1 0 5]
TSR] S T R

RN

e B BB & TE VR TR ARV R

Applying Dynamic Stubbing Technique to Support Collaborative

Testing of Web Application

oy oA FiEx

GRS SR § E

THEAE EL

e N - E

et o R et & TN R ARV PR
Applying Dynamic Stubbing Technique to Support Collaborative
Testing of Web Application

MopoA i Student : Jia-Mei Lee

pERE T AR BL Advisors : Dr. Shian-Shyong Tseng
FTEAE EL Dr. Shin-Kun Huang
Wz~ F
T F &1 fopT 7 AT
AL~
AThesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2011

Hsinchu, Taiwan, Republic of China

pa

PEAR-FE AN

BT HEHREFITEITNRET BT 255 R
A - R g e L

T AEEL

e

Wy bRFEREFAEDLY A FTIREFAREY RO RRES A S REHH
el SRR BT RSB AR o AR D B E ATRIGES 2 A7 Y R~ R G &
kmM$%%EM$i%?&§z&m%mT’a&gﬁﬁﬁﬁﬁﬁuk&EM$ﬁﬁ
T R B EFRAM e 5 1 SedR T ACREFERIGE 0 G % BB el TR AR B0
REFURERLIT R/ ALY o AAPRIGREEHRR LS &% 77 52
BoE DA e T R* 2N PIRER DR oo 48 - 57 F P Ao PR R BT R
AR NS T2 R R TTRIGE R S A AP T T - B i TR SR Y
TR B RPN E I e e TR Y AR SR T L B RRIEF L
B DR T A RRRERERE RE B P RA SRR FHRESE T A P R S ET
vt 50% EuRlRE A A HHe 30% i R PTar o

Met: @ A it o SIFNPRA Y RT B AAPIE KRR AN pRE B
i T

Applying Dynamic Stubbing Technique to Support Collaborative
Testing of Web Application
Student: Jia-Mei Lee Advisors:Dr. Shian-Shyong Tseng
Dr. Shin-Kun Huang

Institute of Computer Science and Engineering

Nation Chiao Tung University

Abstract

Nowadays, large volunteers ‘creeping on internet. are usually treated as free human
resources for reducing test cost and validating software, like online games and open source
software. However, traditional collaborative testing. design and management approach
encounters the long due time and doubting test report resulting from the common preferences
of users and unqualified" testers, respectively. A fine-grained Web application model is
essential to refine job assignments. for speeding up test coverage. In this thesis, we first
propose State Transition Diagram to model the users’ runtime behaviors for decomposing
Web application testing problem. Then, based on this fine-grained Web application model, a
dynamic stubbing technique which allows folk -testers contribute themselves in solving
sub-problems with barely noticing the change of test environment is proposed for achieving
faster test coverage speed and improving the quality of test report, and hence reduces the total
cost of collaborative testing. The experimental results show that our proposed approach can
reduce 50% test cost and increase 30% detection performance.

Keywords: folksonomy-based approach, collaborative testing, Web application testing, state
transition diagram, program dependence graph, dynamic stubbing technique.

S
A A FANE R R 8 Rt K ALERPA ¢

LA R AP L 2 REFAFEN - - Bl F B E D o AnE

o=

et R A - R o B FRAROFT S LR S AL A E R E

AP o B it gt o 0 REFRRHA DL PR ERE R R X AT B

BAREF AR L PR BRI LR 0§ EA KR R TR BH R
FEFF LD RERBT LRE -
Bk BRG] BAY 0 B S PR ERPEE R

B
%

\4-\

g
NERERAFTOF RIS Fhy B APTEE R LRAR S BB G gk

BEREHO05 PF R ik FF R R IFE S BRF e A RIUESERY B0 A

A,

ok B o AT LY 4 gET o8y FHREFOF R oHHaEE
R A Y R R == Co Ly S5 P B ET R Y
ARG 28 EAAP- TR E g BT A G- T ILF B - PR
7 |

Bois VB R HE AR A RPN BT A PR SRR R At s

;x

I T S e e [

A
.
x
)
-k
/4
=
Joi
p
e

TN o - Bl e

RN N o R e A A ’ﬁ PR L As .

ks
i

B e - Bt frien- o orf A I A Lt £ fpt g

By 5 R B M o

Table of Content

BB s [
AADSEIACT ... s ii
B etttk E R £ E R R R £ e h R E bR e bRt b et iii
TabIE OF CONLENL......ceiiiiiic bbb \Y%
LISE OF FIQUIES ...ttt s te et s be s e be s reesbenteeneenras vi
LISt OF TaDIES. ... viii
Chapter 1. INTrOQUCTIONcuviiiiiiiiiei et 1
Chapter 2. Related WOTK..........cciiiiiieieeie et 5
2.1 Structure Of SOFIWAIE SYSTEMSoviieiiiiiiiie sttt 5
2.2 Behavior Of SOftWAre SYSIEMSi. e iuesirisasses ferdi ettt 5
2.3 Three-level dependence graphl ...t .o o st 6
Chapter 3. Web application testing model ... i i i i 8
3.1 MIOLIVALION ... B b it et ab s £ s Bttt 8
3.2 Value-oriented dependenCe graph ...cce.cie i aeeiieisinn e eeesee b stres e eree e sreeseesresneeeessens 9
3.2.1 Tainted variables in‘branch predicate......... i i 10
3.2.2 Definition of value-oriented dependence graph ..., 11
3.2.3 Value-oriented Dependence Graph (VDG) construction algorithm........................ 13
3.2.4 Example of value-oriented dependence graphccooverereneieisinensesesees 15

3.3. State transition dIAGIaAM.........c.coveiiiiiiiree e 22
3.3.1 Problem deCOmMPOSITION.ccciiiiiiirieiie s 22
3.3.2 Definition of state transition diagram...........ccceoveiriiiieneneeeese s 23
3.3.3 State Transition Diagram (STD) construction algorithmcccceevoviiiinenennnen 25
3.3.4 Example of state transition diagram............cooerieiiiniieneneeeeese s 28
Chapter 4. Dynamic stubbing technique for Collaborative testingccooevvverieicvieneenes 30
4.1 MOtIVATION XAMPIE....ceieeee e eees 30
4.2 Minimum Test Cost Problem in Collaborative TeStiNgccccccevvvvieiieiiieniee e s 32

4.2.1 Problem fOrMUIALIONoiceeeei ettt ettt sttt e e st e e st e e e serbaeeesanneees 34

4.2.2 NP-Complete Problem........ccviiiieiece e s e 36

4.3 Dynamic stubbing algorithm for Minimum Test Cost Problem..........c.ccccooevvviviiennnane. 38
Chapter 5. Implementation and EXPEriment..........cccooveiiiiiiii i 43
5.1 System architecture and implementationcccccvvveiiiieic s 43
5.1.1 SyStem arChitECLUIEeivieeeeieiee s 43
5.1.2 System impIlementationccooiiiiiriiereee s 44

5.2 Experimental design and reSUIES.............cooviiiiieiiicce e 47
5.2.1 EXPerimental deSIgNooereieiiiiiie s 47
5.2.2 EXPErimeNtal FESUITSoivieiieieisisese s 48
Chapter 6. CONCIUSIONouiiiiiiiiiese Tk b s ssesse st ns s Shnashe et nn e esseseebe e b sbe b nne s 54
RETEIENCES ... it L BRI bbbt ettt 55

List of Figures

Figure 1 FIow chart OF Programccoceoieii it 3
Figure 2 Three-level dependence graph ... e 7
Figure 3 Source code of Pay.aspx page (a) with its flow chart (b) in Examplecccccoee..e. 9
Figure 4 Differents of three variables in EXample 1 ... 11
Figure 5 Value-oriented dependence graph in Example L ..o, 13

Figure 6-1 Value-oriented dependence graph after executing Step 1 of VDG algorithm........ 18
Figure 6-2 Value-oriented dependence graph after executing Step 2 of VDG algorithm........ 18
Figure 6-3 Value-oriented dependence graph after executing Step 3 of VDG algorithm........ 19
Figure 6-4 Value-oriented dependence graph after executing Step 4 of VDG algorithm........ 19
Figure 6-5 Value-oriented dependence graph after executing Step'5 of VDG algorithm........ 20
Figure 6-6 Value-oriented dependence graph-after executing Step 6 of VDG algorithm........ 20
Figure 6-7 Value-oriented dependence graph after executing Step 7 of VDG algorithm........ 21
Figure 6-8 Value-oriented dependence graph after executing Step 8 of VDG algorithm........ 21
Figure 6-9 Value-oriented dependence graph after executing Step 9 of VDG algorithm........ 21
Figure 6-10 Value-oriented dependence graph after executing Step 10 of VDG algorithm....22

Figure 6-11 Value-oriented dependence graph after executing Step 11 of VDG algorithm....22

Figure 7 Idea of problem decompoSItioncccoeiiiiiii i 23
Figure 8 State transition diagram in EXample ... 25
Figure 9-1 State transition diagram after executing Step 1 of STD algorithm.............cc.ccc.c.... 28
Figure 9-2 State transition diagram after executing Step 2 of STD algorithm.............cc.ccc.c.... 29
Figure 10 Problem decompoSition SCENAIIOcuiiiuirierieieisiesie et 30
Figure 11 Due time Of @SSIGNMENT Looiiiiiiiieiesie e 32
Figure 12 Due time Of @SSIGNMENT 2ooviiiiiiiiiesie e 32
Figure 13 Intelligent collaborative testing system architecture.............ccocoooeviioeeieiinieenenennn 43
Figure 14 Screen shot of register page of ICTS ..o 45
Figure 15 Screenshot of ICTS tULOFIalcooveiieiii i 46

Figure 16 Screenshot of ICTS QUIdING......c.ccviiiieieiiee e 46

Figure 17 Screenshot of complete information of ICTS ..o, 47
Figure 18 Comparison of state complete degree of teStingcccccevvvevevisiieic s, 49
Figure 19 Due time COMPAIISONcviiviiieieieciesee s ee ettt te e sre e sreera e besreeneenre e 50

vii

List of Tables

Table 1 Property of Patterns of Different [eVelcccco oo 16
Table 2 Property of Patterns of Different variable.............cccccovviiiiiiici e 17
Table 3 Sub-problem completion time of each folk tester matriX...........ccccceeevviereviiiniienee. 31
Table 4 Assignment 1 for shopping Web-Site teStingc.cccvvvvvieveiiieie i 31
Table 5 Assignment 2 for shopping Web-site teStingcccevvviieveiiieie i 31
Table 6 Notations of MTCP in collaborative teStingccocvvirinereieices e 34
Table 7 Notations of Dynamic stubbing algorithm ... 39
Table 8 Value-oriented dependence graph StatiStiCsoouvvrirerereneieisisse e 48
Table 9 State complete degree Of teSting COMPAIING .kt cerereveverververierierierieieiee s 49
Table 10 Comparison of test time DetwWeen tWO groUpS i aeirtseerreeeeeieesese e 50
Table 11 Comparison of the folk testers per-due tIMeooibeoverie it 50
Table 12 Ten defects in Web application “BO0KStOre”itv. .ciiiivens i it 51
Table 13 Comparison of test time of each state between tWo groupscueecveceeeevereeeenneane 53
Table 14 Comparison of fault-detection ability between two groups ..co......cccceevevrererereeneen. 53
Table 15 Fault-detection ability of two collaborative testing approaches.............cccccccervereeneen. 53

viii

Chapter 1 Introduction

Collaborative testing is widely used in industries to reduce test cost and assure the
software quality, especially in online game, open source software and Web applications. Low
reliability of Web application will lead to serious detrimental effects for businesses,
consumers, and the government because users increasingly depend on the Internet for routine
daily operations. However, lacking of good test design and management approach,
unqualified folk testers with some common preferences will slow down the test convergence
and produce suspect test report. Due to the untrammeled nature of folks, restricted test
scenario according to different test design and management approach may decrease their
willingness and hence reduce available human resources. It procures more cost of
collaborative testing. A good. test design and management approach should take the
willingness and common preferences of folk testers into consideration.

Problem decomposition which reduces original collaborative testing problem into several
sub-problems is an efficient and effective approach for speeding up collaborative test and
increasing the quality of test report. The reduced sub-problems.are easier and can be assigned
in parallel for decreasing the due time. Besides, the solution of sub-problems can be easily
merged to the one of original problem, and hence can complete test. In the meanwhile, testers
concentrating on small problem can detect faults more easily, and hence improving the quality
of test report.

The success of problem decomposition relies on a proper Web application model.
However, traditional Web application models, like page navigation diagram [1]-[9] and finite
state machine (FSM) [10]-[20] and Petri-net [21]-[25], do not take software fault into
consideration and hence suffer the risk of causing Type | and Il error. A software fault
classification based on program dependence graph has been proposed [26]. Tung et al.

propose a novel test case generation algorithm based on this fault classification to generate a

test suite with full fault-detection [27]. Huang further extended Tung’s model to three-level
program dependence graph (page level, function level and code level) for considering the
perspectives from folk testers (Web pages) and test objective from developer (basic blocks
coverage) [28]. However, the three-level program dependence graph is a coarse-grained
model because it does not model input values. Hence it cannot be applied to further problem
decomposition according to runtime behavior of users.

In this thesis, we refine coarse-grained three-level dependence graph to fine-grained
value-oriented dependence graph (VDG) which models users’ runtime behavior by
considering runtime input value. Figure 1 shows flow chart of program containing basic
blocks 1, 2, and 3 where each basic blockrmeans they are a maximal code fragments without
branching of a function [29]. If value of variable a is more than 0 then basic block 1 and basic
block 2 can be covered. Otherwise, basic block 1 and basic-block 3 can be covered. So,
different values of variable.may have different behaviors of program. By considering input
value, the testing problem can be further decomposed into two sub-problems which are still
able to meet the test criteria, basic blocks coverage. For.the purpose of fine turning
collaborative test plan, we further propese State Transition Diagram (STD) based on VDG in
Chapter 3. Each state of STD represents a program behavior of a page. Based on this state
transition diagram, we can assign job more precisely in collaborative testing and guide testers

to meet the test objective, basic blocks coverage.

Basic Block 1

Basic Block 2 Basic Block 3

Figure 1. Flow chart of program

The Minimum Testing Cost Prablem in collaborative testing (MTCP) can be considered
as a variant of Job Assignment.Problem (or Optimum Representative Set Problem) [30] with
further constraints on testing resources-and ‘tester trustworthy.-\We reduce Job Assignment
Problem to MTCP and prove that MTCP is NP-complete in Chapter 4. Therefore, a
heuristic-based dynamic stubbing algorithm for job assignment is proposed to solve this
problem by overcoming the issue. of centralized preferences and willingness of folk testers
which can speed up the test coverage and hence reduce the test cost.

We implement prototype system with our proposed approach by the dynamic stubbing
technique which allows folk testers contributing their human resources with barely noticing
varying test environment. Our collaborative testing system can collect tester user sessions
during testing processes. To support collaborative testing, we record the testing logs and guide
the test activities on our collaborative testing system. These testing logs are analyzed by
proposed report analysis algorithm to form high quality test report. The experimental results
show that our approach which reduces 50% due time and increases 30% detection rate is both

efficient and effective.

We briefly outline the contents of this thesis. Chapter 2 provides related works. Chapter
3 gives the Web application modeling and the corresponding value-oriented dependence graph
construction algorithm and state transition diagram construction algorithm. We also present
the dynamic stubbing technique to support the Minimum Collaborative Testing Problem with
the proposed heuristic-based dynamic stubbing algorithm in Chapter 4. Chapter 5 explains

how the experimental design and experimental result. We conclude this thesis in Chapter 6.

Chapter 2 Related Works

In the chapter, we will discuss several different models of the web applications testing,
and each model has different test goals. We briefly describe two types of the models,
including structure of software systems only considering structure of systems and behavior of
software systems considering both structure and behavior of systems.

2.1 Structure of software systems

There are some models which describe structure of program as follows. A program
dependence graph [31]-[37] is a directed graph in which the nodes are statements and
predicate expressions and the edges are dependences between the nodes. Two types of
dependences are data dependence. and control- dependence between nodes. The data
dependence between two statements means that the input variable of a statement is transferred
from the other statement. The control -dependence means that the flow of statements is
decided by certain predicate expressions. The UML class diagrams [38] describing structures
of software systems are also-a directed graph in which nodes are classes of an object-oriented
system and edges are dependences.and inheritances between classes.

These structure-based models are unable to describe behaviors of folk testers and hence

not suitable for collaborative testing.

2.2 Behavior of software systems

Another kind of software models, including page navigation diagram and finite state
machines, aim to describe behavior of program. The page navigation diagram [1]-[9] is a
directed graph where nodes are Web pages and edges are links between Web pages. The
model can describe all test paths for Web applications testing. Huaikou et al. [1] proposed an
approach which uses a regular expression characterizing the directed graph on page

navigation diagram to generate test paths. Benedikt et al. [2] presented VeriWeb, which is a

tool for automatically navigating links of Web applications and exploring execution test paths
through dynamic components of Web applications with a search algorithm. Shengbo et al. [4]
and Zhongsheng et al. [7] proposed an algorithm to generate Test-Trees from page navigation
diagram for satisfying link and page coverage.

The Final State Machine (FSM) [10]-[20] is used to model Web applications and it is a
directed graph including nodes and edges. There are two types of the nodes: Web pages and
associated components. There are three types of the edges: link edge, call edge and build edge.
The link edge means that Web page can link the other Web page or component. The call edge
means that Web page can call component through delivering requests to it. The build edge
means that the component can build the.new web ‘page as responses to the requests. Andrews
et al. used FSM to model and test Web applications, and then proposed an approach which
decomposes Web application into several subsystems based-on FSM with constraints to
generate test sequences [10]. Liping et al. proposed the Kripke structure that is a model of
FSM to model Web applications from the user’s viewpoint [15]..The model can generate test
sequences satisfying state and transition coverage for \Web-applications. However, page
navigation diagram and finite state machines did not.consider fault-detection ability and were
risk of suffering Type I and Il error. Furthermore, these models are coarse-grained because of
the lack of input domain information. Three-level dependence graph which is also a model of

behavior of software system is presented in next section.

2.3 Three-level dependence graph

Huang [28] considered the perspectives from folk testers (Web pages), test objective
from developer (basic blocks coverage) and fault-detection ability to propose three-level
dependence graph (page-level, function-level and code-level), illustrated in Figure 2. In
page-level, the nodes are Web pages and the edges are links between Web pages. In

function-level, the nodes are functional statements and the edges are constructed by functional

6

statements. And in code-level, the nodes are basic blocks that are a maximal code fragments
without branching of a function and the edges are control flow between the basic blocks.
Dependence edge and independence edge are intra-level edges where dependence edge can
transfer data between Web pages, functions, and basic blocks. And the other edge is
containing edge which can connect different nodes between page-level, function-level, and
code-level. However, this three-level dependence graph cannot model the users’ runtime
behavior, and is hence coarse-grained and improper for fine job assignment in collaborative

testing.

——> Dependence edge —— > Independence edge > Containing edge

Page Level

o —

—_—

E Function Level
A v IS

Button|_Click Page_Load Button|_Click

2 Code Level

Session[“total”],q ession[“total”],q1

q2

=) [Pa,4] (Conb] [Crg?) [Crp9) [CowlO]

Figure 2. Three-level dependence graph

Chapter 3 Web application testing model

In the chapter, we will propose a novel model to support the collaborative testing for
Web application. First, we start with a motivation example and then propose a fine-grained
value-oriented dependence graph which models user’s input domain information based on
three-level dependence graph [28]. Finally, we propose state transition diagram which is a
novel runtime behavior model for decomposing original collaborative testing problem into
several sub-problems.

3.1 Motivation

One of the most importance objectives in software testing is to assure the software
quality by covering all the code.statements. However, covered code statements in each
execution depend on input values. The Example 1 is given to motivate us that a fine job

assignment needs to take variable value-into consideration.

Example 1:

The shopping Web-site contains Default.aspx, Pay.aspx, and Sales.aspx pages.
Consumers decide the amount of shoes-(quantityl) and socks (quantity2) they want to buy in
Default.aspx and Sales.aspx, and then ‘this purchase information will be transferred to
Pay.aspx for following payment. Figure 3a shows source code of Pay.aspx page. Figure 3b
shows the flow chart for the source code of Pay.aspx page, and these basic blocks can be
covered depend on consumer’s input different values from Default.aspx page. If consumers
key in quantityl value which is less than or equal to 0, then Cpay1 and Cpay2 will be covered in

this execution. Otherwise, Cpayl and Cpay3 Will be covered.

Default.aspx
R 2 500 7T

HENE 2 ‘.
=]
B {EEm N
; \
quanityl \
\
\
Y
Sales.aspx
Pay.aspx
FHEE
gEEso0yE 000 | oo > | BT —E50m
P EHER < EEE EE
quanity2
Pay.cs
| string vquantityl=Request.Params["quantity1"];
if (int.Parse(vquantity1) <= 0) Cpyyl
show.Text =" i T v &I ["; Cryl
Label1.Visible = false; Cpay2

Label3.Visible = false;

else Int.Parse(vquantity1)<=0
{ Cpay3

a =500 * int.Parse(vquantity1);
Session["total"] = a.ToString();

Total.Text = Session["total "].ToString();
} CPayz CPay3

(@) (®)

Figure 3. Source code of Pay.aspx page (a) with its flow chart (b) in Example 1

3.2 Value- oriented dependence graph

Based on the above motivated example, the three-level dependence graph shown in
section 2.3 cannot describe different executions in different values because it cannot model
users’ input values. We first define the tainted variables in branch predicate which can be
controlled by user and decide the flow of executions, and then we refined three-level
dependence graph to value-oriented dependence graph. The definition and construction
algorithm of value-oriented dependence graph are also presented in this section. Finally, an

example is provided to illustrate value-oriented dependence graph construction algorithm.

3.2.1 Tainted variables in branch predicate

Figure 3 motivates us that a fine job assignment requires the value information of
variables. However, only some variables will depend on user’s input to influence the program
execution flow. Therefore, we first consider the variable which can decide the flow of a
program. This kind of variables dominating the execution flow is defined as branch predicate
variables. In collaborative testing, testers can only use input variable and hyperlink to validate
Web site. Hence, we define input variable and tainted variable which are controllable variable
of testers. Finally, the tainted variables in branch predicate in a fine collaborative testing are
defined if it is branch predicate variables and tainted variable. The formal definitions and
notations of branch predicate variables, input variable, tainted variable and tainted variables in

branch predicate are provided below:

Definition 1 (Branch predicate variables Vgp')

A variable Vgp' is the im branch predicate variable if it is related to program behavior of a
page. It affects code flow chart of the page.
Definition 2 (Input variable Vx)

A variable V' is the iy, input variable if it is'a frame of each page which user can input
value.
Definition 3 (Tainted variable V")

A variable V7' is the iy, tainted variable if there is related to the input variable V' of the
page.
Definition 4 (Tainted variable in branch predicate V1gp))

A variable Vgp' is the iy tainted variable in branch predicate if it is branch predicate
variable and tainted variable which means it affects program behavior of the page.

Example 1 of the above variables is shown in Figure 4, where quantityl is the only input

variable and the tainted variable of quantityl consists quantityl, vquantityl, a, Session[“total”]

10

and Total. Text. vquantityl is the only variable which will influence the flow of Pay.aspx and
hence is branch predicate variable. Therefore, in this simple example, vquantityl is both
branch predicate variable and an element of tainted variable, and hence is the tainted variable

in branch predicate in collaborative testing on this shopping website.

Default.aspx Pay.aspx

FkE—8 500 T ityl A 500 7

quantityl #8£E 500 75,

D B —— > peaEsy
EEEE quantityl

v

Input variable strin y Request.Params["quantity1"];
if (int.Parse(vquantity1) <= 0) .

{ T, branch prgldwate
/ show.Text = "fll ik ORI

tainted variables Labell.Visible = false;

\ Label3.Visible = false;
}

else

m 500 * int.Parse(vquantity1);
Ession["total"] a.ToString();
Total.Text = Session["total "].ToString();

Figure 4. Differents of three variables in Example 1

3.2.2 Definition of Value- oriented dependence graph

Three-level dependence graph [28] is proposed to connect the perspectives from folk
testers (Web pages), test objective from developer (basic blocks coverage). However, the lack
of variable value information of three-level dependence graph cannot lead to fine
collaborative testing. We further extend three-level dependence graph to value-oriented
dependence graph by considering variable value information. There are three types of the
vertexes (a set of pages, a set of functions, and a set of basic blocks) in the value-oriented

dependence graph. And there are five types of the edges in the value-oriented dependence

11

graph. Three of them are intra-level edges representing the connections within page-level,
function-level, and code-level. The other two are inter-level edges representing the
connections between different levels. The formal definition of value-oriented dependence

graph is provided below:

Definition 5: Value-oriented dependence graph

Value-oriented Dependence graph G= (V, E)

V' is an input variable

I= {V\\'| Vin' is an input variable} is the set of input variables
R=[Ti'"R(VIN)=R(Vind) xR(Vin?) ... xR(ViN"), where R(Vn') is an image of variable V'
V=VpUVEUVc, where

Vp={PA|| PA; is a page} is the set of the pages

Ve= {Fi| Fi is a function} is the set of the functions

Vc={Cj| Cj is a basic block} is the set of the basic blocks
E=Ep UErUEcUEprUEgc, Where

Ep= {(PAi, PA;, lij, Rij)|PA;, PA; € V,, lij € |, R € R}
E={(F, Fj, Iy, Ry)lFi, € Ve, €1, Rj€R}

Ec={(Ci, C;, li, R)ICi, Cje V., ljel ,R; ER }

Ere= {(Pi, F;)| Pi€ V5, Fi€ V¢}

EFC: {(Fi, C])l Fie V|:, CjE VC}

Figure 5 shows value-oriented dependence graph in Example 1. Compared to three-level
dependence graph, we further record tainted variable in branch predicate value information in
edges. Different tainted variable in branch predicate values decide the permission of distinct
edge and hence decide which basic blocks will be covered in different execution. The details
of value-oriented dependence graph construction algorithm will be presented in the next

section.

12

Page Level

N

. . ' A Session[“total"]
Defaulc {quantityt, inty (27 N SQesslent el n
v {(quantity2, int)}

—_

— ——
—_—_———,—— e e —————— — .

. " Function Level
0 0 D
Button|_Click Page Load Button|_Click

=~ Code Level

(Session[“total”],!null),(g1 ession[“total”],null),(q1,null)

c3) (ca) (oe) (o) [os) [cun)

Figure 5. Value-oriented dependence graph in Example 1

3.2.3 Value-oriented Dependence Graph (VDG) construction algorithm

First, we will detect -nodes of page-level, function-level, and code-level based on
different pattern sets of each level, and then construct edges.of each node in page-level,
function-level, and code-level with the subroutine “EdgeConstruction” based on the pattern
sets of each level. Finally, we construct the variables of each type with the subroutine

“VariablesSetConstruction” based on the pattern sets of each type.

13

Value-oriented dependence graph construction algorithm

Input:
Folder which stores file of each page
Page code segments B,={B.',...,.Bs"} , B.={Bc'....,B."}
Pattern set of declare page Pp
Pattern set of declare function Pr
Pattern set of declare code Pc
Pattern set of declare input variables P,
Pattern set of declare global variables Pg
Pattern set of declare branch predicate variables Pgp
Tp, where Tp=Pp UPrUP¢
Output: Value-oriented Dependence graph > G=(V,E) , where V=Vp UVeU V¢ >
E=Epr UEFUEcUEpr UEgc
Method:
Initial: V=92,E=2
Stepl: For each line L in folder
If L contains pattern Pp then add the node into VP
Step2: For each By’ in B,
2.1: For each line L in B,
If L contains pattern Pg then add the node into Ve
2.2: Add edge from the page node to the function node
Step3: For each By’ in B,
3.1: For each line in B,
If L contains pattern P¢ then add the node into V¢

3.2: Add edge from the function node to the basic block code

Step4:
4.1: For each B,' in B,
EdgeConstruction(B,',Pp)
4.2: For each B, in B,
EdgeConstruction(By',Pp)
Step5: For each B in Ve
EdgeConstruction(B.',P)
Step6: For each B in VC
EdgeConstruction(B.',Pc)
Step7: For each B,' in B,
| (V;) = VariablesSetConstruction (B.',P))
Step8: For each By in B.

14

G (V;) = VariablesSetConstruction (B.',Pg)
Step9: For each By’ in B,
T (Vi) = VariablesSetConstruction (B¢, 1(V))
Step10: For each B¢ in B,
BP (P;) = VariablesSetConstruction (B.',Pgp)

Stepll: TBP (P;)= (LnJ BP(Pi))ﬂ(LmJT(VJ—))

Subroutine: EdgeConstruction

Input: Code segment B ~ Tp
Output: Dependence graph of each level
Method:
Stepl: For each line Lin B
If L contains pattern Tp then construct edge of nodes
Step2: Return Dependence graph of each level

Subroutine: VariablesSetConstruction

Input: Code segment B ~ Tp
Output: Set of variable S
Method:
Stepl: For each line Lin B
If L contains pattern Tp then add the variable into S
Step2: Return S

3.2.4 Example of Value-oriented dependence graph

At server side, there are various techniques to develop dynamic web page such as
ASP.NET with C#, JSP, and PHP. At client side, HTML and JavaScript are used widely to
support the development of the web applications. Hence, we only consider the ASP.NET with
C# language, and the other language such as HTML, JavaScript can be considered by simple
extension. In Table 1, according to different levels with page, function, and code we classify

patterns of the nodes and the edges in the value-oriented dependence graph. In Table 2,

15

according to different variables with input, global, and branch predicate we classify patterns

of these variables in the value-oriented dependence graph.

Table 1. Property of Patterns of Different level

Level Pattern
Page Node .aspx
Page Edge Response.Redirect
Page Edge NavigateUrl
Function Node (protected| private |

public)?[]J(void|bool|int|float)

Function Edge Function caller
Code Node (iflelse[for|while|switch)
Code Edge Flow chart

16

Table 2. Property of Patterns of Different variable

Level Pattern
Input Variable <asp:TextBox ID=/"(a-zA-Z0-9)+/”
Input Variable <asp:DropDownList ID=/"(a-zA-Z0-9)+ /”
Input Variable <asp:ListBox ID=/"(a-zA-Z0-9)+ /”
Input Variable <asp:CheckBox ID=/"(a-zA-Z0-9)+ /”
Input Variable <asp:CheckBoxList ID=/"(a-zA-Z0-9)+ /”
Input Variable <asp:RadioButton ID=/"(a-zA-Z0-9)+ /”
Input Variable <asp:RadioButtonList ID=/"(a-zA-Z0-9)+
P
Global Variable Session[/“(a-zA-Z0-9)+ /"=
Global Variable =Session[/ “(a-zA-Z0-9)+ /]
Branch predicate variable if((a-zA-Z0-9 >=<&|())+)
Branch predicate variable while((a-zA-Z0-9_>=<&]())+)
Branch predicate variable for((a-zA-Z0-9_>=<&|())+)
Branch predicate variable do
while((a-zA-Z0-9_>=<&|())+)
Branch predicate variable Switch
case 1: (a-zA-Z0-9 >=<&|())+
case 2: (a-zA-Z0-9 >=<&|())+
case i: (a-zA-Z0-9 >=<&|())+

The Example 2 is given to illustrate the value-oriented dependence graph construction
algorithm, where Figures 6-1 to 6-11 show the results after executing steps 1 to 11,

respectively.

17

Example 2:

The Example 2 continues Example 1. According to the source code of each page,
“Property of Patterns of Different level” in Table 1, and “Property of Patterns of Different
variable” in Table 2, we can construct the value-oriented dependence graph.

Since the pattern of page node is “.aspx”, after executing step 1, we can construct each

page to the node in page-level as shown in Figure 6-1.

Folder

Default.aspx
Default.cs

Show.aspx
Show.cs

Sales.aspx

Sales.cs

Figure 6-1. Value-oriented dependence graph after executing Step 1 of VDG algorithm

Since the pattern of function node is “(protected| private | public)?[](void|bool|int|float)”
in Table 1, after executing step 2, we can construct each function for the given page to the
node in function-level and connect the given page and the function with corresponding edge

as shown in Figure 6-2.

Page-level
Show.cs
protected void Page_Load(object sender, EventArgs e) ,
{ } l&function-level

[}
Page’ Load

Figure 6-2. Value-oriented dependence graph after executing Step 2 of VDG algorithm

18

Since the pattern of code node is “(if|else|for|while|switch)” in Table 1, after executing
step 3, we can construct each basic block for the given function to the node in code-level, and

connect the function and the basic block with corresponding edge as shown in Figure 6-3.

Int32 a=0;

if (int.Parse(vquantity2) <= 0)

{ Function-level
Label3.Visible = false; Page—Load
} ,,’ NS
else ,’/ : \\
7 | \
{ L | Code:level
3 | N
..................................... » L 4 P
Session["total"] = a.ToString(); Cpayl Crpay2 Cray3
Total. Text = Session["total"]. ToString();

Figure 6-3. Value-oriented dependence graph after executing Step 3 of VDG algorithm

Since the pattern of page edge is “Response.Redirect” and “NavigateUrl” in Table 1,
after executing step 4, we can connect nodes in-page-level with corresponding edges as shown

in Figure 6-4.

Default.aspx

<asp:TextBox ID="quantityl" runat="server"> _ _>

</asp:TextBox>

<asp:HyperLink ID="HyperLink1" NavigateUr|=""~/Sales.aspx"*

Figure 6-4. Value-oriented dependence graph after executing Step 4 of VDG algorithm

19

Since the pattern of function edge in Table 1, after executing step 5, we can connect

nodes in function-level with corresponding edges as shown in Figure 6-5.

protected void Page_Load(object sender, EventArgs e)
{ show(); } Page Load |- - ->

Figure 6-5. Value-oriented dependence graph after executing Step 5 of VDG algorithm

Since the pattern of code edge in Table 1, after executing step 6, we can connect nodes in

code-level with corresponding edges as shown in Figure 6-6.

Int32 a=0; Crayl -1

if (int.Parse(vquantity2) <= 0) : !
I

{ : :

v |

... , .

Label3.Visible = false; Cray ;

I

} I

else |

{ I

..................................... :

Session["total"] = a.ToString(); Cray3 [« —

Total. Text = Session["total"].ToString()

Figure 6-6. Value-oriented dependence graph after executing Step 6 of VDG algorithm

Since the pattern of input variable in Table 2, after executing step 7, we can construct

input variables of each page as shown in Figure 6-7.

20

Default.aspx

<asp:TextBox ID="quantityl" runat="server">
</asp:TextBox> quantityl

Figure 6-7. Value-oriented dependence graph after executing Step 7 of VDG algorithm

Since the pattern of global variable in Table 2, after executing step 8, we can construct

global variables of each page as shown in Figure 6-8.

Pay.cs

a =500 * int.Parse(vquantityl);
Session["total"] = a.ToString();

In:Session[“total”]

Total. Text = Session["total"]. ToString();]
Out:Session[“total”]

Figure 6-8. Value-oriented dependence graph after executing.Step 8 of VDG algorithm

Since the pattern of input variable, after executing step 9, we can construct tainted

variables of each page as shown in Figure 6-9.

string vquantityl=Request.Params["quantity1"];
a =500 * int.Parse(vquantityl);

T(quantityl)={vquantityl,a,

Session[“total”]}

Session["total"] = a.ToString();

Figure 6-9. Value-oriented dependence graph after executing Step 9 of VDG algorithm

21

Since the pattern of branch predicate variables in Table 2, after executing step 10, we can

construct branch predicate variables of each page as shown in Figure 6-10.

Pay.cs

if (Session["total"] != null)

{ BP (Pay) = {Session [“total”], vquantity]}
if (vquantityl == null)

Figure 6-10. Value-oriented dependence graph after executing Step 10 of VDG algorithm

Since the branch predicate variables and tainted variable, after executing step 11, we can

construct tainted variables in branch-predicate of each page as shown in Figure 6-11.

TBP(Pay)={vquantityl,vquantity2
TBP (PI): (U BP(pl))n(UT (VJ)) }ﬂ{vquantltyl,vquantltyZ,SESSIOH
i1 j-1 [“total”],a}={vquantityl,vquantity

2}

Figure 6-11. Value-oriented dependence graph after-executing Step 11 of VDG algorithm

3.3 State Transition Diagram

In the section, we first introduce problem decomposition idea to improve collaborative
testing, and then a novel Web application model, state transition diagram, and the
corresponding construction algorithm will be presented in this section. An example of state
transition diagram construction algorithm will be also provided in this section.
3.3.1 Problem decomposition

Value-oriented dependence graph provides an opportunity to refine collaborative testing.
For further improving collaborative testing, we decompose the Web application testing

problem into several sub-problems as shown in Figure 7. Each sub-problem which is easier

22

than original problem because of the smaller size of sub-problem can be independently solved.
Afterwards, we can parallelly assign these sub-problems to different folk testers. This parallel
property can speed up the whole collaborative testing. However, this parallel assignment
requires a proper label design to integrate different test results for following job assignments
and final test report. And then, we can easily merge these sub-problems by tracing back

according to the labels of all sub-problems.

Original Problem: Web application testing

Using: Value-oriented
Dependency graph

Reduced Reduced Reduced sub-
Sub-problem 1 Sub-problem 2 - problem i

Reduced Reduced
Sub-problem Sub-problem

2.1 2.2
Reduced Reduced Reduced Reduced
Sub-problem Sub-problem Sub-problem Sub-problem
1.1 1.2 i.1 i.2

Figure 7. Idea of problem decomposition

3.3.2 Definition of State Transition Diagram

According to the idea of problem decomposition, we propose a novel Web application
model, state transition diagram, which is a fine-grained tree structure model. And it also
overcomes the cyclic problem in Web application testing under basic blocks coverage criteria.
The state transition diagram models users’ runtime behaviors according to different basic
blocks coverage. Each state including two parts represents a behavior of the page. The first
part is the page number, and the second part is the set of the tainted variables in branch
predicate and its values which lead to different behaviors of program. The formal definition of

state transition diagram is provided below:

23

Definition 6: State transition diagram

State transition diagram

Vrep is a tainted variable in branch predicate

D= (S, 9, Sp), where

S ={Si | Siis a state}, where

Si= (N, C), where

N € {i|PA;is a page}

C < {(Vrer', Ri) | Vrer' € V, R; € R, i=1~n}, where

V={V+er | V1ep' is a tainted variable in branch predicate} is a set of tainted variables in
branch predicate

R=[Ti-"R(Vrer)=R(Vrep) XR(V1ep?) X...xR(V1gp"), Where R(Vgp') is an image of

variable Vgp'

0 is a transition function

3 (Si, A)=S;, where

A< {(Ver, R)| Vi €V, Ri € R, i=1~n}

S is an initial state

Figure 8 shows the state transition diagram in Example 1. Compared to value-oriented
dependence graph, the tree structure provides a kind of problem decomposition. Each path
from root represents a sub-problem of Web application testing. The details of state transition

diagram construction algorithm will be presented in the next section.

24

0.1

0

So

1,{(Session[“total” 1,mull) }

{(a,<=0) ,(q2,mull)(Session] “total” J,uull} 1 { Session] “tota”)}
S, (a1,> 0),(a2,null),(Session| “total”],null)} S

2,{(a1,<=0) ,(q2,null),(Session[“total” 1,null}

2,{(al,> 0),(q2,null),(Session[“total” J,null)}

S

iS4

02

{(Session[“tptal” 1,'mull) }

Y

3 {(Session] “total”],'null) }

0.1.1

jon[~otal”], mull}

57
0.LL1

2,{(ql,null) (a2,
<=(),(Session] “total
"] hnull)}

2,{(ql,ml) @2,
<={),(Session[“total
" 1 tnull)}

S8
0.1.12

3,{ (Session[“total”],null)}

03

{(q1,null) ,(q2,<=0),(Session “total” 1

{(ql,null) ,(q2,<=0),(Sess
1,null) (a2,>0),(Session[“total”],'null}

S {(qLpetf (@2>Q)Session “fotal” |l
Se
5| {(@Lml)(q2, 2,{(ql,mul),(g2,
<=0),(Session[“total <=(),(Session] “total
031 " D)} " Tmll)}

032

Figure 8. State transition diagram in Example 1

3.3.3 State Transition:.Diagram (STD) construction algorithm

From the purpose of speeding up collaborative testing, we first apply Breadth-First
Search (BFS) on the page-level of value-oriented dependence graph to parallelly distribute
folk testers. At each new visiting page, we further drill down to code-level of value-oriented
dependence graph to identify different states based on distinct program flow. In the

meanwhile, the proper label is created for these new states. The details of state transition

diagram are presented below:

25

State transition diagram algorithm

Input:
Value-oriented Dependence graph G,
C[i]: tainted variable in branch predicate C of each page PA,
So:initial state which Label 0,
N[i]:start basic block of each page PA;
color(i,c): node c is in code level of page PA;
Output: State transition diagram STD D=(S, &, So)
Method:
Initial: S=0, 6=0 , j=1, k=1
Stepl: for each page number P which from small to large € adj [So.N] in G
ConstructionNextState (S, P)
Step2: For each new state s’ in S
2.1: k=1
2.2: for each page number P which from small to large € adj[s’.N]in G
ConstructionNextState (s’, P)
Step3: Repeat Step2 until there is no new state.

Subroutine: ConstructionNextState

Input:
S: State
P: Page number

Output: null
Stepl: IF Sp modify global value update global variable value of CJi]
ELSE update global variable value with Sy of C[p]

Step2: add the variable of edge into C[p]
Step3: for each node ¢

Color (p,c)=white
Step4: StateCreation (So,p, C[p],N[p],0)

Step5: Change back global variable value of C[p]

26

Subroutine: IsANewState

Input:
Sp: Previous state
s: state
I: Previous label
Output: null
Method:
Stepl: IF the first part of s exists
IF the second part of s exists
Remove the state s
Else
Add s into Sin §j, j++
Add second part of S;j into edge from Sp to S;
Label i.k, k++

Subroutine: StateCreation

Input:
Sp:Previous state
p: page number
C[p]: tainted variable in branch predicate of p
Co: Start basic block of each page
i: Previous label
Output: null
Method:
Stepl: IF number of out-degree of ¢, is zero or Color is black
1.1: color (p, co)=black
1.2: Add p into first part of S’
1.3: Add coming edge condition into second part of S’
1.4: IsANewsState(Sp,S’,i)
Step2: for each basic block ¢’ in neighborhood of ¢o
IF condition of coming edge of ¢’ accords with C[p]
2.1: add condition of coming edge of ¢’ into second part of S’
2.2: color (p, co)=black
2.3: StateCreation (Sp,p, C[p],c’,1)

27

3.3.4 Example of Constructing State Transition Diagram

The Example 3 is given to illustrate the state transition diagram construction algorithm,
where Figures 9-1 to 9-2 show the result after executing steps 1 to 2, respectively.
Example 3:

The Example 3 continues Example 2. According to the value-oriented dependence graph,
tainted variables in branch predicate of each page, and initial state, we can construct the state
transition diagram.

Since the first part of initial state, we find outgoing edge in page-level of VDG, and then
according to tainted variable in branch predicate of the page we search code-level of VDG,
after executing step 1, we can construct the new state of initial state. Second, if the state

doesn’t exist then label and add to state transition diagram as shown in Figure 9-1.

Initial state: Sg 1, {(Session [“total”], null)} So

Page Level

.~ Function Level

O pmyey Opwywny
- .
et | 2,1(91,<=0),(g2,null),(Session
(Session["total"],!nul),(q1,nulky—(Session[total"],nuil),(g2,null) (Session["total"},null),(q1,null) “« ”
[“total”], null)}
(q2,<=0) (q2,>0) (q1,<=0) (q1,>0) (92,<=0) (q2,>0)

So 1, {(Session [“total”], null)} 0

{(g1,<=0),(g2,null),(Sessio otal”], null)}

2, {(q1,<=0),(g2,null),(Session o1
> [“total”], null)} '

Figure 9-1. State transition diagram after executing Step 1 of STD algorithm

28

Since the first part of the given new state we find outgoing edge in page-level of VDG,
and then according to tainted variable in branch predicate of the page we search code-level of
VDG, after executing step 2, we can construct new state of the given new state. Second, if the

state doesn’t exist then label and add to state transition diagram as shown in Figure 9-2.

0

So

1,{(Session[“total” 1null) }

{(@1,<=0) ,(q2,null),(Session[“total” J,mull}

e { (Session[“total” 1,null)}
01 S (a1,> 0),(a2,null)(Session| “total” Jmull)}

Sy 03

2,{(a1,<=0) ,(a2,null),(Session[“total”],mull} 2,{(al,> 0),(q2,mull),(Session] “total”],null)} 3,{ (Session “total” J,mil)}

02 S

The new state: S, 2, {(91,<=0),(g2,null),(Session [“total”], null)}

Page Level

Function Level

O 0 e
\J | Page_Load | Button|_Click

F o i Code Level
’
(Session["total"], 'null),(q1,null)}—(Session["total], null),(q2,null) (Session["total"],null),(q1,null) {(. [{o" ’[] I) }
3,{(Session[“total”], !null
(q2,<=0) (q2,>0) (q1,<=0) q1,>0) (92,<=0) (q2,>0)

(

0

S 1,{(Session] “total” J;mull) }

{(al,<=0) ,(q2,null),(Session] “fotal”],null} N { (Session] “total”],null)}
01 S, aly> 0),(q2,nu11),(Sess1onJ' total” J,null)} 03

27{(q1,<=0) ,(q2,nu11)’(seSSion[“total"];nu]l} 27{(q13> O)a(qzynull)a(seSSion[“tmal”],Ilull)} 3,{ (seSSiOﬂ[“tota.l”],nu]l)}

{(Session[“tptal”],'null) } 02 5, -

\

Si | 3,{(Session] “total” 1,inull) } [0.1.1

X

Figure 9-2. State transition diagram after executing Step 2 of STD algorithm

Repeat step 2 until has no new states and state transition diagram as shown in Figure 9-1.

29

Chapter 4 Dynamic stubbing technique for collaborative testing

In the chapter, we first provide an example to illustrate that different assignment leads to
distinct test cost in collaborative testing. The formal problem formulation of Minimum Test
Cost Problem (MTCP) in collaborative testing is presented in this chapter. We also prove
MTCP is NP-complete and hence propose a heuristic-based dynamic stubbing algorithm to

solve this optimization problem.

4.1 Motivating example

Figure 10 shows a simple Web application which contains nine states and eight
sub-problems. Assume that each sub-problem needs to be executed once for completing test
and three folk testers A, B, and C are involved in this test. The completion time of each
sub-problem by different folk tester is-listed in Table 3. The duetime of collaborative testing

Is set to be the last folk tester finishing the assigned jobs.

Problem 0

Figure 10. Problem decomposition scenario

30

Table 3. Sub-problem completion time of each folk tester matrix

01.11 0.1.1.2 0.2 0.3.1 0.3.2
Tester A 160 sec 160 sec 80 sec 120 sec 120 sec
Tester B 165 sec 165 sec 85 sec 125 sec 125 sec
Tester C 170 sec 170 sec 90 sec 130 sec 130 sec

Two different assignments of the example are shown in Table 4 and Table 5. In each table,
entry;;=1 represents that the ji, job is assigned to iy, tester. Assignment 1 represents that three
folk testers have centralized preference on sub-problem 0.1.1.1 and assignment 2 is unbiased
on testers’ preferences. The due time.of these two assignments are 390 sec and 300 sec as
shown in Figure 11 and 12. This.example illustrates that different assignment leads to distinct
test cost (due time) and the centralized preferences of folk testers will delay the whole
collaborative testing.

Table 4. Assignment 1 for shopping Web-site testing

01.11 0.1.1.2 0.2 0.3.1 0.3.2
Tester A 1 0 0 1 0
Tester B 1 1 0 0 0
Tester C 1 0 1 0 1
Table 5. Assignment 2 for shopping Web-site testing
01.11 0.1.1.2 0.2 0.3.1 0.3.2
Tester A 1 0 0 1 0
Tester B 0 0 0 0 1
Tester C 0 1 1 0 0

Tester B

Tester ¢

Tester A

o

200 400 600

Figure 11. Due time of assignment 1

Tester ¢ I
m
——

Tester B

Tester A

0 100 200 300 400

Figure 12. Due time of assignment 2

4.2 Minimum Test Cost Problem in Collaborative Testing

Under Internet environment, there are a large number of free and experienced folk
human resources. Collaborative testing (or called Beta test) is usually used in online game and
open source software to reduce test cost in software development stage. Based on the idea of
beta test, we use folk testers in Internet to help us finding and reporting bugs. There are some

constraints while applying collaborative testing. First, folk testers may not start to test at the

32

same time and they may delay to start the next test job after finishing current jobs. Second, we
only consider those folk testers contributing themselves to collaborative testing. Therefore,
each folk tester solves one sub-problem at least. Third, due to different complexity of each
sub-problem, each sub-problem has distinct support threshold for completion. And then, the
quality of folk testers (trustworthy) is different in Internet; therefore, it needs to consider the
accumulation of the testers’ trustworthy, rather than the number of testing. Final, each folk
tester has different workload.

Before presenting our problem formulation, we first introduce the notations in Table 6.
The variables i represents the iy, folk tester, the variable j represents j, sub-problem, and the
variable k represents kg assignment of the sub-problems. We use the binary variable. oij
equals to 1 represents that the ji sub-problem is assigned to the iy, folk tester in the ki,
assignment. Otherwise, cij equals t0-0."Tpe(i; J) stands for the delay time of the iy, folk tester
start to solve the jy sub-problem; Tex(l, j) stands for the ji sub-problem execution time of the
It Tolk tester, and T (i, j) stands for the ju sub-problem completion time of iy, folk tester. W;
represents the trustworthy of i, folk tester and H; represents the workload of the iy, folk tester.

ST represents the support threshold of ji sub-problem:

33

Table 6. Notations of MTCP in collaborative testing

I = ity folk tester

J = Jw Sub-problem

k= k¢, assignment of the sub-problems

cijk= I folk tester does the ji sub-problem in the kg, assignment
Toe(, j)= the jin sub-problem delay time of the iy, folk tester
Tex(i, J)= the ji, sub-problem execution time of the iy, folk tester
T (i, j)= the ji sub-problem completion time of iy, folk tester
W= the trustworthy weight of iy, folk tester

Hi= the available time limit of the i, folk tester

STj=support threshold of the ji, sub-problem

4.2.1 Problem formulation

The Minimum Test Cost Problem (MTCP)-in collaborative testing can be formulated as
IP-formulation. The objective function is the minimum of due time on different assignment,
when due time is the maximum of the sum of sub-problem’s time of each folk tester. The
constraint 6 is the complete condition‘that each sub-problem need to be tested at least support

threshold. The formulation of MTCP is presented below:

34

Definition 7: Minimum Test Cost Problem (MTCP) definition

Obijective function:
min miaxzj:T(l, oy

Subject to:

loik € {0, 1}, Vi, j, k

N

. Toe(i, j) ER”

w

Tex(i, j) ERT

SN

T,) ER

ol

. Zo-'ik >1,Vk
j

(o2}

ijk —

. D W, *oy, 2 ST, vk

7.ST;>0

oo

- TG, i)oy <H, VK
i

9. HiER+

10. 3 (o —0y)? # 0,9k, K k =K’
i

11. 0<W;<1

35

4.2.2 NP-Complete problem

In the section, we introduce an NP-complete problem, Job Assignment Problem (JAP)
[30]. Then, JAP can be reduced in polynomial time to MTCP to complete the proof as
followed.

The corresponding decision problem of Minimum Test Cost Problem (MTCP):

MTCP ={<D, J, U, ST,W, H, T, t>}
D= (S, 3, Sp) is a directed tree.

J is a set of sub-problems in D.

U is a set of folk testers.

ST is a function form J—>R*

W is a function form U — (0, 1]

H is a function form U - R”

T is a function form UxJ—>R"

And there is an assignment with due time at most t

Theorem 1

Minimum Test Cost Problem is NP-Complete.
Proof:

First, we show that MTCP belongs to NP. Given an instance of the problem, the
verification algorithm checks that sum of trustworthy W; of assigned sub-problems of every
folk tester i of each sub-problem j exceeds the support threshold ST;, the sum of the
completion time of assigned sub-problems of each folk tester i does not exceed H;, the
assignment of the sub-problems differs from the other assignment of the sub-problems, and
checks whether the maximum of the sum of the completion time of assigned sub-problems of

each folk tester is at most t. This process can certainly be done in polynomial time.

36

Second, to prove that MTCP is NP-Hard, we show that JAP< MTCP. Let G=(V’,E’),

I’={Piji=1,...,n}, U’={Uji=1,...,m}, d(@, j)=0, the confirm function S(k) VkeP;, the
trustworthy function w by w(i, j) where i €U’and j €J°, the human resource function H by H(i)
vieU’, the execution time function T by T(P;, j) VPI€J’, jeU’, and the maximum total cost at
most t of JAP. We construct an instance of MTCP as follows. We form the tree D= (S, 6, So)
where S=P;, 6=0, Sp=P; and we define the test sub-problem set J=J’, the folk tester U=U’, the
support threshold function ST by ST;=1 Vj€&J, the trustworthy function W by Wi=w(i,j) VieU,
the available time function H by Hj=H(i) VieU, the completion time function T by T(i,
J)=T(Pi, j) VieU, vjeJ.

The instance of MTCP is then <D, J, U, ST, W, H, T, t>, where is easily formed in
polynomial time.

We now show that graph G’ has-an-assignment 6 of the maximum total cost at t if and
only if the tree D’ has an assignmentc® of the maximum due time at most t. Suppose there is

an assignmentdwith maximum cost at most t. Therefore, there exists an assignment ¢’ such

that oy, =1 if o; =1, the support threshold ST;=1 vj€J’, the trustworthy weight of folk

tester Wi=w(i,j) VieU, the available time H;j=H(i), the completion time T(i, j)=T(Pi,j) VieU,
Vj€J. Thus, the assignment o’ is feasible solution and the maximum due time is t. Conversely,

suppose that there is an assignment ¢’ with the maximum due time is t. Then, there existed an

assignment a such thatg;; = oy, ,

the trustworthy w(i, j)=W,; VieU’ and j€J’, the human

resource H(i)=H; VieU’, the execution time T(P;, j)=T(i,J)) VPi€J’, VjeU’. Thus, the
assignment is a_feasible solution and the maximum total cost is t. Hence, MTCP is

NP-Complete #

37

4.3 Dynamic stubbing algorithm for Minimum Test Cost Problem

Because Minimum Test Cost problem (MTCP) is an NP-Complete problem, we propose
heuristic approach to solve MTCP. First heuristic is to assign new coming tester the job which
requires the most effort to compete. This heuristic can speed up the whole testing. However,
the sub-problem completion time of different folk testers is distinct. Therefore, we further
predict the completion time to balance the following job assignments. Second heuristic is to
assign tester with high trustworthy the most doubting job. Since the quality of folk testers is
not the same, there may be opposite result on the same sub-problem. The second heuristic is
used to improve the quality of test report.

Before presenting our heuristic-based ' approach, the used notations are introduced in
Table 7. U represents the set of the folk testers, and W represents the trustworthy of the i
folk tester. M; represents the‘complexity-of ju-sub-problem. S; represents the testing support of
the jin sub-problem and ST; represents the support threshold of the ji, sub-problem. Ta(i, j)
stands for the actual execution time of the ji, sub-problem done by.the iy, folk tester, and Tgy(i,
j) stands for the evaluation time of the ji sub-problem done.by the iy, folk tester. Fp (Sk)
represents the average trustworthy of folk testers which report bugs at the state k, and Fy (Sk)
represents the average trustworthy of folk tester which don’t report bugs at the state k. The
details of these notations and the following proposed dynamic stubbing algorithm are listed

below:

38

Table 7. Notations of Dynamic stubbing algorithm

Folksonomy user:

U= {i | i is the iy tester} is a set of folk testers
Trustworthy weight of the iy, folk tester:

Wi e (0, 1]
Complexity:

M;j=#line of code in sub-problem j

Support of the jy sub-problem:
§i= 2 (Ta (i, 1) = (Te, (i,))*W)

Support threshold weight of the jg sub-problem:
ST;=Mj*c, where c is a constant

Actual execution time of the ji, sub-problem, which had done by the iy, folk tester:
Ta(i,j) ER”

Evaluation time of the ji, sub-problem by the iy, folk tester:
Teu (i, j) R

Average trustworthy weight of folk testers which report bug at the state k

Fp (Sk) :|ULZWi , Where Uy is the set of folk tester report bugs at the state k
t| ieU,

Average trustworthy weight of folk testers which don’t report bug at the state k
1

Y,

Fn(Sk) = ZWi , Where Uy is the set of folk tester don’t report bugs at the state k

ieU,

39

Dynamic stubbing algorithm

Input:
User Profile
Teu(i, j):evaluation time of sub-problem j of tester i
State Transition Diagram D=(S, 9, So)
S (PR): a set of all sub-problems
PR: a set of sub-problems
Output:
Testing time
Method:
Initial: PR=null, for each sub-problem j in S (PR) InitialMetadata(j)
Stepl: for each sub-problem in S (PR) find the set of sub-problem S (PR) which the most
required tested
1.1: PR=FindTestedProblem(S (PR))
Step2: GuidingTester(PR,U;)
Step3: IF the ji sub-problem of the iy, tester has done
3.1: updating S;=S; + (Ta (i,)-Teu(i,))*Wi
Step4: IF (§>STj, V)
Testing Finish
ELSE

Go to stepl

40

Subroutine: InitialMetadata

Input: Sub-problem j
Output: Sub-problem j’
Method:
Stepl: According to the code complexity of j set up the ST; of sub-problem j
STj<-X
Sj<-0

Step2: return j’

Subroutine: FindTestedProblem

Input: S (PR): a set of all sub-problems
Output: a set of sub-problem PR
Method:

Initial: B=S (PR)

Stepl: for each problem jin B

1.1: T (j) = (Iength (j) +1) [(Sj/ST;)) +a ZT(j)]

j.kesub—problem (j)

Step2: for n=1 to count (U;)

2.1:add arc min{T(j)}into PR
i

2.2: remove j

Step3: return PR

41

Subroutine: GuidingFolkTester

Input:
State transition diagram D
F: all user profile
A set of sub-problem PR
A set of folk tester U;
Output:
Method:
Initial: B=PR
Stepl: for each sub-problem j in PR

Return arc mjin{Z(Fp (S)=Fy SISy € j}

Step2:
2.1: IF B#null
Assign j to the most trustworthy of tester i in U;
ELSE

Assign arc max{length(j)}to the tester i in U;
J

2.2: S=S+Te(if)*W,
Step3: According to j from left to right
3.1: apply D and F to assign input value which is not tested to the Tester
3.2: for each link L in the tested page
Block link button except the link of entering to the next tested page.
3.3: remove i from U;
3.4: remove j from B

Step4: repeat stepl until U; is null

42

Chapter 5 Implementation and Experiment

5.1 System

architecture and implementation

5.1.1 System architecture

In this section, we propose our two-phase collaborative testing system architecture
including preprocessing phase and testing phase, as shown in Figure 13. In phase I, we
convert the ASP.NET with C# language of the web applications into value-oriented
dependence graph by value-oriented dependence graph construction algorithm. And then, we
transform value-oriented dependence graph into state transition diagram for problem
decomposition by considering users’ runtime behaviors. In phase Il, according to the state
transition diagram, the tester profiles and portfolios, dynamic stubbing algorithm assigns jobs

to each new coming tester. After the testing finishing, we analyze these bugs which folk

testers reported based on report analysis-algorithm.

Phase 1. Pre-progressing Phase Phase II. Testing Phase
StatDe_Transition Dynamic R AT
lagram <= stubbin i
™| Construction \ Al orith% Algorithm
Algorithm ! 9 AN ~
|
| :
Value-griented | User ;
Dependence ! prof‘le
graph |
Graph / Bugs report
Constructio >
n Algorithm O O Q Q = {
T State Transition Diagram
Y

N
Za
e
(D=

S
L\

Folksonomy tester

registration

engineer

Figure 13. Intelligent collaborative testing system architecture

43

5.1.2 System implementation

We implement a prototype system, intelligent collaborative testing system (ICTS), to
support collaborative testing. When using ICTS, new tester has to register by filling out a
simple questionnaire. This questionnaire can be used to estimate the trustworthy of tester and
the completion time of each sub-problem. The screenshot of register page of ICTS is shown in
Figure 14. The tutorial of ICTS, shown in Figure 15, is provided for testers to understand how
to test on ICTS. After understanding how to test on ICTS, testers can start to test Web-site.
ICTS guides testers to test state of the most required and sets all values of tainted variables in
branch predicate for testers. The guide of ICTS, shown in Figure 16, the main frame is the
current tested page and the left column records tester’s feedback on current page. Finally,

complete information, shown in:Figure 17, occurs if the'test criterion is met.

44

HIFEEFREA - B MR Seit it

HRay 20 | BA |ﬂﬂﬂ
EA IMay /

Register testing account

EE |x}{}{x

e I}{xx}{
FIREE LARGE . [3he-a0 |

fx . EE FHIEFEIES

55 [TER FAEFEEE

5 [

s (20025 7]

ET A |

HIFR AR A - B aakMikasas ot

B R May 29 oo =2 |ﬂﬂE
f

SEmERTH Register successfully and login

Figure 14. Screen shot of register page of ICTS

45

BUxEMay ZH | AECEGREEHIEER
B -REAWAR TR/ 2E TR "
B EHE

/
3.1 I'4

B ay B mamesnenmgn
WHCF SRR NS SRS LSS
BiEATHRs Bookstore -] B |

BugReportSysten
BW5tEEaaa

SRIRHEE S | e bt v [RE

WHiE % T A& HHE—EBookStore it » BRICILIRNE EAR®R AN &SN REEELS

g'ﬁ@#ﬁﬁ?ﬁ”‘ﬁ
B R |

(EmEE)< | e SoTEE s ookStore

L R THE ‘l -
| R ENE R - FE AHHE rg Iwﬁ.r:tion sm,ﬁcm s%..

Category &l
Title Web Database Development : Step
hy Step

- r im Buyens

More Search Options rice o .
Advanced search 3999 LIS s

Categories

KMySOL & PHP From

S erateh

Recommended Titles What We're Reading

HTML 4 for the World Wide Welb
Visual Quickstart Guide

== To get inside C#,
W Microsoft's new OO0

el programming

Preview uf Casa

preview of Visual
Studio.NET and an

Figure 15.-Screenshot of ICTS tutorial

BWEmEMay | mw | BIREEmNEEEE
%Rﬁmﬁﬁ&?ﬁ"ﬁﬁ"§% » FHIEE W

32 ;//

BugReportSystem | gopystopgnray B e ER

BT R RREN - FAREE AN EE - GRS
HTONEHEM IS | BIARAY#EsE BookStore -] [EE

RIS T AR

B E R AT

ulme @

IRk R

T

- ookStore Hame Registration Slmppin‘g Cart 5%-

Report bug Categery | Al ~| Advancad Sasrch
Title
[search |

Itama fonnd-

Search Results

& 10017 Web Site Constiuction Tips and Tricks

Richard Schwartz, kris Jamsa, D Runnoe Connally
Price

3995

Category

HTML & Wob design

n Beginning Active Scrver Pages 3.0
k‘* -a David Buscr, Chris Ullman, Jon Duckette

Figure 16. Screenshot of ICTS guiding

46

4.
Bu ortSystem

ECUsEEEMay B magzemneiEEEn
SHTHRERARENR FUBSs EERESES WESAREERLY
EIEEEN) TS | WaEess Bookstos o] [IEE

FREFETE TEZEMEM
HIEART R

B ERE AR

B |

Figure 17. Screenshot of complete information of ICTS

5.2 Experimental design and results
5.2.1 Experimental design

We demonstrate our propased approach on a open-source Web application “BookStore”
[http://www.gotocode.com/];»which contains nine. pages (AdvSearch page, BookDetail page,
Books page, Default page, Login page, Mylnfo page, Registration page, ShoppingCart page,
and ShoppingCartRecord page). We convert “BookStore” into.value-oriented dependence
graph by the value-oriented.dependence graph construction algorithm, and then transform
value-oriented dependence graph into state transition diagram. The corresponding statics of
value-oriented dependence graph of “Bookstore” are provided in Table 8, respectively. And

then we transform value-oriented dependence graph into state transition diagram with 28

states.

47

Table 8. Value-oriented dependence graph statistics

Level Type Quantity
Page Level Node 9

Edge 52
Function Level Node 146
Edge 136
Code Level Node 351
Edge 546
Total Node 506
Edge 734

In the experimental design, we design a real testing environment of the web application
“BookStore”. The folk testers of this experiment -are gathered via social network sites such as
Facebook and msn. Therefore, these folks have basic internet access skills. The ages of testers
are between 15 and 30. These folk testers are further split into control group (85 testers) and
experimental group (59 testers). The testing periods of control group and experimental group
are 2011/6/1~2011/6/6 and 2011/6/1~2011/6/3, respectively. The stopping criterion of these

tests is that the support of each state exceeds its support threshold.

5.2.2 Experimental results
Experimental result I-Efficiency evaluation

Centralized preferences of folk testers are the major cause of the delay of collaborative
testing. Figure 18 shows that folk testers in control group prefer to test the first state and then
second, 6, 10™, 14™ 20" 21" and 22" state. Compared to control group, our proposed
intelligent collaborative testing system can reduce this kind of bias. Table 9 shows that
experimental group has much less standard deviation in state complete degree than control
group (0.2928 v.s. 0.9268). This points out that our proposed algorithm can balance the job

assignment.

48

Table 9. State complete degree of testing comparing

Group Mean S.D.
Experimental group 0.6907 0.2928
Control group 0.9404 0.9268
5
4.5
‘7
3.5
s\
\
2.5
, |\ A A
15—\ A /\ /\

1
0.5
0

1234567 8 910111213141516171819202122232425262728

Control == Experimental

Figure 18.:.Comparison of state complete degree of testing

Table 10 shows the average contribution (test time) of each folk tester on this experiment.
We further apply independent t-test on control group and experimental group. There is no
significant difference (p=0.1240) in contribution of each folk tester between control and
experimental groups. In fact, testers in experimental group contribute less. Table 11 shows the
comparison of unit number of online folk testers of control group and experimental group.
This result shows that the contributions of testers in unit time of two groups are the same.
According to the above results, these experiments are fair for experimental group and control
group. Based on these fair comparisons, the due time of the experimental group can be
reduced to 50% of the control group, shown in Figure 19. Hence, our proposed dynamic

stubbing algorithm can speed up collaborative testing.

49

Table 10. Comparison of test time between two groups

Group N Mean S.D. p-value
Experimental group 59 150.6271 236.1593 0.1240
Control group 85 244.5647 482.3225

Table 11. Comparison of the folk testers per due time

Control group

Experiment group

Folk testers/Due time

0.0050

0.0061

Due time

18000
16000 -
14000 -
12000 -
10000 -
8000 -
6000 -
4000 -
2000 -

Control group

B Due time

Experiment group

Figure 19. Due time comparison

50

Experiment result 11 -Effectiveness evaluation

Fault-detection ability is the most important in software testing, especially in
collaborative testing. Unqualified folk testers may produce doubt reports, and hence it
requires advanced job assignment and report analysis algorithm to improve the quality of final
report. In this experiment, there are ten defects in Web application “BookStore” as shown in
Table 12, including the same book image error, notes of book error, category shows error, vote
image error, vote rate error, E-mail error, total price error, total price of book error, modify
quantity error, and last_name and E-mail error.

Table 12. Ten defects in Web application “BookStore”

Defect description Page
1 the samebook image error Default
2 notes description-of-book error Default
3 category shows error Books
4 vote image error BookDetail
5 vote rate error BookDetail
6 E-mail error ShoppingCart
7 total price error ShoppingCart
8 total price of book error ShoppingCart
9 modify quantity error ShoppingCartRecord
10 last_name and E-mail error MyInfo

Web application testing problem can be treated as binary classification problem where
pages with defect are positive instances and normal pages are negative instances. Each folk
tester can be considered as a classifier and our proposed system is an advanced classifier

integrating every classifiers. Table 13 shows the comparison of processing time of each folk

51

tester on each state. Folk testers in experimental group spend less time to check the status of
each state. However, there is no significant difference (p=0.0845) between control and
experimental groups when applying impendent t-test. The proxies of fault-detection ability are
selected as true positive rate (TP), true negative rate (TN), false positive rate (FP), false
negative rate (FN), precision, recall and F-measure. Table 14 shows the comparison of the
fault-detection ability between control group and experimental group. There is no significant
difference in TP (p=0.4170), TN (p=0.6019), FP (p=0.8474), FN (p=0.5518), Recall
(p=0.6655), Precision (p=0.9321), and f-measure (p=0.7233) between two groups. These
results indicate that folk testers in control group and experimental group have similar
fault-detection ability. However, the large stand derivation of each proxy indicates that the
quality of folk testers varies.much. For example, ‘there are almost 70% testers with
fault-detection ability (precision) from-0-to 1-This indicates that there exists folk testers with
prefect fault-detection ability and none fault-detection. From this observation, it requires
report analysis algorithm to.form high quality test report.

When forming the final report, our report analysis algorithm adopts winner-takes-all
strategy, where the prediction of each state relies on the group with higher average trustworthy.
Based on the above comparisons, control ‘group and experimental group have similar
fault-detection ability. Table 15 shows that our proposed approach can improve 30%

fault-detection ability than traditional collaborative testing.

52

Table 13. Comparison of test time of each state between two groups

Group N Mean S.D. p-value
Experimental group 59 22.0596 17.9834 0.0845
Control group 85 29.5177 33.1721

Table 14. Comparison of fault-detection ability between two groups

Group Experimental group Control group p-value
Mean S.D. Mean S.D

TP 0.2236 0.2927 0.1867 0.2263 0.4170
TN 0.4056 0.2988 0.4317 0.2887 0.6019

FP 0.0394 0.1555 0.0441 0.1295 0.8474

FN 0.2973 0.2756 0.3255 0.2836 0.5518
Recall 0.3325 0.3885 0.3051 0.3515 0.6655
Precision 0.4918 0.4950 0.4848 0.4708 0.9321
f-measure 0.3785 0.4110 0.3546 0.3771 0.7233

Table 15. Fault-detection ability of two collaborative testing approaches

Control group

Experimental group

TP 0.3214 0.4285
TN 0.3571 0.4642

FP 0.1428 0.0357

FN 0.1785 0.0714
Recall 0.6429 0.8571
Precision 0.6923 0.9230
F-measure 0.6666 0.8888

53

Chapter 6 Conclusion

In our thesis, we first propose the value-oriented dependence graph which is a
fine-grained Web application model. And then, based on value-oriented dependence graph, we
further propose a novel Web application model, state transition diagram, for supporting
problem decomposition and further advanced job assignment algorithm. We also formulate
Minimum Test Cost Problem (MTCP) in collaborative testing by considering the constraints
of real environment, and prove that MTCP is an NP-Complete problem. Finally, we propose a
heuristic-based dynamic stubbing algorithm to solve MTCP and implement a two-phase
intelligent collaborative testing system by applying dynamic stubbing technique. This
technique allows folk testers contributing-their human resources with barely noticing varying
test environment. Therefore,«it would not influence the willingness of folk testers to
contributing themselves. The ‘experimental results show that-out proposed approach can

reduce 509 due time and.improve 30% fault-detection ability in.collaborative testing.

54

References

[1] H. Miao, Z. Qain, B. Song, “Towards Automatically Generating Test Paths for Web
Application Testing”, 2" IFIP/IEEE International Symposium on Theoretical Aspects of
Software Engineering, pp. 211-218, Nanjing, China, June 2008.

[2] M. Benedikt, J. Freire, P. Godefroid, “VeriWeb: Automatically Testing Dynamic Web
Sites”, In Proceedings of 11" International World Wide Web Conference, pp. 654-668,
Honolulu, HI, USA, May 2002.

[3] M. Sun, Y. Chen, S. Chen, J. Mei, “A model checking approach to Web application
navigation model with session mechanism”, 2010 International Conference on Computer
Application and System Modeling (ICCASM), pp. 398-403, Taiyuan, China, Oct 2010.

[4] S. Chen, H. Miao, B. Song, Y. Chen, “Towards Practical Modeling of Web Applications
and Generating Tests”, 4™ |EEE “International Symposium-on Theoretical Aspects of
Software Engineering, pp. 209-217, Taipei, Taiwan, Aug 2010.

[5] Wenhua Wang, Sampath, S., Yu Lei, Kacker, R., ”An Interaction-Based Test Sequence
Generation Approach for Testing. Web Applications”, 1™ \EEE High Assurance Systems
Engineering Symposium, pp. 209-218, Nanjing, China, Dec 2008.

[6] Y. Wu, J. Offutt, X. Du., “Modeling and testing of dynamic aspects of web applications”,
Department of Information and Software Engineering, George Mason University, Fairfax, VA,
July 2004.

[7]1 Z. Qian, H. Miao, H. Zeng, “A Practical Web Testing Model for Web Application
Testing”. Third International IEEE Conference on Signal-Image Technologies and
Internet-Based System, pp. 434-441, Shanghai, China, Dec 2007.

[8] Oliverira, M. C. F. de, and Turine, M. A. S., and Masiero, P. C. “A Statechart-based

Model for Hypermedia Applications”, ACM Transactions on Information Systems (TOIS),

Vol. 19, No. 1, pp. 28-52, Jan 2001.

55

[9] G. Rossi, D. Schwabe, “Object-oriented design structures in web application models”,

Annals of software engineering, Vol. 13, No.1, pp. 97-110, June 2002.

[10] A. Andrews, J. Offutt, R. Alexander, “Testing Web Applications by Modeling with

FSMs”, Software and Systems Modeling, Vol. 4, No. 3, pp. 326-345, July 2005.

[11] C. H. Liu, D. Kung, P. Hsia, and C. T. Hsu, “Structure testing of Web applications”, In
Proceedings of the 11" Annual International Symposium on Software Reliability Engineering,
pp. 84-96, San Jose, CA, USA, October 2000.

[12] Chien-Hung Liu, Kung, D.C., Pei Hsia, “Object-based data flow testing of web
applications”, First Asia-Pacific Conference on Quality Software, pp. 7-16, Hong Kong,
China, Oct 2000.

[13] D. Kung, C. H. Liu, and P. Hsia, “An object-oriented Web test model for testing Web
applications”, In Proc. of IEEE 24™ Annual International Computer Software and Application
Conference (COMPSAC2000), pp. 111-120, Hong Kong , China,October 2000.

[14] H. Miao, H. Zeng, “Medel Checking-based Verification of Web Application”, 12" |EEE
International Conference on Engineering Complex Computer Systems, pp. 47-55, Auckland,
New Zealand, July 2007.

[15] Liping Li, Huaikou Miao, Shengbo Chen, “Test Generation for Web Applications Using
Model-Checking”, 11" ACIS International Conference on Software Engineering Atrtificial
Intelligence Networking and Parallel/Distributed Computing (SNPD), pp.237-242, London,
England, June 2010.

[16] Liping Li, Qian Zhongsheng, Tao He, “Test Purpose-Based Test Generation for Web
Applications”, First International Conference on Networked Digital Technologies, pp.
238-243, Ostrava, Czech, July 2009.

[17] Liping Li, Zhongsheng Qian, Tao He, “An Approach to Testing Web Applications
On-The-Fly”, International Conference on Management of e-Commerce and e-Government,

pp. 428-431, Nanchang, China, Sept 2009.

56

[18] F.M. Donini, M. Mongiello, M. Ruta, and R. Totaro, “A Model Checking-based Method

for Verifying Web Application Design”, Electronic Notes in Theoretical Computer Science

(ENTCS), Vol. 151, No. 2, pp. 19-32, May 2006.
[19] R.M. Hierons, “Adaptive Testing of a Deterministic Implementation against a

Nondetermistic Finite State Machine”, The Computer J., Vol. 41, No. 5, pp. 349-355, June

1998.
[20] D. Lee, M. Yannakakis, “Principles and Methods of Testing Finite-State Machines—A

Survey,” Proceedings of the IEEE, Vol. 84, No. 8, pp. 1089-1123, Aug 1996.

[21] PengCheng Xiong, YuShun Fan, MengChu Zhou, “A Petri Net Approach to Analysis and

Composition of Web Services”, IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, Vol. 40, No. 2, pp. 376-387, March 2010.

[22] Xitong Li, Yushun Fan;Sheng, Q-Z.;, Maamar, Z., Hongwei Zhu, “A Petri Net Approach

to Analyzing Behavioral Compatibility and Similarity of Web Services”, IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans,-\ol. 41, No. 3, pp. 510-521,

May 2011.
[23] Robidoux R., Haiping Xu, Liudong Xing, MengChu Zhou, “Automated Modeling of

Dynamic Reliability Block Diagrams Using Colored Petri Nets”, IEEE Transactions on

Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 40, No. 2, pp. 337-351,

March 2010.
[24] Lefebvre, D., Leclercq, E., “Stochastic Petri Net Identification for the Fault Detection

and Isolation of Discrete Event Systems”, IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, Vol. 41, No. 2, pp. 213-225, March 2011.

[25] P. Stotts, R. Furuta, “Petri-net-based hypertext: Document structure with browsing

semantics”, ACM Transactions on Information Systems (TOIS), Vol. 7, No.1, pp. 3-29, Jan

19809.

[26] M. J. Harrold, A. J. Offutt and K. Tewary, “An Approach to Fault Modeling and Fault

57

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.PengCheng%20Xiong.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.YuShun%20Fan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.MengChu%20Zhou.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Xitong%20Li.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yushun%20Fan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Sheng,%20Q.Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Maamar,%20Z..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Hongwei%20Zhu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3468
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Robidoux,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Haiping%20Xu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Liudong%20Xing.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.MengChu%20Zhou.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3468
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Lefebvre,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Leclercq,%20E..QT.&newsearch=partialPref

Seeding Using the Program Dependence Graph”, Journal of Systems and Software, Vol. 36,

No. 3, pp. 273-295, Elsevier, Mar 1997.

[27] Y.H. Tung, S.S. Tseng, T.J. Lee and J.F. Weng, “A Novel Approach to Automatic Test
Case Generation for Web Applications”, 2010 10" International Conference on Quality
Software (QSIC), pp. 399-404, Zhangjiajie, Hunan, China, July 2010.

[28] Kuo-Chang Huang, “Applying Folksonomy-Based Approach to Support Collaborative
Testing of Web Applications”, National Chiao Tung University, Degree of Master, July 2010.
[29] Briand, L.C. and Pfahl, D., ”Using simulation for assessing the real impact of

test-coverage on defect-coverage”, IEEE Transactions on Reliability, Vol. 49, No. 1, pp. 60-70,

Mar 2000.

[30] M.R. Garey , D.S. Johnson, In: V. Klee (Ed.), “Computers and intractability, a guide to
the theory of NP-completeness”, Freeman, New York, 1979.

[31] G.K. Baah, A. Podgurski, M.J. Harrold, “The Probabilistic Program Dependence Graph

and Its Application to Fault.Diagnosis”, IEEE Transactions on Software Engineering, Vol. 36,

No.4, pp. 528-545, Aug 2010.
[32] J. Ferrante, K. Ottenstcin, and J. Warren, “The program dependence graph and its use in

optimizatio”, ACM Transactio on Programming Languages and Systems, Vol. 9, No. 3, pp.

319-349, July 1987.
[33] J. Karl, M. Linda, “The program dependence graph in a software development

environment”, Proc of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, Vol. 19, No. 5, pp. 177-184, New York, NY,

USA, May 1984.
[34] K. Tewary, M.J. Harrold, “Fault Modeling using the Program Dependence Graph”, 5"
International Symposium on Software Reliability Engineering, pp. 126-135, Monterey, CA,
USA, Nov 1994.

[35] Ray-Yaung Chang, Podgurski, A., Jiong Yang, “Discovering Neglected Conditions in

58

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=855537&queryText%3D.%E2%80%9D+Using+Simulation+for+Assessing+the+Real+Impact+of++++++Test-Coverage+on+Defect-Coverage%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=855537&queryText%3D.%E2%80%9D+Using+Simulation+for+Assessing+the+Real+Impact+of++++++Test-Coverage+on+Defect-Coverage%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1008

Software by Mining Dependence Graphs”, IEEE Transactions on Software Engineering, Vol.

34, No. 5, pp. 579-596, Oct 2008.

[36] S. Bates, S. Horwitz, “Incremental Program Testing Using Program Dependence Graphs”,
20" ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp.
384-396, New York, NY, USA, 1993.

[37] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using Dependence

Graphs”, ACM Trans. Programming Languages and Systems, Vol. 12, no. 1, pp. 26-60, Jan

1990.
[38] B. Baudry, Y. Le Traon, G. Sunye, “Testability Analysis of a UML Class Diagram”, g

IEEE Symposium on Software Metrics, pp. 54-63, Washington, DC, USA, Aug 2002.

59

