第一章 緒論

1-1 前言

壓電材料理論和應用發展從居禮(Curie)兄弟至今已屆百餘年,因 具有機械與電兩種效應耦和之特性,故廣泛的應用於感測器、致動器 之元件。其中壓電陶瓷由於可被製成任何形狀,壓電活性良好、且耦 合係數高,因此已成為壓電材料的主流,廣被工業界及科技界大量的 採用。壓電致動器在工業上之應用大多貼附或埋置於疊層的複合材料 體內,此壓電陶瓷疊層複合材料結構結合了壓電材料在致動及感測的 雙重功能,因此被廣泛應用在智慧型結構(smart structure)上,為了瞭 解這些以壓電材料激振之結構在不同環境、邊界條件及使用條件下的 動態響應,最重要即能量動態模型(即自然頻率及振型)。本文即著重 於這種壓電板結構振動之研究,及其振動行為對於聲傳之影響與效果 的探討。

1-2 文獻回顧

壓電理論大多利用壓電彈性體的壓電效應與諧振特性來達成,因 此在壓電材料的技術文獻中,大多是探討諧振特性。以數值計算方法 之變分法(variational method)和有限元素法(finite element method)是最 常被使用來分析壓電材料的振動問題。

壓電部份主要參考 Daniel Royer Eugenu Dieulesaint 之"Elastic Waves in solid"[1],此書對於壓電晶格與壓電係數關係有詳盡的說明,可了解壓電係數對振動行為之影響。而壓電理論則參考 H. F.

1

Tiersten 所著"Linear Piezoelectric plate (1969) [2],此書對於壓電控制方程式有詳盡的說明,即本文討論到的線性壓電方程式。及H.S.Tsou所著"Piezoelectric shells"(1993)[3],本書除了探討各種壓電薄殼各種控制方程試之外,亦對有限元素法及分析說明與推導。

在振動方面,有關振動模態分析與多自由度振動響應系統之運動 方程式,主要參考王柏村[5]、參考論文有陳正義[6]、詹東恩[7]、卓 永剛[8]。

在聲壓計算方面,由 Morse[9]文中了解聲音理論。

1-3 研究方法

本文重點著重於複合板在壓電致動器致動下,在不同條件下(如尺 寸大小、材料係數、結構不同及邊界條件)之振動行為。

首先先建立 ANSYS 之分析模型,本文主要採用文獻[4]中之實驗 數據為檢驗比照對像,建構同樣材料常數、邊界條件與材料尺寸與之 對照,核對選用元素之適切性。

確認適用之元素後,以ANSYS 建構實際元件之摸擬其自然振動 行為,並對照實驗所得之自然頻率。以驗證建構之模擬模型是否正 確,若是正確才可繼續往聲壓部份做探討。

先使用 ANSYS 來模擬整個結構之自然振動行為,並將所得之結 果與由雷射測位儀量測自然頻率結果作比對。再藉由 ANSYS 進行簡

2

諧激振響應分析,計算不同激振頻率下振動板各點之振幅及相位角。 並代入由 Fortran 程式寫成的聲壓程式進行計算並繪製出聲壓曲線 圖,再將分析值與 PULSE 所測得之實驗結果相比較,確定模擬之模 型的自然頻率與聲壓曲線與實驗值吻合之後,即可先了解由壓電激振 下的特性,且藉由改變各種材料常數設定或幾何形狀的改變,預估這 些條件下對聲壓曲線的影響。

第二章 壓電材料基礎理論

2-1 壓電材料特性說明

所謂的壓電材料(Piezoelectric material)係指某物質具有可以將機 械能(Mechanical energy)與電能(electrical energy)作互相轉換的效應, 此種材料早在百年前即已由居禮(Curie)兄弟經由對石英(quartz)的研 究而發現。而壓電效應的機電轉換情況可由下圖作扼要說明:圖(2-1.a) 所示為壓電材料被施加應力時,材料表面會產生電荷,此現象稱為正 壓電效應(Direct piezoelectric effect)。反之,若對壓電材料施以外加電 場時,則會使該壓電材料產生應變,此現象稱為反壓電效應(Converse piezoelectric effect),如圖(2-1.b)所示。

有關壓電性來源,可由材料的晶體結構來說明,如果單位晶胞 (unit cell)正電荷(陽離子)之幾何中心點與負電荷(陰離子)之幾何中心 點不位在同一點。則產生電偶極(electric dipole),不具對稱中心的晶 體,受到應力時會使正負電荷中心距離改變而產生電偶極矩或電壓的 變化,即產生壓電效應。如圖(2-2)所示。故由晶體物理學(Physics of Crystal)的說明及定義,可知若一材料之晶體結構(Crystal structure)與 該材料是否具有壓電性有著直接的關係。當該晶體結構具有中心對稱 性(Center of symmetry)時,該材料即不具有壓電性。對存在於自然界 中的七大晶系(Crystal system),三十二個點群(Points groups or classes) 而言,其中即有十一個點群為中心對稱點群。而在非中心對稱點群 中,除了 432 點群以外,其他二十個點群的材料都具有壓電效應,例 如屬於三角晶系(Trigonal crystal system)32 點群的石英即為一種典型 的壓電晶體,而目前應用極廣的壓電陶瓷材料如: 鋯鈦鉛(PZT), Pb(Zr, Ti)O₃等則屬於六方晶系(Hexagonal crystal system)6mm 點群。

2-2 壓電基本理論公式

對於線性壓電材料而,利用能量守恒及熱力學第一定律可得知下之關係式:(IEEE Standard on Piezoelectricity, 1978)

$$\frac{\partial U}{\partial x_i} = \sigma_{ij} \frac{\partial S_{ij}}{\partial x_i} + E_i \frac{\partial D_i}{\partial x_i}$$
(2-1)

U:為壓電材料之儲能密度(energy density for the piezoelectric material)。其中: σ_{ij} :應力(stress)、 S_{ij} :應變(strain)、 E_i :電場(electric field)、 D_i :電位移(electric displacement)。

定義電力學之焓(electric enthalpy)為密度為H,且表為

$$H = U - E_i D_i \tag{2-2}$$

則由式 (2-1) 及式 (2-2) 可得

$$\frac{\partial H}{\partial x_i} = \sigma_{ij} \frac{\partial S_{ij}}{\partial x_i} - D_i \frac{\partial E_i}{\partial x_i}$$
(2-3)

式 (2-3) 代表了 H 可為 S_{ij} 及 E_i 之函數,即 $H = (S_{ij}, E_i)$,且 $\frac{\partial H}{\partial x_i} = \frac{\partial H}{\partial S_{ij}} \frac{\partial S_{ij}}{\partial x_i} + \frac{\partial H}{\partial E_i} \frac{\partial E_i}{\partial x_i}$ (2-4) 由式 (2-3) 及式 (2-4) 比較可得:

$$\sigma_{ij} = \frac{\partial H}{\partial S_{ij}} , D_i = -\frac{\partial H}{\partial E_i}$$
(2-5)

其中 c^E_{ijkl}:固定電場下勁度係數(stiffness constans) e_{kij}:壓電應力常數(piezoelectric stress constants) ε^S_{ij}:固定應變下之介電常數(dielectric constants)

由式(2-3)至式(2-5)可得到壓電材料的組成關係式(Piezoelectric constitutive relations)如下式:

$$T_{ij} = C_{ijkl}^{E} S_{kl} - e_{kij} E_{k}$$

$$D_{i} = e_{ikl} S_{kl} + \varepsilon_{ij}^{S} E_{i}$$
(2-6)

為了方便起見,利用矩陣表示法(matrix notation)取代張量表示法 (tension notation),亦即 $C_{ijkl}^{E} \equiv C_{mn}^{E}$, $e_{ikl} = e_{in}$, $\tau_{ij} \equiv T_{p}$ 其中 i, j, k, l = l, 2, 3,而 $m, n=1\sim6$ 。 如此則可將式 (2-7) 之組成關係式改寫成

$$T_m = C_{mn}^E S_n - e_{mi} E_i$$

$$D_i = e_{im} S_m + \varepsilon_{ij}^S E_i$$
(2-7)

有時候為了因應幾何形狀,機械或電力之邊界環境等因素,而將組成 關係作一改變,可整理得到如下:

$$S_m = s_{mn}^E T_n + d_{im} E_i$$

$$D_i = d_{im} T_m + \varepsilon_{ij}^T E_j$$
(2-8)

$$S_m = s_{mn}^D T_n + g_{mi} D_i$$

$$E_i = -g_{im} T_m + \beta_{ii}^T D_i$$
(2-9)

$$T_m = c_{mn}^D S_n - e_{mi} E_i$$

$$D_i = e_{im} S_m + \varepsilon_{ij}^S E_j$$
(2-7)

$$T_m = c_{mn}^D S_n - h_{mi} D_i$$

$$E_i = -h_{im} S_m + \beta_{ij}^S D_j$$
(2-10)

由觀察以上所得之壓電材料組成關係時,如式(2-7)不難發現,當 壓電常數為零時,組成關係式即可簡化為兩個獨立之方程式,即虎克 定律(Hook's law)及介電方程式(dielectric equation)。

此外,此式(2-7)中可知勁度常數*C*^{*E*}_{*mn*}有 21 個獨立常數,壓電常數 *e*_{*im}</sub>有 18 個,介電常數<i>E*^{*S*}_{*ij*}有 6 個,因此對壓電材料而言,要正確描述 其行為特性,需要有 45 個材料常數。但由於大部份常用的壓電材料 大都具有對稱性,因此不會有如此多的常數,若以壓電陶瓷(六方晶 系(6mm)點群)且極化(polarization)為*x*₃方向為例,其組成關係式以矩 陣方法可表為式(2-11)</sub>

$\begin{bmatrix} T_1 \end{bmatrix}$		$\begin{bmatrix} C_{11}^E \end{bmatrix}$	$C^{\scriptscriptstyle E}_{ m 12}$	$C^{\scriptscriptstyle E}_{{ m 13}}$	0	0	0	0	0	$-e_{31}$	$\begin{bmatrix} S_1 \end{bmatrix}$	
T_2		C_{12}^E	$C_{ extsf{11}}^{\scriptscriptstyle E}$	$C^{\scriptscriptstyle E}_{{ m 13}}$	0	0	0	0	0	$-e_{31}$	S ₂	
T_3		C_{13}^E	$C_{13}^{\scriptscriptstyle E}$	$C^{\scriptscriptstyle E}_{{\scriptscriptstyle 33}}$	0	0	0	0	0	$-e_{31}$	S_3	
T_4		0	0	0	$C_{44}^{\scriptscriptstyle E}$	0	0	0	$-e_{15}$	0	<i>S</i> ₄	
T_5	=	0	0	0	0	$C_{44}^{\scriptscriptstyle E}$	0	$-e_{15}$	0	0	S_5	(2-11)
T_6		0	0	0	0	0	$C_{66}^{\scriptscriptstyle E}$	0	0	0	S ₆	
D_1		0	0	0	0	e ₁₅	0	ε_{11}^{S}	0	0	E_1	
D_2		0	0	0	e ₁₅	0	0	0	ε_{11}^{S}	0	E ₂	
$\lfloor D_3 \rfloor$		e ₃₁	$e_{_{31}}$	$e_{_{31}}$	0	0	0	0	0	ε^{s}_{33}	$\lfloor E_3 \rfloor$	

其中
$$C_{66}^{E} = \frac{C_{11}^{E} - C_{12}^{E}}{2}$$

由式(2-11)可以了解,只需要5個彈性常數,三個壓電常數及兩個介電常數,共10個獨立常數,便可決定六方晶系壓電陶瓷之特性, 而此材料亦為本文中所使用的壓電材料。

由變分法中 Hamilton's principle 如式(2-12)所示:

$$\delta \int_{t_1}^{t_2} (L+W) dt = \int_{t_1}^{t_2} (\delta K - \delta U + \delta W) dt = 0$$
(2-12)

其中K為動能,U為位勢能,W為外加的功。對於壓電材料而言, 其位勢能U還包函了電場和機械應變能如式(2-13)

$$H = \frac{1}{2} c_{ijkl}^{E} S_{ij} S_{kl} - e_{kij} E_{k} S_{ij} - \frac{1}{2} \varepsilon_{ij}^{S} E_{i} E_{j}$$
(2-13.a)

由於目前所討論均為線性壓電材料,故可將電場以電勢能的形能表示 (Tiersten,1969)成式(2-13.b)

$$E_i = -\phi_{,i} \tag{2-13.b}$$

代入式(2-6),在不考慮重力影響的情況下,則可得下式:

$$-\int_{t_1\Omega}^{t_2} \int \left(\rho u_i \,\delta u_i + \sigma_{ij} \delta \varepsilon_{ij} + D_j \left(\delta \phi\right)_{,j}\right) dv dt + \int_{t_1\Omega}^{t_2} \int (T_i \delta u_i + q \,\delta \phi) dS dt = 0$$
(2-14)

由 Hamiltonian's principle,假設在時間 $t_1 \mathcal{R} t_2$ 其位移場及電位場均為零,經由變分法之運算可得到壓電的統御方程式(governing equation) 及邊界條件(boundary conditions):

整理所有壓電理論公式如下表

$$\sigma_{ij,j} = \rho u_j$$

$$D_{i,i} = 0$$

$$\sigma_{ij} = c_{ijkl} S_{kl} - e_{kij} E_k$$

$$D_i = e_{ikl} S_{kl} + \varepsilon_{ik} E_k$$

$$S_{kl} = \frac{1}{2} (u_{k,l} + u_{l,k})$$

$$E_k = -\phi_{,k}$$

$$(2-17)$$

第三章 積層式壓電致動器理論

3-1 積層板 (laminate) 理論

3-1-1 狹義虎克定律:

對任何材料而言,在其彈性限度內。力與變形會成一線性正比的 關係。σ=Eε。其中σ為應力,ε為應變。E為彈性係數。這是最簡 單的情況,但現實應用上我們必須考慮更多的方向與邊界條件。例如 應用一木材時我們可以了解到有纖維方向與無纖維方向的強度會不 同。即使用相同的應力作用於不同方向將會造成不同的應變。故對於 一積層平板此二維方向的材料進行分析時就必須考慮到二維張量形 變與力的關係。

3-1-2 廣義虎克定律:

對於單層板而言,纖維方向與卡氏座標主軸方向平行,如圖(3-1) 所示,而其應力與應變之關係如式(3-1):

$\left(\sigma_{_{11}} ight)$		$\left(\mathcal{E}_{11} \right)$	
$\sigma_{\scriptscriptstyle 22}$	$\geq = [Q] <$	\mathcal{E}_{22}	(3-1)
$\sigma_{_{33}})$		γ_{33}	

(3-1)式中,等號左邊為應力。等號右邊為剛度矩陣與應力的相乘。
 若又考慮另一種情況為纖維方向與卡氏座標主軸方向夾了一角度
 θ,如圖(3-2),將必須經過一連串的轉換計算,成為式(3-2):

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{cases} = \begin{bmatrix} \overline{Q} \end{bmatrix} \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{zz} \end{cases}$$
(3-2)

其中,[Q]轉換成 $[\overline{Q}]$ 的運算過程如下:

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = [T_{\sigma}] \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases}$$
$$[T_{\sigma}] = \begin{bmatrix} \cos^{2}\theta & \sin^{2}\theta & 2\sin\theta\cos\theta \\ \sin^{2}\theta & \cos^{2}\theta & -2\sin\theta\cos\theta \\ -\sin\theta\cos\theta & \sin\theta\cos\theta & \cos^{2}-\sin^{2} \end{bmatrix} = transformation \ matrix$$

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = [T_{\sigma}]^{-1} \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = [T_{\sigma}]^{-1} [Q] \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{cases} = [T_{\sigma}]^{-1} [Q] [T_{\varepsilon}] \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{cases} = [\overline{Q}] \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{cases}$$

此為(1,2,3)及(x,y,z)系統轉換的運算。因為一般計算上我們習慣於卡氏座標。尤其是矩型板。所以計算時我們將所有系統全轉換成卡氏坐標系統。

3-1-3 古典積層板理論

多層板即由多個單層板推疊而成。若假設每個單層板均有其不同 的材料特性。若欲得到應力與應變間的統禦方程式,其運算將更為複 雜。推導如下,其中板層之間關係如圖(3-3)所示: 以古典板理論為積層板分析之基礎

- (a) 基本假設:
 - 1、 板的厚度小於板的長、寬(1/10)。
 - 2、 板的截面變形後仍保持平面, 無翹曲。
 - 3、 變形後截面仍垂直中性面(mid-plane),無剪應變。
 - 4、 厚度仍保持不變。
 - 5、 板的變形量 u、v、w 均很小。
- (b) 位移場假設(displacement field)

 $u = u_0(x, y) + z\theta_x(x, y)$ $v = v_0(x, y) + z\theta_y(x, y)$ $w = w_0(x, y)$ $u_0 : 中性面 x 方向之位移$ $v_0 : 中性面 y 方向之位移$ $w_0 : 中性面 y 方向之位移$ $\theta_x(x, y) = -\frac{\partial w}{\partial x}$ $\theta_y(x, y) = -\frac{\partial w}{\partial y}$

(c) 應變場(strain field)

$$S_{x} = \frac{\partial u}{\partial x} = S_{x}^{0} + zk_{x}$$

$$S_{y} = \frac{\partial v}{\partial y} = S_{y}^{0} + zk_{y}$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \gamma_{xy}^{0} + zk_{xy}$$
(3-4)

(3-3)

(d) 中性面之曲率(curvature)及位移場

應變場	$S_{x}^{0} = \frac{\partial u}{\partial x}$ $S_{y}^{0} = \frac{\partial v}{\partial y}$ $\gamma_{y}^{0} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$	(3-5)
曲率	$k_{xy} = -\frac{\partial^{2} w}{\partial x^{2}}$ $k_{y} = -\frac{\partial^{2} w}{\partial y^{2}}$ $k_{xy} = -2\frac{\partial^{2} w}{\partial x \partial y}$	(3-6)

由上述繁瑣定義,最後可總整理如下:

$$\begin{cases} \mathcal{E}_{xx} \\ \mathcal{E}_{yy} \\ \gamma_{zz} \end{cases} = \begin{cases} \mathcal{E}_{x}^{0} \\ \mathcal{E}_{y}^{0} \\ \gamma_{xy}^{0} \end{cases} + z \begin{cases} k_{x} \\ k_{y} \\ k_{xy} \end{cases}$$
(3-7)

式(3-7)的意思即是,積層板所有的應變我們均可以以 mid-plane 的應 變(strains)及曲率(curvature)表示出來。再將式(3-7)帶進(3-2)式,即可 得如下:

$$\begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} = \left[\overline{Q} \right]_{k} \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases} = \left[\overline{Q} \right]_{k} \left\{ \begin{cases} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{cases} + z \begin{cases} k_{x} \\ k_{y} \\ k_{xy} \end{cases} \right\}$$
(3-8)

得到上式之後,我們以一示意圖來解釋一積層板正向力(壓力或拉力) 與其彎矩力(moment)力的關係如圖(3-4) 每一層板雖然受到同樣的應變,但因為不同的剛度矩陣而會有不同的 應力產生(stress),又因為離中間層(mid-plane)的距離(z)不同,會有不 同的 bending moment 的產生。如(3-4.a)圖所示。而導出式 3-8 之目的 就是要將各積層板看成如圖(3-4.b)。視為一個整體,受到一個正向力 N及一彎矩力 M 的作用。

其中正向力 N 和彎矩力 M 分別如下:

(3-9)式中N為積層板所受之正向力。

(3-10)式中 M 為積層板所受之彎矩力。

其中

[A] : extension stiffness

[B] : extension-bending coupling

[D] : bending stiffness

$$\begin{aligned} \overline{Q_{11}} &= Q_{11}\cos^4\theta^k + Q_{22}\sin^4\theta^k + 2(Q_{12} + 2Q_{66})\sin^2\theta^k\cos^2\theta^k \\ \overline{Q_{22}} &= Q_{22}\cos^4\theta^k + Q_{11}\sin^4\theta^k + 2(Q_{12} + 2Q_{66})\sin^2\theta^k\cos^2\theta^k \\ \overline{Q_{66}} &= (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})\sin^2\theta^k\cos^2\theta^k + Q_{66}(\cos^4\theta^k + \sin^4\theta^k) \\ \overline{Q_{12}} &= (Q_{11} + Q_{22} - 4Q_{66})\sin^2\theta^k\cos^2\theta^k + Q_{12}(\cos^4\theta^k + \sin^4\theta^k) \\ \overline{Q_{16}} &= (Q_{11} - Q_{12} - 2Q_{66})\sin^2\theta^k\cos^3\theta^k - (Q_{22} - Q_{12} - 2Q_{66})\sin^3\theta^k\cos\theta^k \\ \overline{Q_{26}} &= (Q_{11} - Q_{12} - 2Q_{66})\sin^3\theta^k\cos\theta^k - (Q_{22} - Q_{12} - 2Q_{66})\sin^3\theta^k\cos^3\theta^k \\ Q_{11} &= \frac{E_1}{1 - v_{12}v_{21}} \\ Q_{22} &= \frac{E_2}{1 - v_{12}v_{21}} \\ Q_{12} &= \frac{v_{12}E_2}{1 - v_{12}v_{21}} \\ Q_{66} &= G_{12} \end{aligned}$$

綜合以上,我們可以得到一完整的積層板(laminate)公式:

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\ A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\ B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\ B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\ B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} S_{x}^{0} \\ S_{y}^{0} \\ \gamma_{xy}^{0} \\ k_{x} \\ k_{y} \\ k_{xy} \end{bmatrix}$$
(3-11)

3-1-4 一階剪變形理論(First-Order-Shear-Deformation Theory -FODS)

古典板理論的假設均乎略縱向應變 (transverse strain),對於厚板 或是縱向有大變形的板模擬會產生很大的誤差。而一階變形理論則有 考慮縱向應變對整體運動的影響,過去許多文獻已有說明對於厚板或 縱向應變的板之適用性及準確性。 (a) 基本假設:

1、板的截面變形後仍保持平面, 無翹曲

2、為平變應力 $(\sigma_{zz} = 0)$

3、假設平面力與彎矩力與縱向剪力沒有耦合效應

(b) 位移場假設(displacement field):

$$u(x, y, z) = u(x, y) + z\beta_x(x, y)$$

$$v(x, y, z) = v(x, y) + z\beta_y(x, y)$$

$$w(x, y, z) = w(x, y)$$
(3-12)

其中
$$u \cdot v \cdot w \cdot \beta_x \cdot \beta_y$$
為變形前後的微小位移量。且
 $\{\varepsilon\} = \{\varepsilon_0\} + z\{\kappa\}$
 $\{\gamma\} = \begin{cases} \gamma_{xz} \\ \gamma_{yz} \end{cases} = \begin{cases} \beta_x \\ \beta_y \end{cases} + \begin{cases} w_{xz} \\ w_{y} \end{cases}$
(3-13)

且

$$\{\varepsilon_0\} = \begin{pmatrix} u_{,x} \\ v_{,y} \\ u_{,y} + v_{,x} \end{pmatrix}$$
為中性面之平面應變
$$\{\kappa\} = \begin{cases} \beta_{x,x} \\ \beta_{y,y} \\ \beta_{x,y} + \beta_{y,x} \end{cases}$$
為中性面之曲率

 $z\{K\}$ 為彎曲應變, w_{x} , w_{y} 為變形後之旋轉角度。

本文使用雷斯納-米德林理論(Reissner-Mindlin theory),假設

 W_{xx} 、 W_{yx} 為定值,故需要剪力修正係數來導正其準確性。在此假設下板之變形示意圖如圖(3-5)所示,應力示意圖如圖(3-6)所示。其中 $\{N\} = \{N_{x} \ N_{y} \ N_{xy}\}^{T}$ 為正向力, $\{M\} = \{M_{x} \ M_{y} \ M_{xy}\}^{T}$ 為彎矩力, $\{T\} = \{T_{xz} \ T_{yz}\}^{T}$ 為縱向剪力。

(c) 構成方程式

$$\begin{cases} \sigma \\ \tau \end{cases} = \begin{bmatrix} [H_m] & 0 \\ 0 & [H_t] \end{bmatrix} \begin{cases} S \\ \gamma \end{cases}$$
(3-14)

[H_m]為前一段所導出之A、B、D矩陣,即是二維應力與應變之間 的剛性矩陣。而[H_i]則為縱向應力與應變之剛性矩陣。在式(3-14) 中,我們假設面上(in-plane)應力與縱向(transverse)應力之間沒有耦 合的效應。

其中

$$\{\sigma\} = \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} , \ \{\tau\} = \begin{cases} \sigma_{xz} \\ \sigma_{yz} \end{cases} , \ \{\varepsilon\} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 2\varepsilon_{xy} \end{cases} , \ \{\gamma\} = \begin{cases} 2\varepsilon_{xz} \\ 2\varepsilon_{yz} \end{cases}$$

其中應變場:

$$\varepsilon_{xx} = \frac{\partial u(x, y, z)}{\partial x} = u_{x}$$
(3-15.a)

$$\varepsilon_{yy} = \frac{\partial u(x, y, z)}{\partial y} = u_{yy}$$
(3-15.b)

$$2\varepsilon_{xy} = \gamma_{xy} = \frac{\partial u(x, y, z)}{\partial y} + \frac{\partial v(x, y, z)}{\partial x} = u_{y} + v_{x}$$
(3-15.c)

$$2\varepsilon_{xz} = \gamma_{xz} = \frac{\partial u(x, y, z)}{\partial z} + \frac{\partial w(x, y, z)}{\partial x} = u_{z} + w_{z}$$
(3-15.d)

$$2\varepsilon_{yz} = \gamma_{yz} = \frac{\partial v(x, y, z)}{\partial z} + \frac{\partial w(x, y, z)}{\partial y} = v_{z} + w_{y}$$
(3-15.e)

則此理論之合力
$$\{N\}$$
、 $\{M\}$ 、 $\{T\}$ 如下:

$$\{N\} = \int_{-h/2}^{h/2} \{\sigma\} dz = [A] \{\varepsilon_0\} + [B] \{\kappa\}$$

$$\{M\} = \int_{-h/2}^{h/2} \{\sigma\} z dz = [B] \{\varepsilon_0\} + [D] \{\kappa\}$$

$$\{T\} = \int_{-h/2}^{h/2} \{\tau\} dz = [K] \{\gamma\}$$

(3-16)

其中

$$[A] = \int_{-h/2}^{h/2} [H_m(x,z)] dz$$

$$[B] = \int_{-h/2}^{h/2} z [H_m(x,z)] dz$$

$$[D] = \int_{-h/2}^{h/2} z^2 [H_m(x,z)] dz$$

$$[K] = k \int_{-h/2}^{h/2} [H_t(x,z)] dz$$

3-2 壓電積層板理論公式

3-2-1 古典板理論

由 2-2 及 3-1 的介紹,在古典板理論為基楚所導出壓電和積層板 之基本理論和公式均有初步的了解,而這部份將整合兩種理論推導出 適合應用於壓電複合材料板材的理論公式。

若以單層壓電材料而言,假設其電場(electric field)及電位移 (electric displacement)在厚度方向為線性分佈且垂直於中性面。式(2-6)

$$\{S\} = \{S_0\} + z\{k\}$$

$$\{T\} = \left[\overline{Q}\right]_k \{S\} - \left[R_T\right]_k^{-1} \begin{cases} e_{31} \\ e_{31} \\ 0 \end{cases}_k E_k$$

$$D_k = \{e_{31} \quad e_{31} \quad 0\} \{S\}_k + \varepsilon_k E_k$$
(3-26)

再將式(3-12)代入式(3-11)則可得下式:

 $\begin{cases} N \\ M \end{cases} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{cases} S_0 \\ k \end{cases} + \sum_{k=1}^n \int_{z_{k-1}}^{z_k} \begin{bmatrix} I_3 \\ zI_3 \end{bmatrix} \begin{bmatrix} R_T \end{bmatrix}_k^{-1} \begin{cases} e_{31} \\ e_{32} \\ 0 \end{cases} \frac{\phi_k}{h_k} dz$

or

$$\begin{cases} N \\ M \end{cases} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \begin{cases} S_0 \\ k \end{cases} + \sum_{k=1}^n \begin{bmatrix} I_3 \\ z_{mk}I_3 \end{bmatrix} \begin{bmatrix} R_T \end{bmatrix}_k^{-1} \begin{cases} e_{31} \\ e_{32} \\ 0 \end{cases} \phi_k$$
(3-27)

where

$$z_{mk} = \frac{z_{k-1} + z_k}{2}$$

其中I₃為單位矩陣。即只有對角線為1,其他值為0。因為電場作用 下對於壓電材料係數只有主軸方向有意義。故乘上單位矩陣可直接略 掉其他項而不用乘。

3-2-2 米德林板理論

傳統板理論與米德林板理論差別在於前者乎略剪應變,而後者則 有考慮,在3-1-4已有詳盡說明。當應用於壓電積層板時則必須再加 上電場自由度。故其構成方程式(Constitutive equations)為:

$$\begin{cases}
N \\
M \\
T
\end{cases} = \begin{bmatrix}
A & B & 0 \\
B & D & 0 \\
0 & 0 & K
\end{bmatrix}
\begin{cases}
S_{0} \\
\kappa \\
\gamma
\end{cases} + \sum_{k=1}^{n} \begin{bmatrix}
I_{3} \\
z_{mk}I_{3} \\
0
\end{bmatrix}
\begin{bmatrix}
R_{T}\end{bmatrix}_{k}^{-1} \begin{cases}
e_{31} \\
e_{32} \\
0
\end{bmatrix}_{k} \phi_{k} \\
M \\
\rho_{k} = \{e_{31} & e_{32} & 0\}_{k} \begin{bmatrix}
R_{S}\end{bmatrix}_{k} \begin{bmatrix}
I_{3} & z_{mk}I_{3} & 0\end{bmatrix}
\begin{cases}
S_{0} \\
\kappa \\
\gamma
\end{bmatrix} - \frac{\mathcal{E}_{k}}{h_{k}} \phi_{k} \\
\gamma
\end{cases}$$
(3-28)

3-3 有限元素之建立

3-3-1 變分法

對於壓電材料動態分析,可經由 Hamilton's principle 來導出: $\delta \int_{t_2}^{t_1} (\mathcal{L}+W) dt = 0$ (3-29)

其中L為 Lagrangian,由動能(kinetic energy \mathcal{J}),電焓(electrical enthalpy \mathcal{H})而W為外力(包含機械力和外加電場)所作之虛功。均於式(2-2)、(2-4)、(2-5)及(2-12)、(2-13)有詳細之說明。

$$\mathcal{J} = \frac{1}{2} \rho \left\{ \stackrel{\bullet}{u} \right\}^T \left\{ \stackrel{\bullet}{u} \right\}$$
(3-30)

$$\mathcal{H} = \frac{1}{2} \left[\left\{ S \right\}^{T} \left\{ T \right\} - \left\{ E \right\}^{T} \left\{ D \right\} \right]$$
(3-31)

$$\mathcal{L} = \int_{V} (\mathcal{J} - \mathcal{H}) dV = \int_{V} \left[\frac{1}{2} \rho \left\{ u \right\}^{T} \left\{ u \right\}^{T} \left\{ u \right\}^{T} \left\{ 2 \right\}^{T} \left\{ T \right\} - \left\{ E \right\}^{T} \left\{ D \right\} \right] \right] dV \qquad (3-32)$$

 $\left\{ \begin{matrix} \mathbf{u} \\ u \end{matrix} \right\}$ 為速度場 (velocity field)

邊界條件: a_3 位移場被限定, $p_{u} = \{ \underline{u} \}$ 。

當外力作用時,位移場及電勢能均要能滿足邊界條件,即在邊界 Ω_3 時 $\{\delta u\} = \{0\}; 在邊界<math>\Omega_4 则 \delta \phi = 0$ 。故式(3-14)中虛功W可表示成:

$$\delta \mathcal{W} = \int_{V} \{\delta u\}^{T} \{F_{V}\} dV + \int_{\Omega_{1}} \{\delta u\}^{T} \{F_{\Omega}\} d\Omega + \{\delta u\}^{T} \{F_{P}\} - \int_{\Omega_{2}} \delta \phi \xi d\Omega - \delta \phi Q \quad (3-33)$$

$$\not \pm \not \Phi$$

- $\{F_v\}$:施於體上之力
- $\{F_{\Omega}\}$:施於表面之力
- $\{F_p\}$ 施於點之力
 - ξ :於表面 Ω_2 電荷密度
 - Q:施加之集中電荷量

將以上代入壓電材料組成關係式(2-6)可得:

$$0 = -\int_{V} \left[\rho \left\{ \delta u \right\}^{T} \left\{ \stackrel{\bullet}{u} \right\} - \left\{ \delta S \right\}^{T} \left[c^{E} \right] \left\{ S \right\} + \left\{ \delta S \right\}^{T} \left[e \right]^{T} \left\{ E \right\} + \left\{ \delta E \right\}^{T} \left[e \right] \left\{ S \right\}$$
$$+ \left\{ \delta E \right\}^{T} \left[e^{S} \right] \left\{ E \right\} + \left\{ \delta u \right\}^{T} \left\{ F_{V} \right\} \right] dV + \int_{\Omega_{1}} \left\{ \delta u \right\}^{T} \left\{ F_{\Omega} \right\} d\Omega$$
$$+ \left\{ \delta u \right\}^{T} \left\{ F_{P} \right\} - \int_{\Omega_{2}} \delta \phi \xi d\Omega - \delta \phi Q$$
(3-34)

3-3-2 有限元素法

材料整個位移場{u}和電勢能¢均經過形狀函數(shape function)與各節節點之位移{u_i}及電勢能{¢_i}形成以下之關係:

$$\{u\} = [N_u]\{u_i\}$$

$$\phi = [N_{\phi}]\{\phi_i\}$$
(3-35)

應變場和電場與節點間之位移及電勢能之關係則由形狀函數[B₄]及 [B₄]形成以下之關係:

$$\{S\} = [D][N_u]\{u_i\} = [B_u]\{u_i\}$$

$$\{E\} = -\nabla [N_{\phi}]\{\phi_i\} = [B_{\phi}]\{\phi_i\}$$

(3-36)

其中[D]為 derivation operator,定義為 $\{S\}=[D]\{u\}$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} \partial_x & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \partial_y & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \partial_z \\ \mathbf{0} & \mathbf{0} & \partial_y \\ \partial_z & \mathbf{0} & \partial_x \\ \partial_y & \partial_x & \mathbf{0} \end{bmatrix}$$
(3-37)

將式 (3-37) 及 (3-35) 代入 (3-34) 可得:

$$0 = -\{\delta u_i\}^T \int_{V} \rho[N_u]^T [N_u] dV \left\{ \begin{matrix} \bullet \\ u_i \end{matrix} \right\}^T \int_{V} [B_u]^T \lfloor c^E \rfloor [B_u] dV \{u_i\} -\{\delta u_i\}^T \int_{V} [B_u]^T \lfloor e \rfloor [B_{\phi}] dV \{\phi_i\} - \{\delta \phi_i\}^T \int_{V} [B_{\phi}]^T \lfloor e \rfloor^T [B_u] dV \{u_i\} +\{\delta \phi_i\}^T \int_{V} [B_{\phi}]^T \lfloor \varepsilon^S \rfloor [B_{\phi}] dV \{\phi_i\} + \{\delta u_i\}^T \int_{V} [N_u]^T \{F_V\} dV +\{\delta u_i\}^T \int_{\Omega_1} [N_u]^T \{F_{\Omega}\} d\Omega + \{\delta u_i\}^T \{F_P\} -\{\delta \phi_i\}^T \int_{\Omega_2} [N_{\phi}]^T \xi d\Omega - \{\delta \phi_i\}^T [N_{\phi}]^T Q$$
(3-38)

對於一個元素來說,式(3-38)可寫成

$$\begin{bmatrix} M \end{bmatrix} \begin{Bmatrix} \mathbf{u}_i \end{Bmatrix} + \begin{bmatrix} K_{uu} \end{bmatrix} \lbrace u_i \rbrace + \begin{bmatrix} K_{u\phi} \end{bmatrix} \lbrace \phi_i \rbrace = \lbrace f_i \rbrace$$

$$\begin{bmatrix} K_{\phi u} \end{bmatrix} \lbrace u_i \rbrace + \begin{bmatrix} K_{\phi \phi} \end{bmatrix} \lbrace \phi_i \rbrace = \lbrace g_i \rbrace$$
(3-30)
(3-40)

其中

$$\begin{bmatrix} \mathbf{M} \end{bmatrix} = \int_{V} \boldsymbol{\rho} \begin{bmatrix} \mathbf{N}_{u} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{N}_{u} \end{bmatrix} dV$$
$$\begin{bmatrix} K_{uu} \end{bmatrix} = \int_{V} \begin{bmatrix} \mathbf{B}_{u} \end{bmatrix}^{T} \begin{bmatrix} c^{E} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{u} \end{bmatrix} dV$$
$$\begin{bmatrix} K_{u\phi} \end{bmatrix} = \int_{V} \begin{bmatrix} \mathbf{B}_{u} \end{bmatrix}^{T} \begin{bmatrix} e \end{bmatrix} \begin{bmatrix} \mathbf{B}_{\phi} \end{bmatrix} dV$$
$$\begin{bmatrix} K_{\phi\phi} \end{bmatrix} = \int_{V} \begin{bmatrix} \mathbf{B}_{\phi} \end{bmatrix}^{T} \begin{bmatrix} \varepsilon \end{bmatrix} \begin{bmatrix} \mathbf{B}_{\phi} \end{bmatrix} dV$$
$$\begin{bmatrix} K_{\phi u} \end{bmatrix} = -\begin{bmatrix} K_{u\phi} \end{bmatrix}^{T}$$

以上分別為元素之質量矩陣、剛度矩陣、壓電耦和矩陣、介電矩陣。 而外力和電荷則為:

$$\{f_i\} = \int_V (N_u)^T \{P_b\} dV + \int_{\Omega_1} [N_u]^T \{P_s\} d\Omega + [N_u]^T \{P_c\}$$

$$\{g_i\} = \int_{\Omega_2} [N_{\phi}]^T \xi d\Omega - [N_{\phi}]^T Q$$

$$(3-41)$$

每個元素 k 在網格化之後,與鄰接元素之節點自由度必須連續。且每個節點之在地坐標需經過轉換成全域座標:

$$\{u_i\}^{(k)} = [L_u]^{(k)} \{U\}$$

$$\{\phi_i\}^{(k)} = [L_{\phi}]^{(k)} \{\phi\}$$
(3-42)

Hamilton's principle 式(4-14)對整個區域內之各節點必須完全符合以上各式:

3-3-3 應用於古典板理論

在古典板理論的應用中必須先假設位移場和電荷量的分佈與厚度 方向無關係,即電位移在厚度方向的分佈為常數。且壓電極化方向 與之平行,即與中性面垂直。每個壓電元素節點上的電壓量都一 樣。基於以上假設,每個元素可表示成:

 $(3-44 a \cdot b)$

$$\{\phi\} = \{\phi_k\}$$

$$\{E\} = -\left\{\frac{\phi_k}{h_k}\right\}$$
(3-45)

其中 h_k 為第 k 層的厚度, 且 $[N_{\phi}] = I$, $[B_{\phi}] = diag(1/h_k)$

將以上元素之質量矩陣、勁度矩陣、壓電矩、介電矩陣代入古典板
公式(3-13)、(3-14),可得如下:
$$[M] = \int_{\Omega} [M]^{T} [N] d\Omega$$
$$[K_{uu}] = \int_{\Omega} [B]^{T} \begin{bmatrix} A & B \\ B & D \end{bmatrix} [B] d\Omega$$
$$[K_{u\phi}] = \int_{\Omega} [B]^{T} \begin{bmatrix} \dots \mathcal{E}_{k}^{T} \dots \\ \dots \mathcal{E}_{k}^{T} \mathcal{Z}_{mk} \dots \end{bmatrix} d\Omega$$
$$[K_{\phi\phi}] = -\Omega \begin{bmatrix} \ddots & 0 \\ & \ddots \\ & & \ddots \end{bmatrix}$$
$$[K_{\phi u}] = [K_{u\phi}]^{T}$$

其中我們已經介紹過: $\{\varepsilon\}_{k} = \{e_{31} \ e_{32} \ 0\}_{k} [R_{S}]_{k}$ $[R_{T}]_{k}^{-1} \{e_{31} \ e_{32} \ 0\}_{k}^{T} = \{\varepsilon\}_{k}^{T}$ $\{f\} = \int_{\Omega} [N]^{T} \{P_{S}\} d\Omega + \{P_{c}\}$ $\{g\} = -\{\dots, \xi_{k}, \dots\}^{T}$

電壓趨動下之自然頻率

電壓趨動

電壓趨動時邊界上之電勢能 $\{\Phi\}$ 為給定,故組成方程式(3-30a)為:

$$\left[\mathbf{M}\right] \left\{ \begin{matrix} \bullet \\ u \end{matrix} \right\} + \left[K_{UU} \right] \left\{ U \right\} = \left\{ F \right\} - \left[K_{U\phi} \right] \left\{ \Phi \right\}$$
(3-46)

等號右邊可視為壓電材料之等效外力,則由上式即可得到特徵值及特 徵向量:

$$\left(\left[K_{UU}\right] - \omega^{2}\left[M\right]\right)\left\{U\right\} = 0$$
(3-47)

若考慮所使用之有限元素有顧慮到縱向的應力與應變時,如圖(3-6) 所示。

3-3-4 應用於米德林板理論

當應用於米德林板理論時,元素之質量矩陣、勁度矩陣、壓電矩、 介電矩陣則變成如下:

$$\begin{bmatrix} M \end{bmatrix} = \int_{\Omega} m \begin{bmatrix} N \end{bmatrix}^{T} \begin{bmatrix} N \end{bmatrix} d\Omega$$
$$\begin{bmatrix} K_{uu} \end{bmatrix} = \int_{\Omega} \begin{bmatrix} B \end{bmatrix}^{T} \begin{bmatrix} A & B & 0 \\ B & D & 0 \\ 0 & 0 & K \end{bmatrix} \begin{bmatrix} B \end{bmatrix} d\Omega$$
$$\begin{bmatrix} K_{u\phi} \end{bmatrix} = \int_{\Omega} \begin{bmatrix} B \end{bmatrix}^{T} \begin{bmatrix} \dots \mathcal{E}_{k}^{T} \dots \\ \dots \mathcal{E}_{k}^{T} \mathcal{Z}_{mk} \dots \\ 0 \end{bmatrix} d\Omega$$
$$\begin{bmatrix} K_{\phi\phi} \end{bmatrix} = -\Omega \begin{bmatrix} \ddots & 0 \\ & \ddots \\ 0 & \ddots \end{bmatrix}$$
$$\begin{bmatrix} K_{\phi\mu} \end{bmatrix} = \begin{bmatrix} K_{u\phi} \end{bmatrix}^{T}$$

再將上式代入式(3-46)、(3-47)即可。

第四章 聲壓計算及應用

4-1 聲壓波動方程式

對平面波而言,一維波動方程式為:

$$\frac{\partial^2 \mathbf{p}}{\partial \mathbf{x}^2} = \frac{1}{c} \frac{\partial^2 \mathbf{p}}{\partial t^2}$$
(4-1)

其中, c 為聲音之速度, 在室溫 24°時, c=343 m/s。

利用一維波動問題 D'Alembert 解,可求得:

 $p(x,t) = f_1(x - ct) + f_2(x + ct)$

 f_1 , f_2 為任意函數,對於諧波聲場,可直接求解:

$$\frac{d^{2}\tilde{p}}{dx^{2}} + \left(\frac{w}{c}\right)^{2}\tilde{p} = 0$$
(4-2)

 $\langle k = \sigma / c \rangle$,為波數(wave number),可求得:

$$\widetilde{p}(x) = \widetilde{A}e^{-jkx} + \widetilde{B}e^{jkx}$$
(4-3)

還原成時間域的表示法:

$$\widetilde{p}(x) = \widetilde{A}e^{-j(\varpi t - kx)} + \widetilde{B}e^{j(\varpi t - kx)}$$
(4-4)

其中 \widetilde{A} , \widetilde{B} 為未定複數,對於點聲源而言, 3-D 波動方程式在球面座標(Spherical coordinate)為:

$$\frac{\partial^2 p}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 p}{\partial \phi^2} + \frac{2}{r} \frac{\partial p}{\partial r} + \frac{1}{r^2 \tan \theta} \frac{\partial p}{\partial \theta} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(4-5)

因為點聲源是一個完全對稱的聲源,所以我們可以預期它所產生的聲場不會有方向性,所以式(4-5)可化簡成:

$$\frac{\partial^2 p}{\partial r^2} + \frac{2}{r} \frac{\partial p}{\partial r} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$
(4-6)

其中r為點聲源距量測點的距離

上式可改寫成

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(rp) = \frac{1}{r}\frac{1}{c^2}\frac{\partial^2}{\partial t^2}(rp)$$
(4-7)

故

$$\frac{\partial^2(\mathbf{rp})}{\partial \mathbf{r}^2} = \frac{1}{\mathbf{c}^2} \frac{\partial^2(\mathbf{rp})}{\partial t^2}$$
(4-8)

觀察(4-8)式的型式和前面的一維波動方程式式一樣的,其解為: $rp=f_1(r-ct)+f_2(r+ct)$

所以

$$p(r,t) = \frac{1}{r}f_1(r-ct) + \frac{1}{r}f_2(r+ct)$$
(4-9)

由於一個點聲源只會發出外傳波(Outgoing wave),所以

$$p(r,t) = \frac{1}{r} f_1(r - ct)$$
(4-10)

對於簡諧球面波(Harmonic spherical wave)而言

$$p(r,t) = \frac{\widetilde{A}}{r} e^{j(\varpi t - kr)}$$
(4-11)

對一個微小振動板 δ s而言,距離振動板 Γ 的聲壓可表示為下式:

$$p(r,t) = \left(\frac{j\varpi\rho_{air}|u_d|\delta s}{2\pi r}\right)e^{j(\varpi t - kr)}$$
(4-12)

對一塊振動板而言,可由 Rayliegh's first integral 計算振動板整體聲 壓表現,表示為下式:

$$p(r,t) = \frac{j\varpi\rho_{air}}{2\pi} e^{j\varpi t} \int_{s} \frac{|u_{d}(r,t)|e^{-jkr}}{r} ds$$

$$\ge A_{d}(r,t) = Ae^{i(\omega t - kr)}$$

$$\ggg u_{d}(r,t) = i \varpi A e^{i(\omega t - kr)} = i \varpi A_{d}(r,t)$$

$$\ggg u_{d}(r,t) \not \dashv \downarrow \dashv (4-13) :$$

$$(4-13)$$

$$p(r,t) = \frac{-\overline{\sigma}^2 \rho_{air}}{2\pi} e^{j\overline{\sigma}t} \int_s \frac{A e^{-jkr}}{r} dS$$
(4-14)

$$p(r,t) = \frac{-\varpi^2 \rho_{air}}{2\pi} \sum_{i} \operatorname{Ae}^{j(\varpi t - kr)} \frac{\Delta S}{r_i}$$
(4-15)

$$p(r,t) = \frac{-\overline{\sigma}^2 \rho_{air}}{2\pi} \sum_i (A\cos(\overline{\sigma}t - kr_i)) \frac{\Delta S}{r_i}$$
(4-16)

假設聲源的力是簡諧激振的模式,且其簡諧激振響應的解採用穩 態解。考慮聲音接收處(Microphone)是位於垂直中心點 r 處,接收時 間考慮使用的頻率區間。則:

$$P = \left(\frac{-\rho_{air}\sigma^2}{2\pi}\right) \sum_{i} (A(x_i, y_j) \times \cos(\theta_i - kr_i)) \frac{\Delta S}{r_i}$$
(4-17)

其中p(r,t)為量測點與振動板距離為r處的聲壓, $\rho_{air} = 1.1614$ kg/m³為空氣密度, $u_d(r,t)$ 為振動板表面元素之速度大小,A為振動板表面元素之振幅大小, r_i 為量測點與振動板表面元素之距離, $j = \sqrt{-1}$,k為波數($\frac{\varpi}{c}$), θ_i 為板子當時之相角(Phase angle)。

在實務上,量測聲音用的尺度為對數尺度(log scale),單位為分貝 (decibel),接用對數尺度的主要原因在於聲音的動態範圍非常大,同 時人耳對音量的感覺亦比較接近對數尺度。

聲壓位準(Sound Pressure Level)

$$SPL = 20 \log(\frac{|P_{rms}|}{P_{ref}}) \quad (dB)$$
(4-18)

Pms 為量測點聲壓之均方根值為:

$$P_{\rm rms} = \left[\frac{1}{T} \int_{-T/2}^{T/2} |p(\mathbf{r}, \mathbf{t})|^2 dt\right]^{1/2}$$

$$\Phi \mathbb{E} \ \mathcal{E} \$$

在量測聲壓的儀器上看到的聲壓曲線即為頻率響應曲線,縱軸為 (dB),橫軸為激振頻率。

4-2 聲壓曲線之繪製

聲壓方程式如(4.17)所示,為

$$P(\text{frequency}) = \left(\frac{-\rho_{\text{air}} \sigma^2}{2\pi}\right) \sum_{i} (A(x_i, y_j) \times \cos(\theta_i - kr_i)) \frac{\Delta S}{r_i}$$
(4-20)

其中A(x_i,y_j)、θ_i、r_i的結果可由有限單元分析軟體 ANSYS 進行簡 諧激振響應分析得到。

本文實驗的架設是先將一圓形複材板與半圓形懸邊之內徑黏 合,再以雙面膠將懸邊的另一邊固定於壓克力之框架上,並在複材板 的下方放置激振器,激振器施力的情況就像是一個簡諧的力函數。

然後以ANSYS建立模型模擬實際受力情況,以SOLID5、 SOLID191 及COMBIN14 元素建立壓電板、銅片及彈性支承模型,並 輸入壓電材料、銅板和模擬各種尺寸、材料常數及彈性支撐之彈簧常 數等,再將複材振動板切割成面積大小為 2mm²的小面積元素,並在 圓板外徑上建立彈性支撐,在壓電板上施於電壓摸擬實際施力狀況。 在整個模型建立完成後,進行簡諧激振響應分析(Harmonic Analysis)。

當 ANSYS 簡諧激振響應分析完後,輸出各節點距量測點之距離 及各激振頻率下節點之位移響應(Displacement response)和相位(Phase angle)等資料。再將資料代入以式(4-20)寫成之 Fortran 程式計算振動 板之聲壓位準值,將結果以 ORIGIN 統計繪圖軟體繪出聲壓位準曲 線。

第五章 壓電板材製作與實驗設備

本文使用之壓電材料均由銀泰公司所生產之 PZT4。其係數與規 格如表(6-4)。銅板則採用純度為 99.99%,厚度為 0.3mm 之銅板。材 料係數如表(6-4)。

因實驗需求,我們必需將壓電片與銅片黏合。本實驗使用 AB 膠 為其接著劑,黏合過程如下:

- 1、 金屬片或陶瓷上膠。
- 2、 瓷片擺放:金屬片及瓷片組合
- 3、 熱壓:放入熱壓加壓貼合。溫度約60℃~80℃,加壓3分
 鐘,以不使陶瓷片碎裂之壓力即可。
- 4、 完成後再在壓電和銅片上焊上電線。
- 5、 實驗二中間有孔洞需經衝床衝孔
- 6、 用雙面膠帶將懸邊(圖 5-1)與銅板及壓電黏合好的元件組 合在一起。
- 7、 完成,如圖(5-2a~b)

5-2 振動實驗

5-2-1B&K 的 PULSE 頻譜分析儀

使用 B&K 科技出廠的頻譜分析系統 PULSE(如圖 5-3)量測自然頻率,其基本設備有

- (a) PULSE 信號收集及處理器
- (b) PULSE 軟體

- (c) 雷射测位儀
- (d) 個人電腦

架設如圖(5-3)所示。

5-2-2 實驗程序

- (a)將試片依照所需的邊界條件放置妥當,架設雷射測位移於適當位置,如圖(5-4)所示。
- (b)設定頻譜分析軟體的環境,如測量頻寬、解析度、激發方式, 訊號模擬方法等。
- (c)經由頻譜分析儀以快速傅利葉轉換(Fast Fourier Transform)算出 頻譜區域中的頻譜。
- (d)過濾雜訊,讀取頻譜圖上加速度值較高的振動頻率數值。
- (e)再於試片上做其他點之量測,重複(2)~(4)步驟。
- (f)把量測到的頻率數值平均,即為此試片在此種邊界條件下所具 有之自然頻率。

5-3 聲壓實驗

聲壓實驗亦是由 B&K Pulse 來進行量測。

5-3-1 設備介紹

- (a)B&K Pulse
- (b)Pulse 量測專用麥克風
- (c)Pulse 軟體

(a)將試片依照所需的邊界條件放置妥當,架設麥克風於適當位置(b)設定頻譜分析軟體的環境,如測量頻寬、解析度、激發方式,

訊號模擬方法等。

(c)訊號經由 Pulse處理後可以輸出所量得之聲壓實數與聲壓虛 數。兩數平方後再相加即可得到式(4-18)中之P_{rms}。取各點之值即 可繪出所量得之聲壓曲線圖。

第六章 理論分析與實驗結果

6-1 前言

本文數值分析部份以ANSYS有限元素軟體來做各種情況之模擬 計算。包括自然共振頻率、模態、簡諧激振響應分析(Harmonic Analysis)。確認數值計算模型正確才能繼而進行聲壓曲線的繪製。再 而才能與實驗值做比對,對於各種不同因素所造成結果之差異,能提 供依據而幫助推論或改善。

6-2 ANSYS 模型建構與分析

本文主要探討壓電板材在給予電壓激發後,帶動附著板振動所產 生之聲壓與聲傳分析。實驗設計將一片壓電圓型板與半徑較大之圓型 附著板(銅板)黏合為實驗之主體結構,並以彈性懸邊為支撐,黏貼於 固定邊界,如圖(6-1)所示。

6-2-1 ANSYS 元素之選用

此步驟主要目的即在於選擇合適之 ANSYS 元素。

本文 ANSYS 模型建立以文獻[4]之實驗及數值分析之數據為依 據進行初步的檢驗。圖(6-2)為參考值之模型。在 ANSYS 內建元素中 模擬壓電耦合有二種,壓電材料就採用 3D 元素 SOLID5 來進行模 擬。而在 ANSYS 內建板殼元素選用上則與文獻[4]做了比較後選用 3D 殼元素 SOLID191。在與文獻[4]同樣的材料常數,邊界條件下所 得之共振頻率及共振模態分別於表 6-1 及表 6-2 中所示。其中本文所 建立之模型與參考值之實驗值有極小誤差,而造成誤差之原因於文獻 [4]中已有詳盡之說明,而所相對應之共振模態前十個均相同,見表(6-2)。故本文對於模擬元素選用如下:

壓電: SOLID5

附著板:SOLID191

懸邊支撐:COMBIN14

PU 塑膠薄膜: SHELL99

複合材板: SHELL91

6-2-2 ANSYS 模型建立與驗證

(a) 模型建立

本文共使用三種實驗來做分析:

實驗一:單面壓電+銅片,如圖(6-3a、b)

實驗二:單面壓電+銅片,中間挖空,並且PU 塑膠薄膜填補,

如圖(6-4a、b)

實驗三:雙面壓電+銅片,如圖(6-5a、b)

選用適當之元素後,依實際尺寸如表(6-3)所示做分析模型的建構,再輸入材料常數表(6-4)。由於實際上壓電片上下兩面均有鍍上電極,當受到給予電壓時,鍍有電極處均是受力處,故在模擬時必需在 壓電材料上下表面的各節點(node)給予電極。

壓電材料有極化方向的考量,在ANSYS的應用裡,mesh的方向 即是其極化方向。當同一結構中多於一個個壓電材料時,其極化方向 和所接電極方向將會影響整體的運動方式。

(b) 由壓電材料激發之振動行為

本文主要探討壓電材料在受到外力(電壓)後,由電能轉成機械 能,使壓電產生變形並帶動整體結構在 Z 方向產生位移,繼而使與空 氣接觸的表面推擠空氣而產生聲傳行為,故在進行聲傳分析前,我們 必需了解壓電材料在受電壓激發後如何變形,而帶動附著之薄板振動 達到聲傳之目的。

壓電有許多種類,在給予電壓激發後會產生不同形態的變形,本 文所使用之壓電片如圖(6-6)所示,在 z 方向加電極後會產生徑向伸 張。假設壓電片與銅片是完全的黏合,不會產生滑動,即壓電片與附 著片之間沒有剪力的效果。銅片外緣可視為整個機構之邊界,則以彈 性懸邊支撐。當壓電材料受電壓驅動產生變形時,壓電材料黏合處之 銅片上表面與壓電變形量相同,下表面則沒有產生變形,故當壓電產 生變形後會帶動銅片變形而產生彎矩(bending)之效果,如圖(6-7.a)及 圖(6-7.b)所示。每一次電壓對壓電做激發時均可視為對整個結構給予 一次彎矩力(bending moment)。

一般電磁式喇叭最大位移均在剛體運動時,通常為自然振動第一 個模態,而以壓電激振時則不然。其最大位移通常出現在第六個自振 動模態。原因乃是因為造成二者運動之施力方法不一樣。電磁式激振 器可視為在振動板上施於之垂直的力,如圖(6-8)所示。一般而言,當 施力方向與變形方向相同時,會使變形最大,即越容易達到共振的效 果。電磁式激振方向與板第一個振動模態的位移方向相同,故在第一 個模態即可達到共振。本文研究之壓電與銅片之模形如圖(6-9)所示, 其自然振動模態則如圖(6-10)所示。前五個之振動模態對於壓電產生 之彎矩力無法產生共振效果,第六個之振動變形之方向與所受之彎矩 力方向相同,才更容易達成共振,造成較大的位移量。

往後幾組實驗和分析,我們可以更明確證實此種變形產生彎矩力

36
之間的關係。是壓電式激振與電圈式激振最大的差異處。

(c) 自然頻率之驗證

本文使用 ANSYS 模擬整個結構在受到外力電極激發之振動行為,故要先確認所建構之模形之正確性,才能將結果拿來繼續用於計算聲壓值。驗證方法即是對照 ANSYS 計算出來之自然頻率與實際量測是否相符合。

本文討論的三種 case 其實驗所得之自然頻率及 ANSYS 分析所計 算出來的自然頻率比較於表(6-5a.b.c),故證明 ANSYS 模型是正確的。

6-3 聲壓趨勢分析

在確認 ANSYS 分析模型正確後,改變各種材料係數進行摸擬、計算, 得到不同參數下的聲壓曲線。可了解各種參數對整體振動及聲壓曲線 的影響,以幫助研究者了解以壓電材料趨動下的振動特性,進而才能 進行設計,改善聲壓曲線。

6-3-1 三種實驗聲壓曲線分析

(a) 實驗一:

首先以聲壓理論部份來看,在曲線中有兩個明顯的波峰,從自然 报動模態圖(6-10)可發現,第一個波峰是因為結構的剛體運動。第二 個波峰處,我們可以發現在其頻率即為我們計算出來第六個自然頻 率,其自然振動模態如圖(6-11)所示。從聲壓曲線中可以了解,剛體 運動的位移量並沒有板子本身的變形所造成的位移量來得大,故可知 以壓電激動之揚聲器適用於高頻之共振。因為要達到此自然振動模態 通常在高頻處,也就是在高頻處才會有較明顯的音壓輸出。

從自然模態和激振振型中亦可以看出振形和聲壓位準的關係。一 般來說,在二種情況下,聲壓值會變低進而產生波谷。此二種情況如 下所示:

 1、此自然模態之振型無法被激振出,也就是說此自然模態對聲壓沒 有貢獻。如第一至第五個模態對於聲壓均是沒有貢獻。

2、在一段頻率區間沒有自然頻率。如果激振頻率達到共振(自然頻率) 後,其聲壓值將達到最大(振幅比最大),但是隨著激振頻率逐較遠離 自然頻率會使振幅比變小,直到激振頻率逐漸接近另一共振頻率時才 會慢慢上升。

如上述,對照聲壓曲線及其自然頻率分佈如圖(6-12),聲壓曲線 在第一個高峰值至第二高峰之間雖然有機個自然頻率分佈,但我們可 以從圖(6-10)中得知第二至第五個的自然模態如法提供有效的共振, 至 2750Hz 處之自然模態因能有效激振而產生大位移,聲壓曲線在此 才會產生第二個高峰。往後幾個波峰仍遵照此原則,當自然模態呈對 稱且節線經過中點時,形成位移正負相消的情況時,如圖(6-10)之 mode3、4,故無法有達達到共振而使聲壓值提高。

實驗與分析值之對照

聲壓實驗於第五章已有說明。由於本實驗在低頻處振動所產生的 聲壓值遠小於現場噪音值,在低頻處產生不正常的曲線,為了要修正 此誤差,量測現場噪音並加以扣除來修正聲音曲線,並與ANSYS分 析之模擬值比較如圖(6-13)。與高頻處非常吻合,低頻處因為實驗之 限制,雖然無法完全吻合,但其趨勢吻合,亦可證明此ANSYS模型 的適用性。

(b) 實驗二:

第二個實驗我們在壓電和銅片中間挖空,在上面貼上塑膠薄膜, 其材料性質如表(6-4)所示。因為結構之不同,其位移與自然頻率之關 係不像實驗一只有一個高峰,實驗二有三個高峰。我們分別將這三個 高峰處之模態列出如圖(6-14)、(6-15)、(6-16)所示。若乎略頻譜中前 二項,只考慮第三個高峰,我們發現與實驗一之共振頻率非常相近, 再比照 ANSYS 計算出同頻率之模態,如圖(6-17)所示。此位移乃是 由於壓電和銅版之共振所造成。比較此振動頻率之前的幾個模態,從 中可以發現黏貼於中央之薄膜為獨立之運動,不受壓電和銅片之振動 影響。而在頻率 534Hz 及 2153Hz 處可發現其模態變形的方向與彎曲 力矩施力方向相同,故特別容易造成大位移。

實驗二之自然頻率實驗值第一和第二個高峰值 ANSYS 所分析出 來的自然頻率有較大的誤差,其原因乃因為本實驗採用雷射測位儀來 量測自然頻率。因雷射光必需照射在可反光的平面上才能接收到訊號 進行計算,故在量測點上要貼上一面反光貼紙。因為實驗二薄膜量測 點質量很輕,再黏上此貼紙影響到其總質量,才使實驗質與分析值有 較大的誤差產生。

實驗二之聲壓理論值如圖(6-18)所示,在頻率 503Hz 處產生一個 波峰,對照其振型和自然振動模態如圖(6-19)、(6-15),我們可以確定 此處聲壓的提高是由於塑膠薄膜的共振所造成。而第三個高峰則在 2500Hz 處,對照振動模態和振型如圖(6-17)、(6-21),此處的高峰則 是由壓電和銅片的共振所造成的響應。而第一個高峰,則由自然振動 模態可知為剛體運動所造成。

由於壓電激震之揚聲器在低頻處不容易達到響應,故大部份均只 適用於高頻,由實驗二我們在492Hz處得到一個波峰,而這波峰是 由於塑膠薄膜振動的貢獻。

實驗與分析值之對照

同實驗一,在低頻處仍會產生誤差,實驗修正前後之聲壓曲線與 ANSYS 模擬計算出之聲壓曲線圖如圖(6-21)所示。可證明此 ANSYS 模型的適用性。

(c) 實驗三:

單一壓電片激震之行為在實驗一已有討論過,當兩片壓電片同時 接上電極時,其振動行為又會如何,為實驗三主要探討的問題。

一般來說壓電片是具有方向性的,當實驗一給予直流電時,其變 形方向會跟著電極方向不同而不一樣,。若給的是交流電,則元件會 反覆上下振動。在附著板上下均貼壓電片,分別給予異相電極,則此 結構所產生的振動和聲壓表現討論如下。

上下兩片壓電極化方向相同,給予異相電極則會造成上面的壓電 材料產生拉伸而下面的壓電材料產生壓縮的變形,即可看成二個激振 器對結構施予彎曲力矩。

聲壓曲線在 55Hz 出現第一個高峰,與實驗一、二相同,此處乃 因結構的剛體運動所致。過了這個高峰後曲線即呈現平緩的趨勢,比 照其自然頻率分佈,我們可以發現在這其間完全沒有自然頻率一直到 2200 才出現自然頻率,這期間持續施力所造成之推力仍比一片壓電 時還要大,故造成的位移亦較大,在以下部份會有詳細說明。

實驗與分析值之對照

同實驗一,在低頻處仍會產生誤差,實驗修正前後之聲壓曲線與 ANSYS 模擬計算出之聲壓曲線圖如圖(6-23)所示。可證明此 ANSYS 模型的適用性。

(d) 三條曲線之比較

三種實驗之聲壓曲線特色說明後,在此為三種實驗結果作比較, 實驗一和實驗二均由一片壓電片和銅片所組成,而實驗二將中間挖空 以塑膠薄膜替代,因為總質量減輕,所以從圖(6-24)之比較中可以發 現,實驗二中,聲壓最大值的高峰其 dB 值比實驗一還要大。且因為 中間所黏貼薄膜的關係,可以很清楚看出在 1000Hz 以下會再出現一 個聲壓高峰,這是因為薄膜產生共振,所以將整個聲壓曲線帶上來, 在達到第二高峰前,聲壓 dB 值均比實驗一還要高,故中間挖孔再黏 貼上塑膠薄膜並不會影響原本壓電和銅板結構的聲傳表現,反而在其 他頻率處能產生波峰。

實驗一與實驗三之比較,因為實驗三有二片壓電片,可視為兩個 激振器對系統作力。在因系統的剛體運動產生第一個高峰之後,可以 發現實驗三的聲壓值均比其他兩個還要高。但因結構的關係,在 600Hz後實驗一和二較早達到共振,故將整條聲壓曲線被拉高而聲壓 值又高於實驗三。但在實驗三也達到共振後,可以發現往後的聲壓值 仍然比較高,證明兩片壓電片的推力比一片壓電片還要大,但是實驗 三在高頻處的聲壓高峰較其他兩個頻率還要高,而且實際上高峰的 dB 值也沒比其他兩個大,那是因為系統整體剛性增加所致,且推擠 空氣的面積也沒有增加,所以兩片壓電片的聲壓曲線表現沒有比一片 壓電片來得更佳。

6-3-2 改變附合板硬度對聲壓趨勢之影響

壓電材料受到電壓趨動會造成板材的變形,帶動附著在其表面的 附著板跟著形變而產生彎矩力,故附著板的性質亦會影響到整體的表現。除了原本在實驗一的曲線外,另外再增填兩條因不同的附著板硬 度所計算出來的曲線來做比對,以了解附合板硬度對聲壓曲線的影響。

所增加的曲線,附著板的楊氏係數分別為 0.4GPa,另一為 4GPa。 由圖(6-25)中我們可以發現,第一個高峰的頻率位置不會有太大的改 變。改變最多是在第二個高峰的位置。板材越軟,高峰越往左移,也 就是他的可使用頻寬就會變大。但最大缺點是聲壓曲線擺盪太大,且 聲壓值也越低。造成此種原因是因為壓電在受到電壓趨動時所產生的 應變量是固定的,若附著板的 E 值降低,依應力與應變之關係,則所 產生的應力也會跟著變小,換言之推動結構的彎矩力自然會變小,所 呈現出來的聲壓值就會明顯降低。由此圖我們可以了解,改變附著板 材的強度,會影響第二個高峰的頻率位置及 dB 值。

6-3-3 改變邊界強度對聲壓趨勢之影響

實驗一至實驗三的邊界設定均以彈簧模擬實際懸邊,其總K值為600Nt/m。為了解邊界懸邊強度為聲壓曲線的影響,我們改變模擬彈簧的總K值,一條曲線為60000Nt/m,另一條則為Z方向的固定。經由運算,所得之聲壓曲線如圖(6-26)所示。從圖中可知,邊界的改變所影響到的是第一個高峰值,dB值變大之外,其外置亦會往右移動。再看他們的自然頻態,當邊界變硬到某個臨界時,會使自然

振動的模態改變,故當Z方向固定時,其自然振動模態則如圖(6-27) 所示。已不再是剛體運動,而是呈現由圓心向外凸出的自然振態模 態,由我們對壓電特性的了解,當自然振動模態呈現出此種現象時, 最易達到共振,所產生之 dB 亦會較高。

第二個高峰值,其dB值及頻率位置則影響較小。由此圖我們可以了解,改變邊界的強度,會影響第一個高峰的頻率位置及dB值。對其他頻率則沒有影響。

6-3-4 改變幾何形狀對聲壓趨勢之影響

(a) 風扇型(case1)

為了解改變幾何形狀改變對聲壓曲線的影響,我們在設計上做了 一些更改,把原本圓形的結構改成如圖(6-28)所示。改為中間挖空, 並在半徑 6mm 至最外緣分成八部份,去除其中一半的面積,形成像 風扇狀的幾何形狀,邊界總K值不變進行簡諧運動的分析。繪製出 來的聲壓曲線與實驗一比較,如圖(6-29)。因為總質量減輕,所以第 一個高峰往右移動,且 dB 值亦提高,因為質量輕,容易推動。風扇 狀模形總質量雖然較輕,但因許多部份減少而使整個結構的強度減 小,強度減小就會使第二個高峰往低頻處移動,且產生較大的擺盪, 又因推動空氣的面積減少,整體的 dB 值在高頻處比實驗一減小非常 多。

(b) 補足風扇中空部份(壓電及附著板),風扇頁片則只補足附著板

1、 補足附著板之硬度與重量與原本之附著板相同(case2)

補足風扇中空部份(壓電及附著板),風扇頁片則只補足附著板, 如圖(6-30)所示,此結構與風扇的結構不同於附著板面積多了 94.4mm²,且中間部份亦補足。重量增加,其聲壓曲線與風扇比較如 圖(6-31)所示,第一個高峰之 dB 值及頻率均較低。又因推擠空氣的 面積增加,壓電面積分佈亦較廣,可視為有效推力增加,整體結構之 強度變強,故第二個高峰較風扇往後移動,聲壓值亦較高。

2、補足附著板之硬度比原本之附著板小,且質量較輕(case3)

若補足之風扇頁片材料硬度較小,且質量較輕時,其聲壓曲線則 如圖(6-31)所示,若與 case2 比較,因為質量比較輕,故第一個高峰 之 dB 值較大,頻率亦較高。但第二高峰則沒較高,因整體結構剛性 降低,故峰值往低頻處移動,dB 值亦較低。若與 case1(風扇型)比較, 第一個高峰值沒有太大差異,因為整體質量相差小,但第二高峰之 後,整個聲壓值均較 case2 來得高,因為有效推擠空氣的面積增加所 致。

(c) 對稱與不對稱結構聲壓之探討

以 case3 的聲壓表現來看,可發現出現高峰值只有五個,對照其 自然頻率模態如表(6-6),及圖(6-32),此結構的聲壓曲線呈現出五個 高峰值,如實驗一中我們所討論的,當自然振動模態呈現同心圓的情 況時才容易被激發而達到共振。推論乃因結構為對稱此致,使曲線較 為單調,有效激發頻率太少,故對於不對稱的結構是否能改善此現 象,做了以下討論。 不對稱結構之設計如圖(6-33)(case4),其補充材料和 case3 相同。 比較 case3 與此結構之聲壓曲線圖如圖(6-34)所示,聲壓曲線的高峰 值增加了,再對照其自然振動之模態,表(6-7)與激振之振型,表(6-8), 可以發現每個高峰值其模態與振型均很相似,可推論這些高峰值均是 有效的共振點。由以上可證明不對稱結構可以有效解決共振頻率太少 的缺點。

(d) 一片壓電片及附著板整體黏貼於中間挖空之複合材板上(case5)

其結構如圖(6-35)所示,而複合材板外緣之所有自由度均被固 定。所得之聲壓曲線與實驗一之比較如圖(6-36)我們可以發現在此模 型的聲壓曲線第一個高峰值往後移動,此頻率乃此模型之自然頻率, 對照其自然頻率模態及振型,發現複合材板以外的部份有較明顯的振 動,如圖(6-37)、(6-38),故複合材板在此頻率時可視為壓電材料與附 著板之邊界,因複合材板硬度很高,所以第一個高峰的頻率及 dB 值 均比實驗一的第一個高峰值還高,且到第二個高峰為止,此結構之聲 壓 dB 值也比實驗一還要來得高,因為整體推動空氣的面積增加了, 故此設計增加的複合材料部份能有效的將整體聲壓值提升。

第七章 結論與未來研究方向

本文使用 ANSYS 建構理論模擬,首先確定所建立的模型是對的 才能繼續往下分析。而驗證的方式是以實驗來比對自然頻率及聲壓曲 線圖。往往仍會存在誤差,造成誤差的原因很多,造成本文實驗與理 論的誤差可能有以下部份:壓電與銅片之間黏合劑質量沒有顧慮到, 實驗時物件上有焊上錫,此質量在分析時亦被乎略,且實驗時物件與 懸邊的黏合是否完全仍會造成實驗的誤差。分析與實驗固然有少許誤 差,但是如果其聲壓曲線的趨勢是相同的,亦可說 ANSYS 所建構之 模型是值得參考的,繼而改變不同材料參數,利用此模型做各種情況 的模擬。

由實驗和 ANSYS 分析的比較,對於壓電板之振動和聲傳可做以 下幾點結論:

- 邊界支撐之強度對於聲壓曲線之影響均在低頻處,高頻處則是
 附著板之性質影響較大。
- 2、邊界越硬,第一個高峰值頻率越高,dB值亦越高。附著板強度 越高,第二個高峰值頻率越高,dB值亦越高,硬度低雖然可以 將第二高峰值往前移動而使可使用頻率變大,但聲壓值擺盪太 大,亦不是最好的設計。
- 3、 整體結構呈對稱時,所產生聲壓高峰較少,通常只有兩個較明 顯的高峰,第一個高峰由邊界影響,第二個高峰則由附著板的 強度影響。若要增加可達到共振的頻率,則必須改變整體結再 成為非對稱,或填補其他材料,當激振頻率到達所填補材料之 自然頻率時,即能產生聲壓曲線的高峰。

現階段市場上所應用之壓電式揚聲器均較廣泛應用於高頻,因為結構和材料性質之限制。但本文在研究過程中發現對於材料性質或結

構做適合的調整,其聲壓曲線會產生改變。故未來可針對上述三點做 改善,也許可以使壓電式揚聲器的運用頻寬變得更寬,不只在高頻處 才能使用。

參考文獻

- Daniel Royer Eugene Dieulesaint "Elastic waves in solid", Berlin ,Springer, New York(2000).
- H. F. Tiersten, "Linear piezoelectric plate vibrations", Ann Arbor, MI/UMI(1969).
- H.S. Tzou ,"Piezoelectric shells," Dordrecht/KluwerAcademic, Boston(1993).
- 4、 林憲陽"壓電陶瓷複合層板動態特性之數值分析與實驗量 測,"國立台灣大學機械工程學研究所博士論文,台北市(2002).
- 5、 王柏村编著,"振動學",全華書局,台北市(1996).
- 6、 陳正義,"具彈性支承複合材料板之聲傳研究",國立交通大學機械工程研究所碩士論文,新竹市(2003).
- 6東恩,"複合材料三明治板之振動與聲射研究",國立交通大學 機械工程學研究碩士論文,新竹市(2003).
- 8、 卓永剛,"複合材料板的振動及聲射分析",國立交通大學機械工 程研究所碩士論文,新竹市(2002).
- P.M. Morse and K.U. Ingrad., "Theoretical Acoustics", McGraw-Hill, NY, ; rpt. Princeton University Press, NJ, pp. 375-379(1986).
- 10 V. Piefort, N. Loix, and A. Preumont ,"Finite element Molding of Piezoelectric Active Structures" Active Structures Laboratory, ULB-CP (2001).

表 6-1 ANSYS 分析之自然頻率與參考文獻[4]的比較

Mode	參考文獻之實驗值	參考文獻有限元素法
1	961	897.4(6.61%)
2	1073	1017.2(5.20%)
3	2158	2101.2(2.61%)
4	2837	2804.9(-1.13%)
5		3939.8(%)
6	4361	4062.6(6.84%)
7	4729	4462.7(5.63%)
8	5525	5430.8(1.70%)
9	5950	5725.9(3.77%)
10		6444.4(%)

Mode	ANSYS	ANSYS		
	SHELL99+SOLID5	SOLID191+SOLID5		
		與有限元素法比較之	實驗值比	參考值本
	5/1	誤差	較之誤差	身之誤差
1	870.35(3%)	866.11(3.4%)	(9.8%)	(6.61%)
2	1033.4(-1.5%)	981.61(3.5%)	(8.5%)	(5.20%)
3	2270.9(-8%)	2003.2(4.6%)	(7.1%)	(2.61%)
4	2380.1(15.1%)	2642.6(5.7%)	(6.8%)	(-1.13%)
5	3919.5(0.5%)	3679.2(6.7%)	(%)	(%)
6	4607.5(-13.4%)	4077.7(-0.3%)	(6.4%)	(6.84%)
7	6125.8(-37.3%)	4422.5(0.8%)	(6.4%)	(5.63%)
8	6635.9(-22.2%)	5006.0(7.8%)	(9.3%)	(1.70%)
9	6895.9(-20.4%)	5453.3(4.7%)	(8.3%)	(3.77%)
10	7513.8(-16.6%)	5986.4(7.1%)	(%)	(%)

表 6-2 ANSYS 模態圖與參考文獻[4]模態圖之比較

	本文 ANSYS 模態圖	參考文獻之模態圖
Mode1		+
Mode2		
Mode3		
Mode4		+(+
Mode5		
Mode6		

Mode7	
Mode8	
Mode9	
Mode10	2+>+

表 6-3 實驗物件實際尺寸

銅片外徑	<i>φ</i> =35mm
銅片厚度	0.32mm
壓電外徑	<i>φ</i> =25mm
壓電厚度	0.21mm
塑膠薄膜厚度	0.125mm
圓孔直徑	<i>φ</i> =0.9mm

表 6-4 材料常數

銅材料常數	楊氏係數 $30 \times 10^9 (N/m^2)$
	浦松比 0.34
塑膠薄膜	楊氏係數 $4 \times 10^8 (N/m^2)$
壓電材料常數	楊氏係數
	$C_{mn} = \begin{bmatrix} 82 & 48 & 45 & 0 & 0 & 0 \\ 48 & 82 & 45 & 0 & 0 & 0 \\ 45 & 45 & 66 & 0 & 0 & 0 \\ 0 & 0 & 0 & 19.2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 19.2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 17 \end{bmatrix} \times 10^{9} (N/m^{2})$
	介電常數(dielectric constants) $\varepsilon = 1.3 \times 10^{-9} (F/m)$ 壓電常數(piezoelectric constants) $\begin{bmatrix} 0 & 0 & 0 & 9.71 & 0 \end{bmatrix}$
	$\begin{bmatrix} e_{ij} = \begin{bmatrix} 0 & 0 & 0 & 9.71 & 0 & 0 \\ -3.035 & -3.035 & 7.8 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} C/m^2 \end{pmatrix}$

编號	實驗	ANSYS 摸擬值	誤差
1	-	62.461	
2	-	94.561	
3	-	94.561	
4	-	1511.6	
5	-	1600.4	
6	2522	2529.7	0.3%
7	-	3946.2	
8	-	3946.2	
9	-	4750.6	
10	-	4751.4	

表 6-5.a 實驗一自然頻率與 ANSYS 自然頻率之對照

表 6-5.b 實驗二自然頻率與 ANSYS 自然頻率之對照

编號	實驗值	ANSYS 分析值	誤差
1		64.838	
2		270.79	
3		534.5	
4		995.84	
5		996.04	
6		1053.4	
7		1053.6	
8		1666.9	
9		1769	
10		2152.9	
11		2271	
12		2431.2	
13	2384	2513	5.4%
14		2764.5	
15		2764.8	

编號	實驗	ANSYS 摸擬值	誤差
1	-	55.640	
2	-	88.080	
3	-	88.080	
4	-	2197.8	
5	-	2203.5	
6	3294	3592.0	9%
7		4854.1	
8	-	4854.5	
9	-	7153.5	
10	-	7154.9	

表 6-5.c 實驗三自然頻率與 ANSYS 自然頻率之對照

表 6-6 對稱結構(case3)自然振動模態

Read AUDITINE PERSON NOT THE PERSON NOT THE	RELATION RELATION	Read A LOUTTINE READ TO AND THE SECOND AND THE SEC
Mode1 79.065Hz	Mode2 125.464Hz	Mode3 126.464Hz
	REAL SUBTING THE DESIGN THE	
Mode4 754.956Hz	Mode5 1293Hz	Mode6 1343Hz
Werk shart in Werk s	With starting With the starting	Werk storten Werk storten We

Mode7 1827Hz	Mode8 1831Hz	Mode9 2660Hz
Mode10 2852Hz	Mode11 2856Hz	Mode12 34878Hz
	REAL HOUSE IN THE SECOND SECON	
Mode13 4288Hz	Mode14 5177Hz	Mode15 5405Hz
The second secon	The second secon	
Mode16 5407Hz	Mode17 5615Hz	Mode18 6608Hz
The second and the se	The second secon	Revenues and the second
Mode19 6610Hz	Mode20 7109Hz	Mode21 7197Hz
Real Host Pick Pick Host Pick Pick Pick Pick Pick Pick Pick Pick	The second secon	Which Statistics Which Statis
Mode22 7210Hz	Mode23 7679Hz	Mode24 8210Hz

For a second and the	Recent mention Recent works Recent works	
Mode25 9069Hz	Mode32 9108Hz	Mode33 9130Hz
Mode34 9170Hz	Mode35 9537Hz	Mode36 9545Hz

表 6-7 非對稱結構(case4)自然振動模態

表 6-8 case4 振型

160Hz	730Hz	1050Hz

圖 2-1.a 正壓電效應

單位晶胞(unit cell)正電荷(陽離子)之幾何中心點與負電荷(陰離子)之幾何中心點不位在同一點

圖 3-1 纖維方向與座標軸平行

圖 3-2 纖維方向與座標軸夾一角度

圖 3-3 中性面與各板層間之關係

圖 3-4.a 各 k 層之分佈力與力矩之關係

圖 3-4.b 將各 k 層視為一整體受力 N 或力矩 M 作用

圖 3-5 雷斯納-米德林板位移示意圖

圖 3-6 一階剪變形之應力示意圖

圖 5-1 實驗用懸邊

圖 5-2.a 實驗用中間有圓孔之元件

圖 5-2.b 組裝好之實驗元件

圖 5-3 B&K Pulse 雷射測位儀

圖 5-4 B&K Pulse 架設示意圖

圖 6-1 實驗設計示意圖

圖 6-2 比較值之參考模型

圖 6-3.a 實驗一 單面壓電片+銅板

圖 6-3.b 實驗一與實驗三

圖 6-4.a 實驗二單面壓電+銅片,中間挖空並且 PU 材料填補

圖 6-3.b 實驗三

圖 6-5.a 實驗三 雙面壓電+銅片 立體圖

圖 6-5.b 實驗三 兩片壓電片+銅板 側面圖

圖 6-7.a 壓電與銅片受到外力電極激振時產生之應力示意圖

圖 6-7.b 壓電與銅片受到外力電極激振時產生之彎曲變形

圖 6-8 電磁式激震示意圖

圖 6-9 單片壓電與銅片分析模型(同實驗一)

圖 6-10 實驗一自然振動模態

圖 6-11 實驗一第六個自然振動模態

圖 6-12 實驗一之理論聲壓曲線與自然頻率分佈

圖 6-13 實驗一之理論與實驗聲壓曲線之比較

圖 6-14 實驗二 第一個高峰自然振動模態

圖 6-15 實驗二 第二個高峰自然振動模態

圖 6-16 實驗二 第三個高峰自然振動模態

圖 6-17 實驗二 第三高峰之自然振動模態

圖 6-18 實驗二 理論聲壓曲線

圖 6-19 實驗二 頻率 530Hz 之振形

圖 6-20 實驗二 頻率 2500Hz 之振形

圖 6-21 實驗二之理論與實驗聲壓曲線之比較

圖 6-22 實驗三之理論聲壓曲線與自然頻率分佈

圖 6-24 三個實驗之聲壓值比較圖

圖 6-26 不同邊界對聲壓曲線之影響

圖 6-27 懸邊總 k 值為 60000 Nt/m 第一高峰值之自然振動模態

圖 6-28 風扇狀模型(case1)

圖 6-30 補足風扇狀頁片部份示意圖

圖 6-31 補足附著板與風扇狀之聲壓曲線比較

圖 6-32 case3 聲壓高峰處之頻率

圖 6-34 case3 與 case4 聲壓曲線之比較

圖 6-36 case5 與實驗一聲壓曲線圖之比較

圖 6-37 case5 在 298.947Hz 時之自然振動模態

圖 6-38 case5 在 300Hz 時之振型