case, the frame has to be split into multiple stripes for deblocking. Here we 

first show a naive approach, and then propose an improved one. 

Naive approach: In Figure 3-10, assume the number of PEs is K, and then divide 

the frame into stripes where each stripe contains K rows of MBs. The execution order 

of the stripes is from top to bottom. We find that each stripe has a wind up and wind 

down time, meaning PEs remaining idle often occurs. The degree of parallelism and 

timing diagram is shown in Figure 3-11. 

Improved approach: In the naive approach, PEs are frequently idle between the 

deblocking of stripes as shown in Figure 3-12(a). But after analyzing the details, we 

find that the execution of the wind down of stripe x and the wind up of stripe x+1 can 
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be overlapped to fully utilize the PEs. They are able to be overlapped because there 

are no direct data dependencies between the wind down of stripe x and the wind up of 

stripe x+1. Therefore the wind up of stripe x+1 can begin execution earlier as shown 

in Figure 3-12(b). The first row of MBs of stripe x will finish deblocking first after 

which a PE will become idle, so that PE is then assigned to the first row of MBs of 

stripe x+1. Continuing this method we find the degree of parallelism and timing as 

shown in Figure 3-13, showing a reduction in the idle time of PEs. 

 

Figure 3-10 # of PEs is not enough for maximum parallelism, frame split into 

multiple stripes for deblocking. 

 

Figure 3-11 The degree of parallelism and timing diagram when the # of PEs is not 

enough for maximum parallelism. 
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Figure 3-12 (a) The degree of parallelism and timing relationship between stripe x 

and stripe x+1 before overlapping. (b) The degree of parallelism and timing 

relationship between stripe x and stripe x+1 after overlapping. 

 

Figure 3-13 The idealize computation execution time and degree of parallelism 

relationship after overlapping. 

In addition, when the number of rows per stripe K does not divide evenly into the 

total number of MB rows, the final stripe will have a number of idle PEs as shown in 

Fig. 19. 
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Figure 3-14 The idealize computation execution time and degree of parallelism 

relationship when the number of rows per stripe K does not divide evenly into the 

total number of MB rows. 

3.2 4 Pixel Long Boundary Method 

Analyzing applications at a finer granularity usually opens extra opportunities for 

parallelization. In H.264, the standard defined orders intersect with each other on a 

4*4 grid and split boundaries into 4 pixel long boundaries as its basic units. As a 

result, we have to analyze the data dependencies and generate the corresponding data 

dependency chain first. In Figure 3-15(a), we assign IDs (b1~b32) to 4 pixel long 

boundaries in a MB. The result after deblocking b1 is an input into the deblocking 

filter for b5, with that result then becoming the inputs into both b17 and b9, and so on. 

According to the data dependencies caused by the standard order, the data 

dependency chain for intra MB deblocking is as shown in Figure 3-15 (b) 
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Figure 3-15 (a) ID assignment and (b) data dependency of a MB. 

Moreover, we can derive the data dependency tree for intra MB deblocking as 

shown in Figure 3-16. 

 

Figure 3-16 Data dependency tree of a MB. 

In Figure 3-16, the data dependency tree is represented in 8 timing phases. The 

timing of each boundary means the earliest timing the deblocking filter can operate. 
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The black solid arrows mean these input sources are the results from other 4 pixel 

long boundaries that are in the same MB, the black dotted arrows mean the input 

sources are the results from other 4 pixel long boundaries that are in different MBs, 

and the double arrows mean the input sources are used for this first time and come 

from memory. The complete data dependency tree for a frame can be composed from 

multiple copies of Figure 3-16 connected with black dotted arrows. 

Next, we have to figure out the critical paths of the data dependency tree. When 

the deblocking filter is on the critical paths, execution should be as soon as possible 

for best performance. Here, we use following three steps to illustrate the critical paths 

of a frame. 

Step1: Intra MB 4 pixel long boundary critical paths. 

Firstly assume the frame contains only one MB. Figure 3-17, which is a trivial 

derivation from Figure 3-16, shows the critical paths of this frame with arrows 

representing the data dependency directions. By sorting the counts of arrows from b5 

to each 4 pixel long boundary, we can generate the execution order of the critical 

paths. 

 

Figure 3-17 (a) Critical paths of frame with only one MB and (b) Deblocking order 

b3 b4

b11 b12

b19 b20

b27 b28

b5 b6 b7
b8

16

6

7

8

5

6

7

8

5
1       2       3       4

16

(a) (b)



 

20 

 

on critical paths. 

Step 2: Same row of MBs 4 pixel long boundary critical paths. 

After step 1, we extend the analyzed frame size to one row of m MBs (m > 1). 

Figure 3-18 shows the critical paths of this frame. All arrows compose the critical 

paths of this frame. The gray arrows (from step 1) are caused by intra MB 

dependencies. The double arrows are caused by the inter-MB dependencies in a row 

of MBs. The black dotted arrows are also caused by intra MB dependencies, but 

added due to the effects of inter-MB dependencies. 

 

Figure 3-18 Critical paths of frame with only one row of MBs. 

To meet the order demanded by the critical paths, we modify the deblocking order 

of Step 1 as shown in Figure 3-19. The only modification made in Figure 3-19 are the 

numbers in bold, which are on the extra critical paths caused by the inter-MB 

dependencies in a row of MBs. Though not every critical paths that resides in 

different MBs is identical, this order fulfills the requirements while keeping regularity. 

Figure 3-20 shows the order of two adjacent MBs in the same row of MBs. Note that 

the deblocking of the adjacent right MB starts at time 7, which is before the last 

operation of the left MB. We will further analyze performance improvements in the 

Chapter 4. 
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Figure 3-19 Deblocking order fulfills the critical path of a single row of MBs. 

 

Figure 3-20 Deblocking order of only one row of MBs. 

Step 3: Adjacent row inter-MB 4 pixel long boundary critical paths. 

In this step, we further extend the size of a frame to n rows of m MBs (m > 1, n > 

1). Figure 3-21 shows the corresponding critical paths. The gray arrows represent the 

critical paths caused by both intra MB and inter same row MB data dependencies. The 

black arrows represent the critical paths caused by inter adjacent rows of MBs. In 

order to meet the requirements of this critical paths, we provide the deblocking order 

extended from Step 2 in Figure 3-22. 
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Figure 3-21 Critical paths of frame with m×n MBs. 

 

Figure 3-22 Deblocking order that fulfills the critical paths of a frame with m×n 

MBs. 
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deblocking order of a 3MB×3MB square area, which is the smallest example that 

contains all 8 types. In Figure 3-23, the gray numbers are the type of MBs. Assume 

the order start from stage 1, which is the start of critical paths. On the one hand, the 4 

pixel long boundaries that labeling the numbers in bold are on the critical paths with 3

×3 MBs frame. On the other hand, the 4 pixel long boundaries with non-bold numbers 

were labeled by the order of MB proposed in Figure 3-22. We find that the second 

row of MBs starts deblocking at the 6th stage. Analysis of performance improvements 

will be discussed in the Chapter 4. 

 

Figure 3-23 Deblocking order of 8 types MB. 
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execution order of boundaries that are not on the critical paths. Because these 

boundaries are not on the critical paths, there is some flexibility in reordering while 

not increasing the time for deblocking. Figure 3-24 shows all possible orders for 4 

pixel long boundaries not on critical paths while not increasing the length of any 

critical path. These boundaries are categorized into 3 groups. By following arrows in 

each group, all possible orders can be generated. Taking the group containing b8, b12, 

and b16 for example, {4,5,6}, {4,5,7}, {4,6,7}, and {5,6,7} are all possible order 

assignment for {b8,b12,b16} in this group. 

 

Figure 3-24 Flexible orders on non-critical paths boundaries. 
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MB is 12434322 (Figure 3-25(a) black numbers). We can find from Figure 3-24, the 

possible orders of boundaries that on non-critical paths are at 3rd to 8th time unit for 

deblock a MB (Figure 3-25(a) red numbers). One MB have 32 boundaries need to be 

deblocked, so we find the sum of numbers in green block as shown in Figure 3-25(a) 

is 32. As mention in Figure 3-20, the MB2 deblocked start at 7th time unit of MB1 as 

shown in Figure 3-25(a). The sum of numbers in blue block as shown in Figure 3-25(a) 

is 32, we can find that deblock one MB row must process 32 boundaries in 6 time 

units. So deblock one MB row at least required ceiling(16/3) PEs, and deblock n MB 

row at least required ceiling(16n/3) PEs. Deblock one MB row at least required 6 PEs, 

required 5 PEs for 2nd additional MB row, and required 5 PEs for 3rd additional MB 

row. 

 

Figure 3-25 (a) The minimum amount of required PEs for one MB row. (b) The 

amount of required PEs for one additional MB row. 

As the result of minimum amount of required PEs for one MB row, we proposed a 

order as shown in Figure 3-26. It is satisfy the minimum amount of required PEs for 
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Figure 3-26 Proposed deblocking order 

In Figure 3-27 shows the regularity in the number sequence that the number of 

boundaries in one MB row able to be deblocked in parallel: 12(565565)*565553. As 

mention in Figure 3-23, deblocking of one MB row can start with a delay of 5 time 

units to its upper adjacent MB row. Figure 3-27 shows the number of PEs required 

with number of MBs raising up. It is clear that the proposed order meets the rule of 

minimum amount of required PEs mention in Figure 3-25. Moreover, every 3 rows of 

MBs regularly provide 16 4 pixel long boundaries that can be deblocked in parallel in 

every time unit after a build-up time. 

 

Figure 3-27 The number of PEs required with number of MBs raising up 

Due to the relationship between the number of PEs and the aspect of the frame to 

be deblocked there are two cases that can occur: 

Case I: Degree of parallelism depends on frame aspect 

Assuming there are more PEs than needed, the degree of parallelism will be 

3       4       5      5

4       5       6      6

6       7       7      7

7       8       8      8

1       2       3      4

2       3       4      5

3       4       5      6

3 4       6      7

16

125655655655   6   5   5   6   5   5   6   5     …
1256556   5   5   6   5   5   6   5   5     …

12   5   6   5   5   6   5   5   6     …

MB row1
MB row2
MB row3

# of row   required PEs
1                  6
2                 11
3            16

…

… …

time unit
16 16 16 16 16 16 16 16



 

27 

 

limited only by the frame aspect. While processing 16 pixels horizontally (the width 

of one MB) takes 6 stages, processing 16 pixels vertically takes only 5 stages in the 

proposed order. As a result, deblocking of the first row of MBs will finish before 

starting the last row of MBs, if the number of rows of MBs is less than (6/5) × (the 

number of columns of MBs in a frame). We categorize the effects of frame aspect 

ratio into the following two situations: 

i. # rows of MBs in frame ≤ 6/5 * # columns of MBs in frame (Degree of parallelism 

limited by # rows of MBs in frame) 

In this situation, the maximum parallelism is proportional to the number of rows 

of MBs in the frame. According to the deblocking order in Figure 3-29, the maximum 

parallelism of 3 rows of MBs is 16. We can find the maximum parallelism of one row 

of MBs is ceiling(16/3). For example, the maximum parallelism of one row of MBs is 

6, the maximum parallelism of two rows of MBs is 11, and the maximum parallelism 

of three rows of MBs is 16. Our method has a wind up and wind down time similar to 

the 2D wave-front method. A diagram is shown in Figure 3-28 to help explain. The 

upper-left gray region is the starting up of the deblocking filter, and the lower-right 

gray region is the finishing of the deblocking filter. In these regions, the deblocking 

filter is not able to reach maximum parallelism. The white region is where the 

deblocking filter is able to reach maximum parallelism. The degree of parallelism and 

timing relationship diagram is shown in Figure 3-29. 
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Figure 3-28 Zones of wind up and wind down of deblocking order. 

 

Figure 3-29 The idealize computation execution time and degree of parallelism 

relationship diagram. The time unit is the time required for deblocking a 4 pixel long 

boundary. 
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parallelism will be limited by the frame width. The degree of parallelism and timing 

relationship diagram is shown in Figure 3-30(b). 

 

Figure 3-30 (a) The degree of parallelism is limited when the frame height it larger 

than 6/5 times of the frame width. (b) The idealize computation execution time and 

degree of parallelism relationship diagram. 

Case II: # of PEs not enough for maximum parallelism. 

In this case, the frame has to be split into multiple stripes for deblocking. Here we 

first show a naive approach, and then propose an improved one. 

Naive approach: In Figure 3-31, assume the number of PEs is able to deblock only 

K rows of MBs at the same time, and K is less than the maximum number of 

parallelizable MB rows. Then divide the frame into stripes where each stripe contains 

K rows of MBs. The execution order of the stripes is from top to bottom. We find that 

each stripe has a wind up and wind down time, meaning PEs remaining idle often 

occurs. The degree of parallelism and timing diagram is shown in Figure 3-32. 
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Figure 3-31 # of PEs is not enough for maximum parallelism, frame split into 

multiple stripes for deblocking. 

 

Figure 3-32 The degree of parallelism and timing diagram when the # of PEs is not 

enough for maximum parallelism. 

Improved approach: In the naive approach, PEs are frequently idle between the 
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Figure 3-34(b). Moreover, we keep the regularity of the amount of required PEs for 

both stripes. 

 

Figure 3-33 PE assignment for the first MB row of both stripe x and x+1 

Applying this method we find the degree of parallelism and timing as shown in 

Figure 3-35, showing a reduction in the idle time of PEs. 

 

Figure 3-34 (a) The degree of parallelism and timing relationship between stripe x 

and stripe x+1 before overlapping. (b) The degree of parallelism and timing 

relationship between stripe x and stripe x+1 after overlapping. 

windup

wind down

windup

wind down

K row of MB

K row of MB

16

12565565565565…565565565553
12565565565565…565565565553

The first of row of MBs of piece x

The first of row of MBs of piece x+1
time unit

12565565565565…565565565565565565565565…565565565553

time unit

Degree of parallelism

…

time unit

Degree of parallelism

…

0

0

Stripe x

Stripe x+1

time unit

Degree of parallelism

…

time unit

Degree of parallelism

…

0

0

Stripe x

Stripe x+1

(a) (b)



 

32 

 

 

Figure 3-35 The idealize computation execution time and degree of parallelism 

relationship after overlapping.
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Chapter 4 Comparison 

The proposed order has been shown in the previous chapters, so the focus of this 

section is on determining the degree to which parallelism and execution time can be 

improved from this design. In this chapter, we first model the parallelism and time of 

deblocking a frame for both the proposed order and 2D wave-front method order. 

Then we show the benefit of overlapping, and then we construct two figures to show 

the effects of the number of PEs and the benefits from overlapping the deblocking of 

adjacent rows of MBs. After that, the time required will be compared using three 

representative examples. In the end, we explain that our design is also complementary 

to the 3D wave-front method. 

4.1 Equations 

The proposed execution order’s maximum parallelism and required wind up time, 

wind down time and execution time can be expressed by the equations: 

4.1.1 4 pixel long boundary method 

Maximum # of rows of MBs that can be deblocked in parallel (K) 

=  𝑖 (   ⌈
6

5
  ⌉  ⌊

3×# 𝑜𝑓 𝑃𝐸𝑠

 6
⌋)  (3) 

   𝑖          𝑒 𝑖  ( ) 

 ⌈𝐾 ×
 6

3
⌉   (4)

 

𝑊𝑖 𝑑     𝑖 𝑒 

= Time to reach the row of maximum parallelism + Time to reach the maximum parallelism in that row 

= (delay between processing rows) × (Maximum # of rows of MBs that can be deblocked in parallel 

  1) + (Time to reach the maximum parallelism in the Kth row) 

= 5 × (𝐾   ) +   

= 5 × 𝐾  3 (5) 



 

34 

 

𝑊𝑖 𝑑 𝑑𝑜𝑤   𝑖 𝑒 

 {
𝑇𝑖 𝑒  𝑓 𝑒  𝑓𝑖 𝑖 𝑕𝑖 𝑔  𝑕𝑒      K 𝑕  𝑜𝑤 𝑜𝑓    .              𝑖𝑓 𝑒 𝑜 𝑔𝑕  𝐸 
𝑇𝑖 𝑒  𝑓 𝑒  𝑓𝑖 𝑖 𝑕𝑖 𝑔      𝑜𝑤 𝑜𝑓     𝑖          𝑖 𝑒.     𝑖𝑓  𝑖 𝑖 𝑒𝑑  𝐸 

 

 

{
  
 

  
 

(𝑑𝑒  𝑦 𝑏𝑒 𝑤𝑒𝑒    𝑜𝑐𝑒  𝑖 𝑔  𝑜𝑤 ) × (   𝑖    # 𝑜𝑓  𝑜𝑤  𝑜𝑓      𝑕   𝑐   𝑏𝑒 𝑑𝑒𝑏 𝑜𝑐𝑘𝑒𝑑 𝑖        𝑒    )    

 + (𝑇𝑖 𝑒  𝑓 𝑒     𝑖          𝑒 𝑖   𝑖   𝑕𝑒      𝐾 𝑕  𝑜𝑤 𝑜𝑓    )                    𝑖𝑓 #𝑜𝑓  𝐸 ≥ ⌈
 6

3
×  𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉ 

(𝑑𝑒  𝑦 𝑏𝑒 𝑤𝑒𝑒    𝑜𝑐𝑒  𝑖 𝑔  𝑜𝑤 ) × (# 𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   )                                                                                                  

+ (𝑇𝑖 𝑒  𝑓 𝑒     𝑖          𝑒 𝑖   𝑖   𝑕𝑒   𝑕  𝑜𝑤 𝑜𝑓     𝑖          𝑖 𝑒)  𝑖𝑓 #𝑜𝑓  𝐸 < ⌈
 6

3
×  𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉

 

 {
5 × (𝐾   ) +                            𝑖𝑓 #𝑜𝑓  𝐸 ≥ ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉  𝑜  #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

5 × ((    𝑜𝑑 𝐾)   ) +      𝑜 𝑕𝑒 𝑤𝑖 𝑒                                                                                                                      

        (6) 

𝑇𝑜    𝐸 𝑒𝑐  𝑖𝑜   𝑖 𝑒 

 {
𝑇𝑖 𝑒 𝑏𝑒𝑓𝑜 𝑒       𝑜𝑤 𝑜𝑓           + 𝑇𝑖 𝑒  𝑜 𝑓𝑖 𝑖 𝑕       𝑜𝑤 𝑜𝑓                           𝑖𝑓 𝑒 𝑜 𝑔𝑕  𝐸 

(𝑇𝑖 𝑒  𝑜 𝑓𝑖 𝑖 𝑕 𝑜 𝑒  𝑜𝑤 𝑜𝑓    ) × (# 𝑜𝑓  𝑖𝑒𝑐𝑒 ) +𝑊𝑖 𝑑 𝑑𝑜𝑤   𝑖 𝑒 𝑜𝑓         𝑖 𝑒          𝑖𝑓  𝑖 𝑖 𝑒𝑑  𝐸 
 

 

{
 
 
 

 
 
  + 5 × (    ) + 6 ×                                          𝑖𝑓 #𝑜𝑓  𝐸 ≥ ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉                                                               

6 ×   × ⌈
  
𝐾
⌉ + 5 × (𝐾   ) +                             𝑖𝑓 #𝑜𝑓  𝐸 < ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉   𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒  𝐾

6 ×  × ⌈
  
𝐾
⌉ + 5 × ((    𝑜𝑑 𝐾)   ) +     𝑖𝑓 #𝑜𝑓  𝐸 < ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉   𝐻)⌉  𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒  𝐾

   (7) 

The time unit is the time required for deblocking a 4 pixel long boundary. The 

parallelism unit is a 4 pixel long boundary. 

4.1.2 16 pixel long boundary method 

In order to compare the 4 pixel long boundary method with the 16 pixel long 

boundary method, we modify the original equations. First, taking the number of PEs 

into consideration; and second, adjusting the parallelism and the time unit. Each 16 

pixel long boundary contains four 4 pixel long boundaries that can be deblocked in 

parallel. So assuming the computation power of all PEs are the same, we multiply the 

time by 1 and the parallelism by 4. The following equations show the modified 

equations for the 16 pixel long boundary method: 

   𝑖          𝑒 𝑖  ( ) 

= Maximum # of rows of MBs that can be deblocked in parallel 



 

35 

 

= Min (# of rows of MBs, # of parallel deblocked rows of MBs when limited by the width of frame, # of 

available PEs) 

 4 × 𝑖 ( 𝐻 ⌈
8

5
 𝑊⌉  # 𝑜𝑓  𝐸 )     (8)

 

𝑊𝑖 𝑑     𝑖 𝑒 

= Time to reach the row of maximum parallelism 

= (delay between processing rows) × (maximum parallelism - 1) 

= 5 × (   ) (9) 

𝑊𝑖 𝑑 𝑑𝑜𝑤   𝑖 𝑒 

 {
𝑇𝑖 𝑒  𝑓 𝑒  𝑓𝑖 𝑖 𝑕𝑖 𝑔  𝑕𝑒        𝑕  𝑜𝑤 𝑜𝑓    .              𝑖𝑓 𝑒 𝑜 𝑔𝑕  𝐸 
𝑇𝑖 𝑒  𝑓 𝑒  𝑓𝑖 𝑖 𝑕𝑖 𝑔      𝑜𝑤 𝑜𝑓     𝑖          𝑖 𝑒.     𝑖𝑓  𝑖 𝑖 𝑒𝑑  𝐸 

 

 {
(𝑑𝑒  𝑦 𝑏𝑒 𝑤𝑒𝑒    𝑜𝑐𝑒  𝑖 𝑔  𝑜𝑤 ) × (   𝑖          𝑒 𝑖    )      𝑖𝑓 #𝑜𝑓  𝐸 ≥  𝑖 ( 𝐻 ⌈

8

5
 𝑊⌉)

(𝑑𝑒  𝑦 𝑏𝑒 𝑤𝑒𝑒    𝑜𝑐𝑒  𝑖 𝑔  𝑜𝑤 ) × (# 𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   )     𝑖𝑓 #𝑜𝑓  𝐸 <  𝑖 ( 𝐻 ⌈
8

5
 𝑊⌉)

 

 {
5 × (   )                          𝑖𝑓 #𝑜𝑓  𝐸 ≥  𝑖 ( 𝐻 ⌈

8

5
 𝑊⌉) 𝑜  #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

5 × ((    𝑜𝑑  )   )     𝑜 𝑕𝑒 𝑤𝑖 𝑒                                                                                                      

    (  ) 

𝑇𝑜    𝐸 𝑒𝑐  𝑖𝑜   𝑖 𝑒 

 {
𝑇𝑖 𝑒 𝑏𝑒𝑓𝑜 𝑒       𝑜𝑤 𝑜𝑓           + 𝑇𝑖 𝑒  𝑜 𝑓𝑖 𝑖 𝑕       𝑜𝑤 𝑜𝑓                        𝑖𝑓 𝑒 𝑜 𝑔𝑕  𝐸 

(𝑇𝑖 𝑒  𝑜 𝑓𝑖 𝑖 𝑕 𝑜 𝑒  𝑜𝑤 𝑜𝑓    ) × (# 𝑜𝑓  𝑖𝑒𝑐𝑒 ) +𝑊𝑖 𝑑 𝑑𝑜𝑤   𝑖 𝑒 𝑜𝑓         𝑖 𝑒      𝑖𝑓  𝑖 𝑖 𝑒𝑑  𝐸 
 

 

{
 
 

 
 5 × (    ) + 8 ×                                        𝑖𝑓 #𝑜𝑓  𝐸 ≥  𝑖 ( 𝐻 ⌈

8

5
 𝑊⌉)                                                              

8 ×   × ⌈
  
 
⌉ + 5 × (   )                           𝑖𝑓 #𝑜𝑓  𝐸 <  𝑖 ( 𝐻 ⌈

8

5
 𝑊⌉)   𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

8 ×  × ⌈
  
 
⌉ + 5 × ((    𝑜𝑑  )   )     𝑖𝑓 #𝑜𝑓  𝐸 <  𝑖 ( 𝐻 ⌈

8

5
 𝑊⌉)   𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

    (  ) 

4.1.3 2D wave-front method 

In order to compare the 4 pixel long boundary method with the 2D wave-front 

method, we modify the original equations. First, taking the number of PEs into 

consideration; and second, adjusting the parallelism and the time unit. Deblocking one 

MB with the 2D wave-front method is done by deblocking eight 16 pixel long 

boundaries consecutively. Moreover, each 16 pixel long boundary contains four 4 

pixel long boundaries that can be deblocked in parallel. So assuming the computation 



 

36 

 

power of all PEs are the same, we multiply the time by 8 and the parallelism by 4. The 

following equations show the modified equations for the 2D wave-front method: 

   𝑖          𝑒 𝑖  ( )  4 × 𝑖 (   ⌈
 

 
  ⌉  # 𝑜𝑓  𝐸 )    (  )

 

𝑊𝑖 𝑑     𝑖 𝑒   8 ×  × (   )     ( 3) 

𝑊𝑖 𝑑 𝑑𝑜𝑤   𝑖 𝑒 

 {
8 ×  × (   )                          𝑖𝑓 #𝑜𝑓  𝐸 ≥  𝑖 ( 𝐻 ⌈

 

 
 𝑊⌉) 𝑜  #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

8 ×  × ((    𝑜𝑑  )   )     𝑜 𝑕𝑒 𝑤𝑖 𝑒                                                                                                       

    ( 4)

 

𝑇𝑜    𝐸 𝑒𝑐  𝑖𝑜    𝑖 𝑒 

 

{
 
 
 

 
 
 8 ×  × (    ) + 8 ×                                         𝑖𝑓 #𝑜𝑓  𝐸 ≥  𝑖 ( 𝐻 ⌈

 

 
 𝑊⌉)                                                               

8 ×   × ⌈
  
 
⌉ + 8 ×  × (   )                           𝑖𝑓 #𝑜𝑓  𝐸 <  𝑖 ( 𝐻 ⌈

 

 
 𝑊⌉)  𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

8 ×  × ⌈
  
 
⌉ + 8 ×  × ((    𝑜𝑑  )   )     𝑖𝑓 #𝑜𝑓  𝐸 <  𝑖 ( 𝐻 ⌈

 

 
 𝑊⌉)   𝑑 #𝑜𝑓  𝑜𝑤  𝑖          𝑖 𝑒   

    ( 5) 

4.2 Overlapping benefit 

In Figure 4-1, we can find overlapping is beneficial for all methods. Overlapping 

is actually more useful for the 2D wave-front method because it has a longer wind up 

and wind down time. In following, we will compare these three methods using the 

results with overlapping. 
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Figure 4-1 Overlapping benefit for proposed methods and 2D wave-front method. 

4.3 Comparing different granularities 

Figure 4-2 shows that for all the 2D wave-front method and two proposed 

methods, the greater the number of PEs, the greater the benefit to the time to deblock 

a frame. However, our proposed method gains more benefit than the 2D wave-front 

method which comes from the shorter wind up and wind down time requirement, 

especially for the vertically shaped frame. 

 

Figure 4-2 Proposed methods compared with the 2D wave-front method in time 

for deblocking and number of PEs when frame size is (a)1920×1080 (b)1080×1920. 

Moreover, we find the total execution time curves have a step-like pattern. This 

characteristic comes from the splitting of frames. When the number of PEs passes a 

threshold in which the number of PEs can divide evenly into the total number of MB 

rows, the total execution time is greatly reduced, thus forming the curves.  

While the speedup of the 2D wave-front method stops at 240 PEs for the 

horizontal shaped frame, and 136 PEs for the vertically one, the speedup of our 

proposed methods keeps improving until 272 PEs in 16 pixel long boundary method 
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and 363 PEs in 4 pixel long boundary method for the vertically shaped frame; 436 

PEs in 16 pixel long boundary method and 438 PEs in 4 pixel long boundary method 

for the horizontal case. 

Considering limited amount of PEs, we find the 16 pixel long boundary method is 

better than the 2D wave-front method for any number of PEs. The 4 pixel long 

boundary method is better than the 16 pixel long boundary even the parallelism is 

similar, because of short wind up/wind down time in the 4 pixel long boundary 

method. However in some cases the 16 pixel long boundary method is better than the 

4 pixel long boundary, most cases in the 4 pixel long boundary method is better than 

both the 16 pixel long boundary method and 2D wave-front method. 

As mentioned above, in some cases the 16 pixel long boundary method and 2D 

wave-front method sometimes get better time reduction. We use an example to 

explain. Figure 4-3 compares the 2D wave-front method and the 4 pixel long 

boundary method with deblocking overlapping for a 1920*1080 sized frame using 70 

PEs. This example explains when the 4 pixel long boundary method will get higher 

maximum degree of parallelism but fail in getting better time reduction. When a 

frame is divided into stripes, the last stripe of the frame might be small, but still takes 

long delay to deal with. This delay could be covered when more than 74 PEs 

available. 
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Figure 4-3 4 pixel long boundary method compared with the 2D wave-front 

method in degree of parallelism and time for deblocking when frame sizes are 1920×

1080 and using 70 PEs. 

With enough PEs, Figure 4-4 shows the comparison of the proposed designs and 

the 2D wave-front method for both (a) horizontally shaped and (b) vertically shaped 

frames. 

 

Figure 4-4 Proposed methods compared with the 2D wave-front method in 

idealize degree of parallelism and time for deblocking when frame sizes are (a) 1920×

1080 and (b) 1080×1920. 

Table 4-1 shows the speedup for total execution time and Table 4-2 shows the 

slope of idealize parallelism in wind up time for each design. 

Table 4-1 Speedup for total execution time. 
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speedup 1920×1080 1080×1920 

16 : 2D 1.57 2.15 

4 : 2D 1.92 2.44 

4 : 16 1.22 1.13 

Table 4-2 Increasing slope of parallelism in wind up. 

Method  Slope of parallelism in 

wind up time 

4 pixel long boundary 1.08 

16 pixel long boundary 0.81 

2D wave-front 0.25 

Last but not least, when considering if our design is complementary with the 3D 

wave-front method as the 2D wave-front is, the answer is yes. Due to the deblocking 

filter having no inter-frame data dependencies, our approach is definitely 

complementary with the 3D wave-front method. 



 

41 

 

Chapter 5 Hardware Architectural 

Requirements 

In order to deblock a video frame in the proposed order, some hardware support 

may be necessary.  In this Chapter, we list some major hardware requirements such 

as dedicated buses between PEs, data loop-backs, and internal buffers. Any hardware 

that fulfills these requirements should be capable of gaining the benefits from 

proposed order. 

5.1 16 pixel long boundary 

Based on the PEs assignment mentioned above, followings are the requirements of 

the hardware design: 

 As mentioned in case 1 and 2 of Chapter 3.1, 16 pixel long boundaries a row 

of MBs are required to be deblocked in sequential order, so we can assign 

one PE for each row of MBs. While deblocking a row of MBs, some 

intermediate pixel values should be looped back to the PE itself or be kept in 

internal buffers for further use later. 

 As mentioned in case 3 of Chapter 3, we know that the deblocking of every 

MBb5 requires the pixel values that come from its Upper and Upper-right MB. 

Since we assign a PE to the deblocking of a row of MBs, we need a dedicated 

bus for data bypassing between PEs dealing with adjacent rows of MBs. This 

bus can be unidirectional from the upper PE to its adjacent lower PE. 

A schematic of the hardware architectural requirements is shown in Figure 5-1. 

The Input Buffer stores pixels that are not yet deblocked, the Output Buffer stores 
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pixels that have been deblocked, and the Internal Buffer stores pixels whose value is 

needed later. Moreover, PEs will use a shared bus to access memory. If the share bus 

bandwidth satisfied, the Input Buffer size and Output Buffer size are 1 MB size, and 

the Internal Buffer size is 1/4 MB size for one PE. 

 

Figure 5-1 Schematic of hardware architectural requirements. 

5.2 4 pixel long boundary 

As mentioned in Figure 3-30 of Chapter 3.2, it provides totally 16 4 pixel long 

Input 
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boundaries that can be deblocked in parallel every 3 rows of MBs. As a result, we can 

group 3 rows of MBs and assign 16 PEs for each group. We proposed a PEs 

assignment as shown in Figure 5-2(b), it shows all 4 pixel long boundaries in group be 

processed by 16 PEs. For examples, PE1 process each MB’s b1, b5, b17, b18, b20, b24 in 

MB R1; PE6 process each MB’s b8, b29 in MB R1 and each MB’s b1, b12, b17, b18 in 

MB R2. In other words, the same PE processes the same boundaries in each MB of 

same MB row. 

 

Figure 5-2 (a) ID assignment in a MB. (b) PEs assignment for 3 MB rows. 

Based on the PEs assignment mentioned above, followings are the requirements of 

the hardware design: 

1. While deblocking a 4 pixel long boundary, some intermediate pixel values 

should be looped back to the PE itself or be kept in internal buffers for further use 

later. 
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b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

16

16

MB R1
MB R2
MB R3

(a) (b)

PE1:   R1-b1  , R1-b5  , R1-b17, R1-b18, R1-b20, R1-b24

PE2:   R1-b2  , R1-b9  , R1-b13, R1-b19, R1-b23, R1-b28

PE3:   R1-b6  , R1-b16, R1-b21, R1-b22, R1-b25, R1-b32

PE4:   R1-b3  , R1-b10, R1-b14, R1-b15, R1-b27, R1-b31

PE5:   R1-b4  , R1-b7  , R1-b11, R1-b12, R1-b26, R1-b30

PE6:   R1-b8  , R1-b29, R2-b1  , R2-b12,  R2-b17, R2-b18

PE7:   R2-b5  , R2-b9  , R2-b13, R2-b20, R2-b24, R2-b28

PE8:   R2-b2  , R2-b6  , R2-b16, R2-b21, R2-b22, R2-b25

PE9:   R2-b3  , R2-b10, R2-b19, R2-b23, R2-b26, R2-b32

PE10: R2-b4  , R2-b7  , R2-b14, R2-b15, R2-b29, R2-b31

PE11: R2-b8  , R2-b11, R2-b27, R2-b30, R3-b11, R3-b18

PE12: R3-b2 , R3-b17, R3-b20, R3-b21, R3-b24, R3-b28

PE13: R3-b5  , R3-b9 , R3-b13, R3-b22, R3-b23, R3-b27

PE14: R3-b6  , R3-b10, R3-b14, R3-b15, R3-b26, R3-b32

PE15: R3-b3  , R3-b7  , R3-b19, R3-b25, R3-b29, R3-b30

PE16: R3-b4  , R3-b8  , R3-b11, R3-b12, R3-b16, R3-b31

PE Assignment (not Exec. Order)
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2. We know one PE deblocking of a 4 pixel long boundary requires the pixel 

values that maybe come from five sources: 

i. Its two results previous stage. 

ii. Bypassing from others two PEs results previous stage. 

iii. First deblocking pixel values that come from the memory. 

3. While one PE deblocking of a 4 pixel long boundary, its outputs maybe transfer 

to other objectives: 

i. Transfer to the output buffer. 

ii. Transfer to other PEs. 

A schematic of the hardware architectural requirements for one PE is shown in 

Figure 5-3. The Buffer stores pixels whose value is needed later, the Output Buffer 

stores pixels that have been deblocked. The Buffer size is 2 4×4 blocks, and the 

Output Buffer size is 2 4×4 blocks for one PE. 

 

Figure 5-3 Schematic of hardware architectural requirements for one PE. 

According to the PEs assignment in Figure 5-2(b), the connection of PEs as shown 

in Figure 5-4.  
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Figure 5-4 The connection of PEs. 

5.3 Timing model 

In order to find out the overhead of different granularity, we separate the time that 

process one deblocking operation to time for read, time for filer, and time for write. 

According to the hardware as mention above, the sources of read and write are 

memory, others PEs, and self PE. Assuming an address can load 16 pixels, the time 

latency of 3 sources is memory: others PEs: self PE = x: y: z. Due to we don’t find the 

time latency of 3 sources ratio, we assume y = x/1000 and the time latency of self PE 

is 0. We use CACTI[9] to estimate the time latency of memory is 1.63ns, and model 

the time latency of read data and write data in Table 5-1. 

Table 5-1 Time for read data and write data. 

PE1 PE2

PE4 PE3

PE5 PE6

PE8 PE7

PE9 PE10

PE12 PE11

PE13 PE14

PE16 PE15

NPE1 NPE2
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Memory Others PEs Self PE 

1.63(ns) 0.013(ns) 0(ns) 

According to Ref[8], we can know time for filer is 10ns. We assume one stage 

compose of read data, filter, and write data. The time of one stage is 13.26ns that is 

sum up maximum time for read, maximum time for filter, and maximum time for 

write. The timing model can find the time for process one frame size is 1920×1080 as 

shown in Table 5-2. The Pt is the maximum parallelism at time t in Table 5-2. 

Table 5-2 Time for deblocking a 1920×1080 frame. 

Granularity Time 

2D-wavefront(MB) ∑(  ×  3. 6)

  3 

   

 

Boundary16 ∑(  ×  3. 6)

   5

   

 

Boundary4 ∑(  ×  3. 6)

  57

   

 

After timing model, the speedup of different granularity is the same as Table 4-1. 

But the speedup of original sequential deblocking is different. We use Boundary4 to 

process one QCIF(176×144) need 108 stages. In Ref[10] can know sequential 

deblocking one MB need 530 cycles, so average cycles for process one 4 pixel long 

boundary is 17. In Ref[10] sequential process one QCIF frame need 51930 cycles, the 
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Table 5-3 can find the ideal speedup and actual speedup is different. 

Table 5-3 Speedup for idealize and actually. 

 idealize actually 

speedup 99 × 3 

  8
  9.33 

5 93 

  8 ×  7
  8. 8 

The difference is come from the Boundary strength (BS) value, BS value range 

from 0 to 4. Each boundary have a BS value, boundary unneeded deblocking if BS 

value is 0, boundary needed deblocking if BS value is 1~4. In sequential processing, 

process next boundary if current boundary’s BS value equal to 0. But in our design, 

the time of stage is fixed, it must wait if current boundary’s BS value equal to 0.
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Chapter 6 Conclusion 

As shown in our proposed order, examining the deblocking algorithm at a finer 

granularity did bring additional opportunities for exploiting parallelism, and thus 

speed up the execution time of the deblocking filter. 4 pixel long boundary method 

compared with the 2D wave-front method order in deblocking both 1920*1080 and 

1080*1920 pixel sized frames, we gain a speedup of 1.92 and 2.44 times given an 

un-limited number of PEs respectively. For an environment with limited hardware 

resources, we also provide an algorithm able to fully utilize available resources for the 

deblocking filter. 

Considering the trend of digital video codecs, larger frame sizes and reduced 

coded video size are both essential. In order to achieve this goal, the deblocking filter 

plays an important role because dealing with larger frames takes time proportional to 

the frame size. The proposed design can limit the growth in time spent deblocking by 

the maximum of the frame width and height, which are often proportional to the 

square root of the frame size. Thus it brings the opportunity for practical real-time 

deblocking of larger sized videos in the future. 

The proposed approach in this paper is just the first step of parallelizing H.264 

video decoding in a finer way. In order to exploit overall parallelism, decoding stages 

including intra decoding and motion compensation are all required to consider the 

parallel order of their operations. However, we are able to further analyze the 

algorithms of these stages to see if there are any opportunities for using a similar 

approach to that in this paper.



 

49 

 

References 

[1] List. P. Joch, A., Lainema., J., Bjontegaard. G., Karczewicz. M.,  "Adaptive 

deblocking filter," Circuits and Systems for Video Technology, IEEE Transactions 

on , vol.13, no.7, pp.614-619, July 2003 

[2] E. Van der Tol, E. Jasper, R.H. Gelderblom, “Mapping of H.264 Decoding on a 

Multiprocessor Architecture” Proceeding of SPIE Conference on Image and Video 

Communications 2003, p.p.707-709 

[3] Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Ramirez, A.: Parallel 

Scalability of H.264. In: Proc. First Workshop on Programmability Issues for 

Multi-Core Computers (January 2008) 

[4] Zhuo Zhao, Ping Liang, "Data partition for wavefront parallelization of H.264 

video encoder," Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE 

International Symposium on , vol., no., pp.4 pp.-2672, 0-0 0 

[5] Final Draft International Standard of Joint Video Specification (ITU-T Rec. 

H.264/ISO/IEC 14496-10 AVC), Mar. 2003. 

[6] Ke Xu, Chiu-Sing Choy, "A Five-Stage Pipeline, 204 Cycles/MB, Single-Port 

SRAM-Based Deblocking Filter for H.264/AVC," Circuits and Systems for Video 

Technology, IEEE Transactions on , vol.18, no.3, pp.363-374, March 2008 

[7] Yun-Shuo Chang, "Improvements of H.264 De-blocking filter and DST 

Implementation of H.264 Decoder," A Thesis Submitted to Institute of Electrical 

Engineering National Yunlin University of Science & Technology in Partial 

Fulfillment of the Requirements for the Degree of Master of Science in Electrical 

Engineering, July 2007. 

[8] T.M. Liu, W. P. Lee, T.A. Lin, and C. Y. Lee, “A memory-efficient deblocking 

filter for H.264/AVC video coding,” in Proc. IEEE Int. Symp. Circuits Syst., May 

2005, vol. 3, pp. 2140-2143. 

[9] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.3”, 

Technical Report. HPL-2008-20. 2008. 

[10] Eric Gerard Ernst, “Architecture Design of a Scalable Adaptive Deblocking 

Filter for H.264/AVC,” A Thesis Submitted in Partial Fulfillment of the 

Requirements for the Degree of Master of Science in Computer Engineering, July 

2007. 

  



 

50 

 

Appendix 

Q&A 

1. 下圖橫軸為何是時間? 

  

A1: 

這個時間單位的時間長度為一個 stage 的時間長度，橫軸代表的是

計算所需實際的 time unit 數，而不是直接執行所得到的時間。我們每一

個 time unit 的長度為處理一個 MB 所需最長的時間。這裡使用時間是

想表達隨著時間平行度的變化。 

 

2. 為什麼粒度越小平行度越高，現象從何而來?粒度不一樣的差異在

哪? 

A2: 

 

 根據上圖，粒度越小平行度越高，而改變粒度其實是改變判斷

dependency 的最小單位，原本被綁在一起的 boundaries 被打散了之後，

部分實際上無 dependency 的 boundaries 就可能提早執行。所以粒度越

小有機會讓部分 boundaries 提早的執行，也就可以讓一開始的平行度爬

升較快。 

 

3. HW requirement 為何 PE 間要有 connection，因為已經有 share bus

了？ 

A3: 
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 同時需要傳的資料量很多，且 PEs 是緊鄰的，所以 PEs 間的

connection cost 是低的，故 PEs 之間用 connection 傳遞是適合的。 

 

4. 因為 PE 有 buffer 所以應該也要加 buffer size 要假設上去? 

A4: 

 16: 若 share bus 可滿足所需傳遞的資料量，則 input buffer 的 size

為 1 MB，output buffer 的 size 為 1 MB，internal buffer 的 size 為 1/4 MB。 

 4: input buffer 的 size 為 2 4×4 blocks，output buffer 的 size 為 2 4×4 

blocks，internal buffer 的 size 為 4×4 block。 

 

5. 如何證明我的 order 是最好的? 

A5: 

 以本論文主要目標為提高計算平行度以降低執行時間而言，在 PE

數量可滿足最大平行度時，由於所提出的 order 已滿足 critical path 最

短需求，而針對其他不在 critical path 上的 boundaries 的 order，若無硬

體上的限制，則無所謂最好的 order。 

 而當 PE 數量無法滿足最大平行度時，依本論文提出的方法會將

frame 切割成多個 stripes 依序處理。在此種情形下，我們希望在所擁有

的 PE 數量下能盡量處理越大的 stripe，而 stripe 是由多個 MB row 所組

成的。為了充分利用到所擁有的 PEs，我們所提出的 order 就是根據每

多處理一個 MB row 所需要的 PE 數量是理論上最小的。固我們的 order

在此兩個條件下是最好的 order。 

 

6. 為什麼只考慮單張 frame 不去考慮 frame 之間的平行度? 

A6: 

 Deblocking 在 frame 與 frame 之間完全沒有 data dependency，且[3]

已完成 frame 間平行處理的設計，所以我們只需專注在單張 frame 內的

平行就可以與之搭配。 

 符合[3]所需要的條件： 

1: 對於 frame 內的平行方式為 wave-front。 

2: frame 的 wind down 與下一張 frame 的 wind up 沒有 data 

dependency。 

 我們所提出的方法滿足上述條件，固可以與之搭配。 

7. 時間單位是以每一個 boundary 所需處理時間都是一樣的，但在事

實上不會是這樣的處理情形，這樣會不會產生新的問題? 

A7: 

 Filter 一個 boundary 的時間會根據 boundary strength(BS)值而有所

不同，若BS值為0則此boundary不需 filter，若BS值為1~4則需要 filter。
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根據我們所提出來的 order，在同一個 stage 可以一起處理的 boundaries

的 BS 值都是 0 的機率很低的，所以在這邊我們時間單位是取處理一個

MB 所需最長的時間，以 fully synchronize 方式去處理。 

 

8. 為什麼 4 pixel long boundary order 可以直接對應到 1 pixel long 

boundary order，而這個現象不會直接出現在 16 跟 4 之間? 

A8: 

 因為 16 pixel long boundaries 之間有互相交錯，所以以更細粒度去

分析data dependency有機會讓部分可以先處理的boundaries提早處理，

而 4 pixel long boundaries 之間沒有互相交錯，所以在以更細的粒度去分

析 data dependency 不會有差別，以致於可以直接對應到 1 pixel long 

boundary。 

9. 找出一個規則來決定適合的粒度? 

A9: 

 

 

本論文的目的是希望盡量降低執行時間，故在選擇適合的粒度可根

據上圖，依目前 PE 數量，選擇執行時間最短的粒度。 

 

10. 越細的粒度會衍生一些什麼 overhead?應該會在粒度以及

overhead 有 trade off?應該如何找到一個粒度所能達到的平行度

是高的且可以 fully utilize 在 multi-core 上以及 overhead 是小

的 

A10: 

根據上述問題，我們嘗詴將 deblocking 的時間提出適合的數學

model，並去觀察不同粒度所會造成的 overhead。而 model 後的結果，

在不同粒度間 speedup 的比較等同於 Chapter 4 的結果。 

然而，根據我們的 model 仍然可以發現我們平行化方法與傳統循序
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執行方法相比，在 idealize speedup 與 actual speedup 上會有所不同。(其

詳細內容已加入到 5.3) 

 


