

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

應用動態樁技術於合作式網頁應用程式測試

Applying Dynamic Stubbing Technique to Support Collaborative

Testing of Web Application

研 究 生：李佳玫

指導教授：曾憲雄 博士

 黃世昆 博士

中 華 民 國 一百 年 八 月

應用動態樁技術於合作式網頁應用程式測試

Applying Dynamic Stubbing Technique to Support Collaborative

Testing of Web Application

研 究 生：李佳玫 Student：Jia-Mei Lee

指導教授：曾憲雄 博士 Advisors：Dr. Shian-Shyong Tseng

 黃世昆 博士 Dr. Shin-Kun Huang

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年八月

i

應用動態樁技術於合作式網頁應用程式測試

研究生：李佳玫 指導教授：曾憲雄博士

 黃世昆博士

國立交通大學資訊科學與工程學系研究所碩士班

摘要

現今，在網際網路上大量的免費人力資源通常被運用來減少測試成本與驗證軟體，

如：線上遊戲與開放原始碼軟體。然而，傳統的合作測試方法在不考慮大眾測試者有共

同的測試偏好與測試者素質參差不齊的情況下，往往會有測試時間難以收斂與測試報告

的可信度不高等議題。為了加速收斂網站測試，有必要應用細顆粒的網頁應用程式模型

來平行化測試工作。在這篇研究中，首先我們提出狀態轉換圖來為使用者的執行行為建

模以達到分解網頁應用程式測試問題的目的。更進一步為了達到加速測試速度與改善測

試報告的品質，並且減少合作測試的總成本，我們提出了一個動態樁技術來引導使用者

進行測試。動態樁技術結合所提出的細顆粒的網頁應用程式模型可以在大眾測試者沒有

察覺的情況下改變測試環境來導引他們解決子問題。實驗結果顯示我們所提出的方法可

以減少 50﹪的測試成本與增加 30﹪的偵測效能。

關鍵字：大眾化分類、合作式測試、網頁應用程式測試、狀態轉換圖、程式相依圖、動

態樁技術

ii

Applying Dynamic Stubbing Technique to Support Collaborative

Testing of Web Application

Student: Jia-Mei Lee Advisors:Dr. Shian-Shyong Tseng

 Dr. Shin-Kun Huang

Institute of Computer Science and Engineering

 Nation Chiao Tung University

Abstract

Nowadays, large volunteers creeping on internet are usually treated as free human

resources for reducing test cost and validating software, like online games and open source

software. However, traditional collaborative testing design and management approach

encounters the long due time and doubting test report resulting from the common preferences

of users and unqualified testers, respectively. A fine-grained Web application model is

essential to refine job assignments for speeding up test coverage. In this thesis, we first

propose State Transition Diagram to model the users‘ runtime behaviors for decomposing

Web application testing problem. Then, based on this fine-grained Web application model, a

dynamic stubbing technique which allows folk testers contribute themselves in solving

sub-problems with barely noticing the change of test environment is proposed for achieving

faster test coverage speed and improving the quality of test report, and hence reduces the total

cost of collaborative testing. The experimental results show that our proposed approach can

reduce 50% test cost and increase 30% detection performance.

Keywords: folksonomy-based approach, collaborative testing, Web application testing, state

transition diagram, program dependence graph, dynamic stubbing technique.

iii

誌謝

本篇論文的完成，首先我要感謝我的指導教授，曾憲雄老師，老師總是犧牲自己休

息的時間來指導我們並且不厭其煩的領導我一步一步的思考與表達方法的訓練，我所得

到的不只是一篇論文，還有整個領域的研究方法、思考邏輯。這是在碩士兩年的求學過

程中，最寶貴的知識。此外，也要特別感謝我的共同指導教授，黃世昆老師，在口試時

給我很豐富的意見，同時也要感謝我的口試委員，黃國禎教授、袁賢銘教授，感謝你們

許多寶貴的意見，讓整篇論文更完整。

 再來也要感謝在研究過程中，給我許多鼓勵及建議的學長，宗儒學長，感謝你的付

出與教導讓我得以順利完成此篇論文。還有元昕學長，曾經給我很多鼓勵與豐富的知識。

還要感謝 605 的學長姐：喚宇學長、怡利學姐、佳榕學姐，在我最艱難的過程中給了我

很大的鼓勵與指導，讓我可以更努力的堅持下去，還有其他實驗室的學長姐，瑞鋒學長、

哲青學長、莉玲學姐，謝謝你們曾經給過的意見指導和幫助。再來是我最親愛的同學們，

楷元、嘉凱，這兩年來我們一起成長，所有苦的甜的回憶我會一輩子珍藏，要一直保持

聯絡!

 最後我要感謝愛我的家人及朋友們，感謝爸媽從小栽培與關懷才能有現在的我，也

要感謝阿君、阿淳、旻旻、小瀞、呆瓜、小白，總是不斷的給我勇氣，一路上的支持與

鼓勵，很開心我的碩士生涯能夠有你們陪伴在旁。

 感謝這一路上所經歷過的一切，所有的酸甜苦辣，都是我成長的力量，在此我獻上

最誠摯的感謝，謝謝你們。

iv

Table of Content

摘要 ... i

Abstract ... ii

致謝 .. iii

Table of Content .. iv

List of Figures ... vi

List of Tables .. viii

Chapter 1. Introduction .. 1

Chapter 2. Related Work .. 5

2.1 Structure of software systems .. 5

2.2 Behavior of software systems .. 5

2.3 Three-level dependence graph ... 6

Chapter 3. Web application testing model ... 8

3.1 Motivation .. 8

3.2 Value-oriented dependence graph .. 9

3.2.1 Tainted variables in branch predicate .. 10

3.2.2 Definition of value-oriented dependence graph .. 11

3.2.3 Value-oriented Dependence Graph (VDG) construction algorithm 13

3.2.4 Example of value-oriented dependence graph .. 15

3.3. State transition diagram ... 22

3.3.1 Problem decomposition ... 22

3.3.2 Definition of state transition diagram .. 23

3.3.3 State Transition Diagram (STD) construction algorithm .. 25

3.3.4 Example of state transition diagram .. 28

Chapter 4. Dynamic stubbing technique for Collaborative testing .. 30

4.1 Motivation example.. 30

4.2 Minimum Test Cost Problem in Collaborative Testing ... 32

v

4.2.1 Problem formulation ... 34

4.2.2 NP-Complete problem ... 36

4.3 Dynamic stubbing algorithm for Minimum Test Cost Problem 38

Chapter 5. Implementation and Experiment... 43

5.1 System architecture and implementation ... 43

5.1.1 System architecture ... 43

5.1.2 System implementation ... 44

5.2 Experimental design and results ... 47

5.2.1 Experimental design .. 47

5.2.2 Experimental results .. 48

Chapter 6. Conclusion .. 54

References .. 55

vi

List of Figures

Figure 1 Flow chart of program ... 3

Figure 2 Three-level dependence graph ... 7

Figure 3 Source code of Pay.aspx page (a) with its flow chart (b) in Example 9

Figure 4 Differents of three variables in Example 1 .. 11

Figure 5 Value-oriented dependence graph in Example 1 ... 13

Figure 6-1 Value-oriented dependence graph after executing Step 1 of VDG algorithm 18

Figure 6-2 Value-oriented dependence graph after executing Step 2 of VDG algorithm 18

Figure 6-3 Value-oriented dependence graph after executing Step 3 of VDG algorithm 19

Figure 6-4 Value-oriented dependence graph after executing Step 4 of VDG algorithm 19

Figure 6-5 Value-oriented dependence graph after executing Step 5 of VDG algorithm 20

Figure 6-6 Value-oriented dependence graph after executing Step 6 of VDG algorithm 20

Figure 6-7 Value-oriented dependence graph after executing Step 7 of VDG algorithm 21

Figure 6-8 Value-oriented dependence graph after executing Step 8 of VDG algorithm 21

Figure 6-9 Value-oriented dependence graph after executing Step 9 of VDG algorithm 21

Figure 6-10 Value-oriented dependence graph after executing Step 10 of VDG algorithm 22

Figure 6-11 Value-oriented dependence graph after executing Step 11 of VDG algorithm 22

Figure 7 Idea of problem decomposition ... 23

Figure 8 State transition diagram in Example 1 ... 25

Figure 9-1 State transition diagram after executing Step 1 of STD algorithm 28

Figure 9-2 State transition diagram after executing Step 2 of STD algorithm 29

Figure 10 Problem decomposition scenario ... 30

Figure 11 Due time of assignment 1 .. 32

Figure 12 Due time of assignment 2 .. 32

Figure 13 Intelligent collaborative testing system architecture .. 43

Figure 14 Screen shot of register page of ICTS ... 45

Figure 15 Screenshot of ICTS tutorial ... 46

vii

Figure 16 Screenshot of ICTS guiding ... 46

Figure 17 Screenshot of complete information of ICTS .. 47

Figure 18 Comparison of state complete degree of testing .. 49

Figure 19 Due time comparison ... 50

viii

List of Tables

Table 1 Property of Patterns of Different level .. 16

Table 2 Property of Patterns of Different variable ... 17

Table 3 Sub-problem completion time of each folk tester matrix .. 31

Table 4 Assignment 1 for shopping Web-site testing .. 31

Table 5 Assignment 2 for shopping Web-site testing .. 31

Table 6 Notations of MTCP in collaborative testing ... 34

Table 7 Notations of Dynamic stubbing algorithm .. 39

Table 8 Value-oriented dependence graph statistics .. 48

Table 9 State complete degree of testing comparing ... 49

Table 10 Comparison of test time between two groups ... 50

Table 11 Comparison of the folk testers per due time ... 50

Table 12 Ten defects in Web application ―BookStore‖ ... 51

Table 13 Comparison of test time of each state between two groups 53

Table 14 Comparison of fault-detection ability between two groups 53

Table 15 Fault-detection ability of two collaborative testing approaches 53

1

Chapter 1 Introduction

Collaborative testing is widely used in industries to reduce test cost and assure the

software quality, especially in online game, open source software and Web applications. Low

reliability of Web application will lead to serious detrimental effects for businesses,

consumers, and the government because users increasingly depend on the Internet for routine

daily operations. However, lacking of good test design and management approach,

unqualified folk testers with some common preferences will slow down the test convergence

and produce suspect test report. Due to the untrammeled nature of folks, restricted test

scenario according to different test design and management approach may decrease their

willingness and hence reduce available human resources. It procures more cost of

collaborative testing. A good test design and management approach should take the

willingness and common preferences of folk testers into consideration.

 Problem decomposition which reduces original collaborative testing problem into several

sub-problems is an efficient and effective approach for speeding up collaborative test and

increasing the quality of test report. The reduced sub-problems are easier and can be assigned

in parallel for decreasing the due time. Besides, the solution of sub-problems can be easily

merged to the one of original problem, and hence can complete test. In the meanwhile, testers

concentrating on small problem can detect faults more easily, and hence improving the quality

of test report.

The success of problem decomposition relies on a proper Web application model.

However, traditional Web application models, like page navigation diagram [1]-[9] and finite

state machine (FSM) [10]-[20] and Petri-net [21]-[25], do not take software fault into

consideration and hence suffer the risk of causing Type I and II error. A software fault

classification based on program dependence graph has been proposed [26]. Tung et al.

propose a novel test case generation algorithm based on this fault classification to generate a

2

test suite with full fault-detection [27]. Huang further extended Tung‘s model to three-level

program dependence graph (page level, function level and code level) for considering the

perspectives from folk testers (Web pages) and test objective from developer (basic blocks

coverage) [28]. However, the three-level program dependence graph is a coarse-grained

model because it does not model input values. Hence it cannot be applied to further problem

decomposition according to runtime behavior of users.

In this thesis, we refine coarse-grained three-level dependence graph to fine-grained

value-oriented dependence graph (VDG) which models users‘ runtime behavior by

considering runtime input value. Figure 1 shows flow chart of program containing basic

blocks 1, 2, and 3 where each basic block means they are a maximal code fragments without

branching of a function [29]. If value of variable a is more than 0 then basic block 1 and basic

block 2 can be covered. Otherwise, basic block 1 and basic block 3 can be covered. So,

different values of variable may have different behaviors of program. By considering input

value, the testing problem can be further decomposed into two sub-problems which are still

able to meet the test criteria, basic blocks coverage. For the purpose of fine turning

collaborative test plan, we further propose State Transition Diagram (STD) based on VDG in

Chapter 3. Each state of STD represents a program behavior of a page. Based on this state

transition diagram, we can assign job more precisely in collaborative testing and guide testers

to meet the test objective, basic blocks coverage.

3

Basic Block 1

a>0

Basic Block 2 Basic Block 3

T F

Figure 1. Flow chart of program

The Minimum Testing Cost Problem in collaborative testing (MTCP) can be considered

as a variant of Job Assignment Problem (or Optimum Representative Set Problem) [30] with

further constraints on testing resources and tester trustworthy. We reduce Job Assignment

Problem to MTCP and prove that MTCP is NP-complete in Chapter 4. Therefore, a

heuristic-based dynamic stubbing algorithm for job assignment is proposed to solve this

problem by overcoming the issue of centralized preferences and willingness of folk testers

which can speed up the test coverage and hence reduce the test cost.

We implement prototype system with our proposed approach by the dynamic stubbing

technique which allows folk testers contributing their human resources with barely noticing

varying test environment. Our collaborative testing system can collect tester user sessions

during testing processes. To support collaborative testing, we record the testing logs and guide

the test activities on our collaborative testing system. These testing logs are analyzed by

proposed report analysis algorithm to form high quality test report. The experimental results

show that our approach which reduces 50% due time and increases 30% detection rate is both

efficient and effective.

4

We briefly outline the contents of this thesis. Chapter 2 provides related works. Chapter

3 gives the Web application modeling and the corresponding value-oriented dependence graph

construction algorithm and state transition diagram construction algorithm. We also present

the dynamic stubbing technique to support the Minimum Collaborative Testing Problem with

the proposed heuristic-based dynamic stubbing algorithm in Chapter 4. Chapter 5 explains

how the experimental design and experimental result. We conclude this thesis in Chapter 6.

5

Chapter 2 Related Works

In the chapter, we will discuss several different models of the web applications testing,

and each model has different test goals. We briefly describe two types of the models,

including structure of software systems only considering structure of systems and behavior of

software systems considering both structure and behavior of systems.

2.1 Structure of software systems

There are some models which describe structure of program as follows. A program

dependence graph [31]-[37] is a directed graph in which the nodes are statements and

predicate expressions and the edges are dependences between the nodes. Two types of

dependences are data dependence and control dependence between nodes. The data

dependence between two statements means that the input variable of a statement is transferred

from the other statement. The control dependence means that the flow of statements is

decided by certain predicate expressions. The UML class diagrams [38] describing structures

of software systems are also a directed graph in which nodes are classes of an object-oriented

system and edges are dependences and inheritances between classes.

 These structure-based models are unable to describe behaviors of folk testers and hence

not suitable for collaborative testing.

2.2 Behavior of software systems

 Another kind of software models, including page navigation diagram and finite state

machines, aim to describe behavior of program. The page navigation diagram [1]-[9] is a

directed graph where nodes are Web pages and edges are links between Web pages. The

model can describe all test paths for Web applications testing. Huaikou et al. [1] proposed an

approach which uses a regular expression characterizing the directed graph on page

navigation diagram to generate test paths. Benedikt et al. [2] presented VeriWeb, which is a

6

tool for automatically navigating links of Web applications and exploring execution test paths

through dynamic components of Web applications with a search algorithm. Shengbo et al. [4]

and Zhongsheng et al. [7] proposed an algorithm to generate Test-Trees from page navigation

diagram for satisfying link and page coverage.

 The Final State Machine (FSM) [10]-[20] is used to model Web applications and it is a

directed graph including nodes and edges. There are two types of the nodes: Web pages and

associated components. There are three types of the edges: link edge, call edge and build edge.

The link edge means that Web page can link the other Web page or component. The call edge

means that Web page can call component through delivering requests to it. The build edge

means that the component can build the new web page as responses to the requests. Andrews

et al. used FSM to model and test Web applications, and then proposed an approach which

decomposes Web application into several subsystems based on FSM with constraints to

generate test sequences [10]. Liping et al. proposed the Kripke structure that is a model of

FSM to model Web applications from the user‘s viewpoint [15]. The model can generate test

sequences satisfying state and transition coverage for Web applications. However, page

navigation diagram and finite state machines did not consider fault-detection ability and were

risk of suffering Type I and II error. Furthermore, these models are coarse-grained because of

the lack of input domain information. Three-level dependence graph which is also a model of

behavior of software system is presented in next section.

2.3 Three-level dependence graph

Huang [28] considered the perspectives from folk testers (Web pages), test objective

from developer (basic blocks coverage) and fault-detection ability to propose three-level

dependence graph (page-level, function-level and code-level), illustrated in Figure 2. In

page-level, the nodes are Web pages and the edges are links between Web pages. In

function-level, the nodes are functional statements and the edges are constructed by functional

7

statements. And in code-level, the nodes are basic blocks that are a maximal code fragments

without branching of a function and the edges are control flow between the basic blocks.

Dependence edge and independence edge are intra-level edges where dependence edge can

transfer data between Web pages, functions, and basic blocks. And the other edge is

containing edge which can connect different nodes between page-level, function-level, and

code-level. However, this three-level dependence graph cannot model the users‘ runtime

behavior, and is hence coarse-grained and improper for fine job assignment in collaborative

testing.

Dependence edge Independence edge Containing edge

Default SalesPay

Page Level

Code Level

CPay2

Button1_Click Page_Load Button1_Click

Function Level

quantity1

quantity2

CPay5 CPay8

CPay3 CPay4

CPay1

CPay6 CPay7 CPay9 CPay10

Session[“total”],q1

q2

CDefault1
CSales1

Session[“total”],q1 Session[“total”],q1

q2 q2 q2 q2 q2

Figure 2. Three-level dependence graph

8

Chapter 3 Web application testing model

In the chapter, we will propose a novel model to support the collaborative testing for

Web application. First, we start with a motivation example and then propose a fine-grained

value-oriented dependence graph which models user‘s input domain information based on

three-level dependence graph [28]. Finally, we propose state transition diagram which is a

novel runtime behavior model for decomposing original collaborative testing problem into

several sub-problems.

3.1 Motivation

 One of the most importance objectives in software testing is to assure the software

quality by covering all the code statements. However, covered code statements in each

execution depend on input values. The Example 1 is given to motivate us that a fine job

assignment needs to take variable value into consideration.

Example 1:

 The shopping Web-site contains Default.aspx, Pay.aspx, and Sales.aspx pages.

Consumers decide the amount of shoes (quantity1) and socks (quantity2) they want to buy in

Default.aspx and Sales.aspx, and then this purchase information will be transferred to

Pay.aspx for following payment. Figure 3a shows source code of Pay.aspx page. Figure 3b

shows the flow chart for the source code of Pay.aspx page, and these basic blocks can be

covered depend on consumer‘s input different values from Default.aspx page. If consumers

key in quantity1 value which is less than or equal to 0, then CPay1 and CPay2 will be covered in

this execution. Otherwise, CPay1 and CPay3 will be covered.

9

Default.aspx

Pay.aspx

Sales.aspx

quanity1

quanity2

string vquantity1=Request.Params["quantity1"];

if (int.Parse(vquantity1) <= 0)
{

show.Text = "值不在範圍內";
Label1.Visible = false;
Label3.Visible = false;

}
else
{

a = 500 * int.Parse(vquantity1);
Session["total"] = a.ToString();
Total.Text = Session["total"].ToString();

}

CPay1

CPay2

CPay3

Pay.cs

CPay1

Int.Parse(vquantity1)<=0

CPay2 CPay3

T F

(a) (b)

Figure 3. Source code of Pay.aspx page (a) with its flow chart (b) in Example 1

3.2 Value- oriented dependence graph

 Based on the above motivated example, the three-level dependence graph shown in

section 2.3 cannot describe different executions in different values because it cannot model

users‘ input values. We first define the tainted variables in branch predicate which can be

controlled by user and decide the flow of executions, and then we refined three-level

dependence graph to value-oriented dependence graph. The definition and construction

algorithm of value-oriented dependence graph are also presented in this section. Finally, an

example is provided to illustrate value-oriented dependence graph construction algorithm.

10

3.2.1 Tainted variables in branch predicate

Figure 3 motivates us that a fine job assignment requires the value information of

variables. However, only some variables will depend on user‘s input to influence the program

execution flow. Therefore, we first consider the variable which can decide the flow of a

program. This kind of variables dominating the execution flow is defined as branch predicate

variables. In collaborative testing, testers can only use input variable and hyperlink to validate

Web site. Hence, we define input variable and tainted variable which are controllable variable

of testers. Finally, the tainted variables in branch predicate in a fine collaborative testing are

defined if it is branch predicate variables and tainted variable. The formal definitions and

notations of branch predicate variables, input variable, tainted variable and tainted variables in

branch predicate are provided below:

Definition 1 (Branch predicate variables VBP
i
)

 A variable VBP
i
 is the ith branch predicate variable if it is related to program behavior of a

page. It affects code flow chart of the page.

Definition 2 (Input variable VIN
i
)

 A variable VIN
i
 is the ith input variable if it is a frame of each page which user can input

value.

Definition 3 (Tainted variable VT
i
)

 A variable VT
i
 is the ith tainted variable if there is related to the input variable VI

i
 of the

page.

Definition 4 (Tainted variable in branch predicate VTBP
i
)

 A variable VTBP
i
 is the ith tainted variable in branch predicate if it is branch predicate

variable and tainted variable which means it affects program behavior of the page.

Example 1 of the above variables is shown in Figure 4, where quantity1 is the only input

variable and the tainted variable of quantity1 consists quantity1, vquantity1, a, Session[―total‖]

11

and Total.Text. vquantity1 is the only variable which will influence the flow of Pay.aspx and

hence is branch predicate variable. Therefore, in this simple example, vquantity1 is both

branch predicate variable and an element of tainted variable, and hence is the tainted variable

in branch predicate in collaborative testing on this shopping website.

quantity1

Default.aspx Pay.aspx

quantity1

string vquantity1=Request.Params["quantity1"];

if (int.Parse(vquantity1) <= 0)
{

show.Text = "值不在範圍內";
Label1.Visible = false;
Label3.Visible = false;

}
else
{

a = 500 * int.Parse(vquantity1);
Session["total"] = a.ToString();
Total.Text = Session["total"].ToString();

}

tainted variables

branch predicate
variable

Input variable

Figure 4. Differents of three variables in Example 1

3.2.2 Definition of Value- oriented dependence graph

Three-level dependence graph [28] is proposed to connect the perspectives from folk

testers (Web pages), test objective from developer (basic blocks coverage). However, the lack

of variable value information of three-level dependence graph cannot lead to fine

collaborative testing. We further extend three-level dependence graph to value-oriented

dependence graph by considering variable value information. There are three types of the

vertexes (a set of pages, a set of functions, and a set of basic blocks) in the value-oriented

dependence graph. And there are five types of the edges in the value-oriented dependence

12

graph. Three of them are intra-level edges representing the connections within page-level,

function-level, and code-level. The other two are inter-level edges representing the

connections between different levels. The formal definition of value-oriented dependence

graph is provided below:

Definition 5: Value-oriented dependence graph

Value-oriented Dependence graph G= (V, E)

VIN
i
 is an input variable

I= {VIN
i
| VIN

i
 is an input variable} is the set of input variables

R= ∏i=1
n
R(VIN

i
)=R(VIN

1
) ×R(VIN

2
) ×…×R(VIN

n
), where R(VIN

i
) is an image of variable VIN

i

V=VP∪VF∪VC, where

VP= {PAi| PAi is a page} is the set of the pages

VF= {Fi| Fi is a function} is the set of the functions

VC= {Ci| Ci is a basic block} is the set of the basic blocks

E=EP∪EF∪EC∪EPF∪EFC, where

EP= {(PAi, PAj, Iij, Rij)|PAi, PAj ∈ Vp, Iij ∈ I , Rij ∈ R}

EF= {(Fi, Fj , Iij, Rij)|Fi, Fj ∈ VF , Iij ∈ I , Rij ∈ R }

Ec= {(Ci, Cj, Iij, Rij)|Ci, Cj ∈ Vc, Iij ∈ I , Rij ∈ R }

EPF= {(Pi, Fj)| Pi∈ VP, Fj∈ VF}

EFC= {(Fi, Cj)| Fi∈ VF, Cj∈ VC}

Figure 5 shows value-oriented dependence graph in Example 1. Compared to three-level

dependence graph, we further record tainted variable in branch predicate value information in

edges. Different tainted variable in branch predicate values decide the permission of distinct

edge and hence decide which basic blocks will be covered in different execution. The details

of value-oriented dependence graph construction algorithm will be presented in the next

section.

13

Default SalesPay

Page Level

Code Level

CPay2

Button1_Click Page_Load Button1_Click

Function Level

{(quantity1, int)}

{(quantity2, int)}

CPay5 CPay8

CPay3 CPay4

CPay1

CPay6 CPay7 CPay9 CPay10

(Session[“total”],!null),(q1,null) (Session[“total”],null),(q2,null) (Session[“total”],null),(q1,null)

(q2,<=0) (q2,>0) (q1,<=0) (q1,>0)

CDefault1 CSales1

(q2,<=0) (q2,>0)

Session[“total”]1 2 3

1 1 1

Figure 5. Value-oriented dependence graph in Example 1

3.2.3 Value-oriented Dependence Graph (VDG) construction algorithm

First, we will detect nodes of page-level, function-level, and code-level based on

different pattern sets of each level, and then construct edges of each node in page-level,

function-level, and code-level with the subroutine ―EdgeConstruction‖ based on the pattern

sets of each level. Finally, we construct the variables of each type with the subroutine

―VariablesSetConstruction‖ based on the pattern sets of each type.

14

Value-oriented dependence graph construction algorithm

Input:

 Folder which stores file of each page

 Page code segments Ba={Ba
1
,…,Ba

n
} , Bc={Bc

1
,…,Bc

n
}

 Pattern set of declare page PP

 Pattern set of declare function PF

 Pattern set of declare code PC

 Pattern set of declare input variables PI

 Pattern set of declare global variables PG

 Pattern set of declare branch predicate variables PBP

 TP, where TP=PP∪PF∪PC

Output: Value-oriented Dependence graph，G=(V,E) , where V=VP∪VF∪VC，

E=EP∪EF∪EC∪EPF∪EFC

Method:

 Initial: V=∅,E=∅

 Step1: For each line L in folder

 If L contains pattern PP then add the node into VP

 Step2: For each Bc
i
 in Bc

 2.1: For each line L in Bc
i

 If L contains pattern PF then add the node into VF

 2.2: Add edge from the page node to the function node

 Step3: For each Bc
i
 in Bc

 3.1: For each line in Bc
i

 If L contains pattern PC then add the node into VC

3.2: Add edge from the function node to the basic block code

Step4:

4.1: For each Ba
i
 in Ba

EdgeConstruction(Ba
i
,PP)

 4.2: For each Bc
i
 in Bc

EdgeConstruction(Bc
i
,PP)

 Step5: For each BF
i
 in VF

EdgeConstruction(Bc
i
,PF)

 Step6: For each B in VC

EdgeConstruction(Bc
i
,PC)

Step7: For each Ba
i
 in Ba

 I (Vi) = VariablesSetConstruction (Ba
i
,PI)

 Step8: For each Bc
i
 in Bc

15

 G (Vi) = VariablesSetConstruction (Bc
i
,PG)

 Step9: For each Bc
i
 in Bc

 T (Vi) = VariablesSetConstruction (Bc
i
,I(Vi))

 Step10: For each Bc
i
 in Bc

 BP (Pi) = VariablesSetConstruction (Bc
i
,PBP)

 Step11: TBP (Pi)= (
n

i

iPBP
1

)(


)∩(
m

j

jVT
1

)(


)

Subroutine: EdgeConstruction

 Input: Code segment B、TP

 Output: Dependence graph of each level

 Method:

 Step1: For each line L in B

 If L contains pattern TP then construct edge of nodes

 Step2: Return Dependence graph of each level

Subroutine: VariablesSetConstruction

 Input: Code segment B、TP

 Output: Set of variable S

 Method:

 Step1: For each line L in B

 If L contains pattern TP then add the variable into S

 Step2: Return S

3.2.4 Example of Value-oriented dependence graph

At server side, there are various techniques to develop dynamic web page such as

ASP.NET with C#, JSP, and PHP. At client side, HTML and JavaScript are used widely to

support the development of the web applications. Hence, we only consider the ASP.NET with

C# language, and the other language such as HTML, JavaScript can be considered by simple

extension. In Table 1, according to different levels with page, function, and code we classify

patterns of the nodes and the edges in the value-oriented dependence graph. In Table 2,

16

according to different variables with input, global, and branch predicate we classify patterns

of these variables in the value-oriented dependence graph.

Table 1. Property of Patterns of Different level

Level Pattern

Page Node .aspx

Page Edge Response.Redirect

Page Edge NavigateUrl

Function Node (protected| private |

public)?[](void|bool|int|float)

Function Edge Function caller

Code Node (if|else|for|while|switch)

Code Edge Flow chart

17

Table 2. Property of Patterns of Different variable

Level Pattern

Input Variable <asp:TextBox ID=/‖(a-zA-Z0-9)+/‖

Input Variable <asp:DropDownList ID=/‖(a-zA-Z0-9)+ /‖

Input Variable <asp:ListBox ID=/‖(a-zA-Z0-9)+ /‖

Input Variable <asp:CheckBox ID=/‖(a-zA-Z0-9)+ /‖

Input Variable <asp:CheckBoxList ID=/‖(a-zA-Z0-9)+ /‖

Input Variable <asp:RadioButton ID=/‖(a-zA-Z0-9)+ /‖

Input Variable <asp:RadioButtonList ID=/‖(a-zA-Z0-9)+

/‖

Global Variable Session[/ ―(a-zA-Z0-9)+ /‖]=

Global Variable =Session[/ ―(a-zA-Z0-9)+ /‖]

Branch predicate variable if((a-zA-Z0-9_>=<&|())+)

Branch predicate variable while((a-zA-Z0-9_>=<&|())+)

Branch predicate variable for((a-zA-Z0-9_>=<&|())+)

Branch predicate variable do

while((a-zA-Z0-9_>=<&|())+)

Branch predicate variable Switch

case 1: (a-zA-Z0-9_>=<&|())+

case 2: (a-zA-Z0-9_>=<&|())+

…

case i: (a-zA-Z0-9_>=<&|())+

…

The Example 2 is given to illustrate the value-oriented dependence graph construction

algorithm, where Figures 6-1 to 6-11 show the results after executing steps 1 to 11,

respectively.

18

Example 2:

 The Example 2 continues Example 1. According to the source code of each page,

―Property of Patterns of Different level‖ in Table 1, and ―Property of Patterns of Different

variable‖ in Table 2, we can construct the value-oriented dependence graph.

 Since the pattern of page node is ―.aspx‖, after executing step 1, we can construct each

page to the node in page-level as shown in Figure 6-1.

 Folder

 Default.aspx

 Default.cs

 Show.aspx

 Show.cs

 Sales.aspx

 Sales.cs

Figure 6-1. Value-oriented dependence graph after executing Step 1 of VDG algorithm

Since the pattern of function node is ―(protected| private | public)?[](void|bool|int|float)‖

in Table 1, after executing step 2, we can construct each function for the given page to the

node in function-level and connect the given page and the function with corresponding edge

as shown in Figure 6-2.

 Page-level

Show.cs

protected void Page_Load(object sender, EventArgs e)

{ } Function-level

Figure 6-2. Value-oriented dependence graph after executing Step 2 of VDG algorithm

Default Pay Sales

Page_Load

Show

19

Since the pattern of code node is ―(if|else|for|while|switch)‖ in Table 1, after executing

step 3, we can construct each basic block for the given function to the node in code-level, and

connect the function and the basic block with corresponding edge as shown in Figure 6-3.

……………………………….

Int32 a=0;

if (int.Parse(vquantity2) <= 0)

 { Function-level

 …………………………………….

 Label3.Visible = false;

 }

 else

 { Code-level

 ……………………………….

 Session["total"] = a.ToString();

 Total.Text = Session["total"].ToString();

 } …………………………………..

Figure 6-3. Value-oriented dependence graph after executing Step 3 of VDG algorithm

Since the pattern of page edge is ―Response.Redirect‖ and ―NavigateUrl‖ in Table 1,

after executing step 4, we can connect nodes in page-level with corresponding edges as shown

in Figure 6-4.

Default.aspx

………………………………..

<asp:TextBox ID="quantity1" runat="server">

</asp:TextBox>

<asp:HyperLink ID="HyperLink1" NavigateUrl="~/Sales.aspx"

Figure 6-4. Value-oriented dependence graph after executing Step 4 of VDG algorithm

CPay1 CPay2 CPay3

Page_Load

Default Sales

20

Since the pattern of function edge in Table 1, after executing step 5, we can connect

nodes in function-level with corresponding edges as shown in Figure 6-5.

protected void Page_Load(object sender, EventArgs e)

{ show(); }

Figure 6-5. Value-oriented dependence graph after executing Step 5 of VDG algorithm

Since the pattern of code edge in Table 1, after executing step 6, we can connect nodes in

code-level with corresponding edges as shown in Figure 6-6.

……………………………….

Int32 a=0;

if (int.Parse(vquantity2) <= 0)

 {

 …………………………………….

 Label3.Visible = false;

 }

 else

 {

 ……………………………….

 Session["total"] = a.ToString();

 Total.Text = Session["total"].ToString();

 } …………………………………..

Figure 6-6. Value-oriented dependence graph after executing Step 6 of VDG algorithm

Since the pattern of input variable in Table 2, after executing step 7, we can construct

input variables of each page as shown in Figure 6-7.

Page_Load show

CPay1

CPay2

CPay3

21

Default.aspx

………………………………..

<asp:TextBox ID="quantity1" runat="server">

</asp:TextBox>

………………………………..

Figure 6-7. Value-oriented dependence graph after executing Step 7 of VDG algorithm

Since the pattern of global variable in Table 2, after executing step 8, we can construct

global variables of each page as shown in Figure 6-8.

Pay.cs

………………………………..

a = 500 * int.Parse(vquantity1);

Session["total"] = a.ToString();

Total.Text = Session["total"].ToString();

………………………………..

Figure 6-8. Value-oriented dependence graph after executing Step 8 of VDG algorithm

Since the pattern of input variable, after executing step 9, we can construct tainted

variables of each page as shown in Figure 6-9.

Pay.cs

………………………………..

string vquantity1=Request.Params["quantity1"];

a = 500 * int.Parse(vquantity1);

Session["total"] = a.ToString();

………………………………..

Figure 6-9. Value-oriented dependence graph after executing Step 9 of VDG algorithm

Default

quantity1

Pay

In:Session[―total‖]

Out:Session[―total‖]

T(quantity1)={vquantity1,a,

Session[―total‖]}

Pay

22

Since the pattern of branch predicate variables in Table 2, after executing step 10, we can

construct branch predicate variables of each page as shown in Figure 6-10.

Pay.cs

……………………………………

if (Session["total"] != null)

{

 if (vquantity1 == null)

Figure 6-10. Value-oriented dependence graph after executing Step 10 of VDG algorithm

Since the branch predicate variables and tainted variable, after executing step 11, we can

construct tainted variables in branch predicate of each page as shown in Figure 6-11.

TBP (Pi)= (
n

i

piBP
1

)(


)∩(
m

j

vjT
1

)(


)

Figure 6-11. Value-oriented dependence graph after executing Step 11 of VDG algorithm

3.3 State Transition Diagram

 In the section, we first introduce problem decomposition idea to improve collaborative

testing, and then a novel Web application model, state transition diagram, and the

corresponding construction algorithm will be presented in this section. An example of state

transition diagram construction algorithm will be also provided in this section.

3.3.1 Problem decomposition

Value-oriented dependence graph provides an opportunity to refine collaborative testing.

For further improving collaborative testing, we decompose the Web application testing

problem into several sub-problems as shown in Figure 7. Each sub-problem which is easier

BP (Pay) = {Session [―total‖], vquantity1}

Pay

TBP(Pay)={vquantity1,vquantity2

}∩{vquantity1,vquantity2,Session

[―total‖],a}={vquantity1,vquantity

2}

23

than original problem because of the smaller size of sub-problem can be independently solved.

Afterwards, we can parallelly assign these sub-problems to different folk testers. This parallel

property can speed up the whole collaborative testing. However, this parallel assignment

requires a proper label design to integrate different test results for following job assignments

and final test report. And then, we can easily merge these sub-problems by tracing back

according to the labels of all sub-problems.

Original Problem: Web application testing

...

...

...Reduced
Sub-problem
1.1

Reduced
Sub-problem
1.2

Reduced
Sub-problem
2.1

Reduced
Sub-problem
2.2

Reduced
Sub-problem 2

Reduced
Sub-problem 1

Using: Value-oriented
Dependency graph

Reduced sub-
problem i

...

... Reduced
Sub-problem
i.1

Reduced
Sub-problem
i.2

Figure 7. Idea of problem decomposition

3.3.2 Definition of State Transition Diagram

According to the idea of problem decomposition, we propose a novel Web application

model, state transition diagram, which is a fine-grained tree structure model. And it also

overcomes the cyclic problem in Web application testing under basic blocks coverage criteria.

The state transition diagram models users‘ runtime behaviors according to different basic

blocks coverage. Each state including two parts represents a behavior of the page. The first

part is the page number, and the second part is the set of the tainted variables in branch

predicate and its values which lead to different behaviors of program. The formal definition of

state transition diagram is provided below:

24

Definition 6: State transition diagram

State transition diagram

VTBP
i
 is a tainted variable in branch predicate

D= (S, δ, S0), where

S = {Si | Si is a state}, where

Si= (N, C), where

N ∈ { i | PAi is a page}

C ⊆ {(VTBP
i
, Ri) | VTBP

i
 ∈ V, Ri ∈ R, i=1~n}, where

V= {VTBP
i
 | VTBP

i
 is a tainted variable in branch predicate} is a set of tainted variables in

branch predicate

R= ∏i=1
n
R(VTBP

i
)=R(VTBP

1
) ×R(VTBP

2
) ×…×R(VTBP

n
), where R(VTBP

i
) is an image of

variable VTBP
i

δ is a transition function

δ (Si, A)=Sj, where

A ⊆ {(VTBP, Ri)| Vi ∈ V, Ri ∈ R, i=1~n}

S0 is an initial state

Figure 8 shows the state transition diagram in Example 1. Compared to value-oriented

dependence graph, the tree structure provides a kind of problem decomposition. Each path

from root represents a sub-problem of Web application testing. The details of state transition

diagram construction algorithm will be presented in the next section.

25

1,{(Session[“total”],null) }

{(q1,<=0) ,(q2,null),(Session[“total”],null}

2,{(q1,<=0) ,(q2,null),(Session[“total”],null} 2,{(q1,> 0),(q2,null),(Session[“total”],null)} 3,{ (Session[“total”],null)}

{(q1,> 0),(q2,null),(Session[“total”],null)}

3,{(Session[“total”],!null) }

0

0.1
0.3

0.2

0.1.1

{ (Session[“total”],null)}

{(Session[“total”],!null) }

S0

S1

S4

S2

S3

2,{(q1,null),(q2,
<=0),(Session[“total

”],null)}

{(q1,null) ,(q2,<=0),(Session[“total”],null}

S5

0.3.1

2,{(q1,null),(q2,
<=0),(Session[“total

”],null)}

{(q1,null) ,(q2,>0),(Session[“total”],null}

0.3.2

S6

2,{(q1,null) ,(q2,
<=0),(Session[“total

”],!null)}

S7

0.1.1.1

2,{(q1,null) ,(q2,
<=0),(Session[“total

”],!null)}

{(q1,null) ,(q2,<=0),(Session[“total”],!null}

{(q1,null) ,(q2,>0),(Session[“total”],!null}

S8

0.1.1.2

Figure 8. State transition diagram in Example 1

3.3.3 State Transition Diagram (STD) construction algorithm

From the purpose of speeding up collaborative testing, we first apply Breadth-First

Search (BFS) on the page-level of value-oriented dependence graph to parallelly distribute

folk testers. At each new visiting page, we further drill down to code-level of value-oriented

dependence graph to identify different states based on distinct program flow. In the

meanwhile, the proper label is created for these new states. The details of state transition

diagram are presented below:

26

State transition diagram algorithm

Input:

Value-oriented Dependence graph G,

 C[i]: tainted variable in branch predicate C of each page PAi,

 S0:initial state which Label 0,

 N[i]:start basic block of each page PAi

 color(i,c): node c is in code level of page PAi

Output: State transition diagram STD D=(S, δ, S0)

Method:

Initial: S=∅, δ=∅ , j=1, k=1

Step1: for each page number P which from small to large ∈ adj [S0.N] in G

ConstructionNextState (S, P)

Step2: For each new state s‘ in S

2.1: k=1

2.2: for each page number P which from small to large ∈ adj[s‘.N] in G

 ConstructionNextState (s‘, P)

Step3: Repeat Step2 until there is no new state.

Subroutine: ConstructionNextState

Input:

 S: State

 P: Page number

Output: null

Step1: IF S0 modify global value update global variable value of C[i]

 ELSE update global variable value with S0 of C[p]

Step2: add the variable of edge into C[p]

Step3: for each node c

Color (p,c)=white

Step4: StateCreation (S0,p, C[p],N[p],0)

Step5: Change back global variable value of C[p]

27

Subroutine: IsANewState

Input:

 SP: Previous state

 s: state

 i: Previous label

Output: null

Method:

Step1: IF the first part of s exists

 IF the second part of s exists

 Remove the state s

 Else

 Add s into S in Sj, j++

 Add second part of Sj into edge from SP to Sj

 Label i.k, k++

Subroutine: StateCreation

Input:

 SP:Previous state

 p: page number

 C[p]: tainted variable in branch predicate of p

 c0: start basic block of each page

 i: Previous label

Output: null

Method:

Step1: IF number of out-degree of c0 is zero or Color is black

1.1: color (p, c0)=black

1.2: Add p into first part of S‘

1.3: Add coming edge condition into second part of S‘

1.4: IsANewState(SP,S‘,i)

Step2: for each basic block c‘ in neighborhood of c0

IF condition of coming edge of c‘ accords with C[p]

 2.1: add condition of coming edge of c‘ into second part of S‘

 2.2: color (p, c0)=black

 2.3: StateCreation (SP ,p, C[p],c‘,i)

28

3.3.4 Example of Constructing State Transition Diagram

The Example 3 is given to illustrate the state transition diagram construction algorithm,

where Figures 9-1 to 9-2 show the result after executing steps 1 to 2, respectively.

Example 3:

 The Example 3 continues Example 2. According to the value-oriented dependence graph,

tainted variables in branch predicate of each page, and initial state, we can construct the state

transition diagram.

Since the first part of initial state, we find outgoing edge in page-level of VDG, and then

according to tainted variable in branch predicate of the page we search code-level of VDG,

after executing step 1, we can construct the new state of initial state. Second, if the state

doesn‘t exist then label and add to state transition diagram as shown in Figure 9-1.

Default SalesPay

Page Level

Code Level

CPay2

Button1_Click Page_Load Button1_Click

Function Level

{(quantity1, int)}

{(quantity2, int)}

CPay5 CPay8

CPay3 CPay4

CPay1

CPay6 CPay7 CPay9 CPay10

(Session[“total”],!null),(q1,null) (Session[“total”],null),(q2,null) (Session[“total”],null),(q1,null)

(q2,<=0) (q2,>0) (q1,<=0) (q1,>0)

CDefault1 CSales1

(q2,<=0) (q2,>0)

Session[“total”]1 2 3

1 1 1

Figure 9-1. State transition diagram after executing Step 1 of STD algorithm

S0

2, {(q1,<=0),(q2,null),(Session

*“total”+, null)-

,(q1,<=0),(q2,null),(Session *“total”+, null)-

1, ,(Session *“total”+, null)-

0

S0

S1

0.1

2, {(q1,<=0),(q2,null),(Session

*“total”+, null)-

1, ,(Session *“total”+, null)-

Initial state: S0

29

Since the first part of the given new state we find outgoing edge in page-level of VDG,

and then according to tainted variable in branch predicate of the page we search code-level of

VDG, after executing step 2, we can construct new state of the given new state. Second, if the

state doesn‘t exist then label and add to state transition diagram as shown in Figure 9-2.

1,{(Session[“total”],null) }

{(q1,<=0) ,(q2,null),(Session[“total”],null}

2,{(q1,<=0) ,(q2,null),(Session[“total”],null} 2,{(q1,> 0),(q2,null),(Session[“total”],null)} 3,{ (Session[“total”],null)}

{(q1,> 0),(q2,null),(Session[“total”],null)}

0

0.1 0.3

0.2

{ (Session[“total”],null)}

S0

S1

S2

S3

Default SalesPay

Page Level

Code Level

CPay2

Button1_Click Page_Load Button1_Click

Function Level

{(quantity1, int)}

{(quantity2, int)}

CPay5 CPay8

CPay3 CPay4

CPay1

CPay6 CPay7 CPay9 CPay10

(Session[“total”],!null),(q1,null) (Session[“total”],null),(q2,null) (Session[“total”],null),(q1,null)

(q2,<=0) (q2,>0) (q1,<=0) (q1,>0)

CDefault1 CSales1

(q2,<=0) (q2,>0)

Session[“total”]1 2 3

1 1 1

1,{(Session[“total”],null) }

{(q1,<=0) ,(q2,null),(Session[“total”],null}

2,{(q1,<=0) ,(q2,null),(Session[“total”],null} 2,{(q1,> 0),(q2,null),(Session[“total”],null)} 3,{ (Session[“total”],null)}

{(q1,> 0),(q2,null),(Session[“total”],null)}

3,{(Session[“total”],!null) }

0

0.1

L3
0.2

0.1.1

{ (Session[“total”],null)}

{(Session[“total”],!null) }

S0

S1

S4

S2

0.3

Figure 9-2. State transition diagram after executing Step 2 of STD algorithm

Repeat step 2 until has no new states and state transition diagram as shown in Figure 9-1.

3,{(Session[“total”], !null)}

The new state: S1

2, ,(q1,<=0),(q2,null),(Session *“total”+, null)-

30

Chapter 4 Dynamic stubbing technique for collaborative testing

In the chapter, we first provide an example to illustrate that different assignment leads to

distinct test cost in collaborative testing. The formal problem formulation of Minimum Test

Cost Problem (MTCP) in collaborative testing is presented in this chapter. We also prove

MTCP is NP-complete and hence propose a heuristic-based dynamic stubbing algorithm to

solve this optimization problem.

4.1 Motivating example

 Figure 10 shows a simple Web application which contains nine states and eight

sub-problems. Assume that each sub-problem needs to be executed once for completing test

and three folk testers A, B, and C are involved in this test. The completion time of each

sub-problem by different folk tester is listed in Table 3. The due time of collaborative testing

is set to be the last folk tester finishing the assigned jobs.

Problem 0

Sub-

problem

0.1

Sub-

problem

0.2

Sub-

problem

0.3

Sub-

problem

0.1.1

Sub-

problem

0.3.1

Sub-

problem

0.3.2

Sub-

problem

0.1.1.1

Sub-

problem

0.1.1.2

Figure 10. Problem decomposition scenario

31

Table 3. Sub-problem completion time of each folk tester matrix

 0.1.1.1 0.1.1.2 0.2 0.3.1 0.3.2

Tester A 160 sec 160 sec 80 sec 120 sec 120 sec

Tester B 165 sec 165 sec 85 sec 125 sec 125 sec

Tester C 170 sec 170 sec 90 sec 130 sec 130 sec

 Two different assignments of the example are shown in Table 4 and Table 5. In each table,

entryij=1 represents that the jth job is assigned to ith tester. Assignment 1 represents that three

folk testers have centralized preference on sub-problem 0.1.1.1 and assignment 2 is unbiased

on testers‘ preferences. The due time of these two assignments are 390 sec and 300 sec as

shown in Figure 11 and 12. This example illustrates that different assignment leads to distinct

test cost (due time) and the centralized preferences of folk testers will delay the whole

collaborative testing.

Table 4. Assignment 1 for shopping Web-site testing

 0.1.1.1 0.1.1.2 0.2 0.3.1 0.3.2

Tester A 1 0 0 1 0

Tester B 1 1 0 0 0

Tester C 1 0 1 0 1

Table 5. Assignment 2 for shopping Web-site testing

 0.1.1.1 0.1.1.2 0.2 0.3.1 0.3.2

Tester A 1 0 0 1 0

Tester B 0 0 0 0 1

Tester C 0 1 1 0 0

32

Figure 11. Due time of assignment 1

Figure 12. Due time of assignment 2

4.2 Minimum Test Cost Problem in Collaborative Testing

Under Internet environment, there are a large number of free and experienced folk

human resources. Collaborative testing (or called Beta test) is usually used in online game and

open source software to reduce test cost in software development stage. Based on the idea of

beta test, we use folk testers in Internet to help us finding and reporting bugs. There are some

constraints while applying collaborative testing. First, folk testers may not start to test at the

0 200 400 600

Tester A

Tester B

Tester C

0 100 200 300 400

Tester A

Tester B

Tester C

33

same time and they may delay to start the next test job after finishing current jobs. Second, we

only consider those folk testers contributing themselves to collaborative testing. Therefore,

each folk tester solves one sub-problem at least. Third, due to different complexity of each

sub-problem, each sub-problem has distinct support threshold for completion. And then, the

quality of folk testers (trustworthy) is different in Internet; therefore, it needs to consider the

accumulation of the testers‘ trustworthy, rather than the number of testing. Final, each folk

tester has different workload.

Before presenting our problem formulation, we first introduce the notations in Table 6.

The variables i represents the ith folk tester, the variable j represents jth sub-problem, and the

variable k represents kth assignment of the sub-problems. We use the binary variable. σijk

equals to 1 represents that the jth sub-problem is assigned to the ith folk tester in the kth

assignment. Otherwise, σijk equals to 0. TDe(i, j) stands for the delay time of the ith folk tester

start to solve the jth sub-problem, TEx(I, j) stands for the jth sub-problem execution time of the

ith folk tester, and T (i, j) stands for the jth sub-problem completion time of ith folk tester. Wi

represents the trustworthy of ith folk tester and Hi represents the workload of the ith folk tester.

STj represents the support threshold of jth sub-problem.

34

Table 6. Notations of MTCP in collaborative testing

i = ith folk tester

j = jth sub-problem

k= kth assignment of the sub-problems

σijk= ith folk tester does the jth sub-problem in the kth assignment

TDe(i, j)= the jth sub-problem delay time of the ith folk tester

TEx(i, j)= the jth sub-problem execution time of the ith folk tester

T (i, j)= the jth sub-problem completion time of ith folk tester

Wi= the trustworthy weight of ith folk tester

Hi= the available time limit of the ith folk tester

STj=support threshold of the jth sub-problem

4.2.1 Problem formulation

The Minimum Test Cost Problem (MTCP) in collaborative testing can be formulated as

IP-formulation. The objective function is the minimum of due time on different assignment,

when due time is the maximum of the sum of sub-problem‘s time of each folk tester. The

constraint 6 is the complete condition that each sub-problem need to be tested at least support

threshold. The formulation of MTCP is presented below:

35

Definition 7: Minimum Test Cost Problem (MTCP) definition

Objective function:


j

ijk
ik

jiT ),(maxmin

Subject to:

1.σijk ∈ {0, 1} , ∀i, j, k

2. TDe(i, j) ∈ R
+

3. TEx(i, j) ∈ R
+

4. T (i, j) ∈ R
+

5.  
j

ijk k,1

6.  
i

jijki kSTW ,*

7. STj >0

8.  
j

iijk kHjiT ,),(

9. Hi ∈ R
+

10.  
ji

ijkijk kkkk
,

2

' ',',,0)(

11. 0< Wi ≤ 1

36

4.2.2 NP-Complete problem

In the section, we introduce an NP-complete problem, Job Assignment Problem (JAP)

[30]. Then, JAP can be reduced in polynomial time to MTCP to complete the proof as

followed.

The corresponding decision problem of Minimum Test Cost Problem (MTCP):

MTCP = {<D, J, U, ST, W, H, T, t>}

D= (S, δ, S0) is a directed tree.

J is a set of sub-problems in D.

U is a set of folk testers.

ST is a function form JR
+

W is a function form U (0, 1]

H is a function form UR
+

T is a function form UJR
+

And there is an assignment with due time at most t

Theorem 1

Minimum Test Cost Problem is NP-Complete.

Proof:

First, we show that MTCP belongs to NP. Given an instance of the problem, the

verification algorithm checks that sum of trustworthy Wi of assigned sub-problems of every

folk tester i of each sub-problem j exceeds the support threshold STj, the sum of the

completion time of assigned sub-problems of each folk tester i does not exceed Hi, the

assignment of the sub-problems differs from the other assignment of the sub-problems, and

checks whether the maximum of the sum of the completion time of assigned sub-problems of

each folk tester is at most t. This process can certainly be done in polynomial time.

37

 Second, to prove that MTCP is NP-Hard, we show that JAP p MTCP. Let G=(V‘,E‘),

J‘={Pi|i=1,…,n}, U‘={Ui|i=1,…,m}, d(i, j)=0, the confirm function S(k) ∀k∈Pi, the

trustworthy function w by w(i, j) where i ∈U‘and j ∈J‘, the human resource function H by H(i)

∀i∈U‘, the execution time function T by T(Pi, j) ∀Pi∈J‘, j∈U‘, and the maximum total cost at

most t of JAP. We construct an instance of MTCP as follows. We form the tree D= (S, δ, S0)

where S=Pi, δ=0, S0=Pi and we define the test sub-problem set J=J‘, the folk tester U=U‘, the

support threshold function ST by STj=1 ∀j∈J, the trustworthy function W by Wi=w(i,j) ∀i∈U,

the available time function H by Hi=H(i) ∀i∈U, the completion time function T by T(i,

j)=T(Pi, j) ∀i∈U, ∀j∈J.

 The instance of MTCP is then <D, J, U, ST, W, H, T, t>, where is easily formed in

polynomial time.

 We now show that graph G‘ has an assignment δ of the maximum total cost at t if and

only if the tree D‘ has an assignmentσ‗ of the maximum due time at most t. Suppose there is

an assignmentδwith maximum cost at most t. Therefore, there exists an assignment σ‘ such

that 1ijk if 1ij , the support threshold STj=1 ∀j∈J , the trustworthy weight of folk

tester Wi=w(i,j) ∀i∈U, the available time Hi=H(i), the completion time T(i, j)=T(Pi,j) ∀i∈U,

∀j∈J. Thus, the assignment σ‘ is feasible solution and the maximum due time is t. Conversely,

suppose that there is an assignment σ‘ with the maximum due time is t. Then, there existed an

assignment a such that ijkij   , the trustworthy w(i, j)=Wi ∀i∈U‘ and j∈J‘, the human

resource H(i)=Hi ∀i∈U‘, the execution time T(Pi, j)=T(i,j) ∀Pi∈J‘, ∀j∈U‘. Thus, the

assignment is a feasible solution and the maximum total cost is t. Hence, MTCP is

NP-Complete #

38

4.3 Dynamic stubbing algorithm for Minimum Test Cost Problem

Because Minimum Test Cost problem (MTCP) is an NP-Complete problem, we propose

heuristic approach to solve MTCP. First heuristic is to assign new coming tester the job which

requires the most effort to compete. This heuristic can speed up the whole testing. However,

the sub-problem completion time of different folk testers is distinct. Therefore, we further

predict the completion time to balance the following job assignments. Second heuristic is to

assign tester with high trustworthy the most doubting job. Since the quality of folk testers is

not the same, there may be opposite result on the same sub-problem. The second heuristic is

used to improve the quality of test report.

Before presenting our heuristic-based approach, the used notations are introduced in

Table 7. U represents the set of the folk testers, and Wi represents the trustworthy of the ith

folk tester. Mj represents the complexity of jth sub-problem. Sj represents the testing support of

the jth sub-problem and STj represents the support threshold of the jth sub-problem. TA (i, j)

stands for the actual execution time of the jth sub-problem done by the ith folk tester, and TEv(i,

j) stands for the evaluation time of the jth sub-problem done by the ith folk tester. FP (Sk)

represents the average trustworthy of folk testers which report bugs at the state k, and FN (Sk)

represents the average trustworthy of folk tester which don‘t report bugs at the state k. The

details of these notations and the following proposed dynamic stubbing algorithm are listed

below:

39

Table 7. Notations of Dynamic stubbing algorithm

Folksonomy user:

U= {i | i is the ith tester} is a set of folk testers

Trustworthy weight of the ith folk tester:

Wi ∈ (0, 1]

Complexity:

Mj=#line of code in sub-problem j

Support of the jth sub-problem:

 Sj= 
i

iEvA WjiTjiT)*)),((),((

Support threshold weight of the jth sub-problem:

STj=Mj*c, where c is a constant

Actual execution time of the jth sub-problem, which had done by the ith folk tester:

TA (i, j) ∈ R
+

Evaluation time of the jth sub-problem by the ith folk tester:

TEv (i, j) ∈ R
+

Average trustworthy weight of folk testers which report bug at the state k

FP (Sk) = 
 tUi

i

t

W
U

1
 , where Ut is the set of folk tester report bugs at the state k

Average trustworthy weight of folk testers which don‘t report bug at the state k

FN (Sk) = 
 tUi

i

t

W
U

1
 , where Ut is the set of folk tester don‘t report bugs at the state k

40

Dynamic stubbing algorithm

Input:

User Profile

TEv(i, j):evaluation time of sub-problem j of tester i

State Transition Diagram D=(S, δ, S0)

S (PR): a set of all sub-problems

PR: a set of sub-problems

Output:

Testing time

Method:

Initial: PR=null, for each sub-problem j in S (PR) InitialMetadata(j)

Step1: for each sub-problem in S (PR) find the set of sub-problem S (PR) which the most

 required tested

 1.1: PR=FindTestedProblem(S (PR))

Step2: GuidingTester(PR,Ui)

Step3: IF the jth sub-problem of the ith tester has done

 3.1: updating Sj=Sj + (TA (i, j)-TEv(i, j))*Wi

Step4: IF (Sj>STj, ∀j)

 Testing Finish

 ELSE

Go to step1

41

Subroutine: InitialMetadata

Input: Sub-problem j

Output: Sub-problem j‘

Method:

Step1: According to the code complexity of j set up the STj of sub-problem j

 STj <- X

 Sj <- 0

Step2: return j‘

Subroutine: FindTestedProblem

Input: S (PR): a set of all sub-problems

Output: a set of sub-problem PR

Method:

Initial: B=S (PR)

Step1: for each problem j in B

 1.1: T (j) = (length (j) +1) [(Sj/STj) +α 
)(.

)(
jproblemsubkj

jT]

Step2: for n=1 to count (Ui)

2.1: add arc
j

jT)}(min{ into PR

2.2: remove j

Step3: return PR

42

Subroutine: GuidingFolkTester

Input:

State transition diagram D

F: all user profile

A set of sub-problem PR

A set of folk tester Ui

Output:

Method:

Initial: B=PR

Step1: for each sub-problem j in PR

Return arc }|))()(({min  
k

kkNkP
j

jSSFSF

Step2:

 2.1: IF B≠null

Assign j to the most trustworthy of tester i in Ui

 ELSE

Assign arc)}({max jlength
j

to the tester i in Ui

 2.2: Sj=Sj+TEv(i,j)*Wi

Step3: According to j from left to right

3.1: apply D and F to assign input value which is not tested to the Tester

3.2: for each link L in the tested page

Block link button except the link of entering to the next tested page.

3.3: remove i from Ui

3.4: remove j from B

Step4: repeat step1 until Ui is null

43

Chapter 5 Implementation and Experiment

5.1 System architecture and implementation

5.1.1 System architecture

 In this section, we propose our two-phase collaborative testing system architecture

including preprocessing phase and testing phase, as shown in Figure 13. In phase I, we

convert the ASP.NET with C# language of the web applications into value-oriented

dependence graph by value-oriented dependence graph construction algorithm. And then, we

transform value-oriented dependence graph into state transition diagram for problem

decomposition by considering users‘ runtime behaviors. In phase II, according to the state

transition diagram, the tester profiles and portfolios, dynamic stubbing algorithm assigns jobs

to each new coming tester. After the testing finishing, we analyze these bugs which folk

testers reported based on report analysis algorithm.

Phase I. Pre-progressing Phase Phase II. Testing Phase

Web Site

Dynamic

stubbing
Algorithm

User
Session

log

Graph
Constructio
n Algorithm

Folksonomy tester

registration

User
profile

Value-oriented
Dependence
graph

State Transition
Diagram

Construction
Algorithm

State Transition Diagram

Report analysis

Algorithm

Bugs report

report

Tester

engineer

Figure 13. Intelligent collaborative testing system architecture

44

5.1.2 System implementation

We implement a prototype system, intelligent collaborative testing system (ICTS), to

support collaborative testing. When using ICTS, new tester has to register by filling out a

simple questionnaire. This questionnaire can be used to estimate the trustworthy of tester and

the completion time of each sub-problem. The screenshot of register page of ICTS is shown in

Figure 14. The tutorial of ICTS, shown in Figure 15, is provided for testers to understand how

to test on ICTS. After understanding how to test on ICTS, testers can start to test Web-site.

ICTS guides testers to test state of the most required and sets all values of tainted variables in

branch predicate for testers. The guide of ICTS, shown in Figure 16, the main frame is the

current tested page and the left column records tester‘s feedback on current page. Finally,

complete information, shown in Figure 17, occurs if the test criterion is met.

45

Register testing account

1.

2.

Register successfully and login

Figure 14. Screen shot of register page of ICTS

46

3.

3.1

Figure 15. Screenshot of ICTS tutorial

3.

Figure 16. Screenshot of ICTS guiding

47

4.

Figure 17. Screenshot of complete information of ICTS

5.2 Experimental design and results

5.2.1 Experimental design

 We demonstrate our proposed approach on a open source Web application ―BookStore‖

[http://www.gotocode.com/], which contains nine pages (AdvSearch page, BookDetail page,

Books page, Default page, Login page, MyInfo page, Registration page, ShoppingCart page,

and ShoppingCartRecord page). We convert ―BookStore‖ into value-oriented dependence

graph by the value-oriented dependence graph construction algorithm, and then transform

value-oriented dependence graph into state transition diagram. The corresponding statics of

value-oriented dependence graph of ―Bookstore‖ are provided in Table 8, respectively. And

then we transform value-oriented dependence graph into state transition diagram with 28

states.

48

Table 8. Value-oriented dependence graph statistics

Level Type Quantity

Page Level Node 9

 Edge 52

Function Level Node 146

 Edge 136

Code Level Node 351

 Edge 546

Total Node 506

 Edge 734

 In the experimental design, we design a real testing environment of the web application

―BookStore‖. The folk testers of this experiment are gathered via social network sites such as

Facebook and msn. Therefore, these folks have basic internet access skills. The ages of testers

are between 15 and 30. These folk testers are further split into control group (85 testers) and

experimental group (59 testers). The testing periods of control group and experimental group

are 2011/6/1~2011/6/6 and 2011/6/1~2011/6/3, respectively. The stopping criterion of these

tests is that the support of each state exceeds its support threshold.

5.2.2 Experimental results

Experimental result I-Efficiency evaluation

 Centralized preferences of folk testers are the major cause of the delay of collaborative

testing. Figure 18 shows that folk testers in control group prefer to test the first state and then

second, 6
th

, 10
th

, 14
th

, 20
th

, 21
th

 and 22
th

 state. Compared to control group, our proposed

intelligent collaborative testing system can reduce this kind of bias. Table 9 shows that

experimental group has much less standard deviation in state complete degree than control

group (0.2928 v.s. 0.9268). This points out that our proposed algorithm can balance the job

assignment.

49

Table 9. State complete degree of testing comparing

Group Mean S.D.

Experimental group 0.6907 0.2928

Control group 0.9404 0.9268

Figure 18. Comparison of state complete degree of testing

 Table 10 shows the average contribution (test time) of each folk tester on this experiment.

We further apply independent t-test on control group and experimental group. There is no

significant difference (p=0.1240) in contribution of each folk tester between control and

experimental groups. In fact, testers in experimental group contribute less. Table 11 shows the

comparison of unit number of online folk testers of control group and experimental group.

This result shows that the contributions of testers in unit time of two groups are the same.

According to the above results, these experiments are fair for experimental group and control

group. Based on these fair comparisons, the due time of the experimental group can be

reduced to 50% of the control group, shown in Figure 19. Hence, our proposed dynamic

stubbing algorithm can speed up collaborative testing.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Control Experimental

50

Table 10. Comparison of test time between two groups

Group N Mean S.D. p-value

Experimental group 59 150.6271 236.1593 0.1240

Control group 85 244.5647 482.3225

Table 11. Comparison of the folk testers per due time

 Control group Experiment group

Folk testers/Due time 0.0050 0.0061

Figure 19. Due time comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Control group Experiment group

Due time

Due time

51

Experiment result II -Effectiveness evaluation

 Fault-detection ability is the most important in software testing, especially in

collaborative testing. Unqualified folk testers may produce doubt reports, and hence it

requires advanced job assignment and report analysis algorithm to improve the quality of final

report. In this experiment, there are ten defects in Web application ―BookStore‖ as shown in

Table 12, including the same book image error, notes of book error, category shows error, vote

image error, vote rate error, E-mail error, total price error, total price of book error, modify

quantity error, and last_name and E-mail error.

Table 12. Ten defects in Web application ―BookStore‖

 Defect description Page

1 the same book image error Default

2 notes description of book error Default

3 category shows error Books

4 vote image error BookDetail

5 vote rate error BookDetail

6 E-mail error ShoppingCart

7 total price error ShoppingCart

8 total price of book error ShoppingCart

9 modify quantity error ShoppingCartRecord

10 last_name and E-mail error MyInfo

Web application testing problem can be treated as binary classification problem where

pages with defect are positive instances and normal pages are negative instances. Each folk

tester can be considered as a classifier and our proposed system is an advanced classifier

integrating every classifiers. Table 13 shows the comparison of processing time of each folk

52

tester on each state. Folk testers in experimental group spend less time to check the status of

each state. However, there is no significant difference (p=0.0845) between control and

experimental groups when applying impendent t-test. The proxies of fault-detection ability are

selected as true positive rate (TP), true negative rate (TN), false positive rate (FP), false

negative rate (FN), precision, recall and F-measure. Table 14 shows the comparison of the

fault-detection ability between control group and experimental group. There is no significant

difference in TP (p=0.4170), TN (p=0.6019), FP (p=0.8474), FN (p=0.5518), Recall

(p=0.6655), Precision (p=0.9321), and f-measure (p=0.7233) between two groups. These

results indicate that folk testers in control group and experimental group have similar

fault-detection ability. However, the large stand derivation of each proxy indicates that the

quality of folk testers varies much. For example, there are almost 70% testers with

fault-detection ability (precision) from 0 to 1. This indicates that there exists folk testers with

prefect fault-detection ability and none fault-detection. From this observation, it requires

report analysis algorithm to form high quality test report.

When forming the final report, our report analysis algorithm adopts winner-takes-all

strategy, where the prediction of each state relies on the group with higher average trustworthy.

Based on the above comparisons, control group and experimental group have similar

fault-detection ability. Table 15 shows that our proposed approach can improve 30%

fault-detection ability than traditional collaborative testing.

53

Table 13. Comparison of test time of each state between two groups

Group N Mean S.D. p-value

Experimental group 59 22.0596 17.9834 0.0845

Control group 85 29.5177 33.1721

Table 14. Comparison of fault-detection ability between two groups

Group Experimental group Control group p-value

Mean S.D. Mean S.D

TP 0.2236 0.2927 0.1867 0.2263 0.4170

TN 0.4056 0.2988 0.4317 0.2887 0.6019

FP 0.0394 0.1555 0.0441 0.1295 0.8474

FN 0.2973 0.2756 0.3255 0.2836 0.5518

Recall 0.3325 0.3885 0.3051 0.3515 0.6655

Precision 0.4918 0.4950 0.4848 0.4708 0.9321

f-measure 0.3785 0.4110 0.3546 0.3771 0.7233

Table 15. Fault-detection ability of two collaborative testing approaches

 Control group Experimental group

TP 0.3214 0.4285

TN 0.3571 0.4642

FP 0.1428 0.0357

FN 0.1785 0.0714

Recall 0.6429 0.8571

Precision 0.6923 0.9230

F-measure 0.6666 0.8888

54

Chapter 6 Conclusion

 In our thesis, we first propose the value-oriented dependence graph which is a

fine-grained Web application model. And then, based on value-oriented dependence graph, we

further propose a novel Web application model, state transition diagram, for supporting

problem decomposition and further advanced job assignment algorithm. We also formulate

Minimum Test Cost Problem (MTCP) in collaborative testing by considering the constraints

of real environment, and prove that MTCP is an NP-Complete problem. Finally, we propose a

heuristic-based dynamic stubbing algorithm to solve MTCP and implement a two-phase

intelligent collaborative testing system by applying dynamic stubbing technique. This

technique allows folk testers contributing their human resources with barely noticing varying

test environment. Therefore, it would not influence the willingness of folk testers to

contributing themselves. The experimental results show that out proposed approach can

reduce 50％ due time and improve 30% fault-detection ability in collaborative testing.

55

References

[1] H. Miao, Z. Qain, B. Song, ―Towards Automatically Generating Test Paths for Web

Application Testing‖, 2
nd

 IFIP/IEEE International Symposium on Theoretical Aspects of

Software Engineering, pp. 211-218, Nanjing, China, June 2008.

[2] M. Benedikt, J. Freire, P. Godefroid, ―VeriWeb: Automatically Testing Dynamic Web

Sites‖, In Proceedings of 11
th

 International World Wide Web Conference, pp. 654-668,

Honolulu, HI, USA, May 2002.

[3] M. Sun, Y. Chen, S. Chen, J. Mei, ―A model checking approach to Web application

navigation model with session mechanism‖, 2010 International Conference on Computer

Application and System Modeling (ICCASM), pp. 398-403, Taiyuan, China, Oct 2010.

[4] S. Chen, H. Miao, B. Song, Y. Chen, ―Towards Practical Modeling of Web Applications

and Generating Tests‖, 4
th

 IEEE International Symposium on Theoretical Aspects of

Software Engineering, pp. 209-217, Taipei, Taiwan, Aug 2010.

[5] Wenhua Wang, Sampath, S., Yu Lei, Kacker, R., ‖An Interaction-Based Test Sequence

Generation Approach for Testing Web Applications‖, 11
th

 IEEE High Assurance Systems

Engineering Symposium, pp. 209-218, Nanjing, China, Dec 2008.

[6] Y. Wu, J. Offutt, X. Du., ―Modeling and testing of dynamic aspects of web applications‖,

Department of Information and Software Engineering, George Mason University, Fairfax, VA,

July 2004.

[7] Z. Qian, H. Miao, H. Zeng, ―A Practical Web Testing Model for Web Application

Testing‖. Third International IEEE Conference on Signal-Image Technologies and

Internet-Based System, pp. 434-441, Shanghai, China, Dec 2007.

[8] Oliverira, M. C. F. de, and Turine, M. A. S., and Masiero, P. C. ―A Statechart-based

Model for Hypermedia Applications‖, ACM Transactions on Information Systems (TOIS),

Vol. 19, No. 1, pp. 28-52, Jan 2001.

56

[9] G. Rossi, D. Schwabe, ―Object-oriented design structures in web application models‖,

Annals of software engineering, Vol. 13, No.1, pp. 97-110, June 2002.

[10] A. Andrews, J. Offutt, R. Alexander, ―Testing Web Applications by Modeling with

FSMs‖, Software and Systems Modeling, Vol. 4, No. 3, pp. 326-345, July 2005.

[11] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu, ―Structure testing of Web applications‖, In

Proceedings of the 11
th

 Annual International Symposium on Software Reliability Engineering,

pp. 84-96, San Jose, CA, USA, October 2000.

[12] Chien-Hung Liu, Kung, D.C., Pei Hsia, ―Object-based data flow testing of web

applications‖, First Asia-Pacific Conference on Quality Software, pp. 7-16, Hong Kong,

China, Oct 2000.

[13] D. Kung, C. H. Liu, and P. Hsia, ―An object-oriented Web test model for testing Web

applications‖, In Proc. of IEEE 24
th

 Annual International Computer Software and Application

Conference (COMPSAC2000), pp. 111-120, Hong Kong , China, October 2000.

[14] H. Miao, H. Zeng, ―Model Checking-based Verification of Web Application‖, 12
th

 IEEE

International Conference on Engineering Complex Computer Systems, pp. 47-55, Auckland,

New Zealand, July 2007.

[15] Liping Li, Huaikou Miao, Shengbo Chen, ―Test Generation for Web Applications Using

Model-Checking‖, 11
th

 ACIS International Conference on Software Engineering Artificial

Intelligence Networking and Parallel/Distributed Computing (SNPD), pp.237-242, London,

England, June 2010.

[16] Liping Li, Qian Zhongsheng, Tao He, ―Test Purpose-Based Test Generation for Web

Applications‖, First International Conference on Networked Digital Technologies, pp.

238-243, Ostrava, Czech, July 2009.

[17] Liping Li, Zhongsheng Qian, Tao He, ―An Approach to Testing Web Applications

On-The-Fly‖, International Conference on Management of e-Commerce and e-Government,

pp. 428-431, Nanchang, China, Sept 2009.

57

[18] F.M. Donini, M. Mongiello, M. Ruta, and R. Totaro, ―A Model Checking-based Method

for Verifying Web Application Design‖, Electronic Notes in Theoretical Computer Science

(ENTCS), Vol. 151, No. 2, pp. 19-32, May 2006.

[19] R.M. Hierons, ―Adaptive Testing of a Deterministic Implementation against a

Nondetermistic Finite State Machine‖, The Computer J., Vol. 41, No. 5, pp. 349-355, June

1998.

[20] D. Lee, M. Yannakakis, ―Principles and Methods of Testing Finite-State Machines—A

Survey,‖ Proceedings of the IEEE, Vol. 84, No. 8, pp. 1089-1123, Aug 1996.

[21] PengCheng Xiong, YuShun Fan, MengChu Zhou, ―A Petri Net Approach to Analysis and

Composition of Web Services‖, IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, Vol. 40, No. 2, pp. 376-387, March 2010.

[22] Xitong Li, Yushun Fan, Sheng, Q.Z., Maamar, Z., Hongwei Zhu, ―A Petri Net Approach

to Analyzing Behavioral Compatibility and Similarity of Web Services‖, IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 41, No. 3, pp. 510-521,

May 2011.

[23] Robidoux R., Haiping Xu, Liudong Xing, MengChu Zhou, ―Automated Modeling of

Dynamic Reliability Block Diagrams Using Colored Petri Nets‖, IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 40, No. 2, pp. 337-351,

March 2010.

[24] Lefebvre, D., Leclercq, E., ―Stochastic Petri Net Identification for the Fault Detection

and Isolation of Discrete Event Systems‖, IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, Vol. 41, No. 2, pp. 213-225, March 2011.

[25] P. Stotts, R. Furuta, ―Petri-net-based hypertext: Document structure with browsing

semantics‖, ACM Transactions on Information Systems (TOIS), Vol. 7, No.1, pp. 3–29, Jan

1989.

[26] M. J. Harrold, A. J. Offutt and K. Tewary, ―An Approach to Fault Modeling and Fault

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.PengCheng%20Xiong.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.YuShun%20Fan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.MengChu%20Zhou.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Xitong%20Li.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yushun%20Fan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Sheng,%20Q.Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Maamar,%20Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Hongwei%20Zhu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3468
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Robidoux,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Haiping%20Xu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Liudong%20Xing.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.MengChu%20Zhou.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3468
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Lefebvre,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Leclercq,%20E..QT.&newsearch=partialPref

58

Seeding Using the Program Dependence Graph‖, Journal of Systems and Software, Vol. 36,

No. 3, pp. 273-295, Elsevier, Mar 1997.

[27] Y.H. Tung, S.S. Tseng, T.J. Lee and J.F. Weng, ―A Novel Approach to Automatic Test

Case Generation for Web Applications‖, 2010 10
th

 International Conference on Quality

Software (QSIC), pp. 399-404, Zhangjiajie, Hunan, China, July 2010.

[28] Kuo-Chang Huang, ―Applying Folksonomy-Based Approach to Support Collaborative

Testing of Web Applications‖, National Chiao Tung University, Degree of Master, July 2010.

[29] Briand, L.C. and Pfahl, D., ‖Using simulation for assessing the real impact of

test-coverage on defect-coverage‖, IEEE Transactions on Reliability, Vol. 49, No. 1, pp. 60-70,

Mar 2000.

[30] M.R. Garey , D.S. Johnson, In: V. Klee (Ed.), ―Computers and intractability, a guide to

the theory of NP-completeness‖, Freeman, New York, 1979.

[31] G.K. Baah, A. Podgurski, M.J. Harrold, ―The Probabilistic Program Dependence Graph

and Its Application to Fault Diagnosis‖, IEEE Transactions on Software Engineering, Vol. 36,

No.4, pp. 528-545, Aug 2010.

[32] J. Ferrante, K. Ottenstcin, and J. Warren, ―The program dependence graph and its use in

optimizatio‖, ACM Transactio on Programming Languages and Systems, Vol. 9, No. 3, pp.

319-349, July 1987.

[33] J. Karl, M. Linda, ―The program dependence graph in a software development

environment‖, Proc of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, Vol. 19, No. 5, pp. 177-184, New York, NY,

USA, May 1984.

[34] K. Tewary, M.J. Harrold, ―Fault Modeling using the Program Dependence Graph‖, 5
th

International Symposium on Software Reliability Engineering, pp. 126-135, Monterey, CA,

USA, Nov 1994.

[35] Ray-Yaung Chang, Podgurski, A., Jiong Yang, ―Discovering Neglected Conditions in

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=855537&queryText%3D.%E2%80%9D+Using+Simulation+for+Assessing+the+Real+Impact+of++++++Test-Coverage+on+Defect-Coverage%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=855537&queryText%3D.%E2%80%9D+Using+Simulation+for+Assessing+the+Real+Impact+of++++++Test-Coverage+on+Defect-Coverage%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008

59

Software by Mining Dependence Graphs‖, IEEE Transactions on Software Engineering, Vol.

34, No. 5, pp. 579-596, Oct 2008.

[36] S. Bates, S. Horwitz, ―Incremental Program Testing Using Program Dependence Graphs‖,

20
th

 ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.

384-396, New York, NY, USA, 1993.

[37] S. Horwitz, T. Reps, and D. Binkley, ―Interprocedural Slicing Using Dependence

Graphs‖, ACM Trans. Programming Languages and Systems, Vol. 12, no. 1, pp. 26-60, Jan

1990.

[38] B. Baudry, Y. Le Traon, G. Sunye, ―Testability Analysis of a UML Class Diagram‖, 8
th

IEEE Symposium on Software Metrics, pp. 54-63, Washington, DC, USA, Aug 2002.

