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Exploiting Parallelism in the H.264 Deblocking Filter by

Operation Reordering

Student : Yi-Ting Wang Advisor : Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

In the H.264 video compression standard, the deblocking filter contributes about
one-third of all computation in the decoder. With multi-processor architectures
becoming the future trend of system design, computation time reduction can be
achieved if the deblocking filter-well apportions its operations to multiple processing
elements. In this paper, we apply a 16 pixel long boundary, the basic unit for
deblocking in the H.264 standard and a 4 pixel long boundary as the basis for
analyzing and exploiting possible parallelism in deblocking filtering. Moreover, a
possible compromise to fully utilize limited hardware resources and hardware
architectural requirements for deblocking-are also proposed in this paper. Compared
with the 2D wave-front method order for deblocking both 1920*1080 and 1080*1920
pixel sized frames, the 16 pixel long boundary method gains speedups of 1.57 and
2.15 times given an un-limited number of processing elements respectively, and the 4
pixel long boundary method gains speedups of 1.92 and 2.44 times given an
un-limited number of processing elements respectively. Using this approach, the
execution time of the deblocking filter is proportional to the square root of the growth
of the frame size (keeping the same width/height ratio), pushing the boundary of

practical real-time deblocking of increasingly larger video sizes.
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Chapter 1 Introduction

The H.264 standard provides acceptable image quality combined with a reduction
in bit-rate compared with existing video compression standards. Besides this, it can
also provide higher adaptability and better error resilience for a wider range of
applications. With regards to the compression rate, the bit rate of H.264 is almost 50%
lower than that of the MPEG-2, H.263v2 and MPEG-4 Advanced Simple Profile

video compression standards for the same picture quality [7].

Deblocking is intended to smooth block-edge artifacts caused by the decoding
process and enhance picture quality. In the encoding process, the H.264 encoder uses
the macroblock (MB, 16x16 pixel-square) as the basic coding unit. Quantization of
the macroblocks causes visual discontinuities between the edges of decoded
macroblocks. Pixels located on macroblock boundaries with a similar value may for
the above reason be decoded with a larger difference in values, resulting in a decline
in picture quality. Therefore, the purpose of deblocking is to smooth block artifacts
caused by the decoding process. to enhance picture quality. Another advantage of
deblocking is to increase coding efficiency. Decoded and deblocked images will be
referenced later, and because the picture is of higher quality, there will be a reduction

in the encoded bit rate.

Deblocking filtering accounts for one-third of all computation in the decoder [1].
With multi-core becoming the trend, if deblocking can be processed using a
multi-core parallel processing architecture, the processing can be distributed to
different computing processing elements (PEs) to address and reduce execution time.

Currently parallel processing of deblocking focuses on parallelization at the MB-level.



We find that parallelizing deblocking at a finer granularity can be developed

according to our presented design.

We analyze the deblocking order to obtain the dependency between the various
boundaries, and then propose an execution order, with execution of deblocking in this

order giving higher parallelism.

The rest of this paper is organized as follows. In chapter 2, we would introduce the
background of the deblocking filter and related work for deblocking filter
parallelization. In chapter 3, we wouldshow our parallelized design. Chapter 4 would
analyze the proposed method and compares it with related works. Chapter 5 would
shows our proposed hardware architectural requirements. Finally, the conclusion is

given along with further work.



Chapter 2 Background and Related work

2.1 Background

The deblocking filter is used in order to smooth block-edge artifacts. Figure 2-1(b)
shows a block-edge artifact caused by a large difference in pixel values. The pixels
P0O~P3 and Q0~Q3 in Figure 2-1(b) can be located either vertically or horizon-tally as
shown in Figure 2-1(a)[6]. A deblocking filter is applied on the PO~P3 and Q0~Q3
pixel values to make these eight values visually smooth. The pixel value distribution

after applying the deblocking filter is shown in Figure 2-1(c).
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Figure 2-1 (a) Affected pixels in deblocking [6] (b) The pixel values before
deblocking filtering; the PO~P3 and Q0~Q3 pixel value gap causes a visual

discontinuity. (c) After deblocking filtering; the pixel values are now smooth.

Deblocking is needed for both MB boundaries and 4*4 block boundaries. As the
MB is the basic coding unit in H.264, block-edge artifacts occur easily at MB

boundaries. In addition, there are some coding modes using 4*4 blocks for inter
3



prediction and intra prediction. For these cases deblocking is needed to smooth the

block-edge artifacts.

The MB deblocking internal (intra MB) execution order as defined by the H.264
standard is shown in Figure 2-2(a). Execution starts by deblocking a column of pixels
moving horizontally left to right, and then a row of pixels moving vertically top to
bottom. The inter MB execution order is shown in Figure 2-2(b), and moves from left

to right, top to bottom.

> (S > 116
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8
1 A,
(@) (b)

Figure 2-2 (@) Intra MB order. (b) Inter MB order.

Although the H.264 standard defines the deblocking order as shown above, as
long as the final decoding results in the correct output, the above order can be
changed. Changing the order in which the calculation is performed is an opportunity
for parallelizing deblocking filtering. We propose a conceptual design to improve the

parallelizability of the deblocking filter.

2.2 Related Work

The 2D wave-front method is based on using the MB as a unit for parallelization
[2]. In Figure 2-3(a), according to the deblocking order, we find the current MB has a

data dependency on the Upper, Upper-Right and Left MBs. So when using a MB as



the parallelization unit, the Upper, Upper-Right and Left MB must be deblocked
before the Current MB. In Figure 2-3(b), MBs that can be processed simultaneously

are numbered together.

112]|13|4]|5]6 116

U’\;;I[I);r L:g:ﬁr |16 3 4 5 6 . 8
| MB

v/ 9 |10

Left Current

MB—> MB

11 ] 12

(a) (b)

Figure 2-3  (a) Data dependencies in inter MB deblocking. (b) MBs that can be

processed simultaneously.

According to this observation, this method does not have a fixed degree of
parallelism. The degree of parallelism initially steadily increases. Some wind up time
is needed before reaching maximum parallelism. After maintaining maximum
parallelism for some time, the degree of parallelism will begin to steadily decrease. In
Figure 2-4, the units of time are in.terms _of.the time to deblock one MB, and the

frame size is 1920*1080.

The 2D wave-front method’s maximum parallelism and required wind up time and

wind down time can be expressed by the equations:

Maximum parallelism (P) = Min (E MW] , MH) (1)

Build up time and Degrading time =2+ (P —1) (2)

My: # of columns of MBs in frame.
My: # of rows of MBs in frame.
Where the wind up and wind down time are in units of time required for deblocking a

MB.



In theory, for this method the maximum parallelism should be equal to the total
number of MBs in a column which is 68 in the above example, but from Figure 2-4
the maximum parallelism is 60, which is less. The reason for this is the frame aspect
ratio. The first row of MBs has finished being processed, yet the last row of MBs has
not yet begun to be processed, resulting in the degree of parallelization unable to

reach the theoretical maximum.
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o
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Figure 2-4  The idealize computation execution time and parallelism relationship.
The vertical axis is the number of MBs processed. in parallel, the horizontal axis is

time. The time unit here is time required for deblocking a MB.

The 3D wave-front method [3]-is based on-the 2D wave-front method, but also
uses inter frame parallelism, meaning more MBs can be processed in parallel. This
method can significantly enhance the parallelism. In Figure 2-5 [4], the dark gray

MBs can be processed in parallel.

The 3D wave-front method is used with the 2D wave-front method. The 2D
wave-front method is used for intra frame parallelization, while the 3D wave-front
method is used for inter frame parallelization. The 2D wave-front method parallelizes
at the MB-level, which is larger than the basic deblocking unit in the H.264 standard.

Can deblocking at a finer granularity increase the amount of parallelism, and still be



combined with the 3D wave-front method to further increase the parallelism? We will

explain this in the following sections.

0,.0
6,

D MBs processed
B MBs in flight
D MBs to be processed

] 116

Figure2-5  The dark gray MBs can be processed in parallel[3].



Chapter 3 Algorithm

3.1 16 Pixel Long Boundary Method

Analyzing applications at a finer granularity usually opens extra opportunities for
parallelization. In H.264, the standard defines the order for deblocking using a 16
pixel long boundary as its basic unit. As a result, in this section we analyze the data
dependencies within the deblocking filter, and then propose our deblocking order and
design. When deblocking a 16 pixel long boundary, in total it will affect eight 4x4
blocks adjacent to the boundary. Figure 3-1(a) shows the affected blocks when we
deblock a vertical 16 pixel long-boundary, and Figure 3-1(b) shows the case for a

horizontal boundary.

b5 R b5 A
b6 b6
b7 16 b7 16
b8 b8
bl b2 b3 bA bl b2 b3 b4
(a) (b)

Figure 3-1 Gray blocks are the affected 4x4 blocks when deblocking a (a) vertical

and (b) horizontal 16 pixel long boundary
We separate the data dependencies when using a 16 pixel long boundary for
deblocking into 3 cases:
Case 1: Intra MB 16 pixel long boundary data dependencies.

In Figure 3-2(a), the result after deblocking MBy; (boundary b1l) is input into the

deblocking filter for MBy,, with that result then becoming the input into the
8



deblocking filter for MBy3 and so on. Through this analysis the data dependency chain
IS MBp;®MByp,»MBpz=>MByps and MBps=>MBps=MBp;=MByg. Moreover, the
deblocking result of MBy, is input to MBys, so the data dependency chain for intra
MB deblocking is MBp;=MBy;= MBy3= MBps= MBps=> MBpe=>MBL;=>MBypg  as

shown in Figure 3-2(b).

b1 b2 B3 b4

b7 16 16

(a) (b)

Figure 3-2  “(a) Intra MB deblocking execution order, the gray blocks are data
dependencies from boundary 4 to boundary 5. (b) The data dependency chain for intra

MB deblocking.
Case 2: Same row inter-MB. 16 pixel long boundary data dependencies.

In Figure 3-3, part of the deblocking result of Current MByg (the gray blocks) is
the deblocking input to Right MBgs, SO Right MBy; depends on Current MBpg. In
other words, Right MBp; can begin execution after the Current MByg has completed
execution. This shows that using 16 pixel long boundaries, MBs within the same row

cannot be deblocked at the same time.

16
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Figure 3-3 The deblocking data dependency chain for MBs in the same row.
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Case 3: Adjacent row inter-MB 16 pixel long boundary data dependencies.

In Figure 3-4, the deblocking input of Current MBys needs 4 4x4 blocks from
Upper MB (gray blocks). According to Case 2, we find that the dark gray block is the
last to be modified. The dark gray block is modified by deblocking Upper-right MBy;
after which it is able to become the deblocking input to Current MBys. Therefore,
Current MBys depends on Upper-right MBy;, with the data dependency chain shown

as a black arrow in Figure 3-4.

[ _l|<*'~--r - _II<+~-J T 4
LT AT
:r r' 7 :r L
MB Row, ,-’// T 16
V2 s v
f
_____‘ .E"___
L ,::_5'::=>
T
i
A4
MB ROWX+1 :r
Y

Figure 3-4  The data dependency chain between adjacent rows of MBs.

According to the above 3 cases, we propose a new execution order. This order
fulfills the required data dependencies whilst providing an extra degree of deblocking
parallelism. The time that deblocking is performed on each 16 pixel long boundary is
shown in Figure 3-5. If the time of execution for deblocking Current MBy; is t, by the
above Case 2 the execution time of Right MBy,; is t+9, by Case 3 the execution time

of Lower MBys is also t+9, and by Case 1 the execution time of Lower MBy; is t+5.

If the time of execution of Current MBy; is t, it shows in Figure 3-6 the execution
time of Lower MBy, is t+5 in 16 pixel long boundary method order, and the execution

time of Lower MBy; is t+16 in the 2D wave-front method.

10
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Figure 3-5  Proposed execution order.
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Figure 3-6  Timing difference of the 16 pixel long boundary method order and the

2D wave-front method order.

According to Case 2 mentioned above, when deblocking on 16 pixel long
boundaries within the same MB row, MBs cannot be deblocked at the same time. As a
result, we can assign one PE to each row of MBs. Due to the relationship between the
number of PEs and the aspect of the frame to be deblocked, there are two cases that

can occur:

11



Case I: Degree of parallelism depends on frame aspect

Assuming there are more PEs than needed, the degree of parallelism will be
limited only by the frame aspect. While processing 16 pixels horizontally (the width
of one MB) takes 8 stages, processing 16 pixels vertically takes only 5 stages in the
proposed order. As a result, deblocking of the first row of MBs will finish before
starting the last row of MBs, if the number of rows of MBs is less than (8/5) x the
number of columns of MBs in a frame. We categorize the effects of frame aspect ratio

into the following two situations:

i. # rows of MBs in frame <8/5 * # columns.of MBs in frame (Degree of parallelism
limited by # rows of MBS in frame)

In this situation, the maximum parallelism is equal to the number of rows of MBs
in the frame. Our method has-a-wind up and wind down time similar to the 2D
wave-front method. A diagram is shown in Figure 3-7 to help explain. The upper-left
gray region is the starting up of the deblocking filter, and the lower-right gray region
is the finishing of the deblocking filter. In these regions, the deblocking filter is not
able to reach maximum parallelism. The white region is where the deblocking filter is
able to reach maximum parallelism. The degree of parallelism and timing relationship

diagram is shown in Figure 3-8.

( 7 16
wind up / Y/
/ £
/ L

A //
/ / wind down
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\.

Figure 3-7 Zones of wind up and wind down of deblocking order.
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Ideal case computation parallelism

N
g M,: # of rows of MBs in frame
2 v
T M
= | |
9 | |
& | |
a

wind udl wind down
1 N

Time unit

Figure 3-8  The idealize computation execution time and degree of parallelism
relationship diagram. The time unit is the time required for deblocking a 16 pixel long

boundary.

ii. # rows of MBs in frame > 8/5 * # columns of MBs in frame (Degree of parallelism
limited by # columns of MBs in frame)

In this situation shown in Figure 3-9(a), the degree of parallelism is equal to the
number of rows of MBs that can start their deblocking before the deblocking has
completed for the first row of MBs. As explained in the beginning of case I, if the
ratio of the height to width is larger than 8/5, the degree of parallelism will be limited
by the frame width. The degree of parallelism and timing relationship diagram is

shown in Figure 3-9(b).

13



My

/—)%
wind up
Degree of 8
parallelism [EMWI
(row of MB)
Ideal case computation parallelism
Degree of parallelism
8
[SMW]A|/ M,y: # of columns of MBs in frame
R ,X Time unit
8 Owind up wind down
5o
5 The time unit is the time required for
wind down deblocking a 16 pixel long boundary

(a) (b)

Figure 3-9 (&) The degree of parallelism is limited when the frame height is larger
than 8/5 times of the frame width. (b) The idealize computation execution time and
degree of parallelism relationship diagram.

Case II: # of PEs not enough for maximum parallelism.

In this case, the frame has to be split into multiple stripes for deblocking. Here we

first show a naive approach, and then propose an improved one.

Naive approach: In Figure 3-10, assume the number of PEs is K, and then divide
the frame into stripes where each stripe contains K rows of MBs. The execution order
of the stripes is from top to bottom. We find that each stripe has a wind up and wind
down time, meaning PEs remaining idle often occurs. The degree of parallelism and

timing diagram is shown in Figure 3-11.

Improved approach: In the naive approach, PEs are frequently idle between the
deblocking of stripes as shown in Figure 3-12(a). But after analyzing the details, we

find that the execution of the wind down of stripe x and the wind up of stripe x+1 can
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be overlapped to fully utilize the PEs. They are able to be overlapped because there
are no direct data dependencies between the wind down of stripe x and the wind up of
stripe x+1. Therefore the wind up of stripe x+1 can begin execution earlier as shown
in Figure 3-12(b). The first row of MBs of stripe x will finish deblocking first after
which a PE will become idle, so that PE is then assigned to the first row of MBs of
stripe x+1. Continuing this method we find the degree of parallelism and timing as

shown in Figure 3-13, showing a reduction in the idle time of PEs.

wi{:l up A
K rows of MBs /
wind/do n
wirl‘l up
K rows. of MBs /
y wind/do

Figure 3-10 # of PEs is not enough for maximum parallelism; frame split into

multiple stripes for deblocking.

Degree of parallelism
A

A > Time unit

Figure 3-11  The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism.
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|
Stripe x+1 /_\ Stripe x+1
|
|
e 1
|
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v

(a) (b)

Figure 3-12 (@) The degree of parallelism and timing relationship between stripe x
and stripe x+1 before overlapping. (b) The degree of parallelism and timing

relationship between stripe X and stripe x+1 after overlapping.

Degree of parallelism

A : Time :
IreductionI
K+ ¥ 3 7 < ' 7 e\ |
s ’ . s I s

\\1/ // \\/, \\' H H

t —> time unit
0 | |

Figure 3-13  The idealize computation execution time and degree of parallelism

relationship after overlapping.

In addition, when the number of rows per stripe K does not divide evenly into the
total number of MB rows, the final stripe will have a number of idle PEs as shown in

Fig. 19.
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Degree of parallelism
N

. N > time unit
0 Last
stripe

Figure 3-14  The idealize computation execution time and degree of parallelism

relationship when the number of rows per stripe K does not divide evenly into the

total number of MB rows.

3.2 4 Pixel Long Boundary Method

Analyzing applications at a finer granularity usually opens extra opportunities for
parallelization. In H.264, the standard defined orders intersect with each other on a
4*4 grid and split boundaries into 4 pixel long boundaries as its basic units. As a
result, we have to analyze the data dependencies-and generate the corresponding data
dependency chain first. In Figure 3-15(a), we assign IDs (b;~bs,) to 4 pixel long
boundaries in a MB. The result after deblocking b is an input into the deblocking
filter for bs, with that result then becoming the inputs into both bi7 and be, and so on.
According to the data dependencies caused by the standard order, the data

dependency chain for intra MB deblocking is as shown in Figure 3-15 (b)
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(a) (b)
Figure 3-15 (@) ID assignment and (b) data dependency of a MB.

Moreover, we can derive the data dependency tree for intra MB deblocking as

shown in Figure 3-16.

time unit

Figure 3-16  Data dependency tree of a MB.

In Figure 3-16, the data dependency tree is represented in 8 timing phases. The

timing of each boundary means the earliest timing the deblocking filter can operate.
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The black solid arrows mean these input sources are the results from other 4 pixel
long boundaries that are in the same MB, the black dotted arrows mean the input
sources are the results from other 4 pixel long boundaries that are in different MBs,
and the double arrows mean the input sources are used for this first time and come
from memory. The complete data dependency tree for a frame can be composed from

multiple copies of Figure 3-16 connected with black dotted arrows.

Next, we have to figure out the critical paths of the data dependency tree. When
the deblocking filter is on the critical paths, execution should be as soon as possible
for best performance. Here, we use following three steps.to illustrate the critical paths

of a frame.
Step1: Intra MB 4 pixel long boundary critical paths.

Firstly assume the frame contains only one MB. Figure 3-17, which is a trivial
derivation from Figure 3-16, shows the critical paths of this frame with arrows
representing the data dependency directions. By sorting the counts of arrows from bs

to each 4 pixel long boundary, we can generate the execution order of the critical

paths.
b, b,
N 5 5
b 96 ¢b7 "\by“ 1 2 3 4
b4y Yo,h 6 6
boY Yo, 16 77|16
b,, 'bzs 8 8

(a) (b)

Figure 3-17  (a) Critical paths of frame with only one MB and (b) Deblocking order
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on critical paths.

Step 2: Same row of MBs 4 pixel long boundary critical paths.

After step 1, we extend the analyzed frame size to one row of m MBs (m > 1).
Figure 3-18 shows the critical paths of this frame. All arrows compose the critical
paths of this frame. The gray arrows (from step 1) are caused by intra MB
dependencies. The double arrows are caused by the inter-MB dependencies in a row
of MBs. The black dotted arrows are also caused by intra MB dependencies, but

added due to the effects of inter-MB dependencies.

MB, MB, MB, MB,,
/ ﬂ/ ﬂ/ b/
o e o e e e o e e e e e ot
/ -»,/ e o o *’/ -‘J’ 16
= o o e = e o e = o e
7 /" 7

Figure 3-18  Critical paths of frame with only one row of MBs.

To meet the order demanded by the critical paths, we modify the deblocking order
of Step 1 as shown in Figure 3-19. The only modification made in Figure 3-19 are the
numbers in bold, which are on the extra critical paths caused by the inter-MB
dependencies in a row of MBs. Though not every critical paths that resides in
different MBs is identical, this order fulfills the requirements while keeping regularity.
Figure 3-20 shows the order of two adjacent MBs in the same row of MBs. Note that
the deblocking of the adjacent right MB starts at time 7, which is before the last
operation of the left MB. We will further analyze performance improvements in the

Chapter 4.
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Figure 3-19  Deblocking order fulfills the critical path of a single row of MBs.

MB, MB, MB, MB,,
5 5 11111 t+41t+4
1 2 3 4 7V 8 9 10 13 it t+l t+2 t+3
6 6 1212 t+5 t+5
2 3 4 5 8 9 10 11 t+1 t+2 t+3 t+4
77 1313 00 e t+6- t+61| 16
3 4 5 6 9 10 11 12 t+2 t+3 t+4 t+5
818 1414 t+7 t+7

t=6x(m-1)+1

Figure 3-20  Deblocking order of only one row of MBs.

Step 3: Adjacent row inter-MB 4 pixel long boundary critical paths.

In this step, we further extend the size of a frame to n rows of m MBs (m > 1, n >
1). Figure 3-21 shows the corresponding critical paths. The gray arrows represent the
critical paths caused by both intra MB and inter same row MB data dependencies. The
black arrows represent the critical paths caused by inter adjacent rows of MBs. In
order to meet the requirements of this critical paths, we provide the deblocking order

extended from Step 2 in Figure 3-22.

21



<~ | ~
il
_ 1 ¥ _‘Y
! ;o
v = 4
eee J
;}---»-—- . -+ _j;
: P!
. ° .
[ ] [ ]
B! NN —‘,
__.’ - - : -_.’ -

mE

3-21 ithm S.
515
2 B 4
616
‘Z 3 #4 b
7716
3 4 b b
818
3

Figure 3-22  Deblocking order that fulfills the critical paths of a frame with mxn

MBs.

The only modification made in Figure 3-22 is the number “3” in bold, which is on
the extra critical paths caused by adjacent rows of MBs. In Figure 3-21, the

distribution of critical paths form 8 types of MBs. Figure 3-23 illustrates the
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deblocking order of a 3MBx3MB square area, which is the smallest example that
contains all 8 types. In Figure 3-23, the gray numbers are the type of MBs. Assume
the order start from stage 1, which is the start of critical paths. On the one hand, the 4
pixel long boundaries that labeling the numbers in bold are on the critical paths with 3
x3 MBs frame. On the other hand, the 4 pixel long boundaries with non-bold numbers
were labeled by the order of MB proposed in Figure 3-22. We find that the second
row of MBs starts deblocking at the 6th stage. Analysis of performance improvements

will be discussed in the Chapter 4.

5 5 11 11 17 17
1 2 3 4 8 9 10 18 14 15 16

6 6 12 12 18 18
y 3 4 5 9 10 11 14 15 15 17

7 7 13 13 19 19 (|16

4 5 6 9 10 11 12 15 16 17 18
8 8 14 14 20 20
9 15

10 10 16 16 22—22—"
( 7 8 9 12 13 14 15 18 19 20 21

11 11 17 17 23123
7 8 "9 10 13 14 15 16 19 20 21 22

12 12 18 18 2424
8 9 10 11 14 15 16 17 20 21 22 23

13 13 19 19 25—-25
8 14

1515 212 2727
11 12 13 14 17 18 19 20 28 24 25 26

1616 2222 28128
12 13 14 15 18 19 20 21 24 25 26 27

1717 2323 29129
18 14 15 16 19 20 21 22 25 26 27 28

1818 2424 3030
13 19 25

Figure 3-23  Deblocking order of 8 types MB.

The deblocking order in Figure 3-22 fulfills the requirements for correct

deblocking of all 4 pixel long boundaries on the critical paths. Next, we decide the
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execution order of boundaries that are not on the critical paths. Because these
boundaries are not on the critical paths, there is some flexibility in reordering while
not increasing the time for deblocking. Figure 3-24 shows all possible orders for 4
pixel long boundaries not on critical paths while not increasing the length of any
critical path. These boundaries are categorized into 3 groups. By following arrows in
each group, all possible orders can be generated. Taking the group containing bg, b2,
and bys for example, {4,5,6}, {4,5,7}, {4,6,7}, and {5,6,7} are all possible order

assignment for {bg,b12,b16} in this group.

5 5
1 R 3 4
6——6
? B 4 5
7 7— |16 16
B a 5 6
88
3
bs b12 b16 b b b b b1s bzz bzs bao

17 21 25 29
4 5 6 3 4 5 6 4 S 6 7
LR e e
5 6 7 8

Figure 3-24 ~ Flexible orders on non-critical paths boundaries.

When we consider the minimum required amount of PEs for processing one
additional MB row without prolonging the required processing time, the effects of

orders for 4 pixel long boundaries not on critical paths should be noticed.

In order to minimize the amount of required PEs, we derive the minimum amount
of required PEs for one additional MB row. Deblock one MB need at least 8 time
units due to the length of critical path in a single MB. According to the order for 4
pixel long boundaries as shown in Figure 3-22, we find the serial numbers of

boundaries that can be deblocked at same time unit for each time unit of deblock a
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MB is 12434322 (Figure 3-25(a) black numbers). We can find from Figure 3-24, the
possible orders of boundaries that on non-critical paths are at 3rd to 8th time unit for
deblock a MB (Figure 3-25(a) red numbers). One MB have 32 boundaries need to be
deblocked, so we find the sum of numbers in green block as shown in Figure 3-25(a)
is 32. As mention in Figure 3-20, the MB2 deblocked start at 7th time unit of MB1 as
shown in Figure 3-25(a). The sum of numbers in blue block as shown in Figure 3-25(a)
is 32, we can find that deblock one MB row must process 32 boundaries in 6 time
units. So deblock one MB row at least required ceiling(16/3) PEs, and deblock n MB
row at least required ceiling(16n/3) PEs. Deblock one MB row at least required 6 PEs,

required 5 PEs for 2nd additional MB row, and required 5 PEs for 3rd additional MB

row.
MB1 MB2 MB3 MBn
32=(12434322(MB1) n #of PEs
1 6
32= 12143%%23(MBZ) 5 1
12434322(MB3) 3 16
e E E
> time unit

(a) (b)

Figure 3-25 (&) The minimum amount of required PEs for one MB row. (b) The

amount of required PEs for one additional MB row.

As the result of minimum amount of required PEs for one MB row, we proposed a
order as shown in Figure 3-26. It is satisfy the minimum amount of required PEs for

one MB row.
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Figure 3-26  Proposed deblocking order

In Figure 3-27 shows the regularity in the number sequence that the number of
boundaries in one MB row able to be deblocked. in parallel: 12(565565)*565553. As
mention in Figure 3-23, deblocking of ene MB row can start with a delay of 5 time
units to its upper adjacent MB-row. Figure 3-27 shows the number of PEs required
with number of MBs raising up. It is clear that the proposed order meets the rule of
minimum amount of required PES mention in Figure 3-25. Moreover, every 3 rows of
MBs regularly provide 16 4 pixel long boundaries that can be deblocked in parallel in

every time unit after a build-up time.

# of row required PEs

MB rowl [ 125655655655 6 5 5 6 5 5.6 5 1 6

MB row2 1256556 5 5 6 5 5 6 5 5 2 1

MB row3 12 56 556556 3 16
time unit

16 16 16 16 16 16 16 16

Figure 3-27  The number of PEs required with number of MBs raising up

Due to the relationship between the number of PEs and the aspect of the frame to

be deblocked there are two cases that can occur:

Case I: Degree of parallelism depends on frame aspect

Assuming there are more PEs than needed, the degree of parallelism will be
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limited only by the frame aspect. While processing 16 pixels horizontally (the width
of one MB) takes 6 stages, processing 16 pixels vertically takes only 5 stages in the
proposed order. As a result, deblocking of the first row of MBs will finish before
starting the last row of MBs, if the number of rows of MBs is less than (6/5) x (the
number of columns of MBs in a frame). We categorize the effects of frame aspect

ratio into the following two situations:

i. #rows of MBs in frame < 6/5 * # columns of MBs in frame (Degree of parallelism
limited by # rows of MBs in frame)

In this situation, the maximum parallelism is proportional to the number of rows
of MBs in the frame. According to the deblocking order in Figure 3-29, the maximum
parallelism of 3 rows of MBs is 16. We can find the maximum parallelism of one row
of MBs is ceiling(16/3). For example, the maximum parallelism of one row of MBs is
6, the maximum parallelism of two rows of MBs is 11, and the maximum parallelism
of three rows of MBs is 16. Our method has a wind up and wind down time similar to
the 2D wave-front-method. A diagram is shown-in Figure 3-28 to help explain. The
upper-left gray region is the starting up of the deblocking filter, and the lower-right
gray region is the finishing of the deblocking filter. In these regions, the deblocking
filter is not able to reach maximum parallelism. The white region is where the
deblocking filter is able to reach maximum parallelism. The degree of parallelism and

timing relationship diagram is shown in Figure 3-29.
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Figure 3-28  Zones of wind up and wind down of deblocking order.

Degree of parallelism

A ldeal case computation parallelism

6 M= # of rows of MBs in frame
3 X MH] i

wind u vind do

A 4

time unit

Figure 3-29  The idealize computation execution time and degree of parallelism
relationship diagram. The time unit is the time required for deblocking a 4 pixel long
boundary.

. # rows of MBs in frame > 6/5 * # columns of MBs in frame (Degree of parallelism

limited by # columns of MBs in frame)

In this situation, shown in Figure 3-30(a), the degree of parallelism is equal to
ceiling((16/3) multiplied by the number of rows of MBs that can start their deblocking
before the deblocking has completed for the first row of MBs). As explained in the

beginning of case I, if the ratio of the height to width is larger than 6/5, the degree of
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parallelism will be limited by the frame width. The degree of parallelism and timing

relationship diagram is shown in Figure 3-30(b).

MW
K—H

D
Degree of parallelism

6
[g X MW] A Ideal case computation parallelism

M,,: # of columns of MBs in frame

[3% 5 xmpl

wind up wind down_

time unit

The time unit is the time required for
n deblocking a 4 pixel long boundary

(a) (b)

Figure 3-30 (@) The degree of parallelism is limited when the frame height it larger
than 6/5 times of the frame width. (b) The idealize computation execution time and
degree of parallelism relationship diagram.

Case II: # of PEs not enough for maximum parallelism.

In this case, the frame has to be split into multiple stripes for deblocking. Here we

first show a naive approach, and then propose an improved one.

Naive approach: In Figure 3-31, assume the number of PEs is able to deblock only
K rows of MBs at the same time, and K is less than the maximum number of
parallelizable MB rows. Then divide the frame into stripes where each stripe contains
K rows of MBs. The execution order of the stripes is from top to bottom. We find that
each stripe has a wind up and wind down time, meaning PEs remaining idle often

occurs. The degree of parallelism and timing diagram is shown in Figure 3-32.
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Figure 3-31  # of PEs is not enough for maximum parallelism, frame split into

multiple stripes for deblocking.

Degree of parallelism
N

[161('
3

/_\ > time unit

7

The time unit is the time required for
deblocking a 4 pixel long boundary
Figure 3-32  The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism.

Improved approach: In the naive approach, PEs are frequently idle between the
deblocking of stripes as shown in Figure 3-34(a). But after analyzing the details, we
find that the execution of the wind down of stripe x and the wind up of stripe x+1 can
be overlapped to fully utilize the PEs. The only reason that the first MB row of stripe
x+1 has not started deblocking is because there are not enough PEs. Once the PEs are
idle, the first MB row of stripe x+1 can start, and shortly after the other MB rows of
stripe x+1. Figure 3-33 shows how the first MB row of stripe x+1 can start deblocking
at the last two stages of deblocking the first MB row of stripe x as an example. Using

this approach, the wind up of stripe x+1 can begin execution earlier as shown in
30



Figure 3-34(b). Moreover, we keep the regularity of the amount of required PEs for

both stripes.
windug {16
K row of MB /
/Wind down
wi du{
K row of MB / /
/ ﬁind down

The first of row of MBs of piece x
12565565565565...565565565
65565565565...565565565553

The first of row of MBs of piece x+1
>time unit

12565565565565...565565565565565565565565...565565565553

Figure 3-33 . PE assignment for the first MB row of both stripe x and x+1

Applying this. method we find the degree of parallelism and timing as shown in

Figure 3-35, showing a reduction in the idle time of PEs.
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Figure 3-34
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(b)

() The degree of parallelism and timing relationship between stripe x

and stripe x+1 before overlapping. (b) The degree of parallelism and timing

relationship between stripe x and stripe x+1 after overlapping.



Time
reduction

Degree of parallelism |
N

I
I

16K7

|
|
|
// L
3 N i \\ g AN |/’ _\\ |
N , S\ N
S 2 N |
// |

> time unit

o

Figure 3-35  The idealize computation execution time and degree of parallelism

relationship after overlapping.
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Chapter 4 Comparison

The proposed order has been shown in the previous chapters, so the focus of this
section is on determining the degree to which parallelism and execution time can be
improved from this design. In this chapter, we first model the parallelism and time of
deblocking a frame for both the proposed order and 2D wave-front method order.
Then we show the benefit of overlapping, and then we construct two figures to show
the effects of the number of PEs and the benefits from overlapping the deblocking of
adjacent rows of MBs. After that, the time required will be compared using three
representative examples. In the end, we explain that our design is also complementary

to the 3D wave-front method.

4.1 Equations

The proposed execution order’s maximum parallelism and required wind up time,

wind down time and execution time can be expressed by the equations:

4.1.1 4 pixel long boundary method

Maximum # of rows of MBs that can be deblocked in parallel (K)
= Min (My, [EMy |, [Z2E2E]) (3)

16

Maximum parallelism(P)
[
= kx5 | @

Wind up time

= Time to reach the row of maximum parallelism + Time to reach the maximum parallelism in that row
= (delay between processing rows) x (Maximum # of rows of MBs that can be deblocked in parallel
— 1) + (Time to reach the maximum parallelism in the Kth row)

S5x(K—-1)+2

5xK—-3 (5)

33



Wind down time

_ {Time after finishing the last Kth row of MBs. ,if enough PEs
" |Time after finishing 1st row of MBs in last stripe. ,if limited PEs

( (delay between processing rows) x (Maximum # of rows of MBs that can be deblocked in parallel — 1)

16 6
+ (Time after maximum parallelism in the last Kth row of MBs) ,if #of PEs > 3 X Min([g MWl ,MH)l

(delay between processing rows) x (# of rows in last stripe — 1)

1
16 6
|k+ (Time after maximum parallelism in the 1th row of MBs in last stripe) ,if #of PEs < 3 % Min([g MWl ,MH)l

16 6
_J5x(K-1D+2 ,if #of PEs > [?xMin([gMWl,MH)l or #of rows in last stripe = P ©)
5x ((MH mod K) — 1) + 2 ,otherwise
Total Execution time
_ { Time before last row of MBs starts + Time to finish last row of MBs ,if enough PEs
~ (Time to finish one row of MBs) X (# of pieces) + Wind down time of last stripe ,if limited PEs
16 6
(2+5X(MH—1)+6XMW ,lf#OfPESZ ?XMITI([ngl,MH)

My _ 16 . . (6 . .

=16 X My X [71 +5Xx(K—-1)+2 ,if #of PEs < = X Min gMW , My ||and #of rows in last stripe = K (7)

M 16 6
6 X My, X [YH] +5X ((MH mod K) — 1) +2 ,if #of PEs < [? X Min ([gMWl,MHﬂ and #of rows in last stripe # K

The time unit is the time required for deblocking a 4 pixel long boundary. The

parallelism unit is.a 4 pixel long boundary.

4.1.2 16 pixel long boundary method

In order to compare the 4 pixel long boundary method with the 16 pixel long
boundary method, we modify the original equations. First, taking the number of PEs
into consideration; and second, adjusting the parallelism and the time unit. Each 16
pixel long boundary contains four 4 pixel long boundaries that can be deblocked in
parallel. So assuming the computation power of all PEs are the same, we multiply the
time by 1 and the parallelism by 4. The following equations show the modified

equations for the 16 pixel long boundary method:

Maximum parallelism(P)

= Maximum # of rows of MBs that can be deblocked in parallel
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= Min (# of rows of MBs, # of parallel deblocked rows of MBs when limited by the width of frame, # of

available PEs)

=4 X Min (MH, EMW] ,#of PES) (8)

Wind up time

= Time to reach the row of maximum parallelism

(delay between processing rows) x (maximum parallelism - 1)
5x(P-1) (9

Wind down time

_ {Time after finishing the last Pthrow of MBs. ,if enough PEs

Time after finishing 1st row of MBs in last stripe. ,if limited PEs

8
(delay between processing rows) X (maximum parallelism — 1). ,if #of PEs = Min(My, [E MWI)

8
(delay between processing rows) x (# of rows in last stripe — 1) ,if #of PEs < Min(My, [E MWI)

8
_J5x(P-1) ,if #of PEs.=Min(My, [gMWl) or #of rows in last stripe = P (10)
5% ((Mymod P)—1) ,otherwise
Total Execution time
_ { Time before last row of MBs starts + Time to finish last row of MBs ,if enough PEs
~ |(Time to finish onerow of MBs) X (# of pieces) + Wind down time of last stripe ,if limited PEs
8
5 x (My — 1) +8 x My, if #of PEs ZMin(MH, [gMWD
M 8
=1{8X%x M, X [TH] +5%x(P—-1) ,if #of PEs < Min (MH, [gMWD and #of rows in last stripe =P (11)

8 x My, X [%] +5x ((My mod P) —1),if #of PEs < Min (MH, EMWD and #of rows in last stripe # P
4.1.3 2D wave-front method

In order to compare the 4 pixel long boundary method with the 2D wave-front
method, we modify the original equations. First, taking the number of PEs into
consideration; and second, adjusting the parallelism and the time unit. Deblocking one
MB with the 2D wave-front method is done by deblocking eight 16 pixel long
boundaries consecutively. Moreover, each 16 pixel long boundary contains four 4

pixel long boundaries that can be deblocked in parallel. So assuming the computation
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power of all PEs are the same, we multiply the time by 8 and the parallelism by 4. The

following equations show the modified equations for the 2D wave-front method:

1
Maximum parallelism(P) = 4 X Min (MH, [E MW] J#of PES) (12)

Wind up time = 8 x2x (P —-1) (13)

Wind down time

1
_J8x2x(P-1) ,if #of PEs = Min(My, [EMW]) or #of rows in last stripe = P (14)
8 X2 X ((MH mod P) — 1) ,otherwise
Total Execution time
1
(8x2x (My—1)+8xM, ,if#ofPEsZMin(MH,[EMWD
My . . 1 . .
=<{8xX My x [7] +8x2x(P-1) ,if #of PEs < Min| My, EMW and #of rows in last stripe =P (15)

M,
8 X My, X [7”] +8x2 X ((My mod P)=1)..,if #of PEs <Min<MH,

1
-Z—MWD and #of rows in last stripe # P

4.2 Overlapping benefit

In Figure 4-1, we can find overlapping is beneficial for all methods. Overlapping
is actually more useful for the 2D wave-front method because it has a longer wind up
and wind down time. In following, we will compare these three methods using the

results with overlapping.
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Figure 4-1 Overlapping benefit for proposed methods and 2D wave-front method.

4.3 Comparing different granularities

Figure 4-2 shows that for all the 2D wave-front method and two proposed
methods, the greater the number of PEs, the greater the benefit to the time to deblock
a frame. However, our proposed method gains more benefit than the 2D wave-front
method which comes from the shorter wind up and wind down time requirement,

especially for the vertically shaped frame.

100000 100000

=4 w/ overlapping =4 w/ overlapping

=16 W/ overlapping =16 W/ overlapping

10000 \

=2D w/ overlapping «==2D w/ overlapping

10000

Log(Total Execution Time)
Log(Total Execution Time)

| N

S

s Yo o e S0 N Ve D D, D S, S, S 6
D % o N % o % R Ve % Yo e R e

1000

ﬁ
T T 1000

& % B D Y L e G D D S D Do Y B % P
ORI G N Y% e TR 02 e e 3

<
® Yo

# of PEs # of PEs

(a) 1920x1080 (b) 10801920

Figure 4-2 Proposed methods compared with the 2D wave-front method in time

for deblocking and number of PEs when frame size is (a)1920x1080 (b)1080x1920.

Moreover, we find the total execution time curves have a step-like pattern. This
characteristic comes from the splitting of frames. When the number of PEs passes a
threshold in which the number of PEs can divide evenly into the total number of MB

rows, the total execution time is greatly reduced, thus forming the curves.

While the speedup of the 2D wave-front method stops at 240 PEs for the
horizontal shaped frame, and 136 PEs for the vertically one, the speedup of our

proposed methods keeps improving until 272 PEs in 16 pixel long boundary method
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and 363 PEs in 4 pixel long boundary method for the vertically shaped frame; 436
PEs in 16 pixel long boundary method and 438 PEs in 4 pixel long boundary method

for the horizontal case.

Considering limited amount of PEs, we find the 16 pixel long boundary method is
better than the 2D wave-front method for any number of PEs. The 4 pixel long
boundary method is better than the 16 pixel long boundary even the parallelism is
similar, because of short wind up/wind down time in the 4 pixel long boundary
method. However in some cases the 16 pixel long boundary method is better than the
4 pixel long boundary, most cases in the 4 pixel long boundary method is better than

both the 16 pixel long boundary method and 2D wave-front method.

As mentioned above, in some cases the 16 pixel.long boundary method and 2D
wave-front method sometimes get better time reduction. We use an example to
explain. Figure; 4-3 compares the 2D wave-front method and the 4 pixel long
boundary method with deblocking overlapping for a 1920*1080 sized frame using 70
PEs. This example explains when the 4 pixel long boundary method will get higher
maximum degree of parallelism but fail in getting better time reduction. When a
frame is divided into stripes, the last stripe of the frame might be small, but still takes
long delay to deal with. This delay could be covered when more than 74 PEs

available.
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Figure 4-3 4 pixel long boundary method compared with the 2D wave-front
method in degree of parallelism and time for deblocking when frame sizes are 1920x

1080 and using 70 PEs.

With enough PEs, Figure 4-4 shows the comparison of the proposed designs and
the 2D wave-front method for both (a) horizontally shaped and (b) vertically shaped

frames.
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Figure 4-4 Proposed methods compared with the 2D wave-front method in
idealize degree of parallelism and time for deblocking when frame sizes are (a) 1920x

1080 and (b) 1080x1920.
Table 4-1 shows the speedup for total execution time and Table 4-2 shows the
slope of idealize parallelism in wind up time for each design.

Table 4-1  Speedup for total execution time.
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speedup 1920x1080 1080x1920

16: 2D 1.57 2.15
4 : 2D 1.92 2.44
4 : 16 1.22 1.13

Table 4-2  Increasing slope of parallelism in wind up.

Method Slope of parallelism in
wind up time
4 pixel long boundary 1.08
16 pixel long boundary 0.81
2D wave-front 0.25

Last but not least, when considering if our design is complementary with the 3D
wave-front method as the 2D wave-front is, the answer is yes. Due to the deblocking
filter having no  inter-frame data dependencies,” our approach is definitely

complementary with the 3D wave-front method.

40



Chapter 5 Hardware Architectural

Requirements

In order to deblock a video frame in the proposed order, some hardware support
may be necessary. In this Chapter, we list some major hardware requirements such
as dedicated buses between PEs, data loop-backs, and internal buffers. Any hardware
that fulfills these requirements should be capable of gaining the benefits from

proposed order.

5.1 16 pixel long boundary

Based on the PEs assignment mentioned above, followings are the requirements of

the hardware design:

» As mentioned in case 1 and 2-of Chapter 3.1, 16 pixel long boundaries a row
of MBs are required to be deblocked in sequential order, so we can assign
one PE for each row of MBs. While deblocking a row of MBs, some
intermediate pixel values should be looped back to the PE itself or be kept in

internal buffers for further use later.

» As mentioned in case 3 of Chapter 3, we know that the deblocking of every
MBys requires the pixel values that come from its Upper and Upper-right MB.
Since we assign a PE to the deblocking of a row of MBs, we need a dedicated
bus for data bypassing between PEs dealing with adjacent rows of MBs. This

bus can be unidirectional from the upper PE to its adjacent lower PE.

A schematic of the hardware architectural requirements is shown in Figure 5-1.

The Input Buffer stores pixels that are not yet deblocked, the Output Buffer stores
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pixels that have been deblocked, and the Internal Buffer stores pixels whose value is
needed later. Moreover, PEs will use a shared bus to access memory. If the share bus
bandwidth satisfied, the Input Buffer size and Output Buffer size are 1 MB size, and

the Internal Buffer size is 1/4 MB size for one PE.

Input ¢
Buffer 1 1

PE 1 i Internal Buffer 1 i 41) Output

I W Buffer 1

Input <
Buffer 2 1

I______——————‘vL—1
PE 2 I Internal Buffer 2 i ; Output memory
1 P @ Buffer 2
| | |

Input ]

<
Buff_er n 1

Y e _U‘_l
PE n i Internal Buffern i ; Output
D R LL L Buffer n

Figure 5-1 Schematic of hardware architectural requirements.

5.2 4 pixel long boundary

As mentioned in Figure 3-30 of Chapter 3.2, it provides totally 16 4 pixel long
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boundaries that can be deblocked in parallel every 3 rows of MBs. As a result, we can
group 3 rows of MBs and assign 16 PEs for each group. We proposed a PEs
assignment as shown in Figure 5-2(b), it shows all 4 pixel long boundaries in group be
processed by 16 PEs. For examples, PE1 process each MB’s by, bs, b17, big, boo, b2g In
MB R1; PE6 process each MB’s bg, byg in MB R1 and each MB’s by, bip, b1z, big in
MB R2. In other words, the same PE processes the same boundaries in each MB of

same MB row.

PE Assignment (not Exec. Order)
PE1: |R1-b, , R1-bs , R1-b,,, R1-bq, R1-b,,, R1-b,,
PE2: |R1-b,, R1-by, R1-b,;, R1-b,y, R1-b,;, R1-b,g
PE3: |R1-bg , R1-bjs, R1-byy, R1-b,,, R1-b,s, R1-bs,
PE4: |R1-by; R1-b,,, R1-b,;, R1-b,;, R1-b,,, R1-b,,
MBR1 _PE5: [R1-b, , R1-b, , R1-by;, R1-b,,, R1-b,s, R1-by,
o o RePE6: |R1-by, R1-bys, R2-b;, R2-by, R2-by;, R2-byg
EES PE7: |R2-bs', R2-by , R2-b, 5, R2-b,, R2-b,,, R2-b,,
PE8: [R2-b, , R2-bg , R2-b;; R2-b;, R2-b,,, R2-b,g
orrrbrgbig  byg' PE9: |R2-b, , R2-b,,, R2-b;,, R2-by,, R2-b,,, R2-b,,

o, b B B PE10{R2:b, , R2-b, , R2-b,,, R2°b;., R2-b,o, R2-bs,
b bZJb bys {byz D24 PE11:R2-bg , R2-b;,, R2-b,,, R2-b;,, R3-b;;, R3-b ¢
S G A P PE12:{R3-b, , R3-b,;, R3-b,, R3-b,,, R3-b,,, R3-b,,
b, b, by by PE13:{R3-by , R3-by, R3-b,3, R3-b,,, R3-b,;, R3-b,,
| bng by ] bsi bbaz PE14:R3-bg , R3-b,o, R3-by,, R3-b,., R3-b,, R3-bs,
S A I PE15:R3-b, , R3-b;, R3-b,,, R3-b,s, R3-b,,, R3-by,
16 PE16:(R3-b;", R3-bg , R3-b,,;, R3-b,,, R3-b,,, R3-by,

(a) (b)

Figure 5-2 (@) ID assignment in a MB. (b) PEs assignment for 3 MB rows.

Based on the PEs assignment mentioned above, followings are the requirements of

the hardware design:

1. While deblocking a 4 pixel long boundary, some intermediate pixel values
should be looped back to the PE itself or be kept in internal buffers for further use

later.
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2. We know one PE deblocking of a 4 pixel long boundary requires the pixel

values that maybe come from five sources:
I. Its two results previous stage.
ii. Bypassing from others two PEs results previous stage.
iii. First deblocking pixel values that come from the memory.

3. While one PE deblocking of a 4 pixel long boundary, its outputs maybe transfer

to other objectives:
I. Transfer to the output buffer.
ii. Transfer to other PEs:

A schematic of the hardware architectural requirements for one PE is shown in
Figure 5-3. The Buffer stores pixels whose value is needed later, the Output Buffer
stores pixels that have been deblocked. The Buffer size is 2 4x4 blocks, and the

Output Buffer size i1s 2 4x4 blocks for one PE.

Mem BP, BP,

|

Buffer

'(Only 2 active at the same time) Buffer

P' .| Demux

" 1to6

DebIOCking Q' Demux

1t06 5 2 Bypassing to other PEs
(at most 5 PEs are connected)

Figure 5-3 Schematic of hardware architectural requirements for one PE.

According to the PEs assignment in Figure 5-2(b), the connection of PEs as shown

in Figure 5-4.
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PE, PE,

PE, ¢ PE,
PE; PE,
PEg PE,
PE, PE4o
PE;5 PE;,
PE,5 PE s
PE,¢ PEis
NPEl./ - o NPE,

Figure 5-4 The connection of PEs.

5.3 Timing model

In order to find out the overhead of different granularity, we separate the time that

process one deblocking operation to-time for read, time for filer, and time for write.

According to the hardware as mention above, the sources of read and write are
memory, others PEs, and self PE. Assuming an address can load 16 pixels, the time
latency of 3 sources is memory: others PEs: self PE = x: y: z. Due to we don’t find the
time latency of 3 sources ratio, we assume y = x/1000 and the time latency of self PE
is 0. We use CACTI[9] to estimate the time latency of memory is 1.63ns, and model

the time latency of read data and write data in Table 5-1.

Table 5-1 Time for read data and write data.
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Memory  Others PEs  Self PE

1.63(ns) 0.013(ns) 0(ns)

According to Ref[8], we can know time for filer is 10ns. We assume one stage
compose of read data, filter, and write data. The time of one stage is 13.26ns that is
sum up maximum time for read, maximum time for filter, and maximum time for
write. The timing model can find the time for process one frame size is 1920x1080 as

shown in Table 5-2. The Py is the maximum parallelism at time t in Table 5-2.

Table 5-2 -~ Time for deblocking a 19201080 frame.

Granularity

2032
2D-wavefront(MB) Z (P, X 13.26)
t=0

1295

Boundaryss z (P, % 13.26)

t=0

1057

Boundary, Z (P, x 13.26)
t=0

After timing model, the speedup of different granularity is the same as Table 4-1.
But the speedup of original sequential deblocking is different. We use Boundary, to
process one QCIF(176x144) need 108 stages. In Ref[10] can know sequential
deblocking one MB need 530 cycles, so average cycles for process one 4 pixel long

boundary is 17. In Ref[10] sequential process one QCIF frame need 51930 cycles, the
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Table 5-3 can find the ideal speedup and actual speedup is different.

Table 5-3  Speedup for idealize and actually.

idealize actually

108 ~ 7 108 x 17 28.28

The difference is come from the Boundary strength (BS) value, BS value range
from 0 to 4. Each boundary have a BS value, boundary unneeded deblocking if BS
value is 0, boundary needed deblocking if BS value is 1~4. In sequential processing,
process next boundary if current boundary’s BS value equal to 0. But in our design,

the time of stage is fixed, it must wait if current boundary’s BS value equal to 0.
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Chapter 6 Conclusion

As shown in our proposed order, examining the deblocking algorithm at a finer
granularity did bring additional opportunities for exploiting parallelism, and thus
speed up the execution time of the deblocking filter. 4 pixel long boundary method
compared with the 2D wave-front method order in deblocking both 1920*1080 and
1080*1920 pixel sized frames, we gain a speedup of 1.92 and 2.44 times given an
un-limited number of PEs respectively. For an environment with limited hardware
resources, we also provide an algorithm able to fully utilize available resources for the

deblocking filter.

Considering the trend of digital video codecs, larger frame sizes and reduced
coded video size are both essential. In order to achieve this goal, the deblocking filter
plays an important role because dealing with larger frames takes time proportional to
the frame size. The proposed design can limit the growth in time spent deblocking by
the maximum of the frame width and height, which are often proportional to the
square root of the frame size. Thus it -brings-the opportunity for practical real-time

deblocking of larger sized videos in the future.

The proposed approach in this paper is just the first step of parallelizing H.264
video decoding in a finer way. In order to exploit overall parallelism, decoding stages
including intra decoding and motion compensation are all required to consider the
parallel order of their operations. However, we are able to further analyze the
algorithms of these stages to see if there are any opportunities for using a similar

approach to that in this paper.
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