

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

利用運算重排發揮 H.264 中去方塊濾波器的平行度

Exploiting Parallelism in the H.264 Deblocking Filter by

Operation Reordering

研 究 生：王薏婷

指導教授：鍾 崇 斌 教授

中 華 民 國 一百年 九 月

利用運算重排發揮 H.264 中去方塊濾波器的平行度

Exploiting Parallelism in the H.264 Deblocking Filter by

Operation Reordering

研 究 生：王薏婷 Student：Yi-Ting Wang

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

Sep. 2011

Hsinchu, Taiwan, Republic of China

中華民國 一百 年 九 月

i

利用運算重排發揮 H.264 中去方塊濾波器的平行度

學生：王薏婷 指導教授：鍾崇斌 博士

國立交通大學資訊科學與工程研究所碩士班

摘要

在 H.264 影像壓縮標準中，去方塊濾波器的計算量大約占整體解碼器的三分之一。

隨著多工處理器將成為未來系統設計的趨勢，若可把去方塊濾波器內的運算良好

的分配到各個處理單元，則可以省下計算時間。在這篇論文中，我們提出了兩個

粒度來做平行處理的單位，第一是 H.264 去方塊濾波器所使用的基本單位 16 像

素長的邊，第二是根據分析去方塊濾波器所能達到的最高平行度所使用的最小基

本單位 4 像素長的邊。此外，在此篇論文中我們提出一個方法使得在硬體資源受

限的情況下，盡可能地充分利用所擁有的硬體資源，以及符合我們設計所需要的

去方塊濾波器硬體需求。在硬體無限制下，對 1920×1080 與 1080×1920 這兩種形

狀的圖片做去方塊濾波，16 像素長的邊這個粒度的處理順序與二維波前方式所

提出來的處理順序相比所得到的加速分別為 1.57 與 2.15 倍，4 像素長的邊這個

粒度的處理順序與二維波前方式所提出來的處理順序相比所得到的加速分別為

1.92 與 2.44 倍。另外，我們的方法可使處理時間成正比於圖片大小的平方根(在

一樣的圖片長寬比下)。

ii

Exploiting Parallelism in the H.264 Deblocking Filter by

Operation Reordering

Student：Yi-Ting Wang Advisor：Chung-Ping Chung

Institute of Computer Science and Engineering

National Chiao-Tung University

Abstract

In the H.264 video compression standard, the deblocking filter contributes about

one-third of all computation in the decoder. With multi-processor architectures

becoming the future trend of system design, computation time reduction can be

achieved if the deblocking filter well apportions its operations to multiple processing

elements. In this paper, we apply a 16 pixel long boundary, the basic unit for

deblocking in the H.264 standard and a 4 pixel long boundary as the basis for

analyzing and exploiting possible parallelism in deblocking filtering. Moreover, a

possible compromise to fully utilize limited hardware resources and hardware

architectural requirements for deblocking are also proposed in this paper. Compared

with the 2D wave-front method order for deblocking both 1920*1080 and 1080*1920

pixel sized frames, the 16 pixel long boundary method gains speedups of 1.57 and

2.15 times given an un-limited number of processing elements respectively, and the 4

pixel long boundary method gains speedups of 1.92 and 2.44 times given an

un-limited number of processing elements respectively. Using this approach, the

execution time of the deblocking filter is proportional to the square root of the growth

of the frame size (keeping the same width/height ratio), pushing the boundary of

practical real-time deblocking of increasingly larger video sizes.

iii

致謝

本論文的完成，首先要感謝我的指導教授 鍾崇斌老師，因為老師這兩年來的

耐心教導與鼓勵，我才能順利完成本論文。另外，口詴時也承蒙 陳添福老師及

謝萬雲老師提出寶貴的建議與意見，使得本論文能夠更完整，在此一併致上感謝

之意。

除此之外，還要感謝博士班學長翁綜禧，總是不厭其煩地跟我討論研究上遇

到的問題，並且會適時的給予建議。還有要感謝實驗室的學長姊、同學以及學弟，

在兩年多的日子裡，實驗室生活的點點滴滴，共同討論研究，休息時間的閒聊，

還有一起出遊的回憶，都是我的美好回憶，感謝你們的陪伴讓我的研究所生涯多

采多姿。另外，對於所有幫助過我的人，致上最真誠的感謝。

最後，要感謝我的家人，謝謝你們一路上的支持與勉勵。

王薏婷 謹誌於

國立交通大學資訊科學與工程研究所碩士班

中華民國一百年十月

iv

Content

摘要 .. i

Abstract .. ii

致謝 .. iii

Content .. iv

List of figure .. vi

List of table.. ix

Chapter 1 Introduction ... 1

Chapter 2 Background and Related work ... 3

2.1 Background .. 3

2.2 Related Work ... 4

Chapter 3 Algorithm ... 8

3.1 16 Pixel Long Boundary Method .. 8

3.2 4 Pixel Long Boundary Method .. 17

Chapter 4 Comparison .. 33

4.1 Equations .. 33

4.1.1 4 pixel long boundary method .. 33

4.1.2 16 pixel long boundary method .. 34

4.1.3 2D wave-front method ... 35

4.2 Overlapping benefit ... 36

4.3 Comparing different granularities ... 37

Chapter 5 Hardware Architectural Requirements ... 41

5.1 16 pixel long boundary .. 41

5.2 4 pixel long boundary .. 42

5.3 Timing model .. 45

v

Chapter 6 Conclusion .. 48

References .. 49

Appendix .. 50

vi

List of figure

Figure 2-1 (a) Affected pixels in deblocking (b) The pixel values before deblocking

filtering; the P0~P3 and Q0~Q3 pixel value gap causes a visual discontinuity. (c) After

deblocking filtering; the pixel values are now smooth. .. 3

Figure 2-2 (a) Intra MB order. (b) Inter MB order. ... 4

Figure 2-3 (a) Data dependencies in inter MB deblocking. (b) MBs that can be

processed simultaneously. ... 5

Figure 2-4 The idealize computation execution time and parallelism relationship. The

vertical axis is the number of MBs processed in parallel, the horizontal axis is time. The

time unit here is time required for deblocking a MB. .. 6

Figure 2-5 The dark gray MBs can be processed in parallel. ... 7

Figure 3-1 Gray blocks are the affected 4x4 blocks when deblocking a (a) vertical and

(b) horizontal 16 pixel long boundary ... 8

Figure 3-2 (a) Intra MB deblocking execution order, the gray blocks are data

dependencies from boundary 4 to boundary 5. (b) The data dependency chain for intra

MB deblocking. .. 9

Figure 3-3 The deblocking data dependency chain for MBs in the same row. 9

Figure 3-4 The data dependency chain between adjacent rows of MBs........................ 10

Figure 3-5 Proposed execution order. ... 11

Figure 3-6 Timing difference of the 16 pixel long boundary method order and the 2D

wave-front method order. ... 11

Figure 3-7 Zones of wind up and wind down of deblocking order. 12

Figure 3-8 The idealize computation execution time and degree of parallelism

relationship diagram. The time unit is the time required for deblocking a 16 pixel long

boundary. 13

Figure 3-9 (a) The degree of parallelism is limited when the frame height is larger than

8/5 times of the frame width. (b) The idealize computation execution time and degree of

parallelism relationship diagram. .. 14

vii

Figure 3-10 # of PEs is not enough for maximum parallelism, frame split into

multiple stripes for deblocking. .. 15

Figure 3-11 The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism. ... 15

Figure 3-12 (a) The degree of parallelism and timing relationship between stripe x

and stripe x+1 before overlapping. (b) The degree of parallelism and timing relationship

between stripe x and stripe x+1 after overlapping. .. 16

Figure 3-13 The idealize computation execution time and degree of parallelism

relationship after overlapping. ... 16

Figure 3-14 The idealize computation execution time and degree of parallelism

relationship when the number of rows per stripe K does not divide evenly into the total

number of MB rows. ... 17

Figure 3-15 (a) ID assignment and (b) data dependency of a MB. 18

Figure 3-16 Data dependency tree of a MB. .. 18

Figure 3-17 (a) Critical paths of frame with only one MB and (b) Deblocking order

on critical paths. .. 19

Figure 3-18 Critical paths of frame with only one row of MBs. 20

Figure 3-19 Deblocking order fulfills the critical path of a single row of MBs. 21

Figure 3-20 Deblocking order of only one row of MBs... 21

Figure 3-21 Critical paths of frame with m×n MBs. ... 22

Figure 3-22 Deblocking order that fulfills the critical paths of a frame with m×n MBs.

 22

Figure 3-23 Deblocking order of 8 types MB. ... 23

Figure 3-24 Flexible orders on non-critical paths boundaries. 24

Figure 3-25 (a) The minimum amount of required PEs for one MB row. (b) The

amount of required PEs for one additional MB row. ... 25

Figure 3-26 Proposed deblocking order ... 26

Figure 3-27 The number of PEs required with number of MBs raising up 26

Figure 3-28 Zones of wind up and wind down of deblocking order. 28

viii

Figure 3-29 The idealize computation execution time and degree of parallelism

relationship diagram. The time unit is the time required for deblocking a 4 pixel long

boundary. 28

Figure 3-30 (a) The degree of parallelism is limited when the frame height it larger

than 6/5 times of the frame width. (b) The idealize computation execution time and

degree of parallelism relationship diagram... 29

Figure 3-31 # of PEs is not enough for maximum parallelism, frame split into

multiple stripes for deblocking. .. 30

Figure 3-32 The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism. ... 30

Figure 3-33 PE assignment for the first MB row of both stripe x and x+1 31

Figure 3-34 (a) The degree of parallelism and timing relationship between stripe x

and stripe x+1 before overlapping. (b) The degree of parallelism and timing relationship

between stripe x and stripe x+1 after overlapping. .. 31

Figure 3-35 The idealize computation execution time and degree of parallelism

relationship after overlapping. ... 32

Figure 4-1 Overlapping benefit for proposed methods and 2D wave-front method. ... 37

Figure 4-2 Proposed methods compared with the 2D wave-front method in time for

deblocking and number of PEs when frame size is (a)1920×1080 (b)1080×1920. 37

Figure 4-3 4 pixel long boundary method compared with the 2D wave-front method in

degree of parallelism and time for deblocking when frame sizes are 1920×1080 and

using 70 PEs. .. 39

Figure 4-4 Proposed methods compared with the 2D wave-front method in idealize

degree of parallelism and time for deblocking when frame sizes are (a) 1920×1080 and

(b) 1080×1920. .. 39

Figure 5-1 Schematic of hardware architectural requirements. 42

Figure 5-2 (a) ID assignment in a MB. (b) PEs assignment for 3 MB rows. 43

Figure 5-3 Schematic of hardware architectural requirements for one PE. 44

Figure 5-4 The connection of PEs. .. 45

ix

List of table

Table 4-1 Speedup for total execution time. ... 39

Table 4-2 Increasing slope of parallelism in wind up. ... 40

Table 5-1 Time for read data and write data. .. 45

Table 5-2 Time for deblocking a 1920×1080 frame. .. 46

Table 5-3 Speedup for idealize and actually. .. 47

1

Chapter 1 Introduction

The H.264 standard provides acceptable image quality combined with a reduction

in bit-rate compared with existing video compression standards. Besides this, it can

also provide higher adaptability and better error resilience for a wider range of

applications. With regards to the compression rate, the bit rate of H.264 is almost 50%

lower than that of the MPEG-2, H.263v2 and MPEG-4 Advanced Simple Profile

video compression standards for the same picture quality [7].

Deblocking is intended to smooth block-edge artifacts caused by the decoding

process and enhance picture quality. In the encoding process, the H.264 encoder uses

the macroblock (MB, 16x16 pixel square) as the basic coding unit. Quantization of

the macroblocks causes visual discontinuities between the edges of decoded

macroblocks. Pixels located on macroblock boundaries with a similar value may for

the above reason be decoded with a larger difference in values, resulting in a decline

in picture quality. Therefore, the purpose of deblocking is to smooth block artifacts

caused by the decoding process to enhance picture quality. Another advantage of

deblocking is to increase coding efficiency. Decoded and deblocked images will be

referenced later, and because the picture is of higher quality, there will be a reduction

in the encoded bit rate.

Deblocking filtering accounts for one-third of all computation in the decoder [1].

With multi-core becoming the trend, if deblocking can be processed using a

multi-core parallel processing architecture, the processing can be distributed to

different computing processing elements (PEs) to address and reduce execution time.

Currently parallel processing of deblocking focuses on parallelization at the MB-level.

2

We find that parallelizing deblocking at a finer granularity can be developed

according to our presented design.

We analyze the deblocking order to obtain the dependency between the various

boundaries, and then propose an execution order, with execution of deblocking in this

order giving higher parallelism.

The rest of this paper is organized as follows. In chapter 2, we would introduce the

background of the deblocking filter and related work for deblocking filter

parallelization. In chapter 3, we would show our parallelized design. Chapter 4 would

analyze the proposed method and compares it with related works. Chapter 5 would

shows our proposed hardware architectural requirements. Finally, the conclusion is

given along with further work.

3

Chapter 2 Background and Related work

2.1 Background

The deblocking filter is used in order to smooth block-edge artifacts. Figure 2-1(b)

shows a block-edge artifact caused by a large difference in pixel values. The pixels

P0~P3 and Q0~Q3 in Figure 2-1(b) can be located either vertically or horizon-tally as

shown in Figure 2-1(a)[6]. A deblocking filter is applied on the P0~P3 and Q0~Q3

pixel values to make these eight values visually smooth. The pixel value distribution

after applying the deblocking filter is shown in Figure 2-1(c).

Figure 2-1 (a) Affected pixels in deblocking [6] (b) The pixel values before

deblocking filtering; the P0~P3 and Q0~Q3 pixel value gap causes a visual

discontinuity. (c) After deblocking filtering; the pixel values are now smooth.

Deblocking is needed for both MB boundaries and 4*4 block boundaries. As the

MB is the basic coding unit in H.264, block-edge artifacts occur easily at MB

boundaries. In addition, there are some coding modes using 4*4 blocks for inter

Pixel

value

P0

Boundary

P1
P2

P3

Q0
Q1

Q2
Q3

P0

P1
P2

P3

Q0
Q1

Q2

Q3

Pixel

value

Boundary

(a)

(b)

(c)

4

prediction and intra prediction. For these cases deblocking is needed to smooth the

block-edge artifacts.

The MB deblocking internal (intra MB) execution order as defined by the H.264

standard is shown in Figure 2-2(a). Execution starts by deblocking a column of pixels

moving horizontally left to right, and then a row of pixels moving vertically top to

bottom. The inter MB execution order is shown in Figure 2-2(b), and moves from left

to right, top to bottom.

Figure 2-2 (a) Intra MB order. (b) Inter MB order.

Although the H.264 standard defines the deblocking order as shown above, as

long as the final decoding results in the correct output, the above order can be

changed. Changing the order in which the calculation is performed is an opportunity

for parallelizing deblocking filtering. We propose a conceptual design to improve the

parallelizability of the deblocking filter.

2.2 Related Work

The 2D wave-front method is based on using the MB as a unit for parallelization

[2]. In Figure 2-3(a), according to the deblocking order, we find the current MB has a

data dependency on the Upper, Upper-Right and Left MBs. So when using a MB as

(a) (b)

1 2 3 4

6

7

8

5

16

16

5

the parallelization unit, the Upper, Upper-Right and Left MB must be deblocked

before the Current MB. In Figure 2-3(b), MBs that can be processed simultaneously

are numbered together.

Figure 2-3 (a) Data dependencies in inter MB deblocking. (b) MBs that can be

processed simultaneously.

According to this observation, this method does not have a fixed degree of

parallelism. The degree of parallelism initially steadily increases. Some wind up time

is needed before reaching maximum parallelism. After maintaining maximum

parallelism for some time, the degree of parallelism will begin to steadily decrease. In

Figure 2-4, the units of time are in terms of the time to deblock one MB, and the

frame size is 1920*1080.

The 2D wave-front method’s maximum parallelism and required wind up time and

wind down time can be expressed by the equations:

 𝑖 𝑒 𝑖 () 𝑖 (⌈

 ⌉) (1)

 𝑖 𝑑 𝑖 𝑒 𝑑 𝑒𝑔 𝑑𝑖 𝑔 𝑖 𝑒 () (2)

MW: # of columns of MBs in frame.

MH: # of rows of MBs in frame.

Where the wind up and wind down time are in units of time required for deblocking a

MB.

Upper

MB

Upper

right

MB

Current

MB

Left

MB

16

1 2 3 4 5 6

3 4 5 6 7 8

5 6 7 8 9 10

7 8 9 10 11 12

16

(a) (b)

6

In theory, for this method the maximum parallelism should be equal to the total

number of MBs in a column which is 68 in the above example, but from Figure 2-4

the maximum parallelism is 60, which is less. The reason for this is the frame aspect

ratio. The first row of MBs has finished being processed, yet the last row of MBs has

not yet begun to be processed, resulting in the degree of parallelization unable to

reach the theoretical maximum.

Figure 2-4 The idealize computation execution time and parallelism relationship.

The vertical axis is the number of MBs processed in parallel, the horizontal axis is

time. The time unit here is time required for deblocking a MB.

The 3D wave-front method [3] is based on the 2D wave-front method, but also

uses inter frame parallelism, meaning more MBs can be processed in parallel. This

method can significantly enhance the parallelism. In Figure 2-5 [4], the dark gray

MBs can be processed in parallel.

The 3D wave-front method is used with the 2D wave-front method. The 2D

wave-front method is used for intra frame parallelization, while the 3D wave-front

method is used for inter frame parallelization. The 2D wave-front method parallelizes

at the MB-level, which is larger than the basic deblocking unit in the H.264 standard.

Can deblocking at a finer granularity increase the amount of parallelism, and still be

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

D
e

gr
e

e
 o

f
p

ar
al

le
lis

m

time unit

7

combined with the 3D wave-front method to further increase the parallelism? We will

explain this in the following sections.

Figure 2-5 The dark gray MBs can be processed in parallel[3].

MBs processed

MBs to be processed

MBs in flight

16

8

Chapter 3 Algorithm

3.1 16 Pixel Long Boundary Method

Analyzing applications at a finer granularity usually opens extra opportunities for

parallelization. In H.264, the standard defines the order for deblocking using a 16

pixel long boundary as its basic unit. As a result, in this section we analyze the data

dependencies within the deblocking filter, and then propose our deblocking order and

design. When deblocking a 16 pixel long boundary, in total it will affect eight 4x4

blocks adjacent to the boundary. Figure 3-1(a) shows the affected blocks when we

deblock a vertical 16 pixel long boundary, and Figure 3-1(b) shows the case for a

horizontal boundary.

Figure 3-1 Gray blocks are the affected 4x4 blocks when deblocking a (a) vertical

and (b) horizontal 16 pixel long boundary

We separate the data dependencies when using a 16 pixel long boundary for

deblocking into 3 cases:

Case 1: Intra MB 16 pixel long boundary data dependencies.

In Figure 3-2(a), the result after deblocking MBb1 (boundary b1) is input into the

deblocking filter for MBb2, with that result then becoming the input into the

(a) (b)
b1 b2 b3 b4 b1 b2 b3 b4

b6

b7

b8

b5

b6

b7

b8

b5

16 16

9

deblocking filter for MBb3 and so on. Through this analysis the data dependency chain

is MBb1MBb2MBb3MBb4 and MBb5MBb6MBb7MBb8. Moreover, the

deblocking result of MBb4 is input to MBb5, so the data dependency chain for intra

MB deblocking is MBb1MBb2MBb3MBb4MBb5MBb6MBb7MBb8 as

shown in Figure 3-2(b).

Figure 3-2 (a) Intra MB deblocking execution order, the gray blocks are data

dependencies from boundary 4 to boundary 5. (b) The data dependency chain for intra

MB deblocking.

Case 2: Same row inter-MB 16 pixel long boundary data dependencies.

In Figure 3-3, part of the deblocking result of Current MBb8 (the gray blocks) is

the deblocking input to Right MBb1, so Right MBb1 depends on Current MBb8. In

other words, Right MBb1 can begin execution after the Current MBb8 has completed

execution. This shows that using 16 pixel long boundaries, MBs within the same row

cannot be deblocked at the same time.

Figure 3-3 The deblocking data dependency chain for MBs in the same row.

b1 b2 b3 b4
b6

b7

b8

b5

(a) (b)

16 16

Current MB Right MB
16

10

Case 3: Adjacent row inter-MB 16 pixel long boundary data dependencies.

In Figure 3-4, the deblocking input of Current MBb5 needs 4 4x4 blocks from

Upper MB (gray blocks). According to Case 2, we find that the dark gray block is the

last to be modified. The dark gray block is modified by deblocking Upper-right MBb1

after which it is able to become the deblocking input to Current MBb5. Therefore,

Current MBb5 depends on Upper-right MBb1, with the data dependency chain shown

as a black arrow in Figure 3-4.

Figure 3-4 The data dependency chain between adjacent rows of MBs.

According to the above 3 cases, we propose a new execution order. This order

fulfills the required data dependencies whilst providing an extra degree of deblocking

parallelism. The time that deblocking is performed on each 16 pixel long boundary is

shown in Figure 3-5. If the time of execution for deblocking Current MBb1 is t, by the

above Case 2 the execution time of Right MBb2 is t+9, by Case 3 the execution time

of Lower MBb5 is also t+9, and by Case 1 the execution time of Lower MBb1 is t+5.

If the time of execution of Current MBb1 is t, it shows in Figure 3-6 the execution

time of Lower MBb1 is t+5 in 16 pixel long boundary method order, and the execution

time of Lower MBb1 is t+16 in the 2D wave-front method.

Current MB

Upper MB Upper-right
MBMB Rowx

MB Rowx+1

16

11

Figure 3-5 Proposed execution order.

Figure 3-6 Timing difference of the 16 pixel long boundary method order and the

2D wave-front method order.

According to Case 2 mentioned above, when deblocking on 16 pixel long

boundaries within the same MB row, MBs cannot be deblocked at the same time. As a

result, we can assign one PE to each row of MBs. Due to the relationship between the

number of PEs and the aspect of the frame to be deblocked, there are two cases that

can occur:

frame

Lower MB

Current MB Right MB

t+6 t+7 t+8
t+9

t+10

t+11

t+12

t+13

t+14

t+15

t+3t+2t+1 t+8 t+9 t+10t+11
t+12t+4

t+5

t+6

t+7

t+5

t

16

Current MB

Lower MB

t t+1 t+2 t+3
t+4

t+5

t+6

t+7

t+8t+7t+6
t+9

t+10

t+11

t+12

t+5

16 pixel long boundary method 2D wave-front order

Current MB

Lower MB

t t+1 t+2 t+3
t+4

t+5

t+6

t+7

t+19t+18t+17

t+23

t+22

t+21

t+20
t+16

16 16

12

Case I: Degree of parallelism depends on frame aspect

Assuming there are more PEs than needed, the degree of parallelism will be

limited only by the frame aspect. While processing 16 pixels horizontally (the width

of one MB) takes 8 stages, processing 16 pixels vertically takes only 5 stages in the

proposed order. As a result, deblocking of the first row of MBs will finish before

starting the last row of MBs, if the number of rows of MBs is less than (8/5) × the

number of columns of MBs in a frame. We categorize the effects of frame aspect ratio

into the following two situations:

i. # rows of MBs in frame ≤ 8/5 * # columns of MBs in frame (Degree of parallelism

limited by # rows of MBs in frame)

In this situation, the maximum parallelism is equal to the number of rows of MBs

in the frame. Our method has a wind up and wind down time similar to the 2D

wave-front method. A diagram is shown in Figure 3-7 to help explain. The upper-left

gray region is the starting up of the deblocking filter, and the lower-right gray region

is the finishing of the deblocking filter. In these regions, the deblocking filter is not

able to reach maximum parallelism. The white region is where the deblocking filter is

able to reach maximum parallelism. The degree of parallelism and timing relationship

diagram is shown in Figure 3-8.

Figure 3-7 Zones of wind up and wind down of deblocking order.

wind up

wind down

16

MH

13

Figure 3-8 The idealize computation execution time and degree of parallelism

relationship diagram. The time unit is the time required for deblocking a 16 pixel long

boundary.

ii. # rows of MBs in frame > 8/5 * # columns of MBs in frame (Degree of parallelism

limited by # columns of MBs in frame)

In this situation shown in Figure 3-9(a), the degree of parallelism is equal to the

number of rows of MBs that can start their deblocking before the deblocking has

completed for the first row of MBs. As explained in the beginning of case I, if the

ratio of the height to width is larger than 8/5, the degree of parallelism will be limited

by the frame width. The degree of parallelism and timing relationship diagram is

shown in Figure 3-9(b).

D
eg

re
e

 o
f

p
ar

al
le

lis
m

MH

wind up wind down

Time unit

Ideal case computation parallelism

MH: # of rows of MBs in frame

14

Figure 3-9 (a) The degree of parallelism is limited when the frame height is larger

than 8/5 times of the frame width. (b) The idealize computation execution time and

degree of parallelism relationship diagram.

Case II: # of PEs not enough for maximum parallelism.

In this case, the frame has to be split into multiple stripes for deblocking. Here we

first show a naive approach, and then propose an improved one.

Naive approach: In Figure 3-10, assume the number of PEs is K, and then divide

the frame into stripes where each stripe contains K rows of MBs. The execution order

of the stripes is from top to bottom. We find that each stripe has a wind up and wind

down time, meaning PEs remaining idle often occurs. The degree of parallelism and

timing diagram is shown in Figure 3-11.

Improved approach: In the naive approach, PEs are frequently idle between the

deblocking of stripes as shown in Figure 3-12(a). But after analyzing the details, we

find that the execution of the wind down of stripe x and the wind up of stripe x+1 can

wind up

MW

Degree of
parallelism
(row of MB)

wind down

(a) (b)

Time unit

Degree of parallelism

0wind up wind down

Ideal case computation parallelism

The time unit is the time required for
deblocking a 16 pixel long boundary

MW: # of columns of MBs in frame

15

be overlapped to fully utilize the PEs. They are able to be overlapped because there

are no direct data dependencies between the wind down of stripe x and the wind up of

stripe x+1. Therefore the wind up of stripe x+1 can begin execution earlier as shown

in Figure 3-12(b). The first row of MBs of stripe x will finish deblocking first after

which a PE will become idle, so that PE is then assigned to the first row of MBs of

stripe x+1. Continuing this method we find the degree of parallelism and timing as

shown in Figure 3-13, showing a reduction in the idle time of PEs.

Figure 3-10 # of PEs is not enough for maximum parallelism, frame split into

multiple stripes for deblocking.

Figure 3-11 The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism.

…

wind up

wind down

wind up

wind down

K rows of MBs

K rows of MBs

Time unit

Degree of parallelism

K

0

16

Figure 3-12 (a) The degree of parallelism and timing relationship between stripe x

and stripe x+1 before overlapping. (b) The degree of parallelism and timing

relationship between stripe x and stripe x+1 after overlapping.

Figure 3-13 The idealize computation execution time and degree of parallelism

relationship after overlapping.

In addition, when the number of rows per stripe K does not divide evenly into the

total number of MB rows, the final stripe will have a number of idle PEs as shown in

Fig. 19.

time unit

Degree of parallelism

K

…

time unit

Degree of parallelism

K

…

0

0

Stripe x

Stripe x+1

time unit

Degree of parallelism

K

…

time unit

Degree of parallelism

K

…

0

0

Stripe x

Stripe x+1

(a) (b)

time unit

Degree of parallelism

K

0

Time
reduction

17

Figure 3-14 The idealize computation execution time and degree of parallelism

relationship when the number of rows per stripe K does not divide evenly into the

total number of MB rows.

3.2 4 Pixel Long Boundary Method

Analyzing applications at a finer granularity usually opens extra opportunities for

parallelization. In H.264, the standard defined orders intersect with each other on a

4*4 grid and split boundaries into 4 pixel long boundaries as its basic units. As a

result, we have to analyze the data dependencies and generate the corresponding data

dependency chain first. In Figure 3-15(a), we assign IDs (b1~b32) to 4 pixel long

boundaries in a MB. The result after deblocking b1 is an input into the deblocking

filter for b5, with that result then becoming the inputs into both b17 and b9, and so on.

According to the data dependencies caused by the standard order, the data

dependency chain for intra MB deblocking is as shown in Figure 3-15 (b)

time unit

Degree of parallelism

K

0

Idle PEs

Last
stripe

18

Figure 3-15 (a) ID assignment and (b) data dependency of a MB.

Moreover, we can derive the data dependency tree for intra MB deblocking as

shown in Figure 3-16.

Figure 3-16 Data dependency tree of a MB.

In Figure 3-16, the data dependency tree is represented in 8 timing phases. The

timing of each boundary means the earliest timing the deblocking filter can operate.

16

(a) (b)

b17 b18 b19 b20

b21 b22 b23 b24

b25 b26 b27 b28

b29 b30 b31 b32

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

16

b17

b21

b25

b29

b27

b31

b2

b6

b10

b14

b3

b7

b11

b15

b19

b23

b4

b8

b12

b16

b1

b5

b9

b13b18

b22

b30

b26

b20

b24

b28

b32

ti
m

e
u

n
it

19

The black solid arrows mean these input sources are the results from other 4 pixel

long boundaries that are in the same MB, the black dotted arrows mean the input

sources are the results from other 4 pixel long boundaries that are in different MBs,

and the double arrows mean the input sources are used for this first time and come

from memory. The complete data dependency tree for a frame can be composed from

multiple copies of Figure 3-16 connected with black dotted arrows.

Next, we have to figure out the critical paths of the data dependency tree. When

the deblocking filter is on the critical paths, execution should be as soon as possible

for best performance. Here, we use following three steps to illustrate the critical paths

of a frame.

Step1: Intra MB 4 pixel long boundary critical paths.

Firstly assume the frame contains only one MB. Figure 3-17, which is a trivial

derivation from Figure 3-16, shows the critical paths of this frame with arrows

representing the data dependency directions. By sorting the counts of arrows from b5

to each 4 pixel long boundary, we can generate the execution order of the critical

paths.

Figure 3-17 (a) Critical paths of frame with only one MB and (b) Deblocking order

b3 b4

b11 b12

b19 b20

b27 b28

b5 b6 b7
b8

16

6

7

8

5

6

7

8

5
1 2 3 4

16

(a) (b)

20

on critical paths.

Step 2: Same row of MBs 4 pixel long boundary critical paths.

After step 1, we extend the analyzed frame size to one row of m MBs (m > 1).

Figure 3-18 shows the critical paths of this frame. All arrows compose the critical

paths of this frame. The gray arrows (from step 1) are caused by intra MB

dependencies. The double arrows are caused by the inter-MB dependencies in a row

of MBs. The black dotted arrows are also caused by intra MB dependencies, but

added due to the effects of inter-MB dependencies.

Figure 3-18 Critical paths of frame with only one row of MBs.

To meet the order demanded by the critical paths, we modify the deblocking order

of Step 1 as shown in Figure 3-19. The only modification made in Figure 3-19 are the

numbers in bold, which are on the extra critical paths caused by the inter-MB

dependencies in a row of MBs. Though not every critical paths that resides in

different MBs is identical, this order fulfills the requirements while keeping regularity.

Figure 3-20 shows the order of two adjacent MBs in the same row of MBs. Note that

the deblocking of the adjacent right MB starts at time 7, which is before the last

operation of the left MB. We will further analyze performance improvements in the

Chapter 4.

…

MB1 MB2 MBm-1 MBm

16

21

Figure 3-19 Deblocking order fulfills the critical path of a single row of MBs.

Figure 3-20 Deblocking order of only one row of MBs.

Step 3: Adjacent row inter-MB 4 pixel long boundary critical paths.

In this step, we further extend the size of a frame to n rows of m MBs (m > 1, n >

1). Figure 3-21 shows the corresponding critical paths. The gray arrows represent the

critical paths caused by both intra MB and inter same row MB data dependencies. The

black arrows represent the critical paths caused by inter adjacent rows of MBs. In

order to meet the requirements of this critical paths, we provide the deblocking order

extended from Step 2 in Figure 3-22.

6

7

8

5

6

7

8

5
1 2 3 4

2 3 4 5

3 4 5 6
16

t = 6 × (m - 1) + 1

6 6 12 12

7 7 13 13

8 8 14 14

1 2 3 4 7 8 9 10
5 5 11 11

2 3 4 5 8 9 10 11

3 4 5 6 9 10 11 12
16

t+5

t+6

t+7

t t+1 t+2 t+3
t+4

t+1 t+2 t+3 t+4

t+2 t+3 t+4 t+5

t+5

t+6

t+7

t+4
13

…
MB1 MB2 MB3 MBm

22

Figure 3-21 Critical paths of frame with m×n MBs.

Figure 3-22 Deblocking order that fulfills the critical paths of a frame with m×n

MBs.

The only modification made in Figure 3-22 is the number “3” in bold, which is on

the extra critical paths caused by adjacent rows of MBs. In Figure 3-21, the

distribution of critical paths form 8 types of MBs. Figure 3-23 illustrates the

…

…
… …

1 2 m-1 m

1

2

n

6

7

8

5

6

7

8

5
1 2 3 4

2 3 4 5

3 4 5 6

3

16

23

deblocking order of a 3MB×3MB square area, which is the smallest example that

contains all 8 types. In Figure 3-23, the gray numbers are the type of MBs. Assume

the order start from stage 1, which is the start of critical paths. On the one hand, the 4

pixel long boundaries that labeling the numbers in bold are on the critical paths with 3

×3 MBs frame. On the other hand, the 4 pixel long boundaries with non-bold numbers

were labeled by the order of MB proposed in Figure 3-22. We find that the second

row of MBs starts deblocking at the 6th stage. Analysis of performance improvements

will be discussed in the Chapter 4.

Figure 3-23 Deblocking order of 8 types MB.

The deblocking order in Figure 3-22 fulfills the requirements for correct

deblocking of all 4 pixel long boundaries on the critical paths. Next, we decide the

2 3 4
6 6

7 7

8 8

1
5 5

1313

1212

1111

1010
9876

19

18

17

16
15

19

18

17

16
141312

1414

1313

1212

1111
10987

9

8 14

3

13 14 15 16

8 9 10 112 3 4 5

7 8 9 10

3 4 5 6 9 10 11 12

14 15 16 178 9 10 11

16

2424

2323

2222

2121

16151413

14 15 15 17

15 16 17 18
2020

1919

1818

1717

21201918

19 20 21 22

20 21 22 23
2525

2424

2323

2222

14131211

12 13 14 15

13 14 15 16
1818

1717

1616

1515
20191817

18 19 20 21

19 20 21 22

26252423

24 25 26 27

25 26 27 28
3030

2929

2828

2727

15

20

2513 19

24

execution order of boundaries that are not on the critical paths. Because these

boundaries are not on the critical paths, there is some flexibility in reordering while

not increasing the time for deblocking. Figure 3-24 shows all possible orders for 4

pixel long boundaries not on critical paths while not increasing the length of any

critical path. These boundaries are categorized into 3 groups. By following arrows in

each group, all possible orders can be generated. Taking the group containing b8, b12,

and b16 for example, {4,5,6}, {4,5,7}, {4,6,7}, and {5,6,7} are all possible order

assignment for {b8,b12,b16} in this group.

Figure 3-24 Flexible orders on non-critical paths boundaries.

When we consider the minimum required amount of PEs for processing one

additional MB row without prolonging the required processing time, the effects of

orders for 4 pixel long boundaries not on critical paths should be noticed.

In order to minimize the amount of required PEs, we derive the minimum amount

of required PEs for one additional MB row. Deblock one MB need at least 8 time

units due to the length of critical path in a single MB. According to the order for 4

pixel long boundaries as shown in Figure 3-22, we find the serial numbers of

boundaries that can be deblocked at same time unit for each time unit of deblock a

b17 b18 b19 b20

b21 b22 b23 b24

b25 b26 b27 b28

b29 b30 b31 b32

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

16

16

b8 b12 b16

4
5

5
6

6
7

b17 b21 b25 b29

3
4
5

4
5
6

5
6
7

6
7
8

b18 b22 b26 b30

4
5

5
6

6
7

7
8

6

7

8

5

6

7

8

5
1 2 3 4

2 3 4 5

3 4 5 6

3

16

25

MB is 12434322 (Figure 3-25(a) black numbers). We can find from Figure 3-24, the

possible orders of boundaries that on non-critical paths are at 3rd to 8th time unit for

deblock a MB (Figure 3-25(a) red numbers). One MB have 32 boundaries need to be

deblocked, so we find the sum of numbers in green block as shown in Figure 3-25(a)

is 32. As mention in Figure 3-20, the MB2 deblocked start at 7th time unit of MB1 as

shown in Figure 3-25(a). The sum of numbers in blue block as shown in Figure 3-25(a)

is 32, we can find that deblock one MB row must process 32 boundaries in 6 time

units. So deblock one MB row at least required ceiling(16/3) PEs, and deblock n MB

row at least required ceiling(16n/3) PEs. Deblock one MB row at least required 6 PEs,

required 5 PEs for 2nd additional MB row, and required 5 PEs for 3rd additional MB

row.

Figure 3-25 (a) The minimum amount of required PEs for one MB row. (b) The

amount of required PEs for one additional MB row.

As the result of minimum amount of required PEs for one MB row, we proposed a

order as shown in Figure 3-26. It is satisfy the minimum amount of required PEs for

one MB row.

MB1 MB2 MB3 MBn…

12434322(MB1)

12434322(MB2)

12434322(MB3)
…

time unit

11

11

11

32=

32=

(a) (b)

n # of PEs
1 6
2 11
3 16… …

26

Figure 3-26 Proposed deblocking order

In Figure 3-27 shows the regularity in the number sequence that the number of

boundaries in one MB row able to be deblocked in parallel: 12(565565)*565553. As

mention in Figure 3-23, deblocking of one MB row can start with a delay of 5 time

units to its upper adjacent MB row. Figure 3-27 shows the number of PEs required

with number of MBs raising up. It is clear that the proposed order meets the rule of

minimum amount of required PEs mention in Figure 3-25. Moreover, every 3 rows of

MBs regularly provide 16 4 pixel long boundaries that can be deblocked in parallel in

every time unit after a build-up time.

Figure 3-27 The number of PEs required with number of MBs raising up

Due to the relationship between the number of PEs and the aspect of the frame to

be deblocked there are two cases that can occur:

Case I: Degree of parallelism depends on frame aspect

Assuming there are more PEs than needed, the degree of parallelism will be

3 4 5 5

4 5 6 6

6 7 7 7

7 8 8 8

1 2 3 4

2 3 4 5

3 4 5 6

3 4 6 7

16

125655655655 6 5 5 6 5 5 6 5 …
1256556 5 5 6 5 5 6 5 5 …

12 5 6 5 5 6 5 5 6 …

MB row1
MB row2
MB row3

of row required PEs
1 6
2 11
3 16

…

… …

time unit
16 16 16 16 16 16 16 16

27

limited only by the frame aspect. While processing 16 pixels horizontally (the width

of one MB) takes 6 stages, processing 16 pixels vertically takes only 5 stages in the

proposed order. As a result, deblocking of the first row of MBs will finish before

starting the last row of MBs, if the number of rows of MBs is less than (6/5) × (the

number of columns of MBs in a frame). We categorize the effects of frame aspect

ratio into the following two situations:

i. # rows of MBs in frame ≤ 6/5 * # columns of MBs in frame (Degree of parallelism

limited by # rows of MBs in frame)

In this situation, the maximum parallelism is proportional to the number of rows

of MBs in the frame. According to the deblocking order in Figure 3-29, the maximum

parallelism of 3 rows of MBs is 16. We can find the maximum parallelism of one row

of MBs is ceiling(16/3). For example, the maximum parallelism of one row of MBs is

6, the maximum parallelism of two rows of MBs is 11, and the maximum parallelism

of three rows of MBs is 16. Our method has a wind up and wind down time similar to

the 2D wave-front method. A diagram is shown in Figure 3-28 to help explain. The

upper-left gray region is the starting up of the deblocking filter, and the lower-right

gray region is the finishing of the deblocking filter. In these regions, the deblocking

filter is not able to reach maximum parallelism. The white region is where the

deblocking filter is able to reach maximum parallelism. The degree of parallelism and

timing relationship diagram is shown in Figure 3-29.

28

Figure 3-28 Zones of wind up and wind down of deblocking order.

Figure 3-29 The idealize computation execution time and degree of parallelism

relationship diagram. The time unit is the time required for deblocking a 4 pixel long

boundary.

ii. # rows of MBs in frame > 6/5 * # columns of MBs in frame (Degree of parallelism

limited by # columns of MBs in frame)

In this situation, shown in Figure 3-30(a), the degree of parallelism is equal to

ceiling((16/3) multiplied by the number of rows of MBs that can start their deblocking

before the deblocking has completed for the first row of MBs). As explained in the

beginning of case I, if the ratio of the height to width is larger than 6/5, the degree of

wind up

wind down

16

MH

Degree of parallelism

wind up wind down

Ideal case computation parallelism

time unit

MH: # of rows of MBs in frame

29

parallelism will be limited by the frame width. The degree of parallelism and timing

relationship diagram is shown in Figure 3-30(b).

Figure 3-30 (a) The degree of parallelism is limited when the frame height it larger

than 6/5 times of the frame width. (b) The idealize computation execution time and

degree of parallelism relationship diagram.

Case II: # of PEs not enough for maximum parallelism.

In this case, the frame has to be split into multiple stripes for deblocking. Here we

first show a naive approach, and then propose an improved one.

Naive approach: In Figure 3-31, assume the number of PEs is able to deblock only

K rows of MBs at the same time, and K is less than the maximum number of

parallelizable MB rows. Then divide the frame into stripes where each stripe contains

K rows of MBs. The execution order of the stripes is from top to bottom. We find that

each stripe has a wind up and wind down time, meaning PEs remaining idle often

occurs. The degree of parallelism and timing diagram is shown in Figure 3-32.

wind up

wind down

MW

The time unit is the time required for
deblocking a 4 pixel long boundary

Degree of parallelism

wind up wind down

time unit

Ideal case computation parallelism

(a) (b)

MW: # of columns of MBs in frame

30

Figure 3-31 # of PEs is not enough for maximum parallelism, frame split into

multiple stripes for deblocking.

Figure 3-32 The degree of parallelism and timing diagram when the # of PEs is not

enough for maximum parallelism.

Improved approach: In the naive approach, PEs are frequently idle between the

deblocking of stripes as shown in Figure 3-34(a). But after analyzing the details, we

find that the execution of the wind down of stripe x and the wind up of stripe x+1 can

be overlapped to fully utilize the PEs. The only reason that the first MB row of stripe

x+1 has not started deblocking is because there are not enough PEs. Once the PEs are

idle, the first MB row of stripe x+1 can start, and shortly after the other MB rows of

stripe x+1. Figure 3-33 shows how the first MB row of stripe x+1 can start deblocking

at the last two stages of deblocking the first MB row of stripe x as an example. Using

this approach, the wind up of stripe x+1 can begin execution earlier as shown in

…

wind up

wind down

wind up

wind down

K rows of MBs

K rows of MBs

time unit

Degree of parallelism

0

The time unit is the time required for
deblocking a 4 pixel long boundary

31

Figure 3-34(b). Moreover, we keep the regularity of the amount of required PEs for

both stripes.

Figure 3-33 PE assignment for the first MB row of both stripe x and x+1

Applying this method we find the degree of parallelism and timing as shown in

Figure 3-35, showing a reduction in the idle time of PEs.

Figure 3-34 (a) The degree of parallelism and timing relationship between stripe x

and stripe x+1 before overlapping. (b) The degree of parallelism and timing

relationship between stripe x and stripe x+1 after overlapping.

windup

wind down

windup

wind down

K row of MB

K row of MB

16

12565565565565…565565565553
12565565565565…565565565553

The first of row of MBs of piece x

The first of row of MBs of piece x+1
time unit

12565565565565…565565565565565565565565…565565565553

time unit

Degree of parallelism

…

time unit

Degree of parallelism

…

0

0

Stripe x

Stripe x+1

time unit

Degree of parallelism

…

time unit

Degree of parallelism

…

0

0

Stripe x

Stripe x+1

(a) (b)

32

Figure 3-35 The idealize computation execution time and degree of parallelism

relationship after overlapping.

time unit

Degree of parallelism

0

Time
reduction

33

Chapter 4 Comparison

The proposed order has been shown in the previous chapters, so the focus of this

section is on determining the degree to which parallelism and execution time can be

improved from this design. In this chapter, we first model the parallelism and time of

deblocking a frame for both the proposed order and 2D wave-front method order.

Then we show the benefit of overlapping, and then we construct two figures to show

the effects of the number of PEs and the benefits from overlapping the deblocking of

adjacent rows of MBs. After that, the time required will be compared using three

representative examples. In the end, we explain that our design is also complementary

to the 3D wave-front method.

4.1 Equations

The proposed execution order’s maximum parallelism and required wind up time,

wind down time and execution time can be expressed by the equations:

4.1.1 4 pixel long boundary method

Maximum # of rows of MBs that can be deblocked in parallel (K)

= 𝑖 (⌈
6

5
 ⌉ ⌊

3×# 𝑜𝑓 𝑃𝐸𝑠

 6
⌋) (3)

 𝑖 𝑒 𝑖 ()

 ⌈𝐾 ×
 6

3
⌉ (4)

𝑊𝑖 𝑑 𝑖 𝑒

= Time to reach the row of maximum parallelism + Time to reach the maximum parallelism in that row

= (delay between processing rows) × (Maximum # of rows of MBs that can be deblocked in parallel

 1) + (Time to reach the maximum parallelism in the Kth row)

= 5 × (𝐾) +

= 5 × 𝐾 3 (5)

34

𝑊𝑖 𝑑 𝑑𝑜𝑤 𝑖 𝑒

 {
𝑇𝑖 𝑒 𝑓 𝑒 𝑓𝑖 𝑖 𝑕𝑖 𝑔 𝑕𝑒 K 𝑕 𝑜𝑤 𝑜𝑓 . 𝑖𝑓 𝑒 𝑜 𝑔𝑕 𝐸
𝑇𝑖 𝑒 𝑓 𝑒 𝑓𝑖 𝑖 𝑕𝑖 𝑔 𝑜𝑤 𝑜𝑓 𝑖 𝑖 𝑒. 𝑖𝑓 𝑖 𝑖 𝑒𝑑 𝐸

{

(𝑑𝑒 𝑦 𝑏𝑒 𝑤𝑒𝑒 𝑜𝑐𝑒 𝑖 𝑔 𝑜𝑤) × (𝑖 # 𝑜𝑓 𝑜𝑤 𝑜𝑓 𝑕 𝑐 𝑏𝑒 𝑑𝑒𝑏 𝑜𝑐𝑘𝑒𝑑 𝑖 𝑒)

 + (𝑇𝑖 𝑒 𝑓 𝑒 𝑖 𝑒 𝑖 𝑖 𝑕𝑒 𝐾 𝑕 𝑜𝑤 𝑜𝑓) 𝑖𝑓 #𝑜𝑓 𝐸 ≥ ⌈
 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉

(𝑑𝑒 𝑦 𝑏𝑒 𝑤𝑒𝑒 𝑜𝑐𝑒 𝑖 𝑔 𝑜𝑤) × (# 𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒)

+ (𝑇𝑖 𝑒 𝑓 𝑒 𝑖 𝑒 𝑖 𝑖 𝑕𝑒 𝑕 𝑜𝑤 𝑜𝑓 𝑖 𝑖 𝑒) 𝑖𝑓 #𝑜𝑓 𝐸 < ⌈
 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉

 {
5 × (𝐾) + 𝑖𝑓 #𝑜𝑓 𝐸 ≥ ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉ 𝑜 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

5 × ((𝑜𝑑 𝐾)) + 𝑜 𝑕𝑒 𝑤𝑖 𝑒

 (6)

𝑇𝑜 𝐸 𝑒𝑐 𝑖𝑜 𝑖 𝑒

 {
𝑇𝑖 𝑒 𝑏𝑒𝑓𝑜 𝑒 𝑜𝑤 𝑜𝑓 + 𝑇𝑖 𝑒 𝑜 𝑓𝑖 𝑖 𝑕 𝑜𝑤 𝑜𝑓 𝑖𝑓 𝑒 𝑜 𝑔𝑕 𝐸

(𝑇𝑖 𝑒 𝑜 𝑓𝑖 𝑖 𝑕 𝑜 𝑒 𝑜𝑤 𝑜𝑓) × (# 𝑜𝑓 𝑖𝑒𝑐𝑒) +𝑊𝑖 𝑑 𝑑𝑜𝑤 𝑖 𝑒 𝑜𝑓 𝑖 𝑒 𝑖𝑓 𝑖 𝑖 𝑒𝑑 𝐸

{

 + 5 × () + 6 × 𝑖𝑓 #𝑜𝑓 𝐸 ≥ ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉

6 × × ⌈

𝐾
⌉ + 5 × (𝐾) + 𝑖𝑓 #𝑜𝑓 𝐸 < ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉ 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒 𝐾

6 × × ⌈

𝐾
⌉ + 5 × ((𝑜𝑑 𝐾)) + 𝑖𝑓 #𝑜𝑓 𝐸 < ⌈

 6

3
× 𝑖 (⌈

6

5
 𝑊⌉ 𝐻)⌉ 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒 𝐾

 (7)

The time unit is the time required for deblocking a 4 pixel long boundary. The

parallelism unit is a 4 pixel long boundary.

4.1.2 16 pixel long boundary method

In order to compare the 4 pixel long boundary method with the 16 pixel long

boundary method, we modify the original equations. First, taking the number of PEs

into consideration; and second, adjusting the parallelism and the time unit. Each 16

pixel long boundary contains four 4 pixel long boundaries that can be deblocked in

parallel. So assuming the computation power of all PEs are the same, we multiply the

time by 1 and the parallelism by 4. The following equations show the modified

equations for the 16 pixel long boundary method:

 𝑖 𝑒 𝑖 ()

= Maximum # of rows of MBs that can be deblocked in parallel

35

= Min (# of rows of MBs, # of parallel deblocked rows of MBs when limited by the width of frame, # of

available PEs)

 4 × 𝑖 (𝐻 ⌈
8

5
 𝑊⌉ # 𝑜𝑓 𝐸) (8)

𝑊𝑖 𝑑 𝑖 𝑒

= Time to reach the row of maximum parallelism

= (delay between processing rows) × (maximum parallelism - 1)

= 5 × () (9)

𝑊𝑖 𝑑 𝑑𝑜𝑤 𝑖 𝑒

 {
𝑇𝑖 𝑒 𝑓 𝑒 𝑓𝑖 𝑖 𝑕𝑖 𝑔 𝑕𝑒 𝑕 𝑜𝑤 𝑜𝑓 . 𝑖𝑓 𝑒 𝑜 𝑔𝑕 𝐸
𝑇𝑖 𝑒 𝑓 𝑒 𝑓𝑖 𝑖 𝑕𝑖 𝑔 𝑜𝑤 𝑜𝑓 𝑖 𝑖 𝑒. 𝑖𝑓 𝑖 𝑖 𝑒𝑑 𝐸

 {
(𝑑𝑒 𝑦 𝑏𝑒 𝑤𝑒𝑒 𝑜𝑐𝑒 𝑖 𝑔 𝑜𝑤) × (𝑖 𝑒 𝑖) 𝑖𝑓 #𝑜𝑓 𝐸 ≥ 𝑖 (𝐻 ⌈

8

5
 𝑊⌉)

(𝑑𝑒 𝑦 𝑏𝑒 𝑤𝑒𝑒 𝑜𝑐𝑒 𝑖 𝑔 𝑜𝑤) × (# 𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒) 𝑖𝑓 #𝑜𝑓 𝐸 < 𝑖 (𝐻 ⌈
8

5
 𝑊⌉)

 {
5 × () 𝑖𝑓 #𝑜𝑓 𝐸 ≥ 𝑖 (𝐻 ⌈

8

5
 𝑊⌉) 𝑜 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

5 × ((𝑜𝑑)) 𝑜 𝑕𝑒 𝑤𝑖 𝑒

 ()

𝑇𝑜 𝐸 𝑒𝑐 𝑖𝑜 𝑖 𝑒

 {
𝑇𝑖 𝑒 𝑏𝑒𝑓𝑜 𝑒 𝑜𝑤 𝑜𝑓 + 𝑇𝑖 𝑒 𝑜 𝑓𝑖 𝑖 𝑕 𝑜𝑤 𝑜𝑓 𝑖𝑓 𝑒 𝑜 𝑔𝑕 𝐸

(𝑇𝑖 𝑒 𝑜 𝑓𝑖 𝑖 𝑕 𝑜 𝑒 𝑜𝑤 𝑜𝑓) × (# 𝑜𝑓 𝑖𝑒𝑐𝑒) +𝑊𝑖 𝑑 𝑑𝑜𝑤 𝑖 𝑒 𝑜𝑓 𝑖 𝑒 𝑖𝑓 𝑖 𝑖 𝑒𝑑 𝐸

{

 5 × () + 8 × 𝑖𝑓 #𝑜𝑓 𝐸 ≥ 𝑖 (𝐻 ⌈

8

5
 𝑊⌉)

8 × × ⌈

⌉ + 5 × () 𝑖𝑓 #𝑜𝑓 𝐸 < 𝑖 (𝐻 ⌈

8

5
 𝑊⌉) 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

8 × × ⌈

⌉ + 5 × ((𝑜𝑑)) 𝑖𝑓 #𝑜𝑓 𝐸 < 𝑖 (𝐻 ⌈

8

5
 𝑊⌉) 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

 ()

4.1.3 2D wave-front method

In order to compare the 4 pixel long boundary method with the 2D wave-front

method, we modify the original equations. First, taking the number of PEs into

consideration; and second, adjusting the parallelism and the time unit. Deblocking one

MB with the 2D wave-front method is done by deblocking eight 16 pixel long

boundaries consecutively. Moreover, each 16 pixel long boundary contains four 4

pixel long boundaries that can be deblocked in parallel. So assuming the computation

36

power of all PEs are the same, we multiply the time by 8 and the parallelism by 4. The

following equations show the modified equations for the 2D wave-front method:

 𝑖 𝑒 𝑖 () 4 × 𝑖 (⌈

 ⌉ # 𝑜𝑓 𝐸) ()

𝑊𝑖 𝑑 𝑖 𝑒 8 × × () (3)

𝑊𝑖 𝑑 𝑑𝑜𝑤 𝑖 𝑒

 {
8 × × () 𝑖𝑓 #𝑜𝑓 𝐸 ≥ 𝑖 (𝐻 ⌈

 𝑊⌉) 𝑜 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

8 × × ((𝑜𝑑)) 𝑜 𝑕𝑒 𝑤𝑖 𝑒

 (4)

𝑇𝑜 𝐸 𝑒𝑐 𝑖𝑜 𝑖 𝑒

{

 8 × × () + 8 × 𝑖𝑓 #𝑜𝑓 𝐸 ≥ 𝑖 (𝐻 ⌈

 𝑊⌉)

8 × × ⌈

⌉ + 8 × × () 𝑖𝑓 #𝑜𝑓 𝐸 < 𝑖 (𝐻 ⌈

 𝑊⌉) 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

8 × × ⌈

⌉ + 8 × × ((𝑜𝑑)) 𝑖𝑓 #𝑜𝑓 𝐸 < 𝑖 (𝐻 ⌈

 𝑊⌉) 𝑑 #𝑜𝑓 𝑜𝑤 𝑖 𝑖 𝑒

 (5)

4.2 Overlapping benefit

In Figure 4-1, we can find overlapping is beneficial for all methods. Overlapping

is actually more useful for the 2D wave-front method because it has a longer wind up

and wind down time. In following, we will compare these three methods using the

results with overlapping.

1000

10000

100000

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e
)

of PEs

4 w/o overlapping

4 w/ overlapping

1000

10000

100000

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e
)

of PEs

16 w/o overlapping

16 w/ overlapping

1000

10000

100000

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e
)

of PEs

2D w/o overlapping

2D w/ overlapping

(a) 4 pixel long boundary (b) 16 pixel long boundary (c) 2D pixel long boundary

37

Figure 4-1 Overlapping benefit for proposed methods and 2D wave-front method.

4.3 Comparing different granularities

Figure 4-2 shows that for all the 2D wave-front method and two proposed

methods, the greater the number of PEs, the greater the benefit to the time to deblock

a frame. However, our proposed method gains more benefit than the 2D wave-front

method which comes from the shorter wind up and wind down time requirement,

especially for the vertically shaped frame.

Figure 4-2 Proposed methods compared with the 2D wave-front method in time

for deblocking and number of PEs when frame size is (a)1920×1080 (b)1080×1920.

Moreover, we find the total execution time curves have a step-like pattern. This

characteristic comes from the splitting of frames. When the number of PEs passes a

threshold in which the number of PEs can divide evenly into the total number of MB

rows, the total execution time is greatly reduced, thus forming the curves.

While the speedup of the 2D wave-front method stops at 240 PEs for the

horizontal shaped frame, and 136 PEs for the vertically one, the speedup of our

proposed methods keeps improving until 272 PEs in 16 pixel long boundary method

(a) 1920×1080 (b) 1080×1920

1000

10000

100000

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e
)

of PEs

4 w/ overlapping

16 w/ overlapping

2D w/ overlapping

1000

10000

100000
Lo

g(
To

ta
l E

xe
cu

ti
o

n
 T

im
e

)

of PEs

4 w/ overlapping

16 w/ overlapping

2D w/ overlapping

38

and 363 PEs in 4 pixel long boundary method for the vertically shaped frame; 436

PEs in 16 pixel long boundary method and 438 PEs in 4 pixel long boundary method

for the horizontal case.

Considering limited amount of PEs, we find the 16 pixel long boundary method is

better than the 2D wave-front method for any number of PEs. The 4 pixel long

boundary method is better than the 16 pixel long boundary even the parallelism is

similar, because of short wind up/wind down time in the 4 pixel long boundary

method. However in some cases the 16 pixel long boundary method is better than the

4 pixel long boundary, most cases in the 4 pixel long boundary method is better than

both the 16 pixel long boundary method and 2D wave-front method.

As mentioned above, in some cases the 16 pixel long boundary method and 2D

wave-front method sometimes get better time reduction. We use an example to

explain. Figure 4-3 compares the 2D wave-front method and the 4 pixel long

boundary method with deblocking overlapping for a 1920*1080 sized frame using 70

PEs. This example explains when the 4 pixel long boundary method will get higher

maximum degree of parallelism but fail in getting better time reduction. When a

frame is divided into stripes, the last stripe of the frame might be small, but still takes

long delay to deal with. This delay could be covered when more than 74 PEs

available.

39

Figure 4-3 4 pixel long boundary method compared with the 2D wave-front

method in degree of parallelism and time for deblocking when frame sizes are 1920×

1080 and using 70 PEs.

With enough PEs, Figure 4-4 shows the comparison of the proposed designs and

the 2D wave-front method for both (a) horizontally shaped and (b) vertically shaped

frames.

Figure 4-4 Proposed methods compared with the 2D wave-front method in

idealize degree of parallelism and time for deblocking when frame sizes are (a) 1920×

1080 and (b) 1080×1920.

Table 4-1 shows the speedup for total execution time and Table 4-2 shows the

slope of idealize parallelism in wind up time for each design.

Table 4-1 Speedup for total execution time.

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000

D
e

gr
e

e
 o

f
p

ar
al

le
lis

m

time unit

2D

4 pixel

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

4 pixel

16 pixel

2D

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

4 pixel

16 pixel

2D

(a) 1920×1080 (b) 1080×1920

40

speedup 1920×1080 1080×1920

16 : 2D 1.57 2.15

4 : 2D 1.92 2.44

4 : 16 1.22 1.13

Table 4-2 Increasing slope of parallelism in wind up.

Method Slope of parallelism in

wind up time

4 pixel long boundary 1.08

16 pixel long boundary 0.81

2D wave-front 0.25

Last but not least, when considering if our design is complementary with the 3D

wave-front method as the 2D wave-front is, the answer is yes. Due to the deblocking

filter having no inter-frame data dependencies, our approach is definitely

complementary with the 3D wave-front method.

41

Chapter 5 Hardware Architectural

Requirements

In order to deblock a video frame in the proposed order, some hardware support

may be necessary. In this Chapter, we list some major hardware requirements such

as dedicated buses between PEs, data loop-backs, and internal buffers. Any hardware

that fulfills these requirements should be capable of gaining the benefits from

proposed order.

5.1 16 pixel long boundary

Based on the PEs assignment mentioned above, followings are the requirements of

the hardware design:

 As mentioned in case 1 and 2 of Chapter 3.1, 16 pixel long boundaries a row

of MBs are required to be deblocked in sequential order, so we can assign

one PE for each row of MBs. While deblocking a row of MBs, some

intermediate pixel values should be looped back to the PE itself or be kept in

internal buffers for further use later.

 As mentioned in case 3 of Chapter 3, we know that the deblocking of every

MBb5 requires the pixel values that come from its Upper and Upper-right MB.

Since we assign a PE to the deblocking of a row of MBs, we need a dedicated

bus for data bypassing between PEs dealing with adjacent rows of MBs. This

bus can be unidirectional from the upper PE to its adjacent lower PE.

A schematic of the hardware architectural requirements is shown in Figure 5-1.

The Input Buffer stores pixels that are not yet deblocked, the Output Buffer stores

42

pixels that have been deblocked, and the Internal Buffer stores pixels whose value is

needed later. Moreover, PEs will use a shared bus to access memory. If the share bus

bandwidth satisfied, the Input Buffer size and Output Buffer size are 1 MB size, and

the Internal Buffer size is 1/4 MB size for one PE.

Figure 5-1 Schematic of hardware architectural requirements.

5.2 4 pixel long boundary

As mentioned in Figure 3-30 of Chapter 3.2, it provides totally 16 4 pixel long

Input
Buffer 1

Output
Buffer 1

PE 1 Internal Buffer 1

memory

Input
Buffer 2

Output
Buffer 2

PE 2 Internal Buffer 2

Input
Buffer n

Output
Buffer n

PE n Internal Buffer n

43

boundaries that can be deblocked in parallel every 3 rows of MBs. As a result, we can

group 3 rows of MBs and assign 16 PEs for each group. We proposed a PEs

assignment as shown in Figure 5-2(b), it shows all 4 pixel long boundaries in group be

processed by 16 PEs. For examples, PE1 process each MB’s b1, b5, b17, b18, b20, b24 in

MB R1; PE6 process each MB’s b8, b29 in MB R1 and each MB’s b1, b12, b17, b18 in

MB R2. In other words, the same PE processes the same boundaries in each MB of

same MB row.

Figure 5-2 (a) ID assignment in a MB. (b) PEs assignment for 3 MB rows.

Based on the PEs assignment mentioned above, followings are the requirements of

the hardware design:

1. While deblocking a 4 pixel long boundary, some intermediate pixel values

should be looped back to the PE itself or be kept in internal buffers for further use

later.

b17 b18 b19 b20

b21 b22 b23 b24

b25 b26 b27 b28

b29 b30 b31 b32

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16

16

16

MB R1
MB R2
MB R3

(a) (b)

PE1: R1-b1 , R1-b5 , R1-b17, R1-b18, R1-b20, R1-b24

PE2: R1-b2 , R1-b9 , R1-b13, R1-b19, R1-b23, R1-b28

PE3: R1-b6 , R1-b16, R1-b21, R1-b22, R1-b25, R1-b32

PE4: R1-b3 , R1-b10, R1-b14, R1-b15, R1-b27, R1-b31

PE5: R1-b4 , R1-b7 , R1-b11, R1-b12, R1-b26, R1-b30

PE6: R1-b8 , R1-b29, R2-b1 , R2-b12, R2-b17, R2-b18

PE7: R2-b5 , R2-b9 , R2-b13, R2-b20, R2-b24, R2-b28

PE8: R2-b2 , R2-b6 , R2-b16, R2-b21, R2-b22, R2-b25

PE9: R2-b3 , R2-b10, R2-b19, R2-b23, R2-b26, R2-b32

PE10: R2-b4 , R2-b7 , R2-b14, R2-b15, R2-b29, R2-b31

PE11: R2-b8 , R2-b11, R2-b27, R2-b30, R3-b11, R3-b18

PE12: R3-b2 , R3-b17, R3-b20, R3-b21, R3-b24, R3-b28

PE13: R3-b5 , R3-b9 , R3-b13, R3-b22, R3-b23, R3-b27

PE14: R3-b6 , R3-b10, R3-b14, R3-b15, R3-b26, R3-b32

PE15: R3-b3 , R3-b7 , R3-b19, R3-b25, R3-b29, R3-b30

PE16: R3-b4 , R3-b8 , R3-b11, R3-b12, R3-b16, R3-b31

PE Assignment (not Exec. Order)

44

2. We know one PE deblocking of a 4 pixel long boundary requires the pixel

values that maybe come from five sources:

i. Its two results previous stage.

ii. Bypassing from others two PEs results previous stage.

iii. First deblocking pixel values that come from the memory.

3. While one PE deblocking of a 4 pixel long boundary, its outputs maybe transfer

to other objectives:

i. Transfer to the output buffer.

ii. Transfer to other PEs.

A schematic of the hardware architectural requirements for one PE is shown in

Figure 5-3. The Buffer stores pixels whose value is needed later, the Output Buffer

stores pixels that have been deblocked. The Buffer size is 2 4×4 blocks, and the

Output Buffer size is 2 4×4 blocks for one PE.

Figure 5-3 Schematic of hardware architectural requirements for one PE.

According to the PEs assignment in Figure 5-2(b), the connection of PEs as shown

in Figure 5-4.

Buffer

Output
Buffer

Deblocking

Mem

Memory

Bypassing to other PEs

(at most 5 PEs are connected)

BP1 BP2

(Only 2 active at the same time)
Demux
1 to 6

Demux
1 to 6

P Q

P’

Q’ 5
5

45

Figure 5-4 The connection of PEs.

5.3 Timing model

In order to find out the overhead of different granularity, we separate the time that

process one deblocking operation to time for read, time for filer, and time for write.

According to the hardware as mention above, the sources of read and write are

memory, others PEs, and self PE. Assuming an address can load 16 pixels, the time

latency of 3 sources is memory: others PEs: self PE = x: y: z. Due to we don’t find the

time latency of 3 sources ratio, we assume y = x/1000 and the time latency of self PE

is 0. We use CACTI[9] to estimate the time latency of memory is 1.63ns, and model

the time latency of read data and write data in Table 5-1.

Table 5-1 Time for read data and write data.

PE1 PE2

PE4 PE3

PE5 PE6

PE8 PE7

PE9 PE10

PE12 PE11

PE13 PE14

PE16 PE15

NPE1 NPE2

46

Memory Others PEs Self PE

1.63(ns) 0.013(ns) 0(ns)

According to Ref[8], we can know time for filer is 10ns. We assume one stage

compose of read data, filter, and write data. The time of one stage is 13.26ns that is

sum up maximum time for read, maximum time for filter, and maximum time for

write. The timing model can find the time for process one frame size is 1920×1080 as

shown in Table 5-2. The Pt is the maximum parallelism at time t in Table 5-2.

Table 5-2 Time for deblocking a 1920×1080 frame.

Granularity Time

2D-wavefront(MB) ∑(× 3. 6)

 3

Boundary16 ∑(× 3. 6)

 5

Boundary4 ∑(× 3. 6)

 57

After timing model, the speedup of different granularity is the same as Table 4-1.

But the speedup of original sequential deblocking is different. We use Boundary4 to

process one QCIF(176×144) need 108 stages. In Ref[10] can know sequential

deblocking one MB need 530 cycles, so average cycles for process one 4 pixel long

boundary is 17. In Ref[10] sequential process one QCIF frame need 51930 cycles, the

47

Table 5-3 can find the ideal speedup and actual speedup is different.

Table 5-3 Speedup for idealize and actually.

 idealize actually

speedup 99 × 3

 8
 9.33

5 93

 8 × 7
 8. 8

The difference is come from the Boundary strength (BS) value, BS value range

from 0 to 4. Each boundary have a BS value, boundary unneeded deblocking if BS

value is 0, boundary needed deblocking if BS value is 1~4. In sequential processing,

process next boundary if current boundary’s BS value equal to 0. But in our design,

the time of stage is fixed, it must wait if current boundary’s BS value equal to 0.

48

Chapter 6 Conclusion

As shown in our proposed order, examining the deblocking algorithm at a finer

granularity did bring additional opportunities for exploiting parallelism, and thus

speed up the execution time of the deblocking filter. 4 pixel long boundary method

compared with the 2D wave-front method order in deblocking both 1920*1080 and

1080*1920 pixel sized frames, we gain a speedup of 1.92 and 2.44 times given an

un-limited number of PEs respectively. For an environment with limited hardware

resources, we also provide an algorithm able to fully utilize available resources for the

deblocking filter.

Considering the trend of digital video codecs, larger frame sizes and reduced

coded video size are both essential. In order to achieve this goal, the deblocking filter

plays an important role because dealing with larger frames takes time proportional to

the frame size. The proposed design can limit the growth in time spent deblocking by

the maximum of the frame width and height, which are often proportional to the

square root of the frame size. Thus it brings the opportunity for practical real-time

deblocking of larger sized videos in the future.

The proposed approach in this paper is just the first step of parallelizing H.264

video decoding in a finer way. In order to exploit overall parallelism, decoding stages

including intra decoding and motion compensation are all required to consider the

parallel order of their operations. However, we are able to further analyze the

algorithms of these stages to see if there are any opportunities for using a similar

approach to that in this paper.

49

References

[1] List. P. Joch, A., Lainema., J., Bjontegaard. G., Karczewicz. M., "Adaptive

deblocking filter," Circuits and Systems for Video Technology, IEEE Transactions

on , vol.13, no.7, pp.614-619, July 2003

[2] E. Van der Tol, E. Jasper, R.H. Gelderblom, “Mapping of H.264 Decoding on a

Multiprocessor Architecture” Proceeding of SPIE Conference on Image and Video

Communications 2003, p.p.707-709

[3] Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Ramirez, A.: Parallel

Scalability of H.264. In: Proc. First Workshop on Programmability Issues for

Multi-Core Computers (January 2008)

[4] Zhuo Zhao, Ping Liang, "Data partition for wavefront parallelization of H.264

video encoder," Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE

International Symposium on , vol., no., pp.4 pp.-2672, 0-0 0

[5] Final Draft International Standard of Joint Video Specification (ITU-T Rec.

H.264/ISO/IEC 14496-10 AVC), Mar. 2003.

[6] Ke Xu, Chiu-Sing Choy, "A Five-Stage Pipeline, 204 Cycles/MB, Single-Port

SRAM-Based Deblocking Filter for H.264/AVC," Circuits and Systems for Video

Technology, IEEE Transactions on , vol.18, no.3, pp.363-374, March 2008

[7] Yun-Shuo Chang, "Improvements of H.264 De-blocking filter and DST

Implementation of H.264 Decoder," A Thesis Submitted to Institute of Electrical

Engineering National Yunlin University of Science & Technology in Partial

Fulfillment of the Requirements for the Degree of Master of Science in Electrical

Engineering, July 2007.

[8] T.M. Liu, W. P. Lee, T.A. Lin, and C. Y. Lee, “A memory-efficient deblocking

filter for H.264/AVC video coding,” in Proc. IEEE Int. Symp. Circuits Syst., May

2005, vol. 3, pp. 2140-2143.

[9] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.3”,

Technical Report. HPL-2008-20. 2008.

[10] Eric Gerard Ernst, “Architecture Design of a Scalable Adaptive Deblocking

Filter for H.264/AVC,” A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of Science in Computer Engineering, July

2007.

50

Appendix

Q&A

1. 下圖橫軸為何是時間?

A1:

這個時間單位的時間長度為一個 stage 的時間長度，橫軸代表的是

計算所需實際的 time unit 數，而不是直接執行所得到的時間。我們每一

個 time unit 的長度為處理一個 MB 所需最長的時間。這裡使用時間是

想表達隨著時間平行度的變化。

2. 為什麼粒度越小平行度越高，現象從何而來?粒度不一樣的差異在

哪?

A2:

 根據上圖，粒度越小平行度越高，而改變粒度其實是改變判斷

dependency 的最小單位，原本被綁在一起的 boundaries 被打散了之後，

部分實際上無 dependency 的 boundaries 就可能提早執行。所以粒度越

小有機會讓部分 boundaries 提早的執行，也就可以讓一開始的平行度爬

升較快。

3. HW requirement 為何 PE 間要有 connection，因為已經有 share bus

了？

A3:

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

D
e

gr
e

e
 o

f
p

ar
al

le
lis

m

time unit

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

4 pixel

16 pixel

2D

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

4 pixel

16 pixel

2D

(a) 1920×1080 (b) 1080×1920

51

 同時需要傳的資料量很多，且 PEs 是緊鄰的，所以 PEs 間的

connection cost 是低的，故 PEs 之間用 connection 傳遞是適合的。

4. 因為 PE 有 buffer 所以應該也要加 buffer size 要假設上去?

A4:

 16: 若 share bus 可滿足所需傳遞的資料量，則 input buffer 的 size

為 1 MB，output buffer 的 size 為 1 MB，internal buffer 的 size 為 1/4 MB。

 4: input buffer 的 size 為 2 4×4 blocks，output buffer 的 size 為 2 4×4

blocks，internal buffer 的 size 為 4×4 block。

5. 如何證明我的 order 是最好的?

A5:

 以本論文主要目標為提高計算平行度以降低執行時間而言，在 PE

數量可滿足最大平行度時，由於所提出的 order 已滿足 critical path 最

短需求，而針對其他不在 critical path 上的 boundaries 的 order，若無硬

體上的限制，則無所謂最好的 order。

 而當 PE 數量無法滿足最大平行度時，依本論文提出的方法會將

frame 切割成多個 stripes 依序處理。在此種情形下，我們希望在所擁有

的 PE 數量下能盡量處理越大的 stripe，而 stripe 是由多個 MB row 所組

成的。為了充分利用到所擁有的 PEs，我們所提出的 order 就是根據每

多處理一個 MB row 所需要的 PE 數量是理論上最小的。固我們的 order

在此兩個條件下是最好的 order。

6. 為什麼只考慮單張 frame 不去考慮 frame 之間的平行度?

A6:

 Deblocking 在 frame 與 frame 之間完全沒有 data dependency，且[3]

已完成 frame 間平行處理的設計，所以我們只需專注在單張 frame 內的

平行就可以與之搭配。

 符合[3]所需要的條件：

1: 對於 frame 內的平行方式為 wave-front。

2: frame 的 wind down 與下一張 frame 的 wind up 沒有 data

dependency。

 我們所提出的方法滿足上述條件，固可以與之搭配。

7. 時間單位是以每一個 boundary 所需處理時間都是一樣的，但在事

實上不會是這樣的處理情形，這樣會不會產生新的問題?

A7:

 Filter 一個 boundary 的時間會根據 boundary strength(BS)值而有所

不同，若BS值為0則此boundary不需 filter，若BS值為1~4則需要 filter。

52

根據我們所提出來的 order，在同一個 stage 可以一起處理的 boundaries

的 BS 值都是 0 的機率很低的，所以在這邊我們時間單位是取處理一個

MB 所需最長的時間，以 fully synchronize 方式去處理。

8. 為什麼 4 pixel long boundary order 可以直接對應到 1 pixel long

boundary order，而這個現象不會直接出現在 16 跟 4 之間?

A8:

 因為 16 pixel long boundaries 之間有互相交錯，所以以更細粒度去

分析data dependency有機會讓部分可以先處理的boundaries提早處理，

而 4 pixel long boundaries 之間沒有互相交錯，所以在以更細的粒度去分

析 data dependency 不會有差別，以致於可以直接對應到 1 pixel long

boundary。

9. 找出一個規則來決定適合的粒度?

A9:

本論文的目的是希望盡量降低執行時間，故在選擇適合的粒度可根

據上圖，依目前 PE 數量，選擇執行時間最短的粒度。

10. 越細的粒度會衍生一些什麼 overhead?應該會在粒度以及

overhead 有 trade off?應該如何找到一個粒度所能達到的平行度

是高的且可以 fully utilize 在 multi-core 上以及 overhead 是小

的

A10:

根據上述問題，我們嘗詴將 deblocking 的時間提出適合的數學

model，並去觀察不同粒度所會造成的 overhead。而 model 後的結果，

在不同粒度間 speedup 的比較等同於 Chapter 4 的結果。

然而，根據我們的 model 仍然可以發現我們平行化方法與傳統循序

(a) 1920×1080 (b) 1080×1920

1000

10000

100000

Lo
g(

To
ta

l E
xe

cu
ti

o
n

 T
im

e
)

of PEs

4 w/ overlapping

16 w/ overlapping

2D w/ overlapping

1000

10000

100000
Lo

g(
To

ta
l E

xe
cu

ti
o

n
 T

im
e

)

of PEs

4 w/ overlapping

16 w/ overlapping

2D w/ overlapping

53

執行方法相比，在 idealize speedup 與 actual speedup 上會有所不同。(其

詳細內容已加入到 5.3)

