
August 3, 2011

10.1 Introduction

Flash memory is an essential component of embedded devices. NOR flash is a kind of

non-volatile memory that is compatible with the processor memory interface. As a result,

its major application is the storage of binary executables. Because embedded devices have

critical constraints on hardware costs and form factors, they often have no choice but to

partition a piece of NOR flash into two regions: one for read-only executables and the other

for read-write data. The read-write partition can adopt various index structures for fast

data access. This design helps conserve the precious resources of CPU cycles and battery

power.

NOR flash, as a kind of byte-addressable memory, can adopt various index structures

developed for internal memory, such as balanced binary search trees [20]. However, the

physical constraints of NOR flash make it difficult to implement these index structures in

NOR flash. For example, erasing a memory location in NOR flash must precede writing

to this memory location. Further, NOR flash typically erases in large blocks of 128 KB or

more [15]. To avoid erasing NOR flash before every update, data can be updated out of

place. However, out-of-place updates change the physical residence of data in NOR flash,

leaving updated data pointers dangling. Fixing these dangling pointers updates them out

of place as well. Updating a pointer also requires rewriting the data object possessing this

pointer. However, this in turn produces more dangling pointers, recursively propagating

out-of-place updates to a large number of data objects.

A common approach addressing this issue is to use logical pointers. Instead of using

physical addresses in NOR flash, logical pointers refer to data objects in terms of logical

addresses, which are uniquely assigned to every data object. This way, updating data

objects out of place leaves their logical addresses intact, producing no logical pointers dan-

gling. However, using logical pointers has two main drawbacks: First, translating logical

addresses to physical addresses requires a RAM-resident mapping table. This mapping

table can be considerably large, making it unaffordable for many small embedded devices.

Second, this mapping table disappears when powering off, and may require scanning the

entire flash memory to rebuild when powering on. This scanning process can be lengthy,

2contradicting the requirement that embedded devices be instantly operational after pow-

ering on.

This study investigates efficient data indexing in NOR flash to address the drawbacks

of using logical pointers and physical pointers. Specifically, this study is concerned with

small embedded devices that use NOR flash have limited RAM and require a fast system

boot. Many deeply embedded devices have these characteristics, including toys, facsimile

machines, and wireless sensor nodes [8, 17].

This study proposes a native index structure for NOR flash, called soft lists. Soft lists

organize data objects using soft pointers. Soft pointers use physical addresses, removing

the need for a mapping table or boot-up scanning. Unlike physical pointers, the soft

pointers approach allows pointer de-referencing to probe a bounded number of memory

locations in NOR flash. This design has two advantages: First, it is possible to move data

objects around in NOR flash without invalidating a soft pointer. This greatly simplifies

data updating and space management in NOR flash. Second, a soft pointer is related to

a number of data objects, including the random objects probed when de-referencing this

soft pointer. When searching for a key in a soft list, judiciously following a probed random

object can skip over a large number of objects, greatly speeding up the search.

Even though forward random skips greatly speed up search operations, searching in a soft

list may degrade into a linear search in a worst case scenario. Therefore, this study proposes

organizing multiple soft lists in parallel, producing a multilevel soft list. A multilevel soft

list is structurally similar to a skip list [22]. Searching a key begins with the highest-level

list. The search skips over a large number of keys in a few steps, and then descends to

lower-level lists for short-range skips to locate the searched key. Multilevel soft lists do

not require self-balancing, but rely on randomization, eliminating many expensive write

operations to flash memory. For space management in NOR flash, this study introduces

a space-allocation policy that jointly considers 1) the random nature of soft pointers, 2)

the layered structure of multilevel soft lists, and 3) wear-leveling issues. The experiments

presented in this study evaluate and compare soft lists against a tree-based index structure

under synthesized workloads and real-life workloads. Results show that soft lists achieve

significantly faster response times.

3A B C D

D'

A B C D

D'C'

A B C D

D'C'A' B'

D is updated out of place as D'. The

physical pointer referring to D

becomes invalid

C is updated as C' to revise the

physical pointer for referring to D'

The update recursively propagates

all the way to the beginning of the

list

(a)

(b)

(c)

Figure 1: A scenario of how an update propagates to all the data objects in a list.

The rest of this paper is organized as follows: Section 2 introduces the background of

this work. Section 3 presents the design of single-level soft lists, and Section 4 improves

the scalability of this design using multilevel soft lists. Section 5 includes the experimental

results, and Section 6 concludes this paper.

0.2 Background

0.2.1 Using Physical Pointers in NOR flash

Like physical pointers, soft pointers use physical addresses to address data objects. This

section describes the main issues of using physical pointers in NOR flash.

NOR flash is a kind of erasure-based memory. To avoid erasing NOR flash every time a

piece of data is updated, NOR flash data are updated out of place. Consider the example

shown in Fig. 1: A list organizes four data objects using physical pointers. When updating

D, new data D’ is written out of place, leaving the physical pointer of C dangling. Since

it is not possible to update the pointer of C in place, C must be rewritten out of place.

As a result, the pointers and data objects all the way to the beginning of this list must be

updated in turn. This issue is referred to as pointer-update propagation.

Pointer-update propagation can impose considerable overhead on the management of

4index structures. Even worse, it can prevent index structures from completing index oper-

ations. Consider the example in Fig. 2(a), in which a block has four valid objects: A, B,

C, and D. Suppose that this block is chosen as an erasure victim for free-space reclaiming.

Before erasing this block, all the valid objects must be moved to a spare block, as Fig.

2(b) shows. This move leaves the physical pointers for objects a, b, c, and d dangling.

Updating objects a, b, c, and d out of place can fix their dangling pointers. However,

this invalidates more pointers, recursively triggering another batch of updates to fix the

new dangling pointers. Because consuming an unbounded amount of free space precedes

erasing a block for free-space reclaiming, the system can easily be deadlocked. This issue

is garbage-collection deadlock.

Let f represent free space which is clean, d represent dead space which has been written

whether valid or not, and f + d is constant. Before free-space reclaiming, the distribution

of free space and dead space is (f, d). It is about to reclaim free space, so f is the minimum

free space requirement for free-space reclaiming. After choosing an erasure victim, we

could expect the distribution after free-space reclaiming will be (f ′, d′) according to the

number of valid objects of the chosen victim, where f ′ > f , and d′ < d. Actually after

free-space reclaiming, the distribution will be (f”, d”), where f” < f ′, and d” > d′. This

is because of pointer-update propagation. When copying a valid object from victim to

other free space, the other object point to the copied object must also be updated to free

space. Therefore, after free-space reclaiming, the free space will less than we expect. In

the worst case, f” < f , and d” > d. The free space after reclaiming may even less than

the minimum free space requirement for free-space reclaiming. Hence, this situation would

cause garbage-collection deadlock.

0.2.2 Related Work

Data indexing using flash memory is an increasingly important design issue for embedded

software. Because NAND flash reads and writes in terms of 4KB pages [16], block-based

index structures like B-trees are better suited to NAND flash. Random updates to B-trees

partially modify tree nodes in NAND-flash pages, incurring considerable read-modify-write

5
A C

a

b

d

c

B D

A C

a

b

d

c

B D

A C

B D

A block to erase

A spare block for GC
Copy valid data

(a) (b)

?

?

?

?

Figure 2: A problem caused by garbage collection. (a) A block has valid data A, B, C, and
D. (b) Before erasing this block, garbage collection moves the valid data to a spare block,
leaving many dangling pointers.

overhead and ancillary garbage-collection activities. To reduce the write traffic to NAND

flash, Lee et al. [19], Li et al. [21], and Agrawal et al. [6] proposed various techniques that

collect random B-tree updates in a sequential log associated with a high-level tree node,

convert small and random updates into batches, and then cascade (i.e., copy) the update

batches to lower-level node logs. This approach effectively reduces the read-modify-write

traffic to NAND flash.

Lin et al. proposed MicroHash [17], which is a NAND-flash implementation of hash

tables for sensor nodes. MicroHash treats flash memory as a circular log space. It appends

new records to the log and discards old records from the beginning of the log. MicroHash is

applicable only if there is a chronological order of all data and old data can be abandoned.

Prior studies also use B-trees on NAND-flash-based solid-state disks. Solid-state disks

implement NAND-flash translation layer (i.e., NFTL [5, 14]) in firmware, hiding flash-

memory geometry and management activities from the hosts of solid-state disks. Wu et

al. [3] introduced a software layer between a standard B-tree implementation and the disk

interface of solid-state disks. This layer logs index operations out of place, and then updates

B-tree nodes in place at the proper time. Nath et al. [18] proposed adaptively switching

a B-tree node between an in-place updating mode and a out-of-place logging mode. The

LA-tree method proposed by Agrawal et al. [6] is essentially a B-tree partitioned into many

sub-trees. Taking advantage of the temporal and spatial localities of accesses to B-trees,

the LA-tree method limits logging and updating operations to each individual sub-tree.

Updating a data item out of place changes the data item’s physical residence in flash

6memory. To avoid producing dangling pointers, a common approach is to associate all data

items with a unique logical address. In this case, a RAM-resident table is required to map

logical addresses to physical addresses. Several research efforts have been aimed at reducing

the size of this mapping table. Park et al. [5] and Lee et al. [14] proposed combining

coarse-grained mapping and fine-grained mapping for address translation. Chang et al.

[12] proposed a variable-granularity mapping scheme. Because the mapping table is stored

in volatile memory, rebuilding this mapping table after power-offs may require scanning

the entire flash memory. Wu et al. [4] and Yim et al. [11] proposed writing summary

information in convenient flash-memory locations to speed up this scan procedure.

Many deeply-embedded devices are equipped with a small amount of RAM and a piece of

NOR flash. Using logical pointers is infeasible in such devices because of the need for a large

mapping table. A B+-tree variant proposed by Kang et al., called µ-trees [7], shares many

design goals with this study. The µ-trees method uses physical pointers, eliminating the

need for address translation. Modifying a leaf node in a µ-tree involves revising the physical

pointers of the nodes all the way to the root node. Taking advantage of the fact that a

page is the smallest read-write unit in NAND flash, µ-trees pack all the involved nodes in a

page, and update these nodes out of place by one page write. However, unlike NAND flash,

NOR flash is byte-addressable. Because a µ-tree updates many nodes for each update,

using a µ-tree in NOR flash can incur an unacceptable write overhead, slowing down index

operations.

0.3 Simple Soft Lists: The Basic Form

This section introduces the concept of soft pointers and the design of simple soft lists. Sim-

ple soft lists are single-level lists, which extends to multilevel soft lists for better scalability

in the next section.

7

� �

�

� �

�

�

� �

����
��� 	�
��

����

��� ���
	�
�� ����

� �

� �

� �

� �

��
	�

�
� ���

Figure 3: A turnstile consists of four blocks. Object “p” refers to object “A” using a
soft pointer. (a) Garbage collection shifts object A in block 2 to the spare block, block
1. (b) Block 1 is erased into a spare block. Object p retains its reference to object A
because de-referencing the soft pointer probes all objects having the same block offset in
the turnstile.

0.3.1 Index Objects, Soft Pointers, and Turnstiles

An index object is the smallest element in soft lists, and consists of a key, a value, and a

soft pointer. In the rest of this paper, we shall interchangeably use the terms index object,

object, and key to refer to the same thing.

Like physical pointers, a soft pointer uses physical addresses to address index objects.

However, de-referencing a soft pointer probes a number of memory locations, allowing a

soft pointer to be related to many memory locations. If an index object is moved around

in these pre-determined locations, then a soft pointer can never lose this index object.

This study implements soft pointers using turnstiles. The entire flash memory is parti-

tioned into turnstiles, and each turnstile comprises a fixed number of flash blocks. Each

turnstile reserves one block as spare space for garbage collection. Figure 3(a) shows a

turnstile, which consists of four blocks, and block 2 is a spare block. Object p outside of

the turnstile refers to object A in block 1 inside of the turnstile via a soft pointer. Besides

object A, this soft pointer refers to all objects having the same offsets in other blocks,

namely, the two unknown objects in block 3 and block 4. Now, let garbage collection select

block 1 as a victim for erasure. As Fig. 3(b) shows, object A is “shifted” to block 2, the

spare block, and block 1 is then erased into a spare block. Object A is still related to the

soft pointer after garbage collection because its block offset does not change.

Conceptually, garbage collection rotates a turnstile counterclockwise, erasing all blocks

8in the turnstile in a round-robin fashion. As a result, wear leveling of the blocks in a

turnstile is perfect. However, if a victim block is far from the current spare block, then

garbage collection must rotate the turnstile multiple times, erasing many blocks. Section

0.4.2 addresses this performance issue.

For ease of presentation, additional terms related to soft pointers are defined here: The

turnstile size is how many blocks a turnstile has. The soft-pointer degree is how many

non-spare blocks are in a turnstile. In Fig. 3, the turnstile size and the soft-pointer degree

are four and three, respectively. The index object that a soft pointer refers to is the target

object of this soft pointer. Except the target object, all the objects that can be probed

during de-referencing a soft pointer are the buddy objects of this soft pointer. In Fig. 3(a),

object A is the target object, while the two objects in block 3 block 4 are buddy objects.

0.3.2 Key Search

Figure 4(a) shows an ordinary linearly-ordered list using ordinary physical pointers. In a

search session, the key to be located is the searched key, and the key currently visited is

the current key. To search for a key, starting from the leftmost key in the list, the current

key is iteratively moved toward the largest key, until the current key is no smaller than the

searched key. At this time, if the current key matches the searched key, then this search is

reported successful. Otherwise the searched key can not be found. In Fig. 4(a), searching

key 200 visits 7 keys.

A simple soft list is structurally similar to a linearly ordered list. Replacing the physical

pointers of the list in Fig. 4(a) with soft pointers produces a soft list depicted in Fig.

4(b). Every object has more than one outward edges, showing that a soft pointer relates

an object to many objects. Figure 4(c) depicts a possible layout of this soft list in NOR

flash. For example, key 10 refers to keys 15 and 55 via a soft pointer, because the latter

two have the same block offset in the middle turnstile.

When searching for a key in a soft list, the current key moves to the right (i.e., forward)

until all the probed keys are larger than the searched key or smaller than the current key.

910 15 40 55 70

(a)

(b)

41

10 15 40 55 7041

200

200

(c)

10

70 55

41

���

40 15

Figure 4: (a) A linearly ordered list. (b) A corresponding soft list with soft pointers. (c)
Three turnstiles show a possible scenario of this soft list in NOR flash.

For example, to search key 200 in Fig. 4(b), beginning with key 10, the current key goes

to keys 15, 70, and then 200. The current key skips forward to an object no matter what

type the object is (i.e., a target object or a buddy object), and finishes in only four steps.

Forward skips to buddy objects are referred to as forward random skips because the buddy

objects are random objects. All the forward moves are greedy, so it is not necessary to

differentiate a target object from buddy objects when de-referencing a soft pointer.

Now consider the case of searching a non-existing key 16. Starting from key 10, the

current key goes to key 15. At key 15, the first probe gives key 40. Because key 40 is larger

than 16, a second probe is necessary, giving key 70. As the two probed keys 40 and 70 are

both larger than the searched key 16, it is reported that key 16 cannot be found.

De-referencing a soft pointer does not always produce useful probes. For example, con-

sider a search for key 55. Beginning with the first key 10, the current key moves to 15 and

then 40. At key 40, the first probe gives key 200, which is larger than the searched key 55.

This probe is useless because it skips beyond the searched key. The current key falls back

to key 40, and then takes the second probe and advances to key 41. At key 41, the first

probe refers to key 15. This probe is useless because it causes a backward skip. At key 41,

the second probe refers to key 55, so the searched key 55 is reported found.

Algorithm 1 shows the search algorithm of soft lists. Steps 3 through 11 probe memory

10Algorithm 1 Search a key in a simple soft list

Require: curr: the first (leftmost) index object,
key: the key to locate

Define: curr→next: a soft pointer,
curr→next[i]: the i-th probe of the soft pointer.

1: while curr→key != key do
2: flag←0;
3: for each curr→next[i] do
4: if curr→next[i]→key < curr→key then
5: continue; {rule out backward probes}
6: end if
7: if curr→next[i]→key ≤ key then
8: curr ← curr→next[i]; {take a forward move}
9: flag←1; break;

10: end if
11: end for
12: if flag=0 then
13: return NOT FOUND; {all the probes are not useful}
14: end if
15: end while
16: return FOUND;

locations to de-reference the soft pointer in the current key. Step 5 rules out backward

probes, and Step 8 takes a forward skip. These steps ignore probes skipping beyond the

searched key. Step 13 reports that the searched key not found if all the probes are not

useful. Step 16 reports that the search is successful if the current key matches the searched

key.

0.3.3 Key Insertion and Deletion

Soft lists and linearly ordered lists are structurally similar. When inserting a key to a soft

list, the new key is inserted immediately after the key that is just smaller than the new

key. This smaller key is referred to as the immediate predecessor of the new key. Deleting

a key also involves the key’s immediate predecessor. Therefore, the first step in handling

an insertion or deletion is to find a key’s immediate predecessor in a soft list.

The procedure of finding the immediate predecessor of a specified key is based on a

search algorithm. Starting from the leftmost key, this procedure locates the first index

11object whose soft pointer refers to no keys between the current key and the specified key.

For example, before inserting a new key 16 to the soft list in Fig. 4(b), the key immediately

smaller than 16 must be found. Starting from key 10, the current key moves forward to

key 15 via the first probe. At key 15, the two probes give keys 40 and 70, both of them

are no smaller than key 16. As a result, this procedure reports key 15 as the immediate

predecessor of 16. Algorithm 1 can be slightly revised for this purpose: Instead of reporting

“NOT FOUND” at Step 13, “curr” is reported as the immediate predecessor.

Inserting a new key or deleting a key changes the immediate predecessor’s soft pointer.

Updating pointers out of place introduces pointer-update propagation, as described in

Section 0.2.1. To deal with this issue, every index object in a soft list reserves a number of

spare slots as spare pointers. When revising a pointer, changes are logged into these empty

slots. Retrieving a soft pointer scans the spare pointers to find its most recent version.

Incremental pointer logging is feasible because NOR flash is byte-addressable. This way, a

soft pointer can be revised many times.

Whenever an index object runs out of spare slots, the turnstile encompassing this object

can be rotated to refresh its spare slots. However, rotating a turnstile just to refresh

one object’s spare slots may be premature garbage collection, because there may still be

a lot of free space in the turnstile for new objects. Instead, we choose to rewrite the

object out of place. Even though this could introduce pointer-update propagation, the

propagation spreads slowly due to the spare pointers. For example, if every object has

m spare pointers, then an object must be updated mn times to propagate this update n

objects away. Whenever necessary, a soft list can rotate turnstiles to completely stop this

propagation.

Spare pointers and soft pointers have different design goals. However, they are not exclu-

sive, and soft lists use them both. Using soft pointers avoids garbage-collection deadlock,

while using spare pointers alleviates the propagation of pointer updates.

12

10

15

40

41

55

70

200

0

1

2

3

Figure 5: A multilevel soft list comprises four simple soft lists. Index objects hook on soft
lists by means of soft pointers. Note that references of soft pointers to buddy objects are
not drawn.

0.4 Multilevel Soft Lists: Scalability Enhancement

Multilevel soft lists organize multiple soft lists in parallel to provide better scalability. This

section presents the design of multilevel soft lists, and then discusses strategies related to

wear leveling, space allocation, and boot-up initialization. The last part of this section

analyzes the performance of multilevel soft lists.

0.4.1 Structure of Multilevel Soft Lists

Because soft lists are structurally similar to linearly ordered lists, searching for a key in

a soft list can degrade into a linear search in a worst case scenario. This study proposes

combining multiple parallel simple soft lists into a multilevel soft list. Let a multilevel soft

list have n parallel simple soft lists, where level 0 is the lowest level. An index object in this

multilevel soft list has n soft pointers, one for each level. Whether or not an index object

can hook on a certain level is controlled by a probability parameter p, where 0 < p < 1.

Let q1, q2, ..., and qi−1 be randomly generated numbers whose values are between 0 and

1, and let q0=0. An index object hooks on the level-i simple soft list only if (q0 ≤ p) ∧

(q1 ≤ p) ∧ (q2 ≤ p) ∧ ... ∧ (qi ≤ p) is true. In other words, the probability that an object

hooks on the level-i soft list is pi. Thus, the expected total number of objects hooking on

the level-i simple soft list is N × pi, where N is the total number of keys in a multilevel

soft list.

Figure 5 depicts a four-level soft list extended from the simple soft list in Fig. 4. This

multilevel soft list is structurally similar to a skip list [22]. Index objects hook on soft lists

13by means of soft pointers. Note that Fig. 5 illustrates only the references to target objects,

and omits references to buddy objects. Let the current level be the level that is currently

visited in a search session. Searching for a key in a multilevel soft list begins with the first

(leftmost) key at the highest-level soft list, using the same search algorithm as that used in

simple soft lists. If the searched key cannot be found in the current level, then the current

level descends to the next lower level and continues the search from the current key.

Consider searching key 55 in the multilevel soft list depicted in Fig. 5. For brevity, the

following discussion ignores any probe referring to a buddy object. This search begins with

key 10 at the level-3 list. At level 3, key 200 is immediately next to key 10. Because key

200 is larger than key 55, the current key falls back to key 10 and the current level descends

to the level-2 list. At level 2, the current key moves to key 40. The key immediately next

to 40 is 70, which is again larger than key 55. Therefore, the current level descends to the

level-1 list. At level 1, the searched key 55 is found next to the current key 40, and the

search is reported successful.

The search algorithm for multilevel soft lists is based on Algorithm 1. One extra variable

is required to indicate the current level, and searching for a key always starts from the

first key at the highest level. Step 13 of Algorithm 1 is revised as follows: If the current

level is not the bottom level, then move the current level downward to the next lower

level. Otherwise, report NOT FOUND. This search algorithm for multilevel soft lists can

be revised to support insertion and deletion, analogous to revising the search algorithm for

simple soft lists.

Multilevel soft lists inherit the advantages of both skip lists and soft pointers. High-level

lists enable long-distance skips, while rightward moves at any level benefit from random

forward skips. Another advantage to this approach is that multilevel soft lists require no

extra expensive flash write operations for self-balancing, as they are a kind of randomized

index structure.

140.4.2 Space Allocation and Wear Leveling

Buddy objects enable random forward skips, making it possible to speed up a search.

Ideally, all the buddy objects of a soft pointer should be randomly distributed among all

the keys in a soft list to create the largest possible separation between buddy objects.

This coincides with the consideration of wear leveling in flash blocks. As each flash block

individually endures a limited erasure cycles, typically 100 K cycles [15], uniformly erasing

all flash blocks postpones the first appearance of worn-out blocks, keeping all blocks alive

as long as possible. Thus, random placement of index object not only benefits search

performance, but also extends flash lifetime.

This study proposes a two-level space allocation policy. When a new object is to be

written to flash, a block-level allocation policy randomly selects a block to accommodate

the object. If the selected block has no free space, it becomes a victim block for erasure.

As described in Section 0.3.1, to evenly erase all the blocks in a turnstile, the garbage

collection procedure rotates the turnstile until the victim block is erased. However, if the

victim block is far from the spare block, then garbage collection must rotate the turnstile

several times, unnecessarily erasing many non-victim blocks. Since the block-level policy

is random selection, this already gives all the blocks in a turnstile an equal chance of being

erased. So, instead of rotating turnstiles, garbage collection first shifts all the valid objects

from the victim block to the spare block, and then erases the victim block into a spare

block.

At high levels in a multilevel soft list, each forward move is expected to skip over a large

number of keys. However, unconditionally taking random forward skips could prematurely

decrease the current level. Consider searching key 70 in Fig. 5. Let the current key be 10

and the current level be 2. Suppose that the soft pointer at this position refers to a target

object 40 and a buddy object 41 (this reference is not drawn in Fig. 5). Even though key

41 is ahead of key 40, moving the current key forward to key 41 can demote the current

level to level 1, prematurely decreasing the future skip distance. Therefore, the probe to

key 41 is useless.

This study proposes an object-level space allocation policy to reduce the possibility of

15

(i)

(ii) (iii)

(iv)

A randomly

picked object

The dummy

head

The

dummy tail

0

1

2

3

C
ircle b

ack
 to

 th
e d

u
m

m
y
 h

ead

Figure 6: A scenario of initializing a multilevel soft list.

producing these useless probes mentioned above. Let B be the flash block size. When

writing a new level-x object to flash memory, the block-level allocation policy first chooses

a flash block. The object-level allocation policy then searches the free space starting from

the block offset ⌈B(1 − px)⌉ toward the end of this block. This search circles back to the

beginning of the block, and aborts if the initial block offset is encountered a second time.

The new object is written to the first encountered free space. This object-level allocation

policy tries to cluster objects on the same level in nearby block offsets, reducing the chance

of probing lower-level buddy objects.

0.4.3 Boot-Up Initialization

The soft pointers approach does not need to store an address mapping table in volatile

memory (i.e., RAM), saving the time required to scan the flash memory to re-build the

mapping table after powering on. Initializing a multilevel soft lists locates the first index

object on each level. A brute-force approach is to fix all these first index objects at conve-

nient locations in NOR flash. However, nailing down objects in flash memory can damage

wear leveling in flash blocks.

A multilevel soft list consists of a dummy head and a dummy tail as the leftmost object

and the rightmost object, respectively. These two objects hook on every level. Let the

dummy head be immediately next to the dummy tail. The initialization process locates

the dummy head’s residence in NOR flash, as follows: First pick up an index object from

a randomly selected memory location in NOR flash as the current key. Let the current

16

[p
ro
_
m
]

[p
ro
_
M
]

[p
K
e
y
]

[c
u
r_
m
]

[c
u
r_
M
]

Invalid slot : Valid slot :Free slot :

Current obj Probed obj

[k
e
y
]

The searched key

Figure 7: The state of de-referencing a soft pointer’s probe

level be the highest level this object hooks on. Next, repeatedly move the current key

rightward, and climb to high-level lists whenever possible. Upon reaching the dummy tail,

take one further step forward to the dummy head. This procedure takes advantage of the

long-distance skips provided by high-level lists, greatly speeding up the initialization time.

Figure 6 shows an example of initializing a multilevel soft list. This procedure first

randomly picks up an object at level 0. Step (i) moves the current key to a level-0 object,

and then increase the current level to 1. Step (ii) moves the current key to another level-1

object. Step (iii) moves the current key to a level-3 object and then promotes the current

level to 3. Step (iv) brings the current key to the dummy tail. At this time, the dummy

head is one object away. Note that in this process, any rightward moves via target objects

or buddy objects can be taken except for those demoting the current level.

0.5 Fat List: Page-Oriented Soft Lists

Fat list let many keys contained in an object in order to reducing the frequencies of struc-

tural operations. This section presents the design of fat list, including the additional

operation according to fat list.

17
�����

� !"#$!"% &' &()*+&$
! , ## -

./++ 0 !"#

1#)#+ !, 0 !"#$!"%
2 3/ !"% -

1!4 0 !"#

5#*$ 0 !"#$!"% /(6&+
,&($&(7 *()*+&$ 8#9 :

;0<#9=

0<#9 2 3/ >? -

@*38 0 !"#

5#*$?&(A?*B * #* !,
0 !"#$!"% 6! ,&($ 3/ >?

C 3/ >D

<#9 2 0 !>? -E)# 0 !"#

F/33#'' 0 !"#

<#9 2 0 !>D -
F#* 3G &(0 !"#$

!"% ,! 8#9

H$)*(3# 6! 0 !"#$
!"% ,! 6G# (#B6

0 !"#

IJK

LM

IJK

IJK

IJK

IJK

LM LM

LM

LM

F#* 3G 6G# (#B6
0 !"#

Figure 8: The flow chart of de-referencing a soft pointer’s probe

0.5.1 Fat Objects

Because the object in soft lists has only one key, a structural modification on every update

is necessary. Therefore, a fat object consists of m slots, bitmaps mapping to slots, and a

pointer pool.

The slots in an object are free space for keys.The maximum and minimum keys would

put together in min-max area in slots in order to get the object’s range with less read.

If the referenced key is in the object range, the referenced key would put in a free slot.

Then if there is already the same key in other slots, mark it into invalid by bitmaps. The

motivation to have many free slots in an object is to let keys have free space to update.

If the different keys number in an object is too many, there would no free space for every

key. Therefore, we restrict that every object could have only n different keys, and n is less

then m. In the rest of this paper, we use the term key number to refer to the number of

different keys in an object, and n is the restriction of different key number. We also use

18the term slots number to refer to the free space for keys in an object, and m is the total

number of slots.

Although the min-max area can get the object’s range with less read, the updating of

maximum and minimum keys makes the min-max area larger and increases the time of

reading min-max area. In fact, the range of every object does not overlap. Reading whole

min-max area is not needed when de-referencing a soft pointer and analyzing the object

whether can skip forward or not. Figure 7 shows the state while de-referencing a soft

pointer’s probe, and the flow chart of de-referencing a soft pointer’s probe is shown in

Figure 8. If the probed object is free or invalid, the data in this object are useless and

reading in this object is not needed. If the level of the probed object is lower than the

current object, skipping to this object is not allowed This kind of object even need not

to read the keys in slots. Then, if the probed object is not free, invalid, and lower level,

reading keys in this object is needed to judge whether to skip forward or not. Reading

until finding the first valid key, pKey, in min-max area is enough to determine that this

object could not skip forward if pKey is smaller than the minimum key in current object.

However, if pKey is larger than the minimum key in current object, reading whole min-max

area is needed in order to get the minimum key and analyze the range of the probed object

is larger than the searched key or not to determine whether could skip forward or not.

Using the strategy to analyze the objects the soft pointer reference to can decrease the

time of searching the target key.

In multilevel soft lists, free pointer space for every level pointer is fixed. Whenever

update a pointer with no free pointer space in that level but free pointer space in other

levels, the object with many unwritten free pointer space would update in other free space.

The objects in fat list have pointer pool, let every level pointer all put together. Therefore,

the object would be updated when run out of free pointer space. Although the read caused

by pointer would increase,the frequencies of structural operations would reduce, and the

write and erase would decrease. Because a read spends time far less than write and even

read, the tradeoff is worth.

19

Split

Invalid slot : Valid slot :Free slot :

Figure 9: An operation on delayed split with m = 9, n = 6.

0.5.2 Delayed Split of Fat Objects

By the restriction of different key number, the operation of splitting the object will be per-

formed when inserting a new key and then causing the key number exceeding the restriction

n. As Figure 9 shown, the operation to split the object is to copy half of the number of the

key to each of another two new object.

However, if the split operation is performed whenever key number exceed n, it would

not only cause frequent structural modifications but also waste slots by copying the keys.

The way to prevent the above circumstances is to delay the split operation until the slots

in an object are full of keys and key number exceed n. When the slots are full, the keys

in the slots should be copied to another object originally. Therefore, the split operation

is performed when slots full would not cause extra writes of slots and also reduce the

structural modifications.

The keys in the slots should also be copied to another object while reclaiming free space,

but the split operation would not be performed even if the key number in the object exceed

n. This is because if the chosen victim has many objects with key number exceeding n, it

may cause garbage-collection deadlock. Moreover, the data in the object is cold so that

the slots have not been full until being reclaimed. The cold data should not occupy too

many slots with rare using. According to above reason, the split operation wold not be

performed while reclaiming free space.

20

Merge

Invalid slot : Valid slot :Free slot :

Figure 10: An operation on delayed merge with m = 9, n = 6.

copy

Invalid slot : Valid slot :Free slot :

NOPQR
STUOP
VQRWQ

Being merged object :Adjacent object :

Adjacent object : Being merged object :

Figure 11: An operation on shift merge with m = 9, n = 6.

0.5.3 Lazy Merge of Fat Objects

In order to reduce flash space utilization and thus improve free-space reclaiming efficiency,

the space utilization in objects should be improved. Therefore, the operation of merging

two adjacent object will be performed when both two adjacent objects have poor space

utilization, and the definition of poor space utilization is the key number in an object is

less than half of n. As shown in Figure 10, the operation to merge two adjacent objects is

to copy all the data in the two objects into another new object.

Just as the problem in splitting object, if the merge operation is performed whenever key

number is less than half of n, it would cause frequent structural modifications. The way to

prevent this is to delay the merge operation until not only the slots in an object are full of

keys but also reclaiming free space, and key number is less than half of n. While reclaiming

21free-space, the data in the poor space utilization object is cold so that the object have not

been dealt with. In order to prevent cold data occupying many slots, the merge operation

is performed while free-space reclaiming. While the slots in an object are full, the data

in the object may not be cold data. However, performing merge operation on two poor

space utilization objects is necessary in order to reduce flash space utilization. Additionally,

objects should at least use up all their empty slots before being merged. Therefore, as long

as objects have poor space utilization, the merge operation should be performed without

wasting slots. Note that if objects contain cold data and cannot use up all their empty

slots upon garbage collection, then these objects will be merged anyway.

However, if the adjacent object which is chosen to be merged still has many free slots

that have not been used, this situation will cause wasting slots. Therefore, as Figure 11

shown, if the adjacent object has enough free slots number for the key in the being merged

object, the key and data in the being merged object are copied to the adjacent object. This

operation is defined as shift merge. Shift merge could reduce flash space utilization by not

to merge to another new object.

The other way to prevent objects having poor space utilization is to borrow key from

the adjacent objects without poor space utilization. This may increase the opportunity to

improve the space utilization in objects. Nevertheless, borrowing keys waste slots. This

may cause extra writes and decrease free-space reclaiming efficiency. Therefore, borrowing

keys would not be performed.

0.5.4 Processing Range Queries

When dealing with range queries, multilevel soft list will first find the first data location,

and then read the data along the lowest level until finding the last data. The data except

the first data need not be found by searching from head. However, search every key and

data follows a pointer. That would cause many read times and be slow when dealing with

range queries.

Fat list could find much more keys in an object and follows a pointer, but there is some

22
XYZ[Y

\]^_`a ^_b cd cefghca
^] i]`` j

klhh m]^_`

n`f`h ^i m]^_`a ^_b
o pl] ^_b j

n^q m]^_`

r`ga m]^_`a ^_b lesch
iceacet ge fghca u`v w

xmy`vz

my`v o pl]{| j

}gpu m]^_`

my`v ~ |cey`v j

�f`] m]^_`

���

��

���

���

���

�� ��

��

|cey`v � my`v
|ce�_b � m]^_`a ^_b

|cey`v � �|g� u`v ce
igs hcdsd� � �

�cecd� ghh s�`
m]^_`d j

�afgep` s^
|ce�_b i^] s�`

e`�s m]^_`

�`g]p� s�` e`�s
m]^_`

��

���

Figure 12: The flow chart of de-referencing a soft pointer’s probe in range query

extra reads of invalid data while reading min-max area. Except finding the first key of

the range, reading every soft pointer of an object should also read all the objects the

soft pointer reference to in order to confirm which object is exactly the next object while

finding the keys in the range. This overhead is in soft lists, too. However, different from

the search mechanism in fat lists, reading whole min-max area is not necessary when the

keys in the probed object are larger than that in the current object. As shown in Figure 12,

the flow after confirming the probed object is not free, invalid, and lower level is different

from the original search flow. Because of the characteristic of not overlapping range in fat

lists, reading the first valid key in min-max area in these objects is sufficient to weed the

smaller-key objects out and find the object with minimum key in the larger-key objects to

confirm which is the next object. Therefore, the advantage of fast judgement could cover

the disadvantage of reading extra invalid data. Because fat lists could find much more keys

in an object and just read a pointer, fat list is faster than multilevel soft list when dealing

with range queries.

23Geometry Timing
Word size 2 bytes Word read 110 ns
Capacity 1M words Word write 80 us
Block size 32K words Block erase 0.6 s

Block endurance 100K cycles

0.6 Experimental Results

0.6.1 Experimental Setup and Performance Metrics

We implemented a simulator to evaluate the performance of fat lists. This simulator adopts

the specification of a real-life NOR flash [15] shown in Table 0.6.1. Unless explicitly speci-

fied, the experiments in the rest of this paper use the following default settings for fat lists:

the turnstile size is 8, the maximum level is five, the slots number is 40, the key number

is 20, the pointer pool size is 7, and the object size is 353 byte according to the above

settings. The probability parameter p is 0.25, as suggested in [22].

Our experiments consisted of two parts: a micro-benchmark and a macro-benchmarks.

The micro-benchmark is divided into four phases: insertion, update, query, and dele-

tion. This micro-benchmark investigates how fat lists perform under different types of

monotonous access patterns. On the other hand, the macro-benchmarks are based on

workloads gathered from real-life applications, showing diverse access patterns. This study

compares fat lists against a tree-based index structure in NOR flash, which the following

section describes in greater detail.

Our experiments evaluated the performance of index structures in terms of the total time

of word reads, word writes, and block erasure calculated based on the read, write, and erase

times and timing characteristics in Table 0.6.1. The time contributed by pure operations

and free-space reclaiming are counted separately to tell them apart.

24
Page :

1

2

3

root

512 bytes

256 bytes

Split :

Root

(50/50)

1

(25/25)

Root

(1/25)

1

(25/25)

(a) (b)

Figure 13: Layout of µ-tree with page size 1024 bytes. (a) The size distribution in different
level node with 4 level in a page. (b) The split operation and increase height happened
when the root node is full.

0.6.2 µ-Trees in NOR flash

µ-tree is similar to B+-tree. To minimize the write times which are caused by writing all

the nodes from root to leaf while updating a leaf node, the path from root to leaf is written

into a page. Since the upper level the node is in, the fewer data the node has, the size of

node is depend on the level of the node and the height of whole tree. As shown in figure

13(a), the size of the node is half of the size of the next lower level node except root node.

If the tree height is one, the whole page is a node. In figure 13(b), supposing that the only

node of the tree is full, the node will split into two node and create a new root, and the

size of nodes is shrank to half. Once the root is full again, the root will split and the size

of new root and next lower level node is also shrank to half of the size of the original root,

and so on.

There is no balancing operation when deleting keys. In our simulation of µ-tree,in order to

maintain the structure as B+-tree, if no key left in the node after deleting a key, borrowing

a key from adjacent node is necessary.

In the simulation of µ-tree, there is no spare pointer. If there are spare pointers in every

node, the nodes along the path will not all rewrite to a new page while updating a leaf

node. Therefore, the leaf node and the upper level nodes in its path may not be written in

the same block. That may cause garbage-collection deadlock because of writing more node

than expected. To prevent this, there is no spare pointer in µ-tree in order to rewrite the

whole path to a page.

25

���

��� ���

���

�
���
���
���
���
���
���

��
�
�¡
�
¢£
¤
�¥
�

¦¥
�
�¢
£¦
§̈
¤
©ª

«¬®¯°«±¬²³´®

µ¶·¸µ
¹º»¶¼½µ
¹º¶µ·¾
¿ÀÁÂ¶¼½µ
¿ÀÁÃµ·¾

Ä
ÄÅÆ
ÄÅÇ
ÄÅÈ
ÄÅÉ
Ê

ÊÅÆ

ËÌ
ÍÎ
ËÏ
Í
ÐÑ
Ò
Í
ÓÍ
Î

ÔÓ
ÍÎ
ËÐ
ÑÔ
ÕÖ
Ò
×Ø

ÙÚÛÜÝÞ ÚßÜàÞ

áâãäá
åæçâèéá
åæâáãê
ëìíîâèéá
ëìíïáãê

ð

ðñððò

ðñðó

ðñðóò

ðñðô

ðñðôò

õö
÷ø
õù
÷
úû
ü
÷
ý÷
ø

þý
÷ø
õú
ûþ
ÿ
ü
	�

����� �����

���

������

���
��
�������

����
��

�
���
���
���
��
!

!��

"#
$%
"&
$'
()
$*
$%

+*
$%
"'
(+,
-)
./
0

12324567 89:;2

<=>?<
@AB=CD<
@A=<>E
FGHI=CD<
FGHJ<>E

Figure 14: The micro-benchmark results of fat lists and µ-tree in different flash size 1 mega-
byte, 2 mega-byte, 4 mega-byte, and 8 mega-byte (a) insertion phase (b) update phase (c)
query phase (d) deletion phase

0.6.3 Micro-Benchmark Results

Test Procedure

The micro-benchmark test procedure in this study consists of four phases: insertion, update,

query, and deletion. The NOR flash is entirely empty before this benchmark. The first

phase sequentially inserts 25,000 consecutive keys. The second phase performs 800,000 key

updates using a Gaussian random variable for key selection, forming a temporal locality in

the access pattern. The third phase performs 800,000 key queries using the same random

variable for key selection. The final phase randomly removes all the keys. The mean and

the variance of the Gaussian random variable are the median of all the keys and one-sixth

the total number of keys, respectively.

26

K
LKK
MKK
NKK
OKK
PKK
QKK
RKK
SKK
TKK

LKKK

U
V
U
W
X
Y
Z
Y[
\
U]
V
^

U
]_
Y
à
b

overall

cdefghcid jklef

mjnlhf jklef

omfgp jklef

nfqfhcid jklef

Figure 15: The total execution time of the micro-benchmark in different flash size 1 mega-
byte, 2 mega-byte, 4 mega-byte, and 8 mega-byte

Fat Lists versus µ Trees

Figure 14 shows the micro-benchmark results in different flash size. Before discussing these

results, recall that NOR flash is very slow on write and erase but extremely fast on read.

The page size of µ-tree is 512 bytes in order to contain all data after the insertion phase.

In insertion phase, the flash size does not affect the performance on fat lists and µ-tree,

because the minimum need of flash size to build up the list and tree is less than 1M.

Therefore, fat lists and µ-tree does not trigger any garbage-collection activities. The read

time of µ-tree is less than fat lists because the query performance in µ-tree is determined

by its height. µ-tree is also a balanced tree, so the increase of height is very slow. For this

reason, its hard to outperform µ-tree in query. However, the write time of µ-tree is much

more than fat lists because µ-tree has to rewrite all path on every structural modification of

leaf node. Since NOR flash is much more slower on write than on read, fat lists outperforms

µ-tree in insertion phase.

Although there is no garbage-collection activity in insertion phase, the minimum need

of space to build up µ-tree is more than that of fat lists after inserting all keys. This is

because the data in µ-tree is all contained in leaf node, and every leaf node in µ-tree occupy

a page. A leaf node with size 256 byte in µ-tree need 512 bytes, and an object size in fat

lists is 353 bytes including 20 data, 20 keys, a 20-bit bitmap, and a pointer pool of size 7,

27two words each. The leaf nodes in µ-tree contain a little bit more data than objects in fat

lists, but the occupied size is much larger. Therefore, to build up µ-tree needs more space

than fat lists. In the same flash size, the free space of µ-tree would less than fat lists.

In update phase, Both fat lists and µ-tree experience garbage-collection activities. As the

flash size decrease, the performance of fat lists and µ-tree also decrease. The read time of

µ-tree is still less than fat lists, but the write and erase time of µ-tree is much more than fat

lists. This is not only because µ-tree has to rewrite all path on every structural modification

but also because the free space of µ-tree is less than fat lists. Rewriting all path increase

write time, and less free space increase erase time. Therefore, fat lists outperforms µ-tree

in update phase.

µ-tree outperforms fat list in query phase. Query in balanced tree is fast, and its hard to

outperform tree in query. This is a tradeoff between the performance of read-only queries

and read-write operations. Because read operation is much faster than write and erase, we

choose to sacrifice the performance of read-only queries and improve the performance of

read-write operations.

The deletion phase is also a read-write phase. When deleting keys, the structural modi-

fications are less than update. However, fat lists still outperforms µ-tree. Figure 15 shows

the total execution time of the micro-benchmark in different flash size. Although µ-tree

outperforms fat list in query phase, fat lists is still two times faster than µ-tree in the total

execution time because NOR flash is fast on read. Overall, this micro-benchmark shows

that fat lists is much faster than µ-tree.

Maximum Level and Turnstile Size

This section analyzes fat lists performance under different settings. The first experiment

evaluates fat lists using different maximum levels. Figure 16 presents the experimental

results of the micro-benchmark. In insertion phase, the difference of write time between

different settings of maximum level is small, but the read time decrease as the maximum

level increase. This is because the higher level can skip more distance than lower level.

Therefore, the difference of total time between different settings of the maximum level

28

rst rut

rvt rwt

x
xyxz

xy{
xy{z

xy|

xy|z
xy}

~�~ � } ~�~ � � ~�~ � z ~�~ � � ~�~ � �

��
��
��
��
��
��
��

��
��
��
��
��
�
��

��������� �����

�����
 ¡¢�£¤�
 ¡���¥
¦§¨©�£¤�
¦§¨ª��¥

«
«¬

«¬®
«¬¯
«¬°

«¬±
«¬²

³´³ µ ¯ ³´³ µ ° ³´³ µ ± ³´³ µ ² ³´³ µ ¶

·̧
¹º
·»
¹¼
½¾
¹¿
¹º

À¿
¹º
·¼
½À
ÁÂ
¾
ÃÄ

ÅÆÇÈÉÊ ÆËÈÌÊ

ÍÎÏÐÍ
ÑÒÓÎÔÕÍ
ÑÒÎÍÏÖ
×ØÙÚÎÔÕÍ
×ØÙÛÍÏÖ

Ü
ÜÝÜÜÞ
ÜÝÜß
ÜÝÜßÞ
ÜÝÜà
ÜÝÜàÞ
ÜÝÜá
ÜÝÜáÞ

âãâ ä á âãâ ä å âãâ ä Þ âãâ ä æ âãâ ä ç

èé
êë
èì
êí
îï
êð
êë

ñð
êë
èí
îñò
óï
ôõ

ö÷øùú ûüýþø

ÿ���ÿ
������ÿ
���ÿ��
���	���ÿ
���
ÿ��

�
���
���

���
���

���
���

���
���

��� � � ��� � � ��� � ��� � � ��� � �

��
��
��
��
 !
�"
��

#"
��
��
 #
$%
!
&'

()*)+,-. /012)

34563
7894:;3
78435<
=>?@4:;3
=>?A35<

Figure 16: The micro-benchmark results of fat lists with different settings of maximum
level (a) insertion phase (b) update phase (c) query phase (d) deletion phase

determined by the read time in insertion phase. In update phase, the performance is better

with maximum level setting to 4 and 5. The performance with maximum level setting

to 3 is worse because the maximum level is too small that it spends much more time in

query data location. As the maximum level increasing, the size of pointer pool increases,

and object size increases, too. Therefore, an object is larger, the consumption of space

is faster. The frequency of garbage-collection activities also increases. Thus, the setting

of larger maximum level performs worse because of increasing garbage-collection activities

frequency. In query phase, the performance is better with maximum level setting to 4, and

the result is different with that in insertion phase. Because there is more keys contain in

an object in fat lists, the object number is not many. As we use the mechanism of [22] to

allocate the number of objects in different level, the high level object amount is few and

even none except head and tail objects. The benefit of high level to skip farther is useless,

and even worse this increases the read time searching from highest level to lower level. After

garbage-collection frequency, the read time increases to find the target, and this also reveals

the drawbacks of few high level objects. In deletion phase, the tendency of read time is as in

query phase, but the write time decrease as the maximum level increase. As mentioned in

update phase, the increasing of maximum level increases the size of pointer pool and object

29

B

CBB

DBB

EBB

FBB

GBB

HBB

IJI K

E

IJI K

F

IJI K

G

IJI K

H

IJI K

L

M
N
M
O
P
Q
R
Q
S
T
MU
N
V

M
UW
Q
XY
Z

overall

[\]^_`[a\ bcd]^

ebfd`^ bcd]^

ge^_h bcd]^

f^I^`[a\ bcd]^

Figure 17: The total execution time of the micro-benchmark with different settings of
maximum level

size. When the maximum level is small, the size of pointer pool is small. Therefore, the

spare for updating pointers is less, and that will cause frequent object rewrites because of

no spare to update pointer. That is, in small maximum level, small object size decrease the

frequency of garbage-collection activities, but small size of pointer pool increase frequency

of rewriting objects and increase write time. There is less operation in deletion phase, so

the increasing frequency of rewriting objects because of small size of pointer pool reveals.

Figure 17 shows the total execution time of the micro-benchmark with different settings of

maximum level. The better choice of setting maximum levels are 4 and 5 in this experiment.

Figure 18 shows the results of evaluating fat lists using different turnstile sizes. As the

turnstile size increases, the read time increases in four phases, and especially obvious after

update phase. This is because the probability of probing an invalid object increases as the

space utilization in NOR flash decreases. Thus, de-referencing a soft pointer may require

extra probes to find a valid object and successfully skip. However, the the setting of small

turnstile size may not perform the benefit of using soft pointers that can randomly skip

farther. This phenomenon is shown in the query phase. Even so, the better performance in

update phase is turnstile size being set to 8. Because every turnstile has one spare block,

larger turnstiles will result in fewer spare blocks and low space utilization in NOR flash.

Therefore, the write and erase time decreases as the turnstile size increases. Figure 19

shows the total execution time of the micro-benchmark with different settings of turnstile

30

ijk ilk

imk ink

o

opoq

opr

oprq

ops

opsq

tu uvwx y
z

tu uvwx y
{

tu uvwx y
r|

tu uvwx y
}s

~�
��
~�
��
��
��
��

��
��
~�
���
��
��

��������� �����

x��ux
����vtx
���x��
�����vtx
��� x��

¡
¡¢¡¡£
¡¢¡¤

¡¢¡¤£
¡¢¡¥

¡¢¡¥£
¡¢¡¦

¡¢¡¦£
¡¢¡§

¨© ©ª«¬
§

¨© ©ª«¬
®

¨© ©ª«¬
¤¯

¨© ©ª«¬
¦¥

°±
²³
°́
²µ
¶·
²̧
²³

¹̧
²³
°µ
¶¹
º»
·
¼½

¾¿ÀÁÂ ÃÄÅÆÀ

¬ÇÈ©¬
ÉÊËÇª̈ ¬
ÉÊÇ¬ÈÌ
ÍÎÏÐÇª̈ ¬
ÍÎÏÑ¬ÈÌ Ò

ÒÓÒÔ
ÒÓÕ

ÒÓÕÔ
ÒÓÖ

ÒÓÖÔ
ÒÓ×

ÒÓ×Ô

ØÙ ÙÚÛÜ Ý
Þ

ØÙ ÙÚÛÜ Ý
ß

ØÙ ÙÚÛÜ Ý
Õà

ØÙ ÙÚÛÜ Ý
×Ö

áâ
ãä
áå
ãæ
çè
ãé
ãä

êé
ãä
áæ
çêë
ìè
íî

ïðñðòóôõ ö÷øùð

ÜúûÙÜ
üýþúÚØÜ
üýúÜûÿ
����úÚØÜ
����Üûÿ

�
���
���
���
��	
��

���
���

� ���� �
	

� ���� �
�

� ���� �
��

� ���� �
��

��
��
��
��
��
��
��

��
��
��
���
 �
!"

#$%&'($)&*(

�+,��
-./+��
-.+�,0
1234+��
1235�,0

Figure 18: The micro-benchmark results of fat lists with different settings of turnstile size
(a) insertion phase (b) update phase (c) query phase (d) deletion phase

size. The better choice of setting turnstile sizes are 8 and 16 in this experiment. Based

on the above results, the recommended maximum level and turnstile size are 5 and 8,

respectively.

Overhead of De-referencing Soft Pointers

De-referencing a soft pointer probes objects in a turnstile, but not all probes produce useful

results. This section investigates the overhead caused by these extra probes.

To assist our discussion, we first define different types of probing results: a null probe

points to an invalid object or free space in NOR flash, a back probe goes to an object whose

key is smaller than the current key, a low probe points to an object that does not hook

on the current level, and an over probe refers to an object whose key is larger than the

searched key. None of these probes are useful. All the other probes are useful, and called

successful probes. Figure 20 illustrates the different types of probes.

31

6

766

866

966

:66

;66

<66

=> >?@A

B :

=> >?@A

B C

=> >?@A

B 7<

=> >?@A

B 98

D
E
D
F
G
H
I
H
J
K
DL
E
M

D
LN
H
OP
Q

overall

?R>AS=?TR UVW>A

XUYW=A UVW>A

ZXAS[UVW>A

YA\A=?TR UVW>A

Figure 19: The total execution time of the micro-benchmark with different settings of
turnstile size

The current

key

The searched

key

A low probe

A successful

probe

An over probe

A back probe

Figure 20: Different types of probes made when de-referencing a soft pointer.

This part of our experiment is to analyze the soft pointers in phase 3 in the micro-

benchmark. Table 0.6.3 shows these results. The rows titled “pointers visited” and “total

probes,” show how many soft pointers are de-referenced and how many probes are made

during the test, respectively. The rest of the rows show the percentage of probes separately

to differentiate between probe types.

Almost every soft pointer has a successful probe except the soft pointer at the last of

every level before finding the searched key. The maximum level is higher, the soft pointers

with no successful probe is more. In maximum level setting to 1, percentage of successful

probes is 1 because there is just one level and must find an object to skip to before finding

searched key. Therefore, as the maximum level decreases, the percentage of successful

probes increases.

32Max. levels
5 4 3 1

Pointers visited 13082578 13130214 22495212 88385632
Total probes 34529843 28286792 35443585 106887758
successful probes 0.775 0.837 0.940 1
low probes 0.020 0.017 0.001 0
over probes 0.676 0.487 0.192 0.057
back probes 0.364 0.233 0.108 0.043
null probes 0.804 0.580 0.334 0.109

Now consider the unsuccessful probes. As mentioned in Section 0.4.2, fat lists adopt

an object-level space allocation policy, writing objects at the same level to nearby offsets

of the blocks in a turnstile. The percentage of low probes are small, proving this policy

successful. Null probes, back probes, and over probes are the most common types of

unsuccessful probes. Provided that valid objects are randomly distributed in the entire

NOR flash, the total number of back probes and over probes will be proportional to the

total number of pointers visited. On the other hand, the total number of null probes is

subject to not only the total number of pointers visited but also the space utilization in

NOR flash. The lower the space utilization is, the more null probes there will be.

The discussion above shows that the total number of extra probes is a function of the

total number of successful probes and the space utilization in NOR flash, meaning that

overhead is manageable.

Initializing Speed

This experiment evaluates how many word reads the initialization procedure requires to

initialize a fat lists. The initialization procedure is inserted between the update phase

and the query phase of the micro-benchmark because this is when the fat lists contains

the largest number of keys. This test was conducted under different maximum levels and

turnstile sizes, while the total number of keys remained at 25,000.

The results in Table 0.6.3 show that the initialization overhead drastically decreased

as the maximum level increased. This is because the initialization procedure escalates

33Max. levels
1 3 4 5

TS sizes
8 150.59 37.95 30.47 15.07
16 184.03 58.74 30.47 20.13
32 266.75 66.44 33.22 25.30

]^_]`_

a

abc

d

dbc

e

ebc

f

ghi jklil mniopp

qr
st
qu
sv
wx
sy
st

zy
st
qv
wz{
|x
}~

������������� �����

pohlp
���okip
��oph�
����okip
����ph�

�
����
����
����
����
����
����

��
��
�
�¡
¢£
�¤
��

¥¤
��
�¡
¢¥
¦§
£
©̈

ª«¬® ¯°®ª± ²³«´®

µ¶·¸µ
¹º»¶¼½µ
¹º¶µ·¾
¿ÀÁÂ¶¼½µ
¿ÀÁÃµ·¾

Figure 21: The macro-benchmark results of fat lists and µ-tree with different times of range
query (a) insertion phase (b) range query phase

the current level for long-distance skips. Conversely, the initialization overhead increases

when the turnstiles are large. This is because space utilization in NOR flash is inversely

proportional to the turnstile size. Decreasing the space utilization increases the probability

of making null probes when de-referencing soft pointers.

These results indicate that the maximum level has a much greater influence on the

initialization overhead than the turnstile size. When the turnstile size and the maximum

level are 8 and 5, respectively, initializing a fat lists of 25,000 keys takes only 15.07 micro-

seconds.

0.6.4 Macro-benchmark Results

This part of our experiment considers a real-life workloads. This workload is collected from

54 sensors deployed in Intel Berkeley Research lab between February 28th and April 5th,

2004. The Mica2Dot sensors with weather boards collected the weather data once every 31

seconds and got a log of about 2.3 million readings. We filtered out the data of temperature

and modified it to be appropriate for index operation.

34This experiment use the following settings for fat lists: the turnstile size is 8, the maxi-

mum level is five, the slots number is 40, the key number is 30, and the pointer pool size is

7. The probability parameter p is 0.25, as suggested in [22]. The page size of µ-tree is 512

bytes.

First, we insert the temperature data according to the order of collecting data. If the

same value data was inserted again, we regarded it as update. After inserting all the data,

we randomly produced the start keys and ranges from the temperature data to range query.

Figure 21 shows the results of fat lists and µ-tree. In insertion phase, the read time of

fat lists is more than µ-tree since the query performance in µ-tree is depend on tree height

and the tree height of µ-tree grows slow. However, the write and erase time of µ-tree is

much more than fat lists because every leaf node in µ-tree occupies a page which is much

larger than an object in fat lists. Therefore, the flash space utilization of µ-tree is more

than fat lists, and garbage-collection in µ-tree is much more frequent than fat lists. On

the other hand, µ-tree need to rewrite all path on every node update, so the write time of

µ-tree is more than fat lists.

In range query phase, the performance of µ-tree is worse than fat lists no matter in

1000 times or 10000 times query. This is because µ-tree need to read from root on reading

every range query node after finding the start key, and fat lists just need to read along

the lowest level after finding the start key. As long as the overhead of reading the objects

the soft pointer reference to in fat lists is less than reading the whole path in µ-tree, the

performance of fat lists would be better than µ-tree in range query. Therefore, the read

time of fat lists is still much less than µ-tree.

0.6.5 Discussion

The evaluation results in prior sections present the performance characteristics of fat lists.

Using a large maximum level could increase the distances of skips, but if the high level object

amount is so few that it could not skip long distance and also increases the search time from

high level. Avoiding using very large turnstiles reduces the total number of useless probes,

35but using very small turnstiles would result in too many spare blocks that would seriously

increase the garbage-collection frequency. Therefore, the setting of maximum level and

turnstile size is important and depend on the workload.

0.7 Conclusions

Dealing with crucial limitations on computational resources is a fundamental design issue

in embedded devices. Efficient data indexing not only provides fast data retrieval, but also

prolongs battery life. Due to the write-once nature of flash memory, a major challenge of

data indexing in flash memory is that data updates and pointer updates recursively trigger

further updates. Previous studies tackle this issue using logical pointers, at the cost of

large RAM-space requirements and a lengthy initialization scan. This study introduces a

new pointer design, called soft pointers, and a novel index structure, called fat lists, that

uses these soft pointers. A soft pointer allows de-referencing to probe a bounded number

of physical locations in NOR flash. As a result, data objects can be moved around in NOR

flash without invalidating a pointer, largely simplifying space management in NOR flash.

Even better, the probes made by de-referencing a soft pointer provide opportunities for

forward random skips in soft lists, greatly speeding up search operations. By enlarging

the index objects, the frequency of structural modifications reduces and the speed of range

query increases. The strategies of delayed split and lazy merge not only reduce structural

modifications but also improve object space utilization and thus improve garbage-collection

efficiency.

This study examines the performance characteristics of fat lists using a series of exper-

iments based on a synthesized workload and a real-life workload. Results show that fat

lists, taking advantage of very fast NOR flash reading but extremely slow writing and eras-

ing, achieve a good performance for read-write operations. More importantly, fat lists save

precious erasure cycles of flash blocks and extend the lifespan of flash memory.

Bibliography

[1] A. Hunter, “A Brief Introduction to the Design of UBIFS,”

http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf, 2008.

[2] B. Pfaff, “Performance Analysis of BSTs in System Software,” ACM SIGMETRICS

Performance Evaluation review, Vol. 32, Issue 1, 2004.

[3] C. H. Wu, T. W. Kuo, and L. P. Chang, “An Efficient B-Tree Layer Implementation

for Flash-Memory Storage Systems,” ACM Transactions on Embedded Computing

Systems, Volume 6, Issue 3, 2007.

[4] C. H. Wu, T. W. Kuo, and L. P. Chang “The Design of efficient initialization and crash

recovery for log-based file systems over flash memory,” ACM Transaction on Storage,

Volume 2, Issue 4, 2006.

[5] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J. Kim, “A reconfigurable FTL

(flash translation layer) architecture for NAND flash-based applications,” ACM Trans-

actions on Embedded Computing Systems, Vol. 7, issue 4, 2008.

[6] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh, “Lazy-Adaptive Tree:

An Optimized Index Structure for Flash Devices,” In Proceedings of the 35th Inter-

national Conference on Very Large Data Bases, 2009.

[7] D. W. Kang, D. W. Jung, J. U. Kang, and J. S. Kim, “ µ-tree: an ordered index struc-

ture for NAND flash memory,” in Proceedings of the 7th ACM/IEEE International

Conference on Embedded Software, 2007

[8] E. Gal and S. Toledo, “A Transactional Flash File System for Microcontrollers,” in

Proceedings of the USENIX Technical Conference, 2005.

36

http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

37[9] F. Buchholz, “The Structure of the Reiser File System,”

http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php, 2006.

[10] J. Katcher, ”PostMark: A New Filesystem Benchmark,” Technical Report TR3022,

Network Appliance, http://www.netapp.com/techlibrary/3022.html, 1997.

[11] K. S. Yim, J. H. Kim, and K. Koh, “A Fast Start-Up Technique for Flash Mem-

ory Based Computing Systems,” in Proceedings of the ACM Symposium on Applied

Computing, 2005.

[12] L. P. Chang and T. W. Kuo, “Efficient Management for Large-Scale Flash-Memory

Storage Systems with Resource Conservation,” ACM Transactions on Storage, Volume

1, Issue 4, 2005.

[13] O. Rodeh, “B-trees, Shadowing, and Clones,” ACM Transactions on Storage, Vol. 3,

Issue 4, 2008.

[14] S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. W. Park, and H. J. Song, “A

Log Buffer-Based Flash Translation Layer Using Fully-Associative Sector Translation,”

ACM Transactions on Embedded Computing Systems, Vol 6, Issue 3, 2007.

[15] Samsung Electronics Company, “K8C1215ETM 32M x16 MLC NOR Flash Data

Sheet,” 2006.

[16] Samsung Electronics Company, “K9GAG08U0M 2G * 8 Bit MLC NAND Flash Mem-

ory Data Sheet,” 2006.

[17] S. Lin, D. Zeinalipour-Yazti, V. Kalogeraki, D. Gunopulos, W. A. Najjar, “Efficient

Indexing Data Structures for Flash-Based Sensor Devices,” ACM Transactions on

Storage, Volume 2 , Issue 4, 2006.

[18] S. Nath, and A. Kansal, “FlashDB: Dynamic Self-Tuning Database for NAND Flash,”

In Proceedings of the 6th international Conference on information Processing in Sensor

Networks, 2007.

[19] S. Lee, and B. Moon,“Design of Flash-Based DBMS: an In-Page Logging Approach,”

In Proceedings of the 2007 ACM SIGMOD international Conference on Management

of Data, 2007.

http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php
http://www.netapp.com/techlibrary/3022.html

38[20] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,” The

MIT Press, 1990.

[21] Y. Li, B. He, Q. Luo, and K. Yi, “Tree Indexing on Flash Disks,” In Proceedings of

the 2009 IEEE international Conference on Data Engineering, 2009.

[22] W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communica-

tions of the ACM, Vol. 33, No. 6, 1990.

	Introduction
	Background
	Using Physical Pointers in NOR flash
	Related Work

	Simple Soft Lists: The Basic Form
	Index Objects, Soft Pointers, and Turnstiles
	Key Search
	Key Insertion and Deletion

	Multilevel Soft Lists: Scalability Enhancement
	Structure of Multilevel Soft Lists
	Space Allocation and Wear Leveling
	Boot-Up Initialization

	Fat List: Page-Oriented Soft Lists
	Fat Objects
	Delayed Split of Fat Objects
	Lazy Merge of Fat Objects
	Processing Range Queries

	Experimental Results
	Experimental Setup and Performance Metrics
	-Trees in NOR flash
	Micro-Benchmark Results
	Macro-benchmark Results
	Discussion

	Conclusions
	Bibliography

