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Abstract

In this thesis, we grow the NLO crystals by chemical synthesis. Most studies
have examined the structural, linear optical and nonlinear optical properties of the
AGeX; (A = Rb, Cs; X = Cl, Br) crystals by varying the alloy composition to satisfy
the demands of specific applications.

In the analysis of EPMA, bromine replaced chlorine in CsGeCls, and vice versa
in CsGeBr; while cesium was substituted by rubidium in CsGeBrs;. According to DSC
analysis, the Curie temperature and the melting temperature of the crystals rose with
Br content.

The XRD analysis indicated that the structural distortion of CsGe(BryCl; )3
(R3m) increases with Br content, while the structure of (Rb,Cs;—,)GeBr; slowly
becomes centro-symmetric as Rb content increases. The results of Raman
spectroscopy agree with the expectation based on effective-mass that the oscillation
frequency increases as the Br content falls because Br is heavier than CI. The atomic
vibration modes of AGeX; (A = Rb, Cs; X = CI, Br) system were also defined herein.

Regarding transparency characteristics, the longest infrared transparency
wavelength is typically limited by the phonon absorption of the crystal and the
absorption edge is limited by the energy band-gap of the crystal. UV-visible spectra
show that the absorption edge declines from 3.43 to 2.38 eV with the composition of
bromine (x = 0 to 1), but remains constant for z = 0 to 3/4. The infrared phonon
absorption edge of CsGe(BryCl; )3 with x =0 to 1 is approximately from 30 to 47 um.
Hence, the transmission range of the crystals increases with Br. Furthermore, the
force constant increases as the Br content declines, such that the oscillation frequency
increases as Br content decreases. The photoluminence spectra revealed that the
emission bands of CsGe(BriCl,); and (Rb,Cs;,)GeBr; were red-shifted as the
temperature fell, because cooling reduced the lattice constant.

Detection of the generated second-harmonic of the powder demonstrates that all
of the crystals, CsGe(BryCl,x); (x = 0, 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6, 1) and
(Rb,Cs1.,)GeBr; (z = 1/4, 2/4, 3/4), were phase-matchable. The structural distortion
and the off-center Ge ion in the unit cell govern the SHG responses. The XRD results
that the lattice constant increased with Br content while the cell angle decreased as Br
increased. Therefore, the structural distortion of CsGe(BryCl,—); increases with Br
content and the position of the B-site cation, Ge, becomes closer to the cell corner.
However, (Rb,Cs;—,)GeBr; yields opposing results as the Rb content is increased.
Thus, the nonlinearity properties increased with Br content, but fell as Rb content
increased. This result is identical to that for PSHG, for which that second-order NLO

susceptibility increased with Br content, but declined as Rb content increased.
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Chapter 1 Introduction to NLO crystals

1.1 Definition of nonlinear optics

Nonlinear optics includes the study of new optical effects and novel
phenomena that arise from the interactions of intense coherent optical
radiation with mater. For historical reasons, this new branch of optical
physics is called “nonlinear opties™,

Before the 1960s, in the field of ¢conveniional optics, numerous basic
mathematical equations or formulae were linear. The following three.
examples reveal this linearity of conventional optics.

First, in interpreting the refraction, reflection, dispersion, scattering
and birefringence of light that propagates in a medium, an important
physical quantity, the electric polarization that is induced in the medium,
must be considered. In the regime of conventional optics, the electric
polarization vector P is simply assumed to be linearly proportional to
the electric field strength £ of an applied optical wave:

P=¢,rE (1-1)
where sz denotes the permittivity of free space, and » is the

susceptibility of a particular medium. Based on this assumption of



linearity, Maxwell's equations yield a set of linear differential equations
in which only the terms that are proportional to the first power of the field
E are involved. Therefore, no coupling occurs between different light
beams or between different monochromatic components when they pass
through a medium. Restated, if several monochromatic optical waves of
various frequencies simultaneously pass through a medium, then no
coherent radiation is generated at any new frequency.
Second, in conventional optics, the atténuation of an optical beam
that propagates in an absorptive medium can be described as
%Hx: (1-2)
where / is the beam inteasity; z is the distance in the propagation
direction, and « is a comstant for a given medium. The physical
meaning of Eq. (1-2) is that the decline in the beam intensity over a in a
unit length of propagation is linearly proportional to the local intensity
itself. Equation (1-2) yields a well known exponential attenuation
expression,
1(2) = I{0)e™ (1-3)
This expression states that for a given propagation length of z=/, the

transmitted intensity 7(/) is linearly proportional to the initial intensity



I=K0).
The third example is related to the Fabry-Perot (F-P) interferometer

which has a central place in modern optics. The transmission T of this

device is given by [1-1]

T=———— 1-4
I+ Fsin(5/2) e

where F is a constant that is obtained from the reflectivity of the two
mirrors of the interferometer, and & is a phaseé-shift factor determined
by
5= ?nﬁdmﬂﬁ (1-5)

where 4 is the wavelength of the incident beam: 4 is the spacing
between the two mirrors: @ is the angle between the beam and the
normal to the mirrors, and », is the refractiveé index of the medium
inside the F-P cavity. In the regime of conventional optics, n, is a
constant that is independent of the incident beam intensity for a particular
wavelength, Accordingly, the transmission 7 of the whole device is also a
constant for given values of i, #, and d. In this case, the transmitted
intensity /, is linearly proportional to the incident intensity 7,. such
that,

I, =Tl x ] (1-6)



The above three examples manifest the simple linear feature,
described by Eqs. (1-1), (1-2) and (1-6), respectively. These simple linear
assumptions or conclusions reached using the conventional optics are
widely accepted, and have been confirmed by most experimental
observations and measurements based on the use of ordinary light sources,
However, these situations have been changed dramatically since the
beginning of the 1960s.

Shortly following the demongstration of the first, laser device (a
pulsed ruby laser) in 1960 [1-2], these simple linear assumptions or
conclusions, described above. were found to be no longer appropriate in
circumstances in which an intense laser beamn was incident on particular
optical media. For clarity, the three examples are adopted to show why
some higher-order approximations should be made when an intense laser
field interacts with an optical medium.

The first breakthrough was achieved in 1961 when a pulsed laser
beam was sent into a piezoelectric crystal sample. Researchers, for the
first time in the history of optics, observed the generation of the second
-harmonic at an optical frequency [1-3]. Shortly after this discovery,

various other coherent optical frequency-mixing effects (including optical



sum-frequency generation, optical difference-frequency generation and
optical third-harmonic generation) were observed. The researchers
realized that all of these new effects could be reasonably explained if the
linear term on the right-hand side of Eq. (1-1) was replaced by a power
series

F:a',[f‘”f+X”"Ef#zmﬁE-rm] (1-7)

Here, 7", »* and " .are the first-order (linear), second-order
(nonlinear), and third-order (nonlinear) susceptibility, and so on. They are
material coefficients and in general are tensors. In general, the magnitude
of »"" is approximately y™/E_,L where E  represenis the atomic
electrical field. Since £, - c/a], Where - is the charge of an electron
and @, is the Bohr radios of an hydrogen atom, £, = 5x10°V /em. Hence,
the effect of »* is a factor of E/E,, "smaller than that of #". This
fact explains why the optical nonlinear effect was discovered only after
the laser was invited. Only focusing a laser beam can generate an E field
with sufficiently high strength that the nonlinear optical effect can be
observed. Substituting Eq. (1-7) into Maxwell's equations vields a set of

nonlinear differential equations in high-order-power terms of optical

electric field strength; these terms are responsible for various observed



coherent optical frequency-mixing effects [1-4].

At roughly the same time, researchers found that the depletion
behavior of an intense laser beam that propagates in an absorptive optical
medium was not consistent with Eq. (1-2) or Eq. (1-3). For example, in a
one-photon absorptive medium, when the intensity of the incident beam
is sufficiently high, the attenuation coefficient a is no longer a constant
and may become a variable that depends on' the incident intensity.
Therefore, the exponential attenuation formula, Eq. (1-3), can not be
applied and the lincar relationship between /(z=/) and /(0) does not
hold. In this case, either a saturable absorption or a reverse-saturable
absorption effect may occur. Furthermore, a two-photon absorption

process occurs in the medium, then the attenuation of an intense incident

beam is given by
dl
—=—al-gr 1-8
et Bl (1-8)
where 2 is the two-photon absorption coefficient, which can be
regarded as a constant only if the saturation or reverse-saturation effect
can be neglected. In more general cases, when multi-photon

(three-photon or more) absorption processes are considered, Eq. (1-8)

must be generalized as follows:



%:—a!-ﬁf’—y.”—--- (1-9)
where vy is the three-photon absorption coefficient.

Consider again the transmission behavior of an F-P device under the
action of an intense laser beam. In such a case, Eq. (1-6) no longer
applies. The prediction that the refractive index of a medium at a
particular wavelength is a constant, arises from the assumption of
linearity of the electric polarization, given by Eq. (1-1). However, based
on the more general assumption expréssed by Eq. (1-7), the refractive
index for centrosymunetric or isotropic media can be written as

=, + iy | (1-10)
where the first term -, is the linear refractive index that is independent of
the beam intensity; the second term describes the contribution of the
additional nonlinear refractive index which is proportional to the beam
intensity, and », is a coefficient of proportionality, When the beam
intensity is quite low, the second term in Eq. (1-10) is negligible.
However, when the intensity of the incident laser beam is sufficiently
high, the second term may be significant. In fact, the intensity-dependent

refractive-index change is the basic mechanism of numerous major

nonlinear optical effects. For an F-P device that interacts with an intense



laser beam, the phase-shift factor, according to Eq. (1-10), is determined
by

=4Tf—d’ms£-{r:ﬁ+nl'f*] (1-11)
where J, is the intracavity intensity of the incident laser beam. In this
case, the transmission T of the F-P device is no longer a constant, even
for the given values of i, d and @: restated, a complex nonlinear
relationship will exist between the incident intensity and the transmitted
intensity. The nonlinear response of an F-P device .that contains a
nonlinear medium is one of the most important issues in optical
bistability studies.

Based on the “comparisons made above. the main issue in
conventional optics is the propagation and interaction with matter of light
from ordinary light sources and the intensities of the light beams are so
low that even a simple linear approximation suffices to offer a good
theoretical explanation of the related optical effects and phenomena. In
this sense, conventional optics may also be called “linear optics™ or
“optics of weak light”, while, “nonlinear optics” concerns mainly the
interaction between intense laser radiation and matter, In the latter, the

intensities of laser beams may be so high that very many new effects and



novel phenomena can be observed, and some high-order nonlinear
approximations must be made to explain these new effects and
phenomena. In this sense, nonlinear optics may also be called “optics of

intense light”.

1.2 Background

In 1986, Kato determined that the shortest wavelength generated by
frequency doubling was 204.8 nm [1-5). This record, achieved in BBO,
was surpassed only fen years later. In 1996, a.Chinese group reported on
the new nonlinear crystal potassium fluoroboratoberyllate (KBBF) [1-6],
which supports direct SHG down to 172.5 nm [1-7]. However, KBBF has
a plate-like nature, and the growth of crystals thicker than a millimeter is
very difficult, making tuning of the phase-matching angle difficult. In
particular, for deep-UV applications of this crystal, an optical contact
technique based on the coupling of two CaF, prisms has been proposed
[1-7]: it is rather inconvenient and cannot be utilized for very efficient
nonlinear conversion.

Sum-frequency generation can also be employed to generate very

short UV wavelengths (below 205 nm). This approach was developed in



the mid-1970s [1-8, 1-9]. The summing wavelengths should differ as
much as possible to satisfy phase matching conditions; that is, one should
lie near the UV edge of the transmission range and the other near the IR
edge. Recently, a German group. using SFG between the near IR idler
wavelengths from OPO, pumped by a Ti:sapphire femtosecond laser and
the UV fourth harmonic of the same laser. produced wavelengths of 175
nm in CLBO [1-10], 172.7 pm in LBO [1-11], 170.nm in L.B4 [1-12] and
166 nm in KBS [1-13], Their results are available clsewhere [1-14],

A few powerful quasi-CW deep-UV sources have recently been.
demonstrated, using CLBO in the final sum-frequency mixing stage. A
mean power of 250°mW at 205 nm has beéen generated [1-15]; a 1-W
source at 196.3 nm has been developed [1-16] and an absolute maximum
mean power of 1.5 W at the same wavelength has been achieved [1-17].
A nanosecond, widely tunable deep-UV source has been described [1-18].
Using a set of BBO harmonic generators and a broadly tunable
Ti:sapphire laser with amplifier, the authors of this investigation
generated pulses with more than 1 mJ energy in the 193-233 nm spectral
range with a repetition rate of 10 Hz.

The search for new inorganic second harmonic generating materials



that can be used in the IR region is a current frontier topic in the field of
nonlinear optical materials. Alternative materials have been developed,
including compound semiconductors such as GaSe [1-19], AgGaS, [1-20],
AgGaSe; [1-21], ZnGeP, [1-22, 1-23] and Tl;AsSe; [1-24] (Table 1-1).
Although these crystals seem to exhibit suitable non-linearity, they are
either difficult to generate or exhibit low optical damage thresholds [1-25,
1-26], since they have narrow bandgaps. Accordingly, the search for new
infrared NLO crystals with favorable properties, especially a high damage
threshold, has became a key research area in IR NLO material science

and laser technology [1-22].

1.3 Motivation

Ternary halides ABX; (A: Rb, Cs ; B: Ge, Sn, Pb ; X: Cl, Br, I)
crystals have potential for use in non-linear optical applications [1-27]
and with the exception of the fluorides are expected to be transparent in
the mid-infrared region [1-28]. This statement is speculative in the
following sense. Oxide compounds exhibit typical resonances near 10 um.
Replacing O™ with CT', Br or I increases the mass and reduces the spring

constant of the vibrating system. Both effects shift the resonances to

1



longer wavelengths, and crystals with a pyramidal basis are also known to
exhibit fairly large optical non-linearity. A pyramidal basis in a unit cell
contains one tetrahedron with one cation and three anions located at its
vertices — such as in the pyramidal bases —GeCl; and ~GeBr; [1-29, 1-30]
in CsGeCl; (CGC) and CsGeBr; (CGB) crystals, respectively.
Furthermore, the damage threshold of CGC is 200 MWem®[1-31]. Since
the optical damage threshold and the transparemt range of materials are
related to the magnitude of the band gap, while the optical non-linearity is
inversely proportional to the cubic power of the band gap [1-20], the
linear and nonlinear properties of CsGe(Br,Cl,.,); and (Rb,Cs,.,)GeBr;
can be adjusted by wvarying the composition of the alloy to meet the
demands of specific applications.

This dissertation describes the synthesis of crystals of various
compositions and measurements of the optical properties. Nonlinear
coefficients of CsGe(Br,Cl,.,)s, x = 0, 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6, 1
and (Rb,Cs,.,)GeBr;, y = 0, 1/4, 2/4, 3/4, 1 are also considered to reveal

the potential of these crystals in NLO applications.



1.4 Organization of this dissertation

This work discusses the growth and characteristics of solid solution
CsGe(Br,Cl,..); and (Rb,Cs,.,)GeBr; crystals with various substitution
ratios. Furthermore, these crystals were also investigated in powdered
form to study the generation of the second harmonic. The outline is as
follows. Chapter 2 briefly describes the procedure for chemically growing
ABX; (A = Rb, Cs: B = Ge: X = Br, Cl) erystals. The composition and
thermal behaviors of these substituted crystals were analyzed by
electron-probe X-ray microanalysis and differential scanning calorimetry,
respectively. In Chapter 3, structure was also determined by X-ray
diffractometry and ‘the atomic vibration was elucidated by Raman
spectroscopy. In Chapter 4, the optically transparent region was detected
by UV-vis spectrometry and Fourier-transform infrared spectrometry. In
Chapter 5, the optical characteristics were determined by photo-
luminescence and ellipsometry. In Chapter 6, the nonlinear optical
properties were analyzed by powder second harmonic generation

measurements. The final chapter briefly draws conclusions.



1.5 Tables and Figures

Table 1-1 Conventional IR NLO crystals [1-19, 1-20, 1-21, 1-22, 1-23,

(MW/em?)

1-24].
Crystals GaSe | AgGaS, |AgGaSe; | ZnGeP; |TliAsSe; | LilO; LiNbO,
Optical
transparency | 0.65~18 | 0.53~13 | 0.73-18 | 0.74~12 | 1.26~17 | 0.3~6.0 |0.33-55
(1m)
Energy
- :
bandgap (eV) 2.0 2.7 1.68 2.2 0.98 4.1 3.8
d (pm/V)  |dn=63-72 |ds~1331 [d5=3343 | dy=111 [ 20 |d,e=5.53 [ 157533
dn“l?ﬁ
optical damage
threshold 28 100 25 60 16 250 10
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Chapter 2 Experimental Procedure

2.1 Preparation of raw materials

Figure 2-1 presents the synthetic procedure, which was modified
from the work done by Gu er al. [2-1, 2-2, 2-3], Chritensen and Tananaev
et al. [2-4, 2-5], who used different synthesis methods that seemed
complex and had low productivity. In this investigation. H;PO, (50%)
was loaded with HBr (48%), HCI (37%) and GeO, (99.999%) into a 250
ml beaker, and then heated to 95°C. The solution was vigorously mixed
for 5 hours and then cooled to room temperature. After the precipitates
were removed, CsCl (99,9%), CsBr (99.9%) and RbBr (99.8%) were
added separately and the lemperature was raised to the boiling point. The
mixture was then stood to cool to room temperature again. A light yellow

precipitate was formed. The reaction equations were as follows.

(1) Br’ is replaced by CI" in CGB: C-series
2(3x-1)HBr +6(1-x ) HCI + 2GeO, + H,PO, + 2CsBr =

343
ECSGE(Ber],_XL { +2H,0+H,PO, ; x = D,l,l,g,—,-—,—,é,]



(2) CI' is replaced by Br™ in CGC: B-series
6yHBr +2(2-3y JHCI +2GeO, + H,PO, + 2CsCl =

1123435
2CsGe(Br,Cl,, ) ¥ +2H,0+H,PO, ;y= e e
(3)

4HBr + H,PO, +2Ge0, + 2zRbBr + 2(1-z) CsBr =

2(Rb,Cs, , )GeBr, ¥ +2H,0 + H,PO, :z= 0,&,%,%,1

2.2 Refinement

Recrystallization: (Fig. 2-2) was - conducted bv mixing the
precipitates with 1:1 concentrated HX : alcohol solution to vield yellow
crystals of CsGe(Br.Cl,..): and (Rb,Cs; YGeBr;, This procedure was
performed seven times to ensure that no residual precursor remained.
Then, the crystals were dried at 85°C for 48 hours in a vacuum to prevent
deliquescence from any side effect. The crystals were then maintained at
20°C in a vacuum, The precipitated products can be changed from vellow

to white as soon as the substitutional ratio. x, fell from one to zero.

2.3 Measuring crystal characteristics
Rhombohedral crystals were synthesized and sieved into particles of

various sizes to analyze its structural and optical properties. The crystal

20



structures were observed using an X-ray diffractometer. A differential
scanning calorimeter (DSC) was employed to elucidate the thermal and
structural behaviors of crystals. The composition of all samples was
measured by electron-probe X-ray microanalysis (EPMA). Raman spectra
were used to determine the atomic vibration. The absorption edge was
measured using a UV-vis spectrometer. The optical transmission spectra
in the infrared region were obtained using a Fourier-transform infrared
spectrometer (FTIR). Linear optical properties were measured using an
ellipsometer. Nonlinear optical properties were determined by making.
powder second harmonic generation measurements. Figure 2-3 depicts

the measurement procedure, described above.

2.3.1 Composition measurement
The composition of specimens was determined using an electron
probe microanalyer (EPMA, JAX-8800, JEOL, Japan) with the aid of the

ZAF (atomic number, absorption and fluorescence) program.

2.3.2 Thermal analysis

The melting points and phase-transformed points were determined



using a Differential Scanning Calorimeter (Seiko SSC 5000-DSC) as the

temperature is increased at 5°C per minute in an atmosphere of Ny

2.3.3 X-ray powder diffraction

The phase and structures of as-fabricated crystals were analyzed
using an X-ray diffractometer (Rigaku, Dmmax-B, Tokyo, Japan), in both
the conventional 6-26 continuous and the fixed time scanning mode.

X-ray was generated using a Cu target operated at 40 KV and 30 mA.

2.3.4 Raman scattering measurements

The macro-Raman scatiering measurements were made using an
Ar-ion laser (Coherent INNOVA 90) as the excitation source, emitting at
a wavelength of 488 nm at 500 mW. The spectra were obtained at room
temperature. As displayed in Fig. 2-4, the incident beam was reflected at
45" from the samples that were mounted on the holder, to a spectrometer.
The laser beam was focused by a converging lens (f = 5 ¢m) with a beam
spot size with a diameter of ~ 30-50 um and a mean power of about 10
mW on the surface of the sample. The scattered light was collected using

backscattering geometry by a camera lens, and imaged onto the entrance



slit of the triplemate spectrometer (Spex 1877).

2.3.5 Transmission analysis

The transmission of crystals in the IR region was determined using a
Fourier - Transform Infrared Spectrometer (Bomem, DAS.3) from 100 to
4000 cm™ at room temperature, Crystals must be dried in a vacuum at
85°C for 48 hours, and then ‘ground. After pressing at 10° N for five

minutes, a crystal pellet was formed;

2.3.6 Absorption edge analysis
The absorption edge of the specimen was-measured using a Hitachi

U-3010 UV-vis spectrophotometer with an integral sphere from 200 nm

to 800 nm at room temperature,

2.3.7 Luminescence measurement

An He—Cd laser (A = 325 nm) was used as the excitation source in
measuring the continuous-wave (cw) photoluminescence (PL). Figure 2-5
schematically depicts the cw-PL system. The excitation laser beam was
directed normally and focused onto the sample surface as the power was

varied using an optical attenuator, The spot size on the sample was about
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100 pum. Spontaneous and stimulated emissions were collected by a fiber
bundle and coupled into a 0.32 em focal-length monochromator with a
1200 lines/mm grating, before being detected using a photomultiplier
tube (PMT) detector. The temperature-dependent PL. measurements were
made using a closed cycle cryogenic system. The closed cycle

refrigerator was used to set the temperature between 17 K and 293 K.

2.3.8 Second-order nonlinear optical measurement

Powder SHG measurements, as described by Chen ef al. [2-6], were
made on a modified Kurtz-NLO [2-7] system using 1260 nm light (Fig.
2-6). A CrF-Femtosecond laser was used to make all measurements. The
laser is self mode-locked by maintaining lasing longitudinal cavity modes
in phase to generate ultrashort near-transform-limited optical pulses with
durations of about 50 fs. The Cr'":Forsterite oscillator yields pulses with
a typical full-width-at-half maximum (FWHM) bandwidth of around 45
nm at a repetition rate of 76 MHz and a mean power of 270 mW. The
ultrashort pulse duration can yield an enormous peak power density after
focusing. The Cr'":Forsterite laser is pumped using a 7-8 W ytterbium-

doped fiber laser, Since the SHG efficiency of powders has been
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demonstrated to depend strongly on particle size [2-7, 2-8], crystals were
ground and sieved (Newark Wire Cloth Company) into six particle-size
ranges, 37 um, 37-74 ym, 74-105 gm, 105-210 um, 210-420 ym and
420-840 pm. Crystalline KDP was also ground and sieved into the same
particle-size ranges for comparison with known SHG materials. All of the
powders were placed in separate capillary tubes. The capillary was filled
with crystal powder. Although the powder was suspended in air in the
two extremities, the ‘compact part was used for nonlinear optical
characterization. The SHG radiation (630 am) was collected during
transmission and deiected by a photomultiplier tube (Oriel Instruments).
The SHG signal was collected using a data=acquisition {DAQ) interface

and was monitored by an analytical program on a personal computer.

2.3.9 Ellipsometric measurement
The dielectric constants and refractive indices of crystals were
measured using variable angle spectroscopic ellipsometer. The incident

angles were 65° and 75° from 200 nm to 1300 nm at room temperature,
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2.4 Analysis of component characteristics

Figures 2-7, 2-8 and 2-9 present the compositions of
CsGe(Br,.Cli)s (x = 0, 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6, 1) and
(RbyCs—,)GeBr; (y = 0, 1/4, 2/4, 3/4, 1) based on EPMA measurements,
These results reveal that these samples exhibit a Cs to Ge ratio of almost
1:1 (for CGBC) and a Ge to Br ratio of almost 1:3 (for RCGB). EPMA
measurement can qualitatively confirm that bromine atoms were
successfully doped in CsGeCl; crystals to form B-series crystals; chlorine
atoms were also successfully doped in CsGeBr; crystals to.form C-series
crystals; rubidium atoms were successfully doped in CsGeBry crystals.

The impurity contents were all less than 1% {Oya <0.57%. P <0.61%).

2.5 Analysis of thermal characteristics

DSC was conducted to determine the melting and phase-transformed
temperatures of CsGe(Br,Cly_,);. The analysis was performed on
polycrystalline CsGe(Br,Cl,-); in Ny, atmosphere at a heating rate of
5/ uin t0 450°C using a Seiko SSC5000 DSC. The results, presented in
Fig. 2-10, reveal that the phase-changed temperatures of CsGeCl; and

CsGeBr; were similar to those reported by Thiele et al. [2-9, 2-10). Since



the molecular weight of CsGe(Br,Cl,-,); increases with the Br content,
the attraction between CsGe(Br,Cl,-,); and its outside electrons becomes
stronger. Therefore, T. (the Curie temperature) and T, (melting
temperature) of CsGe(Br,Cl,.,); crystals increase with Br content. In
summary, the NLO CsGe(Br,Cl,-,); crystals could be properly operated
at 255.2°C, 253.1 °C, 250.6°C, 250.5 °C, 239.1°C, 227.3°C; 2155 °C,
206.2°C and 154.1 °C for x=1, 5/6, 3/4, 4/6, 3/6, 2/6, 1/4, 1/6 and 0,

respectively.



2.6 Tables and Figures

Stage 1: Synthesis (A = Cs, Rb; B = Ge; X = Cl, Br)
‘ H,PO, + 4HX + 2BO, + 2AX > H,PO, + 2H,0 + 2ABX,

+
-
+ -
+

"
+
,

Fig. 2-1 The procedure of synthesizing raw rhombohedral nonlinear
optical crystals ABX.



Fig. 2-2 The procedure of recrystallizing rhombohedral nonlinear optical

crystals ABX;.
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Fig. 2-3 The analyzing procedures.
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Fig.2-4 The scheme of the Raman system.
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Fig.2-5 The scheme of the PL system (optical pumping system).
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Chapter 3 Structural Properties

3.1 X-ray diffraction analysis
3.1.1 Theory [3-1, 3-2]

The peaks in an X-ray diffraction pattern are directly related to the
atomic distances. Consider an incident monochromatic X-ray beam’s
interacting with the atoms arranged in a periodic manner, as presented in
two dimensions in Fig. 3-1. The atoms, represented as ¢ircles in the graph,
form different sets .of planes in the erystal. For a given set of lattice
planes with an inter<plane distance of d, the condition for a diffraction
(peak) to occur can be simply expressed as

2dsin B = ni (3-1)
which is known as Bragg's law. In this equation, ) denotes the
wavelength of the X-ray: 0 is the diffraction angle, and » is an integer that
represents the order of the diffraction peak.

A set of reciprocal vectors by, by, b; are defined in terms of the

crystal axes a, as, as:

= dxxdsy = dyxdy g aypxa;
bI=T, =" =y hi- {3'2-}
dyed:xXd; dyeid Xy el Xd;

Each reciprocal vector is perpendicular to the plane that is defined by the
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two crystal axes that have different indices. The scalar products specify
and important relationship between the two sets of vectors. If the indices

are the same,

B drxds
aisbi=apy—F—7=1
disdz Xz

If the indices are different,

- =~ ayxa
ﬂ:'ﬂjﬂf'%#
L R A
since the vector as;xa, is perpendicular to & .such that the scalar
product of a, and  asxa; involves cos90%, These .results can be

generalized by writing

—
m'b_f {ﬂ-hﬁj {3'3]

The relations expressed as Eq. (3-3) are the normal and orthogonal
conditions between the primary and reciprocal vectors. Considerable use
of these relations shall be made.

A vector Huw is defined in terms of the reciprocal vectors and the
Miller indices:

H s =hb,+kb;+bs (3-4)

From Fig. 3-2, (E,xﬂr-i,-ﬂr] and [&;m-&;ﬂ] are vectors that are
parallel to the Akl-planes, However, from the relations expressed by Eq.

(3'3)1

kL



fom ey . -
08 i wae{ 522 ) -11-0.

f o= -y - -
dr O |35 o %2 83002 2% iat Vai
hT.T}-Hw-[# f}{#ﬁ;ﬂb:ﬂb;) 1-1=0 .

Therefore, the vector Huw is perpendicular to the set of hki-planes, since

it is perpendicular to two vectors that are parallel to the planes. The

spacing between the planes 4,, is the perpendicular distance between

the planes. If » is a unit vector that is perpendicular to the planes, Fig,

3-2 indicates that

b

m‘:]

d’m-ET‘cmf= %-;l

Since Haw is perpendicularito the #k/-planes, a unit vector n can be
expressed as ﬁwfifiml. Hence, the spacing is

a [#;JﬂSz'H'EJ) 2

i el o
le

M L
J

" }}.ﬁ”[

The value of the planar spacing d4,, must be known to apply the
Bragg law ( A=2d,,sin@ ). Based on the assumption that the lengths of the
three crystal axes and the angles between them are known, the spacing
can be expressed in the form

dw#(ﬁ,. @z, Uiy @y &y, &y, ﬁ,k,f.).

The obvious starting point is to write



I — Fy - = - - - -
% |Hm| —(hb;ﬂb;ﬂb;]-(hb;ﬂb;ﬂb;),
%%)E; 'E‘}"'*JEJ -3; +* 31 -3: +2ﬁk31'3: +2ﬂ5: '33 +Jﬂr33 *E: :
ikl

Using Eq. (3-2) and factoring out v, = a;+a;xa;, yields

I 1 |"4"“J| + |"’”*| TE |"’“’| (3-3)

7 I 2k (azxa: o a ,uu.)m.-.'( ,m,]-(mxi,]um(émi,]-(hxE,)

From the equations of vector analysis

- - o

(mxa;] a;me=ﬂ.-n;a,-m m-ﬂ.::}-am,m {cma c-mcx#-cmaa]

- i) [ e AR
|£nxa; Sdiajsin @,

Using these relations and factoring out ardra yields

=]=2w=]

Wsin'a,, Ksin'a, Usin'a, ik
2y : Al 4 iy {m:.lmm_”—l}ﬂiﬂ”)

I _aasa; & a: P ILE (3-6)
du W |, 2
=—(cosa, cosa, -cosa, )+—{_nmr cosa, ~cosety, )
=1 aa;

The square of the triple scalar product is conveniently expressed in

determinant form in terms of simple scalar produets:
@e@; @@z apeas
=2 - — = 2 [ = =5 == — -
Vg = (ﬂ}'ﬂ: Nﬂ:) Sldzed; Gav@: da+az|,

di=d; dj*d: ai*d;z

-3 =F=J=]

Ve = d10:0; [J+2 COS &, COS &y, COS Ay, = COS” &, =008" @, OS5 a_,,) (3-7)

To enable those to be written in the usual crystallographic notation, let

Combining Eqgs. (3-6) and (3-7) and switching to the usual
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crystallographic notation,

1 1
a (1+ 2cosacos ficosy-cos’a-cos’ f-cos’ y)

¥
h"s_u‘: a  k'sin’ g1 sm" ¥ i:h: (sossannfioiss)

a b c

=

2kl
- E—_(mvﬁ-m.?y-m.m} + ﬂ (cosycosa-cos B)
I ac

(3-8)

Equation (3-8) is the spacing formula for the general triclinic crystal. The

formula simplifies significantly for the other systems.

For a rhombohedral structure, a=b=c¢ and a=g=y. Accordingly,

Eq. (3-8) reduces 1o

1 (A ¥ +F}3fn:a +2(hk + ki +ih) (vms‘?a-«mm)

dc. a’ (1+ 2e08’ u=3cos’a )
In Bragg's law (A=2d,,sinf), 2, =1.5418 4,

(56 sinfl, Y= (h* +k* +*)sin’ & + 2(hk + kI = Ih)(cos’a-coser )

0.7709 a’ (1+2cos’'a-3cos’ )

The rhombohedral cell volume is also determined:

V =a’J1+2cos’a-3cos’ @

3.1.2 Discussion

(3-9)

(3-10)

X-ray diffraction (XRD) was utilized to determine the structural

parameters of all the crystals CsGe(Br,Cl,-,); and (Rb,Cs,-,)GeBr;. The

synthesized crystals were crushed, ground and

sieved. X-ray



diffractograms were obtained at room temperature using Cu—K, radiation
with Siemens D3000 equipment. An extra CsCl crystal was used as an
internal standard to determine the lattice parameters. The measured
pattern was indexed and analyzed, as in the full-profile Rieltvelt
refinement, using the non-profited program PowderCell [3-3], which was
developed by W. Kraus and G. Nolze. The structural parameters of
CsGe(Br,Cl;-s); and (Rb,Csy-,)GeBr; were compared with those of
CsGeCl;(R3m, No.160), CsGeBr:(R3m, No.i60) and RbGeBry(Pn2la,
No.33) which have been presented in JCPDS [3-4, 3-5. 3-6, 3-7, 3-8]. The
peak-splitting caused by structural non-centrosymmetry, occurs mainly
from 26=15 to 35 (Figs. 3-3 and 3-4). The X-ray diffraction peaks
shifted gradually as the substitute composition changed (Fig. 3-3).
Certain strong diffraction peaks were observed at 20=31.76", 27.66,
2686, 22.60, 22.10, 15.76 in CsGeBr;. These diffraction patterns
were compared with those with JCPDS and were indexed as (200), (1l1),
(111y, (10y, (110) and (100) planes, respectively. They were also
verified that CsGe(Br,Cl,_); (x=0, 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6, 1) and
(Rb,Cs-y)GeBr; (y=0, 1/4, 2/4, 3/4) are crystallized in the

non-centrosymmetric rhombohedral space group R3m. The splitting

43



differences between (111) and (111) and between (110) and (110)
decline as the Br content decreases in CsGe(Br,Cl-,)s.

In an ideal perovskite structure, the cell parameters were a=b=c¢
and a=pf=y=90" with cubic space group Pm—3m (No. 221). Examples
are the high-temperature phase of cubic CsGeCl: and CsGeBr: [3-4, 3-5,
3-6, 3-7, 3-8]: the cell parameters of cubic CsGeBr; are a=b=c= 15362
A and a=8=y=90 ,.The cell edges of rhombohedral
(room-temperature phase) CsGeBr; were longer than those of cubic
(high-temperature) phase (Fig. 3-6). and the cell angles of rhombohedral
(room-temperature phase) CsGeBr; were slightly smaller than 90 (Fig.
3-7). The structural distortion contributes to the optical nonlinearity of
CsGeBr;. Structural parameters obtained from Figs. 3-6, 3-7 and 3-8
revealed that the lattice constant (or cell volume) increased with Br
content while the cell angle became smaller. Accordingly, the structural
distortion of CsGe(Br,Cl,—,): (R3m) increases with Br content. In contrast,
Figs. 3-9 and 3-10 indicate that the lattice constant (or cell volume)
became smaller as the Rb content increased, while the cell angle became
larger. Hence, the structure of (Rb,Cs,)GeBr; gradually becomes

centro-symmetric as Rb content increases.



3.2 Theoretical methods for designing materials from
NLO crystals
3.2.1 Theory |3-9, 3-10, 3-11, 3-12, 3-13, 3-14]

Over the last few years, first-principles calculations based on
Kohn-Sham (KS) density functional theory [3-9] have attracted enormous
interest among solid-state physicists and chemists. This investigation
utilizes a package, which was developed by the theoretical group led by
Professor M. C. Payne [3-10] of Cambridge University, U.K.. This
program (hereafter called the Cambridge Sequential Total Energy
Package, CASTEP) is used to perform total energy pseudo-potential
calculations to solve KS equations concerning the electronic states of
systems that contain arbitrary arrangements of atoms. These calculations
yield the ground state energy and charge density of the system, enabling
any physical quantity related to total energies (such as lattice constants,
elastic constants, molecular geometries and others) to be computed. The
only input to the calculations is the atomic number of each constituent
atomic species. Ionic potentials are replaced with pseudo-potentials. The
electronic wavefunctions are expanded in terms of a plane wave basis set

and the electron-electron interactions are considered through the use of
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density functional theory [3-11]. The use of pseudo-potentials
significantly reduces the calculation burden for large numbers of plane
waves. Two direct methods are usually adopted to calculate the KS
ground-state total energy: (1) direct determination of the minimum of the
KS total-energy functional, proposed by Car and Parrinello [3-12]; (2) an
iterative approach to the diagonalization of the KS Hamiltonian in
conjunction with iterative improvement of the charge density or the
potential self-consistently [3-10]. Both methods have been implemented
using the CASTEP package.

CASTEP uses preconditioned conjugate gradient approaches [3-10]
to relax the electronic configuration to-its ground state. Moreover, it
employs fast Fourier transforms to reduce the computational cost and
memory required to calculate Hamiltonian product that acts on the
electronic wavefunctions. The integration over the Brillouin zone (BZ) is
further reduced to a summation over a finite number of k-points by a
special k-points sampling technique that was developed by Monkhorst
and Pack [3-13]. In this pseudo-potential-plane wave calculation scheme,
two parameters typically used to control the convergence are the kinetic

energy cutoff of the plane waves basis set E,,, and the number of special k



points in the Brillouin-zone integration Ny,. The combination of the
above concepts is crucial to the efficiency of modern total energy
pseudo-potential calculations.

The structural stability and bulk modulus of a new material can be
predicted quite accurately based on a calculation of ground state total
energy. The calculation proceeds as follows.

(1) First, the cell volumeis isotropically varicd and the internal
coordinates relaxed to minimize the total energy and the stress for a given
cell volume.

(2) The obtained total energy versus cell volume E,(v) is called the
equation of state (EOS) of a solid.

(3) Fit the calculated E,.(v) to the following equation [3-14];

B, (v) = eyt 11
B, v (B,-1)

+ 1]+ constant
with B, and By' as the free parameters. Here, B; and By = dBﬁfdPl,,_ are
the bulk modulus and its derivative with respect to pressure in

equilibrium geometry.

3.2.2 Discussion

Figures 3-11 through 3-19 present the unit cell of constituent atoms
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that are input to the calculation. Figures 3-20 through 3-28 display the
results of the corresponding simulations. Figures 3-20 and 3-28
demonstrate that the diffraction peaks from the JCPDS database and the
calculations are all identical to those obtained experimentally. Hence, the
simulation was successfully. Since JCPDS includes no information on
CsGe(Br,Cl ) for x = 1/6 ~ 5/6. the results of the simulation are
compared to the experimental résults. According to Figs. 3-21 to 3-27, the
location of the simulated diffraction peaks are identical to those of the
experimental diffraction peaks (including the C-series and the B-series),
revealing that the amion of CsGe(BryCly.): is substituted 'well, and the
crystals are in solid solution. The difference between the intensities of a
particular diffraction peak arises from the faét that ecach crystal is
assumed to be large, perfect and single in the simulation, so the
diffraction intensity is high: however, the experimental specimens are
polycrystalline crystals and the destructive interference that comes from

various crystal boundaries reduces the diffraction intensity.
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3.3 Raman scattering analysis
3.3.1 Theory [3-15, 3-17, 3-23]

The classical description of the Raman effect treats a scattering
molecule as a collection of atoms that undergo simple harmonic
vibrations and the quantization of the vibrational energy is neglected.

When a molecule is placed in an electric field, its electrons are

displaced relative to its nuglei, producing an electric dipole moment. In

small fields, the induced dipole moment w is proportional to the field
strength &.
M= aE (3-11)

The coefficient of proportionality « is the polarizability of the molecule
with which the electron cloud of the moleeule can be distorted. A
fluctuating electric field can generate a fluctuating dipole moment of the
same frequency. An electric field which generated electromagnetic
radiation can be expressed as,

& = &'cos2miv, (3-12)
where ¢" is the equilibrium field strength and v, is the angular
frequency of the radiation. Therefore, electromagnetic radiation can

induce a fluctuating dipole of frequency v, in the molecule. This
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induced dipole will emit or scatter radiation of frequency v,. This
process is called Rayleigh scattering.
Consider a diatomic molecule that vibrates with a frequency of v,.
If it undergoes simple harmonic vibrations, then a coordinate ¢, along
the axis of vibration at time 1, is
g, = q,cos27vt (3-13)
If the polarizability varies.during the vibration. .its value for a small

vibrational amplitude will be

B!
a:aﬁ+[ﬁ| s (3-14)
v.o
Substituting Eq. (3-13) into Eq. (3-14) yields
&+ [fa | g,cos2av 1 (3-15)

<L
L8 v /g

If the incident radiation of frequency v, interacts with the molecule, then
according to Egs. (3-11) and (3-12).
= ae = as'cos2nv,i (3-16)

Substituting Eq. (3-15) into Eq. (3-16) yields
H = txﬂﬂm‘szﬂvg*[%] 8" q,cos2v t cos2av,t

v S0

which can be rewritten as
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M= af”F‘”cmE;rvﬂf—{jTal %:-t[mr?n‘{vuw,}ﬁmszﬁ[vﬁ-ﬁ]J] (3-17)

The first term in Eq. (3-17) specifies the Rayleigh scattering and the
remaining terms describe the Stokes and the anti-Stokes Raman scattering.
Equation (3-17) indicates that light is scattered with frequencies,

v, = Rayleigh scatter
and
v,tv, = Raman scatter

Accordinglly, Eq. (3-17) demonstrates that for Raman scattering to occur,

[5_“_) <0 (3-18)

ol

such that the polarizability of the molecule must vary during the vibration
if that vibration is to be Raman active.

The quantum theory approach to Raman scattering acknowledges
that the vibrational energy of a molecule is quantized. A non-linear
molecule will undergo 3N-6 normal vibrations and a linear molecule will
have 3N-5, where N represents the number of atoms in the molecule. The
energy of each of these vibrations will be quantized according to the
relationship,

E =hv(n+1/2) (3-19)
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where v is the frequency of the vibration and n is the vibrational quantum
number that controls the energy of that particular vibration and takes
values 0, 1, 2, 3, .... . Perturbation theory is applied to introduce
quantization into Raman scattering theory. For simplicity, this approach
applies perturbations to the ground state molecular wavefunctions until
new wavefunctions are obtained which describe the vibrational excited
state. The transition from the ground state can then be regarded as have
been achieved by perturbing a wavefunction by the sum of the applied
perturbations. This perturbed wavefunction has a corréspending energy
and provides a useful visual description of Raman scattering as the
vibrational transitions occur via this virtual energy level (Fig. 3-29).
Rayleigh scattering arises from transitions that start and finish at the
same vibrational energy level. Stokes Raman scattering arises from
transitions that start in the ground state and end at a higher vibrational
energy level, whereas anti-Stokes Raman scattering involves a transition
from higher to lower vibrational energy. At room temperature, most
molecular vibrations are in the ground n = 0 state and anti-Stokes
transitions are therefore less likely to occur than the Stokes transitions,

such that the Stokes Raman scattering is more intense. This difference in



intensity becomes greater as the energy of the vibrations increases and the
higher vibrational energy levels become less populated at a particular
temperature. Consequently, the Stokes Raman scattering is usually

studied when Raman spectroscopy is considered.

3.3.2 Vibration modes [3-15, 3-16, 3-17, 3-18, 3-19, 3-20,
3-21]

Perovskite (ABX;) has four types of erystal structures, as cubic (O,),
tetragonal (C, ), orthorhombic (C, ) and trigonal (C, ) symmetries (Fig.
3-30). Each ABX; unit cell consists of five atoms, such that the cell has
15 degrees of freedom (Table 3-1). Three degrees of freedom are
associated with the translation. motion of the unit cell; another three
concern the torsional motion of the unit cell, and the others concern the
vibrational motion. Three of the vibrational motion modes involved
A<—> BX,; vibration, and the others were caused by BX; inner vibration.

If BX; is regarded as a single atom at a B-site, the A<—> BX,
vibration can be simplified as a double-atom-vibration, such as of CsCl.
When the phase exhibits perfect cubic symmetry, the vibration is triply

degenerate vibration since a=b=c. In the perovskite structure, the B
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atom is surrounded by six X atoms. The cubic symmetry (O, point group)
has six optical modes — A,,, E,, Fy,, Fy,, F3, and F,,. The F, mode is
silent and the F,, modes are only infrared active, so no Raman activity
occurs in the phase with perfect cubic symmetry.

Figure 3-31 has two F;, modes. The B-X bond defined the direction
of the z-axis; two X atoms on the z-axis were labeled O,, while the others
in the x-y plane were named ;. The vibration in Fig. 3-31(a) was
stretching, while that in Fig. 3-31(b) was bending. Both were triply
degenerate vibrations since a=b=¢ (cubic). When the cubic perovskite
structure is transformed into a less symmetrical one, these vibration
modes are split (Table 3-2). In tetragonal symmetry (C,.). the length of
the B-O, bond differs from that of the B-O; bond. Hence. each of the F,,
modes splits into a doubly degenerate E (from the xy plane) mode and a
nondegenerate A, (from the z axis) mode, and the F;, mode splits into E
and B; modes. All of the A, and E modes are both Raman and infrared
active while the B; mode is only Raman active. When the structure is
transformed from tetragonally symmetric to orthorhombically (C, )
symmetric, the E mode splits into two nondegenerate B, and B, modes.

However, the E mode, which came from the F,, mode, splits into two
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nondegenerate A, and A; modes, because the tetragonal (C, ) axis angle
differs from the orthorhombic axis angle (C, ). From group theory, the
vibration modes associated with triagonal (C,) and tetragonal (C,)
symmetries are identical. The A; mode is silent and the B, mode is only

Raman-active.

3.3.3 Discussion

For the Raman scattering measurements, the CsGe(Br,Cl;—); and
(Rb,Cs)—,)GeBr; samples were illuminated at room temperature using an
argon ion laser at 488 nm with an average power of 30 mW. Figures 3-32
and 3-33 plot the results. The Raman peaks were shifted with the Br
content, consistent with the fact that the phonon frequency is inversely
proportional to the square root of the mass of GeX; (X = Cl, Br). The
results of peak-fitting (Figs. 3-34 through 3-37) agree well with the
Raman spectra of CGC and CGB [3-6, 3-22]. Tables 3-3 through 3-5
summarize the results. The strongest Raman (column “vs peak™) are
attributed to the A, mode. Raman peaks from 262 em ' to 292 cm™
(column "w; peak™) are also associated with the A, mode. Another group

of Raman peaks (from 159 cm ' to 165 em™' (column /s peak™)) can be
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attributed to the E mode. The other group of Raman peaks (from 209
em™ to 237 em™' (column s, peak™)) is associated with the A,+E mode
and the A; mode for CsGe(Br,Cl,-,); and (Rb,Cs,_,)GeBr;, respectively.
Raman peaks of CGB at 419.21 cm™' and 209.79 cm™ are associated with
the corresponding (50.5 cm™') overtones. Raman peaks of CGC at 236.98
em ' can be assigned to the corresponding (58.5 cm™') overtone.
Accordingly, column s, peak” and column "w; peak™ are associated with
the corresponding (column “w; peak™) overtones (Figs. 3-38 and 3-39).
However, column "w; peak™ is assigned to the corresponding (column s,
peak™) overtone for (Rb,Cs, -, )GeBr: (Fig. 3-40).

From Figs. 3-38"to 3-40 and Tables 3-3 to 3-3, columns "m, s,, vs, [s,
w; peak” are associated with the anion substitution. Column “Is peak” is
associated with bromine atoms while column “w: peak™ relates to only
chlorine atoms. Columns “m, s;, vs peak™ are related to Ge—X; bonds.
This result is consistent with the effective-mass concept: the oscillation
frequency is expected to increase as the Br content declines because the
Br atom is heavier than Cl. Columns "w,, s w; peak™ are associated with
the oscillation between Cs* and Ge(BrCl, ), because they are less

influenced by the anion substitution. In column “s; peak™, Raman signals
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were changed from the anion vibration A;+E modes to the cation
vibration A, modes, indicating that the relative vibration between Cs'

and the anion cluster Ge(BrCl,); was transformed to the doubly

degenerate vibration of Ge—Br bonds.
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3.4 Tables and Figures

Table 3-1 The vibration modes of cubic ABO; structure [3-15~20].

ABO;
(15 freedoms)

| =

translation motion torsional metion vibration
(3 freedoms) (3 freedoms) (9 freedoms)
F:l.l
| I—"I
A<->BO: BO,
(3 freedoms) Fu inner vibration

(6 freedoms)

1l I 1

Strengthing vibration Bending vibration
(3 freedoms) F,u (3 freedoms)
F.u

58



Table 3-2 The structures of perovskite and their vibration modes

[3-15~20].
Structure point group Vibration modes
cubic Oy . Fi '. Fa,
S I F A
7 " ; 5
g % | %
tetragonal Ca Ay E B, E
i EaY
7Y I
orthorhombic s, A B, ?3 B, ‘*:;l A,
i H'-: , t": "'s .":.
trigonal Cs, Ay E A, E
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Table 3-3 The Raman spectra comparison for the ternary halides
CsGe(Br,Cl,,); (B-series). The descriptions of the peaks are: “ws” = very

strong, “s” = strong, “/s” = less strong, “m™ = middle, and “w" = weak.

The unit of these Raman peaks was labeled as em™.

Specimens W m 5 Vs Is 82 W W
symmetry overtone dy i B Ay overtone
y=1.00 49 77 91 139 160 210 Ref.[3-6,3-22]
y=1.00 50.50 78.50 93.99 14031 159.88 209.79 = — 419.21
y=0.86 51.99 B1.71 9441 141.88 16222 210.57 264.10 419.51
y=0.78 52.11 82.57 94.78 141.8R 16222 211.12 264.10 419.97
y=0.70 52.78 B3.18 9557 14266 163.00 211.69 26333 420.67
y=0.52 53.10 83.76". 96.35. 145.01 ' 164.57 212.12. 264.88 420.74
y=0.35 5457 R9.27 10264 152.05 212.35 265.65 421.54
y =027 5486  90.77 10538 155.58 - 21254 27230 422.64
y=0.19 5536 91.63 107.36 715831 | = 230,36 273.78 —
m W m Vs Is s
symmetry A, E A,
y=0.00 5850 121.49 146.58 202.79 — 236,98 291.15 —
y = 0.00 37 120 145 200 — 237 290 Ref.[3-6,3-22]




Table 3-4 The Raman spectra comparison for the ternary halides

CsGe(Br,Cl,.,)s (C-series). The descriptions of the peaks are: “ws™ = very

strong, “s™ = strong, “Is” = less strong, “m"” = middle, and “w" = weak.

The unit of these Raman peaks was labeled as cm™.

Specimens W) m 5/ Vs ls 83 W3 W3

symmetry overfone Ay E A overtone
x=1.00 49 T 91 139 160 210 —  Ref[3-6,3-22]
x=1.00 50.50 78.50° 93.99 14031 159.88 209.79  — 419.21
x=0382 5148 B1.39 9429 14109 16144 21035 262.56 420.34
x=0.79 5232 8297 9478 142.,66:"163.00 211.25 264.10 421.27
x=0.68 53.14  B3.69 9557 14344 16300 21247 264.10 421.83
x =051 5394 B4.18 95,57 14423 16378 212.90 2064.10 421.50
x=0.35 54.57  90.06 V HR.64° §5205 T —""21212" 265.65 422.02
x=0.26 5508 9127 1343 152.84 212.58 268.48 423.37
x=0.18 56.13  93.21 109778 [¥60:66 a1 229.39 27545 -

m W m v [s s

symmetry A; E Ay
x=0.00 5850 12149 146.58 20279 — 23698 291.15 —
x=0.00 57 120 145 200 — 237 290 Ref.[3-6,3-22]
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Table 3-5 The Raman spectra comparison for the ternary halides
CsGe(Br,Cly.,): and (Rb,Cs,.,)GeBr;. The descriptions of the peaks are:

“ys™ = very strong, “'s” = strong, “/s" = less strong, “m” = middle, and

“w” = weak. The unit of these Raman peaks was labeled as cm™.

Specimens m W m Vs Is §
x=000 57 120 145 200(4;) — . 237(E) 280(4;) Ref[3-6,3-22]
x=0.00 5850 12149 146,58 20279 = - 236.98 291.15
W, m 5 Vs Is s -, Wi

x=027 5486 90.77 10538 QAS3SR— 212,54 272.50 422.64
x=0.52 53.10 83.76 9635 (14501 16457 -212.12 264.88 420.74
x=078 5211 8257 9478 14188 162.22 21142 ¥ 264.10 419.97
x=1.00 5050 7850 9399 14031 159.88 209.79 — 419.21
x=1.00 49 77 91  139(4;) 160(E) 210(4,) —  Ref[3-6,3-22]
z2=026 — — 9233 13943 16038 209.6] 418.09
z=052 — — 9242 13829 15933 207.77 — 416.49
z=077 — — 9236 13921 160.37 209.80 — 418.07
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Fig. 3-1 X-ray diffraction from 2-dimensional periodie lattices [3-2].
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Fig. 3-2 Representation of the crystallographic planes Akl [3-2].
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Fig. 3-3 The X-ray powder diffraction results for nonlinear optical
crystals CsGe(Br,Cl,.,)s.
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Fig. 3-4 The X-ray powder diffraction results for nonlinear optical

crystals CsGe(Br,Cl,.,); and (Rb,Cs,.,)GeBrs;.
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Fig. 3-5 The X-ray diffraction angle of CsGe(Br,Cl,..); determined by
experiment and simulation.
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Fig. 3-6 The lattice constant of CsGe(Br,Cl,.,); unit cell determined by

experiment and simulation.
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Fig. 3-7 The cell angle of CsGe(Br,Cl,,): unit cell determined by

experiment and simulation.
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Fig. 3-8 The cell volume of CsGe(Br,Cl,.,); unit cell determined by

experiment and simulation.
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Fig. 3-9 Structural parameters of the NLO crystals CsGe(Br,Cl;.,); and

(Rb,Cs;., )GeBr;.
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Fig. 3-11 The unit cell of constituent atoms that are input to the

calculation for CsGeCls.

CsGeCl, (JCPDS) |
:E'

e |

‘E- i , . I | l TN

m 'l o i S i

- (exp.)
B

th

=

£

'E _._.l_A_Jl R -_—
2

phar]

[&

B

=

(calc.)
e N

Diffraction angle 260 (deg)

Fig. 3-20 The X-ray diffraction results for CsGeCl; determined by

experiment and simulation.
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Fig. 3-12 The unit cell of constituent atoms that are input to the

calculation for CsGe(Br;sClss)s
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Diffraction angle 26 (deg)

Fig. 3-21 The X-ray diffraction results for CsGe(Br;sClss); determined

by experiment and simulation,
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Fig. 3-13 The unit cell of constituent atoms that are input to the

calculation for CsGe(Br;4Clsy)s.
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L S

Diffraction angle 26 (deg)

Fig. 3-22 The X-ray diffraction results for CsGe(Br;,4Clsy4); determined

by experiment and simulation.
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Fig. 3-14 The unit cell of constituent atoms that are input to the

calculation for CsGe(BrysClyg)s-
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Fig. 3-23 The X-ray diffraction results for CsGe(BrysClys)s determined

by experiment and simulation.
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Fig. 3-15 The unit cell of constituent atoms that are input to the

calculation for CsGe(Brs;Cls)s
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Fig. 3-24 The X-ray diffraction results for CsGe(BrisClsis); determined

by experiment and simulation.

76



T‘\ (hk)|(200) | @ny 1) (100)

C46 20 [31.86{27.71R6.91[22.6522.16]15.82]
B46 20 [32.01{27.8627.06[22.80122.30]1 5.98]
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Fig. 3-25 The X-ray diffraction results for CsGe(BrysClys); determined

by experiment and simulation.
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Fig. 3-17 The unit cell of constituent atoms that are input to the

calculation for CsGe(Br;Cly¢)s.
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Fig. 3-26 The X-ray diffraction results for CsGe(Br:,4Cl,4); determined
by experiment and simulation.
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Fig. 3-27 The X-ray diffraction results for CsGe(BrssCl): determined

by experiment and simulation.
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Fig. 3-28 The X-ray diffraction results for CsGeBr; determined by

experiment and simulation.
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Fig. 3-29 Idealised model of Rayleigh scattering and Stokes and
anti-Stokes Raman scattering [3-15].
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Fig. 3-30 The point groups and symmetry axes of perovskite [3-17]



(a) (b)

Fig. 3-31 The vibration modes of octahedral structure. (a) Strengthing

vibration, (b) Bending vibration [3-23].
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Fig. 3-32 The Raman spectrum of CsGe(Br,Cl;.,); (R3m) crystals at room

temperature.
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Fig, 3-33 The Raman spectrum of CsGe(Br,Cl,.,); and (Rb,Cs,.,)GeBr;

crystals at room temperature.
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Fig. 3-34 The peak-splitting of CsGeCl; (R3m) Raman spectrum.
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Fig. 3-35 The peak-splitting of CsGe(Br:4Clyg): (B-series) Raman

spectrum,
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Fig. 3-36 The peak-splitting of CsGe(BrysClsg): (C-series) Raman
spectrum.
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Fig. 3-37 The peak-splitting of CsGeBr; (R3m) Raman spectrum.
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Fig. 3-38 The Raman vibrational modes of CsGe(Br,Cl,.,); (B-series) crystals at

room temperature.

89



R S : :

overtone
HE B BHEHE #
E
3 V 4 mode
E a0l VAERAVSY |
K — e 9 A +E mode
g IO DD & D@ @
(C A mode £ mode
§ o oo H 88 B8
¢ 2044 04 4
overtone .A .A* *
. _6 . 510 . 100
Br composition (mol%)
Fig. 3-39 The Raman vibrational modes of CsGe(Br.Cl,.,); (C-series)
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Fig. 3-40 The Raman vibrational modes of CsGe(Br.Cl,.); and

(Rb,Cs,.,)GeBr; crystals at room temperature.
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Chapter 4 Transparency Characteristics

4.1 UV-visible spectra
4.1.1 Theory [4-1, 4-2, 4-4, 4-5]
The absorption of ultraviolet or visible radiation is generally caused

by the excitation of bonding electrons. The optical absorption coefficient

a is determined by the quanium mechanical transition rate W _, in the

=

excitation of an electron in an initial quantum state ¢ _to a final state
w, by the absorption of a photon of angular frequency @. Our goal is
therefore to calculate W ,,, and thus to derive the dependence of a on

frequency. Fermi's golden rule yields the transition rate:

-

H.I:-tf

zf%"' M

H

g(hw) (4-1)
The transition rate thus depends on two factors — the matrix element M,
and the density of states g(hw).

In the following discussion, the matrix element is considered first,
and then g(hw) is considered. The matrix element specifies the effect of
the external perturbation that is caused by the incidence of the light wave

on the electrons. It is given by

M

L

(7|H]i)= v 0H e, (rd’r (4-2)
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where H is the perturbation that is caused by the light wave, and r is the
position vector of the electron. This study utilizes the semi-classical
approach in which the electrons are treated quantum mechanically, but
the photons are described by electromagnetic waves.

In classical electromagnetism, the presence of a perturbing electric
field = causes a shift in the energy of a charged particle of —pe¢, where
p is the dipole moment of the particle. The quantum perturbation that
describes the electric dipele interaction between light and the electron is
therefore,

H' =P, & thoin (4-3)
where p, is the cleetron dipolé moment and equals —e.r. The light
wave 18 described by plane waves of the form

E )BT (4-4)
where the sign in the phase depends on the direction of propagation of the
wave. The perturbation is thus

H'(r)=eg, ore*™ (4-5)
Bloch functions describe the electron states in a crystalline solid. Hence,
the wave functions can be written as a product of a plane wave and an

envelope function that has the periodicity of a crystal lattice. Therefore,



mﬁ=#uf (P (4-6)
)= (e (4-7)
where w; and uy are the appropriate envelope functions for the initial and
final bands respectively, and ¥ is the normalization volume. k; and &, are
the wave number of the initial and final electron states.
Substituting the perturbed Eq. 4-5 and the wave functions in Egs.
4-6 and 4-7 into Eq. 4-2 yields,

M =:i [, (r)e M Gere Yu (P (4-8)
where the limits of the integration are over the whole crystal. This
integral can be simplified by applying conservation of momentum and
Bloch's theorem. Conservation of momentum requires that the change in
the crystal momentum of the electron must equal the momentum of the
photon:

hk, - hk, = +hk (4-9)
This criterion is equivalent to requiring that the phase factor in Eq. 4-8 is
zero. If the phase factor is not zero, the different unit cells within the
crystal will be out of phase with each other and the integral equal to zero.
Bloch's theorem requires that u; and u, are periodic functions with the

same periodicity as the lattice.
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These two considerations imply that the integral over the whole
crystal can be separated into a sum over identical unit cells, because the
unit cells are equivalent and in phase. Therefore,

| M| e L mﬂu"{;}xu!(rz}dlr (4-10)
where the axes are defined such that the light is polarized along the x axis.
This matrix element represents the electric dipole moment of the
transition. Its evaluation depends on knowledge of the envelope functions
w; and u; These functions are derived from the atomic orbitals of the
constituent atoms, and so each component must be considered separately.

The conservation of momentum condition in Eg.  4-9 can be
simplified further by considering the magnitude of the wave vectors of
the electrons and photons. The wave vector of the photon is 2n/A, where A
is the wavelength of the light. Photons of optical frequency therefore have
k values of about 10" m™. The wave vectors of the electrons, however, are
much larger, because the electron wave vector is related to the size of the
Brillouin zone, which equals »/a, where « is the unit cell dimension.
Since a ~ 10" m, the photon wave vector is much smaller than the
Brillouin zone. Hence, the photon momentum in Eq. 4-9 is negligible in

relation to the electron momentum, and



k=4 (4-11)
A direct optical transition therefore causes a negligible change in the
wave vector of the electron so the absorption processes are represented by
vertical arrows in the electron E-k diagrams, such as those in Fig. 4-1.

The g(hw) factor that appears in Eq. 4-1 is the joint density of states
evaluated at the photon energy. The density of states function specifies
the distribution of the states within the bands. The joint density of states
explains the fact that both the initial and the final electron states lie within
continuous bands, For electrons within a band, the range of the density of
states per unit energy g(£) is obtained from,

E)IE = 2g{kycik, (4-12)
where g(k) is the density of states in momentum space. The extra factor of
two is included because each allowed k-state is associated with two
electron spin states.

g(8) =52 (4-13)
where dE/dk is the gradient of the E-k dispersion curve in the band dia-
gram. g(k) is determined by calculating the number of A-states in the
incremental volume between shells in k-space of radius & and k+dk. This

number equals the number of states per unit volume of k-space, 1/(2n)’,



multiplied by the incremental volume 4nk’dk. Therefore, g(k) is given by

the standard formula,

I 2 _ ok
g(k)dk = Gy drk’dk = g (k)= e (4-14)

g(E) can now be determined from Eq. 4-13 if the relationship
between £ and & is known from the band structure of the material, For
electrons in a parabolic band with effective mass m", g(E) is given by,

AR AT 415
Pe) = .

This formula is just the standard formula for free electrons but with the
free electron mass my replaced by m'. The joint density of states factor is
finally obtained by evaluating g(F) at £, and E; when'they are related to
ha through the details of the band structure.

The dependence of the absorption coefficient on frequency can now
be calculated the joint density of states factor, given by Eq. 4-13, is
known. This can be determined analytically for the simplified band
structure presented in Fig. 4-2, The dispersion of the bands is determined
by their respective effective masses — m," for the electrons, my, for the

heavy holes, my,” for the light holes and m,," for the split-off holes. It

allows us to write the following E-k relationships for the conduction,



heavy hole, light hole and split-off hole bands:

=

E(kK)=E +—— 4-16
Eliyatt (4-17)
2m,,
Ak?
E, (k)y=-— (4-18
(B)=-5r 4-18)
BE
E (k)=-A- S
L (k)=-A o (4-19)

Jar

From Fig. 4-2, conservation of energy during a heavy hole or light hole

fransition requires that,

k' Bk
Rl 4-
I S

o= E +

where m, = my, . or my for the heavy or light hole transition,

respectively. The reduced electron-hole mass u is defined by

L nt-gt (4-21)
A s e

Equation 4-20 can be written in simplified form,

e
24

(4-22)

hw=E, +
2(E) is to be evaluated with £ = Aw. The joint electron-hole density of
states can be determined by substituting Eq. 4-22 into Egs. 4-13 and 4-14,

which yields,

For hw<E,, g(hw)=0
3 . (4-23)

For hazE, E{ﬂm}:%(i—fjl [#w-Eﬁ)i

Therefore, the density of states factor increases as (hw - E,)"” for photon
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energies that exceed band gap.

Fermi's golden rule, given in Eq, 4-1, states that the absorption rate
of a dipole-allowed interband transition is proportional to the joint density
of states given by Eq. 4-23. The following behavior for a(hw) is therefore

expected.

For ho<E_ , alhw)=0
(4-24)

For hezE, a(ho)x(ho-L)
No absorption occurs if he < E,, and the absorption increases as (hw -
E,)"* of photon energy exceeds the band-cap energy. Transitions with
larger reduced masses give rise to stronger absorption because Eq. 4-23
includes the factor #**. The predictions of Eq. 4-24 can be compared to

the experimental data.

4.1.2 Discussion

Thin plates (= 500 pm) of CsGe(Br,Cl,-,); and (Rb,Cs,)GeBr;
were used to make the bandgap measurements. Figures 4-3 to 4-5 show
the absorption spectra obtained at room temperature using
CsGe(Br,Cl;.); (x = 0, 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6, 1) and

(Rb,Cs,—)GeBr; (y = 0, 1/4, 2/4, 3/4, 1) crystals in the UV-visible light



range. The recorded curves can be approximated as straight lines for o as
a function of hv, where a is the absorption coefficient and hv is the
photon energy. The straight line approximation is applied to the rapidly
increasing portions of the curves in Figs. 4-3, 4-4 and 4-5. Thus, the
fundamental absorption edge is described by @ = 4 - (hv — E,)"”, where 4
is a constant and the band-gap E. can be determined the points of
intersection of the straight lines with the absecissa. This dependence
corresponds to directly allowed electronic transitions [4-2]. In the insets
in Figs. 4-3, 4-4 and 4-5, the band-gap values are plotted versus Br
content. Although the absorption edge falls from 3.43 to 2.38 eV as the
bromine content (x =0 to 1), the absorption edge remains fixed fory = 0

to 3/4.
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4.2 FTIR spectra
4.2.1 Theory [4-3, 4-6, 4-7, 4-8]

Generally, infrared radiation is not sufficiently energetic to bring
about the kinds of electronic transitions that are caused by ultraviolet and
visible radiation. The absorption of infrared radiation is thus confined
largely to molecular species whose various vibrational and rotational
states are separated by small encrgies.

To absorb infrared radiation, the vibrational or rotational motion of a
molecule must cause a net change in dipole moment. Only under these
circumstances can the alternating electrical field of the radiation interact
with the molecule and change the amplitude of one of its motions.

The energy that is required to cause a change in rotational level is
minute and corresponds to a radiation wavenumber of 100 cm™ or less
(>100 pum). Since rotational levels are quantized, absorption by gases in
this far-infrared region is characterized by discrete, well-defined lines. In
liquids or solids, intramolecular collisions and interactions broaden the
lines into a continuum.

Vibrational energy levels are also quantized, and for most molecules

the energy differences between quantum states correspond to the



mid-infrared region. The infrared spectrum of a gas usually comprises a
series of closely spaced lines, because each vibrational state corresponds
to various rotational energy states. However, rotation is extremely
restricted in liquids and solids; in such samples, discrete
vibrational/rotational lines disappear, leaving only somewhat broadened
vibrational peaks.

The relative positions of atoms in a molecule are not exactly fixed
but fluctuate continuously as a consequence of numerous vibrations. For
a simple diatomic or triatomic molecule, the number and nature of such
vibrations can be ecasily defined and related to energies of absorption.
Such an analysis is difficult if not impessible for molecules that comprise
many atoms, Not only do large molecules have numerous vibrating
centers, but also interactions among these various centers can occur and
must be considered.

Vibrations fall into the basic categories of stretching and bending. A
stretching vibration involves continuous change in the interatomic
distance along the axis of the bond between two atoms. Bending
vibrations are characterized by a change in the angle between two bonds

and are of four types — scissoring. rocking, wagging and twisting. Figure
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4-6 schematically depicts the various vibrations.

The characteristics of atomic stretching vibration can be
approximated by a mechanical model that consists of two masses that are
connected by a spring. A disturbance of one of these masses along the
axis of the spring causes simple harmonic motion.

Consider first the vibration of a single mass that is attached to a
spring that is hung from an immovable object (Fig. 4-7(a)). If the mass is
displaced by a distance y from its equilibrium position by the application
of a force along ihe axis of the spring, the restoring force F is
proportional to the displacement (Hooke's law). That is,

F =-ky (4-25)
where k is the force constant, which depends upon the stiffness of the
spring. The negative sign indicates that F is a restoring force.

The potential energy E of the mass and spring can be treated as zero
when the mass is at rest or in its equilibrium position. As the spring is
compressed or stretched, however, the potential energy of this system
increases by an amount that equals the work that is required to displace
the mass. If, for instance, the mass is moved from some position y to y +

dy, the work and hence the change in potential energy dE equal the force
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F times the distance dy. Therefore,
dE =-Fdy (4-26)
Combining Egs. 4-26 and 4-25 vields
dE = kydy
Integrating between the equilibrium position (v = 0) and y vields
[[dE=k [ yay
E=ti (4-27)
The potential-energy curve for a simple harmonic oscillation, derived
from Eq. 4-27, is a parabola, as plotted in Fig. 4-7(a). The potential
energy is maximal when the spring is stretched or compressed to its
maximum amplitude 4, and is zero at the equilibrium position.
The motion of the mass as a function of time f can be derived as
follows, Newton's second law states that
F=ma
where m is the mass and a is its acceleration. Since acceleration is the

second derivative of distance with respect to time,

m—s-=-ky (4-28)
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A solution to this equation must be a periodic function such that its
second derivative equals the original function times -(k/m). A suitable
cosine relationship meets this requirement. Accordingly, the
instantaneous displacement of the mass at time r can be expressed as

y = Acos2mu t (4-29)
where v, denotes the natural vibrational frequency and A4 is the
maximum amplitude of the meotion. The second derivative of Eq. 4-29 is
d—l =-4x'v " Acos2nu g (4-30)

dr
Substituting Egs. 4-29 and 4-30 into Eq. 4-28 gives
i B
Acos2mu f =~ _iﬁﬂz{mﬂma:f
The natural frequency of oscillation is then
Ly 3
. 1‘.||m

(4-31)
where o, is the natural frequency of the mechanical oscillator. Although
it depends on the force constant of the spring and the mass of the attached
body, the natural frequency is independent of the energy that is imparted
to the system, changes in energy merely cause a change in the amplitude
A of vibration.

The equation just developed is readily modified to describe the

behavior of a system that comprises two masses m; and m, that are



connected by a spring. Here, only the reduced mass u has to be

substituted for the single mass m where

mm,

- (4-32)
S
Hence, the vibrational frequency of such a system is given by
ol [E_1 k(m, +m,) (4-33)

" 22\u 22\ mm,
The ordinary mechanical equations., such as used above, do not
completely specify the béhavior of particles of atomic dimensions. For
example, the quantization of molecular vibrational energies (and of
course other atomic and molecular energics) does not appear in these
equations. The concept of the simple harmonic oscillator may be
employed to develop the quantum mechanical wave equations. Solutions
of these equations for potential energies have the form

E:(u+£]?i i (4_34)
2\ u

where A is Planck’s constant, and v is the vibrational quantum number,
which can take only positive integer values (including zero). Therefore,
unlike in ordinary mechanics, in which vibrators can have any positive
potential energy. quantum mechanical vibrators can have only particular

discrete energies.
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Interestingly, the term (k/u)” /2z appears in both the mechanical and

the quantum equations; substituting Eq. 4-33 into Eq. 4-34 vields
En[v+§]&v_ (4-35)

where v, is the vibrational frequency of the mechanical model.
Transitions in vibrational energy levels are assumed to be caused by
radiation, if the energy of the radiation exactly matches the difference
AE between the energy Jevels of the wibrational quantum states
(provided also that the vibration causes a fluctuation in the dipole). This
difference is identical between any pair of adjacent levels. because v in

Eqgs. 4-34 and 4-35 ean only be whole numbers: that is,

Afs fwm=-ﬁ-Ji (4-36)
T\ u

At room temperature, most molecules are in the ground state (v = 0); thus,

from Eq. 4-35,

Promotion to the first excited state (v = 1) with energy

E,—'Ehr
2

requires radiation of energy

(% hv,,- g hv,, ] =hv,

The frequency of radiation v that causes this change equals the classical
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vibration frequency of the bond v_. That is,

ar
e b E (4-37)

If wavenumbers v of the radiation are required, v=kv should be

substituted and rearranged to vield

L kool jeuE (4-38)

AT
2me \ i U

where v is the wavenumber of an absorption peak in cm™; & is the force
constant for the bond in Newtons per meter (N/m); ¢ is the velocity of
light in cm/s, and p, which is given by Eq. 4-32, and has units of kg.

As specified by Eqs. 4-35 and 4-36. the energy for a transition from
energy level 1 to 2 or from level 2 to 3 should be identical to that for the 0
to 1 transition. Accordingly, quantum theory demonstrates only
transitions in which the vibrational quantum number changes by unity can
occur; that is, the so-called selection rule states that Av=+7. Since
vibrational levels are equally spaced, only a single absorption peak
should be observed for a given molecular vibration.

Theoretically, the quantum mechanical wave equations allow the



derivation of more accurate potential-energy curves for molecular
vibrations. Unfortunately, however, the mathematical complexity of these
equations precludes their quantitative application to all but the very
simplest of systems. Qualitatively, however, the curves must take the
anharmonic form, such as that of curve 2 in Fig. 4-7(b). Such curves
depart from harmonic behavior by varying degrees, depending on the
nature of the bond and the atoms involved. Anharmonicity causes two
kinds of deviation. At higher quantum numbers, AE is smaller (curve 2
in Fig. 4-7(b)), and the selection rule does not strictly apply: consequently,
transitions of Av=%22 or +3 are observed. Such transitions are
responsible for the appearance of overtone lines at frequencies that are
approximately two or three times that of the fumdamental line; the
intensity of overtone absorption is commonly low, and the peaks are not
observed. Notably, however, the harmonic and anharmonic curves are
almost alike at low potential energies, which fact explains the success of

the approximate methods described herein.

4.2.2 Discussion

Infrared spectra were obtained using a spectrometer (Bomem, DAS.3)
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in the range from 120 ¢cm™' to 4000 cm ', or 2.5 pym ~ 83.3 um, from
samples that were pressed into thin plates (= 500 um). The transmittance
of CsGe(Br,Cl,-); plates exceeded 75% in the mid-infrared range. The
FTIR measurements in Figs. 4-8 and 4-9 reveal that the long wavelength
limit of the transparent range of the crystals depended similarly on
substitute composition. Crystal CsGeCl; had an infrared cut-off
wavelength at approximately 30 pum, which was shorter than the cut-off
value of CsGeBr: (about 47 pum). The infrared absorption edge of
CsGe(Br,Cl); with x = 1/6, 1/4, 2/6, 3/6, 4/6, 3/4, 5/6 lay around from
32 to 38 um. This result is consistent with the effective-mass concept,
based on which the infrared transparency range of CsGeBr; is expected to
exceed that of CsGeCl; because the Br atom is heavier than Cl. Figures
4-10 and 4-11 show the FTIR measurements at room temperature. The
transmission range of the crystals increases with Br content. The
absorption of phonons by the crystal typically limits the longest infrared
transparency wavelength. The energy band-gap of the crystal limits the
absorption edge.

From Figs. 4-12 and 4-13, and Tables 4-1 and 4-2, the actual IR

transparency edges for the vibrational IR absorption/Raman spectra of
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CsGe(Br,Clj—); are V1 and P1, which are associated with two-phonon
absorption for x = 0 to 3/6. The further absorption V2 is related to the
two-phonon absorption which involves the next vibrational band P2. The

force constants between the Cs' and Ge(Br.Cl_)! oscillations are

calculated from the FTIR peaks (Figs. 4-12 and 4-13) in the range from

290 to 410 ecm™' using N E:S.hm'” (& [4-3], where @ is the
2me \ p Vu

wavenumber of an absorption peak in cm '; & is the force constant of
the bond in Newtons per meter (N/m); < ‘is the velocity of light in cm/s,
and u is the reduced mass in kg. The force constant increases as Br
content declines (Fig. 4-14), so the oscillation frequency increases as the
Br content decreases. This result is also consistent with the Raman A,+E

mode (oscillation between Cs* and Ge(Br,Cl, )7 ) (Figs. 3-38 and 3-39).
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4.3 Tables and Figures

Table 4-1 The IR absorption/Raman spectra of CsGe(Br,Cl,.,); (B-series).

The unit of these Raman and FTIR peaks was labeled as cm™. (P : Raman

peak, V : FTIR valley)

?Ec;::; Raman peaks (em-1) FTIR valleys (cm-1) |
Y Pl P> PL V1 V2
@ | 1.00 | 20979 | 159.88 = 210 | 33195
(b) 0.86 264.10 16222 — 266.14 336.34
(c) 0.78 264.10 162.22 = 268.45 330.17
(d) 0.70 263533 163.00 — 27231 334.80
(e) 0.52 145,01 164.57 = 202.37 334.80
® | 035 | 15205 > = 322.45 —
(@ | 027 | 15558 - 2 315.51
() | 0.19 | 15831 = = 311.65 =
(1) 0.00 146.58 202,79 291.15 305.48 414.25
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Table 4-2 The IR absorption/Raman spectra of CsGe(Br,Cl,.,): (C-series).
The unit of these Raman and FTIR peaks was labeled as cm™. (P : Raman

peak, V : FTIR valley)

?Eﬁ::::gf H.E.I'I‘h:lﬂ peaks (em-1) FTIR valleys (cm-1 )—l
X Pl p2 P Vi V2
(a) 1.00 209.79 159.88 = 212,14 333.25
(b) | 0.82 262.56 161.44 == 269.23 328.63
(¢) | 0.79 264.10 163.00 = 269.64 330.94
(d) | 0.68 264.10 163.00 | B 270.77 332.48
(e) | 0.51 144.23 163.78 — 281.57 332.48
(| 035 152.05 - ~ 1_298.54 -
E) 0.26 152.84 - = 311.65 s
(h) | 0.18 160.66 = 311.65 ==
(i) 0.00 146.58 202,79 291.15 305.48 414.25
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(a) Direct band gap (b) Indirect band gap

Fig. 4-1 Interband transitions in solids: (a) direct band gap, (b) indirect
band gap. The vertical arrow represents the photon absorption process,

while the wiggly arrow in part (b) represents the absorption or emission
of a phonon [4-1].
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Fig. 4-2 Band structure of a direct gap III-V semiconductor such as GaAs
near £ = 0. E = 0 corresponds to the top of the valence band, while E = E,
corresponds to the bottom of the conduction band. Four bands are shown:
the heavy hole (hh) band, the light hole (lh) band, the split-off hole (so0)
band, and the electron (&) band. Two optical transitions are indicated.
Transition | is a heavy hole transition, while transition 2 is a light hole
transition. Transitions can also take place between the split-off hole band
and the conduction band [4-1].
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Fig. 4-3 Absorption coefficient near the band edge of CsGe(Br,Cl,.,);
(B-series) plotted in coordinates &’ and hv. The inset shows the Br

composition dependence of E, obtained.
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Fig. 4-4 Absorption coefficient near the band edge of CsGe(Br,Cl,.,);

(C-series) plotted in coordinates o’ and hv. The inset shows the Br

composition dependence of E; obtained.
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N/ N/

Symmetric Asymmetric
(a) Streiching vibrations

B\

In-plane rocking In-plane scissoring

5

Out-of-plane wagging Out-of-plane twisting
(b) Bending vibrations

Fig. 4-6 Types of molecular vibrations. Note: + indicates motion

from the page toward the reader; - indicates motion away from the
reader [4-3].
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Fig. 4-7 Potential energy diagrams. (a) Curve 1, harmonic oscillator. (b)
Curve 2, anharmonic oscillator [4-3].
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Fig. 4-8 The full transmission range of the nonlinear optical crystals
CsGe(Br,Cl,.,); (B-series) (a) y = 1.0, (b) y = 0.86, (c) y = 0.78, (d) y = 0.70,
(e)y=052,(f)y=0.35(g)y=027,(h) y=0.19, (i) y = 0.
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Fig. 4-9 The full transmission range of the nonlinear optical crystals

CsGe(Br,Cl;.y): (C-series) (a) x = 1.0, (b) x = 0.82, (¢) x =0.79, (d) x =

0.68, () x =051, (N x=0.35,(g) x=0.26, (h)x=0.18, (i) x = 0.
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Fig. 4-11 The transmission edge and absorption edge of nonlinear optical

crystals CsGe(Br,Cl,.,): (C-series).

128



V1

10 100 1000

Wavelength (cm™)

Fig. 4-12 The Raman scattering versus IR absorption spectra of
CsGe(Br,Cly.y); (B-series). (2) y = 1.0, (b) y = 0.86, (c) y = 0.78, (d) y =
0.70,(e) y=0.52, () y=0.35,(g) y=0.27,(h) y = 0.19, (i) y = 0.
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Fig. 4-13 The Raman scattering versus IR absorption spectra of

CsGe(Br,Cl,); (C-series). (a) x = 1.0, (b) x = 0.82, (¢) x = 0.79, (d) x =
0.68, () x=0.51,(f) x=0.35,(g) x=0.26, (h) x=0.18, () x = 0.
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Fig. 4-14 The force constant of bonds between Cs* and anion group

Ge(Br,Cl._.);' of CsGe(Br,Cl,), crystals.
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Chapter 5 Linear Optical Properties

5.1 Photoluminence analysis
5.1.1 Theory [5-1, 5-2, 5-3]

Since PL emission requires that a system be in non-equilibrium, and
some means of excitation is required to act on the semiconductor to
generate hole-electron pairs, this work considers the fundamental
transitions, which occur at or near the band edges.

The ground staie of the electronie system of a perfect semiconductor
is a completely filled valance band and a completely empty conduction
band. This state can be defined as the “zero” energy or the “vacuum”
state. Exciting one electron from the above-defined ground state to the
conduction band simultaneously generates a hole in the valance band. In
this sense, an optical excitation is a two-particle transition, as is the
recombination process. An electron in the conduction band can return
radiatively or nonradiatively into the valance band only if a free space — a
hole — is available. Two quasi-particles are annihilated in the
recombination process. Therefore, a description of the excited states of

N-particle problem is required to elucidate the optical properties of the
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electronic system of a semiconductor. The quanta of these excitations are
called “excitons™.
5.1.1.1 Wannier excitons

The use of effective mass approximation, Fig. 5-1 suggests that the
Coulomb interaction between electron and hole raises a hydrogen-like
problem with a Coulomb potential term

*

4
dreer,,

(3-1)
Indeed, excitons in semiconductors are, to a good approximation, a

hydrogen or positronium-like series of states below the gap. For a simple

parabolic band in a direct-gap semiconductor; the relative motion of

electrons and holes as well as the actual motion of the eenter of mass can

be separated out, leading to the dispersion relation of excitons;

v 1 K’
E K)=E_ -R e 3-2
o (71 } "N M (3-2)
where ng= 1,2,3... is the principal quantum number, R;—Js.dﬁi, is
m, £

the exciton binding energy, M = m, + m,. and K = k, + k, are the
translational mass and wave number of the exciton, respectively.
5.1.1.2 Bound excitons

A real crystal is never perfect. Imperfections such as ion vacancies,

interstitials, or substitutional atoms (either native or intentionally
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introduced) exist in densities of n; < 10" em™ in ultrapure crystals. The
imperfections can attract excitons that become localized at the defect sites
to yield bound excitons. The binding energy of the exciton to the defect is
commonly quite small — typically a few meV. Therefore, the bound
excitons are best observed at very low temperatures,

An exciton may be bound to a donor, which is a substitutional atom
with more valance electrons than the hest atom, or to an acceptor, which
is a substitutional atom with fewer valance electrons. Donors contribute
excess electrons to the crystal, while aceeptors tend to capture electrons
or equivalently donate holes. Donor or acceptor atoms may be electrically
charged or neutral. When the donor atoni has given away its initial extra
valence electrons, it becomes positively charged and it referred to as an
ionized donor. Similarly, when an acceptor atom has captured an electron
(or equivalently released a hole), it has a negative charge and is called an
ionized acceptor. In contrast, a neutral donor or acceptor has no charge,
since it has kept its original number of valance electrons. Excitons may
get bound to either an ionized donor or acceptor, or a neutral donor or
acceptor by forming complexes, which are depicted schematically in Fig.

3-2. In various crystals, the binding energy of the exciton to a neutral



donor or acceptor is close to a tenth of the donor or acceptor ionization
energy, which is the energy that is required to free the extra valence
electron of a neutral donor, or the energy that is required to free a hole (to
accept an electron) in a neutral acceptor. Bound excitons are
characterized by more sharply peaked emission which occurs at a lower
energy than the corresponding free exctions, because kinetic broadening
is reduced since the bound exciton is spatially docalized at an impurity.
The emitted binding energy £, is

Eg=F =htshs (3-3)
where E; is the energy required to bind the exciton to the center of the
defect and E! is the binding energy of the free exciton. Hence, the
luminescence of the bound exciton generally dominates the near-band
edge emission and occurs on the low-energy side of the free exciton

emission.

5.1.2 Discussion
The synthesized crystals were crushed, ground and melted under
vacuum into bulks. They were then polished to thin plates (= 1 mm) and

measured using the 325 nm laser line excited with a power of about 4



mW from 17 to 293 K. Figures 5-3 and 5-4 present for CsGe(Br,Cl,..)s
the red-shift in the emission bands A, B and K as the temperature
decreases (except x = 0).

Seo et al. [5-4] demonstrated that the top of the valence band is
formed such that each Ge 4s orbital makes # antibonding interactions
with the p orbital of every halogen atom that surrounds the Ge (hereafter
referred to as the s* level). The bottom of the cenduction band is triply
degenerate. The three degenerate orbitals are obtained when each Ge 4p
orbital makes ¢ antibonding interactions with the s orbitals of the two
adjacent halogen atoms that lie in the principal direction of the Ge 4p
orbital. (The associated level is hereafter referred to as the p* levels).
Therefore, each Ge atom has antibonding interactions with six adjacent
halogen atoms in the s* level. and with two adjacent halogen atoms in
each p* level. A band gap is formed when the s* level is below the p*
level, as it does when the energy difference between the Ge 4s and Ge 4p
levels is sufficiently large. The energy difference between the valence ns
and np levels of Ge is quite large (approximately 7 eV [5-5]).
Accordingly, the s* level is expected to lie below the p* level in CsGeX.

An increase in the applied pressure or a drop in the temperature reduces
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the cell parameter of CsGeX; and, hence, the Ge-X bond length. The s*
and p* levels have antibonding interactions between Ge and X, so an
increase in the applied pressure or a decline in the temperature raises both
of them. This increase in energy is slightly larger for the s* level than for
the p* level, since each Ge has more antibonding interactions with the
surrounding X atoms in the s* level. Therefore, the band gap decreases
somewhat as the temperature fell (or the external pressure increases),
which result agrees with the experimental results. The results for CsGeCl;
revealed that the energy was constant as the temperature varied,
indicating that neither cooling nor pressuring easily reduced the lattice
constant [5-4, 5-6]. During the above experiments, drastic changes in
color were observed. For example, CsGeBr; changed from yellow to
black in a narrow temperature range of 17-60 K. These observations are
consistent with the phenomenon, observed by Schwarz et al. [5-6], that
motivated this investigation of the optical-absorption edges of
CsGe(Br,Cl,.,)s. Cooling shifts the large absorption edge to lower energy.
Figure 5-9 displays the PL spectra of (Rb,Cs,,)GeBr; crystals; the
locations of their emission are almost the same in the range y = 0 ~ 76.64.

Their emission bands A, B and K are also red-shifted as the temperature
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declines (except y =1) (Fig. 5-10).

Figure 5-5 presents the difference between the measured results
obtained from the UV-visible spectra and the PL measurements. The
difference is about 0.2-0.4 eV, and is caused by the drop in the lattice
constant [5-4]. Since the band gap of the halide declines as temperature
falls, reducing the lattice constant, the emission band A is attributable to
the electronic transition of the energy band edge.

The CsGeBr; plate was annealéd at 235C for 0 hr, 12 hrs, 24 hrs
and 36 hrs under vacuum, and then measured at 17 K. Figure 3-6
indicates that peak K was an asymmeiric Gaussian peak and that the
relative intensity 1, . /Mg, or I,/ . . increased with the duration of
heat treatment because structural defects were eliminated by annealing, A
wide band K was centered around 700 nm after annealing for 36 hrs.
Figures 2-7 and 2-8 reveal that the crystals still contain O and P, which
produce donor and acceptor states in the crystals. Thus, emission band K
was associated with the defects and impurities.

In Fig. 5-4, the variation of peak energy from B almost followed that
of the band-gap energy of CsGe(Br,Cl,.,);. These results indicate that the

emission band B is attributable to the transition from the conduction band
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to the impurity level or from the impurity level to the valence band [5-7].
Figure 5-7 displays the behavior associated with the thermal quenching of
the emission band B, The luminescent intensity gradually fell as the
temperature increased. At temperatures of over 50 K, semi-log plots of
luminescence intensity against reciprocal temperature yielded an almost
straight line. The variation of PL intensity /(T) with temperature T can be

described by the Arrhenius expression [5-8].

-——L.-j ——
— ,[, :'fa]
ey

where /; is the PL intensity as I approaches 0. K; ¢ is a

1(T)- (5-4)

temperature-independent constant; £ is Boltzmann's constant. and E,is
the activation energy. The solid line in Fig. 5-7 fits the data and the
activation energy obtained from the emission band B of CsGeBr; is
around 64.2 meV. This value is identical to F +—Eg in Fig, 5-4. Thus, the
emission band B is attributable to the transition from the conduction band
to the impurity level or from the impurity level to the valence band.
Figure 5-8 depicts the behavior associated with thermal quenching of the
emission band B of CsGe(BrysCly); and CsGe(BrsisClyjg)s. Equation (5-4)
yielded activation energies of about 53 and 58 meV, respectively, which

values were consistent with the values of 53.2 meV (=EA-Egs of
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5.2 Ellipsometric analysis
5.2.1 Theory [5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15]

The effects of surface roughness on the measured reflectivities from
material surfaces have been examined both theoretically and
experimentally. Davies [3-9], and Beckmann and Spizzichino [5-10],
derived mathematical models that describe reflectivity from a rough
surface based on Kirchhoff diffraction theory, by assuming a statistically
random surface and a material with infiniteé conductivity. The assumption
of infinite conductivity facilitates the reduction of the pertinent equations
to forms that yield workable solutions. Since a smooth material with
infinite conductivity-has a reflectivity of one. the mathematical models
predict the deviation of the reflectivity from unity due to the diffuse
nature of the surface. The complete models proposed by Davies [5-9] and
by Beckmann and Spizzichino [5-10] predict the reflectivity of a rough
surface with infinite conductivity. Both models require knowledge of two
parameters to describe the surface roughness; these are the root-mean-
square roughness ¢ and the correlation length a [5-11]. Davies’s model is
restricted to small gradients and to the limiting cases of extremely small

and extremely large optical roughness. For a material with infinite

1440



conductivity, Davies’s model predicts the bidirectional reflectivity as
po=¢’ tfn(a/) cos(0)Aw (5-5)
where the first and second terms represent the specular and the diffuse
components of the reflected radiation, respectively, The term Aw
represents the solid angle of the detection optics, which is defined as the
monochromator slit opening, A4, the distance from the reflection surface,
R, and the angle of incidence; # [A@= A. cos(8)]/R"]. Notably, the angle of
incidence 0 is measured from the normal to the mean surface plane of the
sample. The factor fis related to the ratio (6/4) and the angle of reflection

is given @ by

-ﬂrcm{ﬂ}%-r (5-6)

e =

£
Over a broader range of roughness values, Houchens and Hering

[5-11] suggest the following simplified relation for the reflectivity of the

rough surface based on the Beckmann-Spizzichino model;

m-m!

Pys=e’ ‘:J ra(a/i) cas[ﬂ].dmi -2 j| (5-7)
=]

Notably, both models assume that the distribution of heights of the
surface irregularities is Gaussian about the mean. Moreover, many

researchers (such as Bennett and Porteus [5-12], Benneit [5-13] and
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Ohlidal et al. [5-14]) have found that most randomly generated rough
surfaces may in practice be represented by a Gaussian distribution, and
the autocovariance function of the surface irregularities is also Gaussian
with known standard deviation. For slightly rough surfaces of materials
with finite conductivity, both models [Eqgs. (5-5) and (5-7)] can be

reduced to the specular component alone, which is given by

r

e -::xp{-[-i# c‘r}s{ﬂ]g]} (5-8)

In the case of a matenial with finite conductivity, the angular reflectance
of a rough surface may be exprcssed as the product of a
surface-roughness-dependent quantity and a material-dependent quantity

[5-10, 5-12, 5-14]:

L

1-:[1 Eﬁ.;’;]:pf‘m%m(;ﬁ) (5-9)
where p(0,0/A) is given by Eq. (5-5) or (5-7) and Ry(m.0) is the
reflectivity of a smooth surface with the same refractive index (m) as the
surface of interest. According to Beckmann and Spizzichino [3-10] the
function p(8,0/L) represents a mean value of the reflection coefficient
over the surface. The reflectivity Ry(m.8) can be calculated from the

Fresnel equations if the complex refractive index (m = n — ik) is known.

Since the reflection approach requires knowledge of both components of
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polarization, Eq. (5-9) should be applied in both planes of polarization. In
this respect, Hensler [5-15] has demonstrated that the roughness factors
p(0,0/%) are identical in both the vertical and horizontal planes of
polarization. Under this condition, Eq. (5-9) vields the reflection
coefTicients.

R,=pR,, (5-10)

R =pR,, (5-11)
The subscripts // and L indicate polarization parallel and perpendicular

to the plane of incidence. Equations (5-10) and (5-11) yield

-

| =
£

-~ (5-12)
Thus, the reflectance ratio from a rough surface equals that from a
smooth surface of the same material. This fact implies that the complex
refractive index (m = n — ik) of a rough surface can be determined by

measuring the reflectance ratio at a minimum of two angles of incidence

and solving the Fresnel equations simultaneously.

5.2.2 Discussion
Tables 5-1, 5-2 and 5-3 display the results. According to Figs, 4-3

and 4-4, the values of the energy gap reveal that CsGe(Br,Cl,.,); has
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different dispersion relationships. The energy gap of CsGe(Br,Cl,.);
decreased as the proportion of Br, x, was increased. The refractive index
of CsGe(BrCl;..); became abnormal because of the near-bandgap (~2.38
eV) resonance. In this case, the near-bandgap refractive indices became
smaller than those for longer wavelengths as the amount of Br, x, was

increased.

144



5.3 Tables and Figures

Table 35-1 The ellipsometry measurements of the rhombohedral NLO
crystals CsGe(Br,Cl,.,); (B-series).

CsGe(Br,Cl,.,)s

h

(B-series) 0 0.19

0.27 035 0.52 0.70 0.78

0.86 1.0

. e [lfmm) 149 275
D ironm 1.71 1.88

Dy 260mm 1.67 1.84
le(1/jpm) 376 3.86

3.80 266 526 449 445
1.89 195 1.78 1.67 1.58
1.86 189 1.78 1.68 1.64
5.88 267 2435 10.69 2.85

4.86 B.88
1.71 163
1.73 1.68
6.35 3.58

Table 5-2 The ellipsometry measurements of the rhombohedral NLO

crystals CsGe(Br,Cly.,): (C-series).

CsGe(Br,Cl,,): X
(C-series) 0 018 026 035 051 0.68 0.79 082 1.0
Goma(1/mm) 149 304222 517 448 376 6.08 343 888
T .75 90 PO NLELEATR 188y 1.57 152 1.63
M 1.67°1.85 1.84 1.80 1797159 1.59 1.53 1.68
le (1/pum) 3.76 329 233 13.70 14.02 3.31 6.65 12.43 3.58

Table 5-3 The ellipsometry measurements of the rhombohedral NLO

0.26 0.52 0.77

crystals (Rb,Cs,_,)GeBrs.
(Rb,Cs,.,)GeBr;
0
e (1/mm ) 8.88
L - 1.63
L Tpr— 1.68
lc (1/um) 3.58

3.59 4.60 342
1.56 L33 1.50
1.58 1.58 1.53
8.02 4,75 3.11
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I Energy Conduction band

n=2

=1

Fig. 5-1 The exciton dispersion in a two-particle (electron-hole)
excitation diagram of the entire crystal. The crystal ground state (zero
energy and zero momentum) is the point at the origin. Different parabolas
represent the kinetic energy bands associated with different terms of the

excitonic series [5-1].
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Fig. 5-3 PL spectra of CsGeBr; under 325 nm excitation (He-Cd laser,

power =4 mW) in the temperature range of 17 to 293 K.
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Fig. 5-4 Temperature dependence of the peak energy of emission bands A,
B and K of CsGe(Br,Cl,.,): crystals, (a) x = 1 (b) x = 5/6 (¢) x = 4/6 (d) x
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Fig. 5-5 Comparison of Br content dependent photon energy from
emission band A with Br content dependent absorption edge from

UV-visible spectra.
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Fig. 5-6 PL spectra of CsGeBr; annealed at 235°C for 0 to 36 hours

under 325 nm excitation (He-Cd laser, power =4 mW) at 17 K.
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Fig. 5-7 Variation of PL intensity with reciprocal temperature for the

emission band B of CsGeBr;.
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Fig. 5-9 PL spectra of (Rb,Cs,.,)GeBr; under 325 nm excitation (He-Cd
laser, power =4 mW) at 17 K.
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Fig. 5-10 Temperature dependence of the peak energy of emission bands

A, B and K of (Rb,Cs,.,)GeBr; crystals,
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Chapter 6 Nonlinear Optical Effects

6.1 Theory [6-1, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9,
6-10]

When an electromagnetic field propagates through a linear medium,
its properties are independent of its own intensity and the presence of any
other field. However, when. different electromagnetic waves propagate
through a nonlinear medium, they ¢an interact and the propagation
characteristics of one field can be influenced by the other fields. This
interaction is the basis of many of the observed nonmlinear optical
phenomena, including harmonic generation, frequeney mixing and

parametric generation.

6.1.1 Notation

When an electromagnetic field E(r.z) is applied to a material, the
response of the material is a polarization P(r.r) (i.e. the induced dipole
moment per unit volume), which is described in general by

B(ri)=s, | [Z(rre-r)E(r.e)ardr (6-1)

where £, denotes the vacuum permittivity and » is the susceptibility



tensor of the material. For systems that exhibit spatial invariance, the
dependence on (r,r') can be replaced by dependence on (r-r'). The
time integration must be truncated since the response F(r.z) is only a
function of the electric field in the past. This causality requirement yields
the well-known Kramers-Kronig relations [6-1] between the real and
imaginary parts of 7 inthe frequency domain. Based on the assumption
of spatial invariance, the Fourier transform of Eq, (6-1) with respect to
time and space yields
P(k.o) =,z (ko) £ (ko) (6-2)
The local response approximation is commonly applied (meaning
that the response ?’fF,r) is considered to depend only on the field E‘[F.:)
at spatial coordinate r). In this case, Eq. (6-2) can be written
P() =6, (o) E() (6-3)
If the material is nonlinear, then the susceptibility ?{w} can be
expanded in powers of the electric field and Eq. (6-3) can be written
Pa)=a(7" (@VE@)+7" (@):E@0)E (o) (6-4)
In the literature, various sets of notation are used. Shen [6-2]
adopted Eq. (6-4) directly with E and P expressed as complex

quantities. This notation is simple and appealing. Yariv and Yeh [6-3]
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used other notation with £ and P expressed as real quantities. This
notation is extensively emploved and will be applied as follows.
Following Yariv and Yeh [6-3], Eq. (6-4) is frequently written in the form,

P =g,(2,E +2d,EE] +4y, E E[E +-.) (6-5)

4

where P’ and E’ are the i'th components of the field, and summation
over repeated indices is assumed. The superscript r means that these
fields are real ficlds that can be expressed in terms of their complex
amplitudes as follows;
F=ofrd ) liss v2) (6-6)
where ¢.c. means complex conjugate.
In the following, only second order nonlinearities are considered, in
the term
P =25,d,EE (6-7)
Consider two fields at frequencies ®, and o,
B =3(Eresce)  (j=x32)  (68)
and
E! =]E[E:"E""'F-""+c.c.) (k=x,v,z) (6-9)

Using these expressions. Eq. (6-7) becomes
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F:r = ZEnd,l,* [%E‘d\eﬂjl"q” +%E;:ell:i:‘r—m:|: +C-’EJ
(6-10)

{%E}."e“”‘“" +5Epethim L]

The product in Eq. (6-10) that oscillate with both (w,+®;) and (®-w)
appear. Considering only the sum-frequency terms and applying Eq. (6-6),

reduces Eq. (6-7) to

B =gd (B} B +£,d B E} (6-11)
where @, = ), + @), (6-12)
is assumed, and ks =k ka (6-13)

Widely used notation for nonlinear susceptibilities is introduced to
track the frequencies:
dyp = dy (=, 00,02,) (6-14)
In this notation, for example, the difference frequency terms are
expressed in terms of the d,, (-, e,,—@,) susceptibilities.
In Eq. (6-11), the order in which the fields appear has no physical
significance. Therefore,
dy(~a,0.0,)=d, (-0,0,0) (6-15)
and Eq. (6-11) can be written
P = 26,d,, (0y,0,0,) E2 E> (6-16)

with summation over repeated indices. This is the relationship between
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the complex amplitudes of the fields.

Equation (6-16) is valid only if @ #e,. In the case of second
harmonic generation where @ =, =o, the field components £ and
E> in Eq. (6-10) are in fact components of the same field. Hence, Eq.
(6-10) must be written

> :Esndu,f Ej”e""";""'+c.::.w]; Efe”“""“"”ﬂ:.c.) (6-17)
\ \ 2 J

1
2 /

resulting in,

Pois Suphaie o8 (6-18)
with summation over repeated indices. Equation (6-18) is valid for the
complex amplitudes in cases of second harmonic generation. Equations
(6-16) and (6-18) can be combined in terms of the Kronecker delta i

PR = (2-5,, )eudgBED (6-19)

The 27 components of the nonlinear second-order d-tensor have
numerous symmetry relations that limit the number of independent
elements to only a few for most crystals. If the material exhibits inversion
symmetry, all the elements are zero, as revealed by Eq. (6-19).
Performing an inversion through a center of symmetry does not change
the crystal changes the sign of both P and E. When P changes sign, the

sign in Eq. (6-19) changes, but when E changes sign, the sign in Eq. (6-19)
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dose not change. Accordingly,

d

=0 (6-20)
in centrosymmetric crystals, and is true only for bulk materials in the
local response approximation. Second-order effects occur at surfaces and,
in the case of a non-local response, also in centrosymmetric crystals,
Kleinman [6-4] offered a useful set of symmetry conditions that
were derived from an energy function
U(E)= %dﬁ_s,sjg, (6-21)
from which the polarization is derived as
P=-V.U (6-22)
Since a rearrangement of the electric field components in Eq. (6-21)
has no physical significance, all of the terms d,, which result merely
from the rearrangement of the subscripts are equal. Hence,
dy=dy=d, =d,=d,=d, (6-23)
Equation (6-15) is contained in Eq. (6-23), but is more general since
Eq. (6-23) is valid only in the lossless case for wavelengths away from
the resonance wavelengths in the material. The symmetry relation, Eq.

(6-15), gives rise to the so-called contracted notation which is analogous

to the piezoelectric notation [6-5].
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x=1, =2 z=3 jm=zy=4, xx=zx=5 xp=y;=6
The resulting ¢, tensor yields a 3x6 matrix which operates on the

electric fields following the rule,

=
1

EI
E,
"n# I#il 1 EfII tjlI.] dH dt" d"“ E=
F |=|dy dy dy, d, d, dyg EE:E {6‘24)
'P d:‘-l dl! dn d]'l d]! d’ih 2 E-; E‘:
;2!'.'. "L'.*,

For the usual crystals, many of these terms vanish [6-3].

6.1.2 Anharmonic Oscillator Model

The harmonic oscillator model is extremely useful in solid state
physics for modeling the frequency response close to resonance in the
material. Similarly, in nonlinear optics, the anharmonic oscillator model
is useful.

Consider an elementary charge e with mass m bound to an
oppositely charged center with a force constant ma’ where o, is the
angular resonance frequency. The equation of motion is then

mx -+ may x +ax’ = eE, cos wi (6-25)
where x denotes the displacement of the charge, and E cosar is the

applied electric field. A term a is added to model the second order
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nonlinearity.

Consider first the purely harmonic response with a=0.

11(.'}=% E, cosa (6-26)

0

Since the polarization P of the material is defined as the induced dipole
moment per unit volume,
_ Netim

P =Nex=———F, cosal (6-27)

ay, —a°
where N is the number of induced dipoles per unit volume.
Usual linear response theory yields (as the first term of Eq. (6-4))
P =g, 7" (w)E, cos o (6-28)
Therefore, the linear susceptibility is given by
re)s —-—s—-s (6-29)
Similarly, 4 ( 7"(@)) can be found from Eq. (6-25) in the
approximation in which the term ax’ is treated as small. Substituting
ax'(r) for «’ in Eq. (6-25) where x(r) is given by Eq. (6-26), yields
the solution to Eq. (6-25),
x[‘.*_}=——-a—2[—?—m} E‘;"+?r—m£ucﬂsﬂ
205 | @, -0 w; — e’

a 1 elm b 3
-Eaﬁ-dw’[nﬁ—m’J&cuﬂﬂ

(6-30)

In addition to the linear term, previously found, both a DC-term and a

second harmonic term appear. Both of these terms are small since they
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are proportional to the a-coefficient.
Separating x(s) in Eq. (6-30) into its complex amplitudes
x(t) = x, + %(xaeh‘“ + c.c.)+ %(J:he':"“ . r:.:.-.) (6-31)

and applying Eq. (6-27) yields the second harmonic polarization,

aNe' 1
P, =Nex, =-
e S (@} -40* )@ -0?)

E, (6-32)

Since this term generates the second harmonic signal it can be compared

with Eq. (6-18) to yield the nonlinear second-order susceptibility

e :
o = - (6-33
B (o= ) o 2] )

This is the result of the anharmonie oscillator model. Theterm 4 is, of
course, proportional to the anharmonic force coefficient, Tt also resonates
not only at @,, but also at @, /2. The correspending absorption at this
frequency is the two-photon absorption. ¢ can be expressed in terms of

the linear susceptibility »", which is given by Eq. (6-29).

ame’

d=-—5% 1" o) (2" @) (6-34)
Miller [6-6] generalized this expression as the so-called Miller’s rule.
qu{_mJ' mﬂ‘&jl" } - 5.,.12';.« (m.; }f;,{ma]lu ('1"[‘ } (6-3 5}

The parameter &, is remarkably consistent across numerous inorganic

materials. Organic materials tend to have values of 5, that are 10-100



times greater than those of inorganic materials.

6.1.3 Three Wave Mixing

The previous sections considered only the response of the material.
This response (the polarization) acts back on the electric field according
to Maxwell’s equations, forming coupled modes. In the case of
second-order nonlinearities, three waves are mixed as described by the
coupled nonlinear wave equations. This so-called three wave mixing is
responsible for the usual second-order effects like sum and difference
frequency generation, parametric amplification and oscillation and others.

The basic equations are Maxwell’s equations for non-magnetic

malerials

V=220 (6-36)

ot
-

V-H=0 (6-38)

V.D=p (6-39)
and the material equations are

D=¢gE+P (6-40)

i=cE (6-41)
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P=g, 7" E+Pu (6-42)
where o, the specific conductivity, is introduced to account for losses,
and P. is the nonlinear part of the response which for a second-order
effect is given by

P=25d.,E E, (6-43)
as determined by Eq. (6-4). All of the fields are herein expressed in terms
of real field amplitudes. In Eqgs. (6-36). (6-37), (6-40). (6-41) and (6-42)
the usual wave equation for the clectrie field is obtained:

&E 3P

—_ K
V'E - o+ e =
o=ty o

. (6-44)

where
e=5(1+ 7") (6-43)
is the linear part of the dielectric constant of the material.
Introducing the complex amplitudes and considering, for simplicity,
a scalar approximation yields the real field amplitude in the form,
B =SB scc, (6-46)

where i = 1, 2, 3 now refers to one of the three coupled waves, and the

second derivative can be written as

2 b
VE %[%a, zm%-ﬂ, et 4 o, (6-47)
e F

The amplitude £ is typically assumed to vary slowly, such that on
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the wavelength scale of light, £ is regarded as almost constant, in

which is called the SVEA-approximation (Slowly Varying Envelope
Approximation)
|t=g|m‘¢£‘ﬂ'_-’:’- (6-48)
dz| &'

In this approximation, the wave equation can be written

1 1
- o _. A
&, g rogm [ o g potee g [ o] LOEL (6-49)
dz 2\ ¢ J \&, | @ o
where
k) = (1,8 1 (6-50)

In Eq. (6-49) the P -term acts as a source which generates the
electric field. Obviously, the three terms must oscillate synchronously,
meaning at the same frequency. In the case in which

@) =, + o, (6-51)
Eq. (6-19) describes the relationship between the complex amplitudes of
the second order response;
P, =(2-6,, )&dE (0)E,(w,) (6-52)
where £, is the complex amplitude which is defined as

P o=

P 4op. (6-53)

b | -

Substituting Egs. (6-32) and (6-53) into Eq. (6-49) yields the following

equations for the complex amplitudes;

169



dE, __4o€p Jaoyde pp e (6-54)
e 2}1] 3 g
dE, ac icognde . . _,
EL"F;H: E + :’v E,Ej e (6-55)
dE, HoTsC i, ji,de 5 itk
L= E S 6-56
‘iz 2"-: 2 + HJ J'El ¢ { }
where
Ak =k, +k, —k, (6-57)
(2] -2 (6-58)
LY E:l & nl'
and

1 -
= —3*[2“33'“‘ ) (6"59)
Equations (6-54) ~ (6-56) constitute the basis of second-order nonlinear

optics and can be applied in all three wave mixing cases.

6.1.4 Second Harmonic Generation
In the special case of second harmonic generation,
w, =2w (6-60)
and

c;r=% (6-61)

Neglecting absorption (o, =0), the coupled Eqgs. (6-54) ~ (6-36) reduce to

dE, _ iepde r e _
Fo o E' (6-62)
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i i, ptde A
—_— o
2n() EEe (6-63)

with
Ak =2k -k, = zﬂ(n{m]—n{im]] (6-64)
|
In the approximation in which the fundamental wave is not depleted

(E, isregarded as constant), and the solution to Eq. (6-62) is

(sin%.ﬁ.bl
e

i, dc
n{ Ze)

Ei(z)= Elge™"| —=—

= Ak=
2 J

(6-65)

Since the intensity of a wave is given by

n u,
T=—ted

Yol
the intensity of the second harmonic cutput from a crystal of thickness L
is given by

sin : AL \
1Q2w)= K (@)L : (6-66)
= Akl

where

K ’ 2 .‘-I:R-mldl
n* (w)n(2a)

The depletion of E, (determined by solving Eqs. (6-62) and (6-63)

exactly) can be taken into account. The result is then,

i R
I(2e) = (w)tanh* | (KI(@))* L

(6-67)
5 ML
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Notably, when the beam is focused, the confocal parameter of the beam
must exceeds the crystal length L such that Eq. (6-67) is valid. Otherwise,
the efficiency of conversion would be reduced, as was discussed by Boyd

and Kleinman [6-7].

6.1.5 Phase matching
The condition Ak=0 in-Egs. (6-54) ~ (6-56) must be satisfied to
achieve sufficient frequeney conversion. In the case of second harmonic
generation, this condition becomes
Ak = k(@) + k(o) = k(2w) = z—j{rr[m}-i- n( )~ 2n(20)) (6-68)
If this phase match condition is satisfied, phase velocities of the
fundamental and the second-harmonic waves are equal. In this case,
I2w)= I* as revealed by Eq. (6-66) or {(6-67). If the condition is not
satisfied, a coherence length
i =i (6-69)
is introduced and the intensity of the generated harmonic, Eq. (6-66), can

be rewritten as

4K 22| ®
I[Enﬂ:?l (@)l sin [E] (6-70)

¥

Figure 6-1 presents the conversion efficiency obtained for different
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values of [, which leads to the so-called quasi phase matching scheme
that is displayed in Fig. 6-2, where the sign of the d -coefficient is
reversed periodically by changing the direction of the spontaneous
polarization in the non-linear crystal during crystal growth [6-8].

The phase matching condition is typically satisfied by birefringent
crystals. Often uniaxial crystals are utilized. In this case, the two
refractive indices are given by

n, ordinary index (6-71)

n,(6)= i - extraordinary index (6-72)

1

(] sin® @+ n” cos’ 5]5

where @ is the angle between the optical axis and the direction of
propagation and n, = (@ =z/2). Equation (6-68) can now be satisfied in
various ways.

(1) Type I phase matching with positive uniaxial crystals (n, >#,):

2 3
n@o)=n (@8, where sin'g, =GO ~(n@) 4

(n,(@)” ~(m(@)"

where &, is the angle at which phase matching occurs.

(2) Type I phase matching with negative uniaxial crystals (n, <n,):

a0 ey whete st = @] ~(nQo)) (6-74)

" (n,Qe)” - (n,Qe))”
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(3) Type 1l phase matching with positive uniaxial crystals (n, >n,):
n,(2e) = %(ﬂn{ﬁ)} +n,(m,6,)) where

sin’ En = (znu{m)_"njm)]_‘ _(”ﬂjm})_ {6—75}
(n. (@) ~(n (@)

(4) Type II phase matching with negative uniaxial crystals (n, <n,):
n(20,8,) == (n,(2)n(@.6,)) (6-76)

where 6, must be determined using iterative methods.

6.1.6 Kurtz powder assessment of nonlinear materials

The Kurtz powder technique is the first real means of screening
experimentally large numbers of unknown materials for nonlinear activity,
without the need for the slow and expensive task of growing high-quality
crystals of each material. Kurtz [6-9, 6-10] demonstrated that
measurements can be made on powders to ascertain whether a crystal has
large or small nonlinearity and whether it can be phase matched, then
given commonly known data on crystal properties, the probability of
selecting a material for crystal growth that will subsequently be useful is

markedly increased.
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Figure 6-3 depicts apparatus used. A laser, typically a Q-switched
high-repetition rate Nd:YAG laser, is used to illuminate a large area of a
thin layer of the powdered material to be studied, The powder is
compacted into a thin cell to define the thickness of the layer. The cell is
fixed in an optical system that collects all of the scattered SHG from the
sample over 4m radians, and the signal is monitored using a
photomultiplier. The measurement approach involves determining the
amount of SHG from the powder sample as a function, of particle size,
and the powder is sieved to a small range of sizes in eachtest. The laser
power must be monitored for control purposes. The requiréd information
is obtained by measuring SHG power as a function of particle size, which
is compared the results determined for quartz powder samples with
identical geometry, because phase-matchable and non-phase-matchable
materials exhibit two distinetly different responses.

For very small particles, such that r</ for all orientations, the
total integrated SHG varies with the particle radius r, because the
interaction is always effectively phase maiched, since the radius is not
large enough for any serious phase error to occur. Hence, the interaction

efficiency increases rapidly with the radius, but it is somewhat offset by
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the drop in the number of particles.

For a non-phase-matchable material, once the particle size surpasses
the mean coherence length I (such that for most or all orientations,
phase-mismatch effects become apparent), the SHG varies inversely with
the particle size because the SHG per particle does not increase as rapidly
as the number of particles declines. Therefore, a plot of SHG against
particle size yields a curye of the form plotted in Fig. 6-4, with a
pronounced maximum.

However, for a material that is phase-matchable, when the particle
size reaches the average coherence length (averaged for all crystal
directions, not just the phase-matching direction). the gain in SHG from
the particles that are correctly oriented approximately balances the loss in
SHG caused by the drop in the number of particles. The net result is that
the overall SHG remains essentially constant, as shown in the second
curve of Fig. 6-4. Therefore, when the SHG is plotted as a function of
particle size, inspection alone suffices to decide whether a material allows
phase matching,

Kurtz used this method to survey very many compounds of potential

interest and classified them into one five groups — those with a large

176



coefficient, those with a small coefficient, phase-matchable compounds,

non-phase-matchable compounds and centrosymmetric materials.

6.2 Discussion

Powder SHG measurements, which were presented by W.K. Chen et
al. [6-11], were made herein using a modified Kurtz-NLO system [6-9]
with 1260 nm light. A mode-locked ¢+* :Forsterite femtosecond laser
with a pulse duration of 50 fs, was uséd in all measurements. The
Cr* :Forsterite oscillator yields pulses with a typical FWHM bandwidth
of about 45 nm at a repetition rate of 76 MHz and a mean:power of 270
mW. Since the SHG efficiency of powders has been demonstrated to
depend strongly on particle size [6-9, 6-12], polycrystalline
CsGe(BrCl;-,); and (Rb,Cs,)GeBr; were ground and sieved (Newark
Wire Cloth Company) into six particle-size ranges — 19~37 um, 37~-74
pum, 74~105 pm, 105~210 pm, 210~420 um and 420840 um (Fig. 6-5).
Crystalline KDP was also ground and sieved into the same particle-size
ranges to support relevant comparisons with known SHG materials. All
of the powders were placed in separate capillary tubes. The SHG

radiation (630 nm) was collected in transmission and detected using a
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photomultiplier tube (Oriel Instruments). The SHG signal was collected
at a data-acquisition (DAQ) interface and was monitored using an
analysis program on a personal computer.

When the SHG process was phase-matchable and satisfied type-l
phase matching conditions, the intensity of the SHG response could be

written as [6-13]

- 12piele |
el e

sing[gfi{ﬂ-t?‘w )
= (6-77)

[ga(a ‘. )}

it e - c-matchi le.
it /f4|""'”a.:.|sin2i5'-‘m:|’ and B,y is the phasc-matching angle

Here, An,, =n,, =n., denots the birefringence of the material at the

second-harmonic wavelength. In the event that r=/s or r<l.., Eq.

(6-77) could be simplified to

[(256222) / s e
[{ L %’inlu’l;.f]}tim(d'f)'krmfm
[(1287° 12 i

[( ; %ﬁﬂ:mz’-fuc)}'rw*f}**"ﬁfm

The SHG signals became saturated when the average particle size

(6-78)

exceeded /.., then the SHG signals were independent of the particle size,
Chen et al. [6-11] derived a useful empirical formula, associated

with the correct asymptotic forms in Eq. (6-78), that describes the overall
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variation in the second-harmonic intensity with particle size -

256x'1? 5 e
- E:T;“"‘" (2, JI ﬂp[ (/)] (6-79)

with 4 =9],,.

Since the absorption coefficient of CsGeBr; at 630 nm was
excessively large, the saturated PSHG intensity decayed. Therefore, the
absorption coefficients were used to calculate the real saturated PSHG
intensity using 7, =/:" s * . Equation (6-80) vields the square of the
effective nonlinearity, (a'fﬁ. } averaged over the orientation distribution of

crystalline powders of CsGe(Br,Cl,..); using a reference NLO crystal,

such as KDP.
- e .u: i T b s, I
2 = r BN | SOGRC "o CUBC "D OGBC \ 2and (uf .
(ﬂr-f >r'ﬁﬂl' -{d"’" ."w.' 7 honl {uf i ;mf" _.I"“%'— (ﬁ—SﬂJ
¥, hﬂﬁnc,ﬁ.. '“n" Kip Au“

when 1 = n,~ na,.

Powder SHG  measurements of sieved polycrystalline
CsGe(BrCl;y); and (Rb,Cs,)GeBr; (Figs. 6-6, 6-7 and 6-8)
demonstrated that the SHG efficiencies of all the samples exceeded that
of KDP. Moreover, all of them were phase-matchable, as was KDP, such
that as the particles became substantially larger than the coherence length

of the crystal, and the collected SHG intensity no longer increased and
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saturated at a particular value. The saturated PSHG intensities were
estimated from the transmission signals in particle of various sizes,
indicating that the SHG responses were strengthened as the Br content
increased, but decayed as the Rb content increased. Since the absorption
coefficient of CsGeBr; in 630 nm was too large, the saturated PSHG
intensity decayed. Accordingly, the absorption coefficients (Tables 5-1,
5-2 and 5-3) were used to_calculate the real saturated PSHG intensity.
The 4, values were caleulated (by @, (= 0.36 pm/V) [6-14]) and are
plotted in Figs. 6-9 and 6-10. The effective powder second-harmonic
generation coefficients increased with Br content, but fell as the Rb
content increased. The nonlinearity (Figs: 6-11 and 6-12) of o/’
depended similarly on the compositional ratio, Some reasons exist for the
significant SHG signals of rhombohedral CsGe(Br,Cli—): and
(Rb,Cs,,)GeBr; crystals. First, the structural distortion and the off-center
Ge ion in the unit cell contributed to the SHG response. The XRD results
revealed that the lattice constant became larger as Br content increased
while the cell angle became smaller. Hence, the structural distortion of
CsGe(BrCl;-,); increased with Br content and the position of the B-site

cation, Ge, moved closer to the cell corner as the Br increased. However,
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increasing Rb content yielded opposite results for (Rb,Cs,,,GeBrs. Then,
the nonlinearity increased with Br content, but declined as Rb content
increased. Second, the optical non-linearity is approximately inversely
proportional to the cube of the bandgap value [6-15]. Therefore, the
bandgap values fell and the NLO susceptibilities increased with the

atomic weights of the halides.
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6.3 Tables and Figures
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Fig. 6-1 Example of second harmonic conversion efficiency as a function

of the length of the nonlinear crystal for various coherence lengths [6-8].
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Fig. 6-2 Quasi-phase matching. The sign of the nonlinear susceptibility is
reversed periodically with the period equal to the coherence length. P, is

the spontaneous polarization of the crystal [6-8].
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Fig. 6-3 Schematic layout of the apparatus for use in the Kurtz powder
measurement [6-9].
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Fig. 6-4 The typical response for powders of phase-matchable and

non-matchable crystals, showing the SHG as a function of particle size
[6-9].
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Fig. 6-5 The powder second-harmonic generation results for

rhombohedral nonlinear optical crystals CsGeBrs.
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Fig. 6-8 The comparison of integrated powder second-harmonic

generation intensity of nonlinear optical crystals KDP, CsGe{(Br,Cl,.,):
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Chapter 7 Conclusions

The core contribution of this work is the investigation of the growth
of NLO crystals in mid- and far-infrared regions. Most studies have
examined the structural, linear optical and nonlinear optical properties of
the AGeX; (A = Rb, Cs: X = CI, Br) crystals by varving the alloy
composition to satisfy the demands of specific applications. Their results
and discussions are summarized as follows,

In the analysis of components, bromine replaced chlorine in
CsGeCl;, and vice versa in CsGeBr; while cesium was substituted by
rubidium in CsGeBr;. According to- thermal analysis, the Curie
temperature and the melting temperature of the erystals rose with Br
content, since the attraction between crystal and its outside electrons
increased with the molecular weight which increases with Br content.

The structural analysis indicated that the lattice constant became
increased with the amount of Br, while the cell angle decreased.
Therefore, the structural distortion of CsGe(Br,Cl,-,); (R3m) increases
with Br content. In contrast, the lattice constant declined as the amount of

Rb increased, while the cell angle became larger. revealing that the
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structure of (RbyCs;,)GeBr; slowly becomes centro-symmetric as Rb
content increases. The results of Raman spectroscopy agree with the
expectation based on effective-mass that the oscillation frequency
increases as the Br content falls because Br is heavier than Cl. The atomic
vibration modes of AGeX; (A = Rb, Cs; X = Cl, Br) system were also
defined herein.

Regarding transparency characteristics,  the longest infrared
transparency wavelength is typically limited by the phonon absorption of
the crystal and the absorption edge is limited by the energy band-gap of
the crystal. UV-visible spectra show that the absorption edge declines
from 3.43 to 2.38 eV with the composition of bromine (x = 0 to 1), but
remains constant for y = ('to 3/4, The infrared phonon absorption edge of
CsGe(BrCli—); with x = 0 to 1 is approximately from 30 to 47 um. This
result is consistent with the expectation based on the effective-mass
concept, that the infrared transparency range of CsGeBr; is wider than
that of CsGeCl; because the Br atom is heavier than Cl. Hence, the
transmission range of the crystals increases with Br. Furthermore, the
force constant increases as the Br content declines, such that the

oscillation frequency increases as Br content decreases. The
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photoluminence spectra revealed that the emission bands of
CsGe(Br,Cl,..); and (Rb,Cs,.,)GeBr; were red-shifted as the temperature
fell, because cooling reduced the lattice constant,

Detection of the generated second-harmonic of the powder
demonstrates that all of the crystals, CsGe(Br,Cl,..): (x =0, 1/6, 1/4, 2/6,
3/6, 4/6, 3/4, 5/6, 1) and (Rb,Cs,.,)GeBr; (v = 1/4, 2/4, 3/4), were
phase-matchable. The structural distortion and the off-center Ge ion in
the unit cell govern the SHG responses. The XRD results that the lattice
constant increased with Br content while the cell angle decreased as Br
increased. Therefore, the structural distortion of CsGe(Br,Cl-,)s
increases with Br content and the position of the B-site cation, Ge,
becomes closer to the cell corner. However, (Rb,Cs,_,)GeBr; yields
opposing results as the Rb content is increased. Hence, the nonlinearity
properties increased with Br content, but fell as Rb content increased.
This result is identical to that for PSHG, for which that second-order
NLO susceptibility increased with Br content, but declined as Rb content
increased.

The structural and optical properties of rhombohedral NLO AGeX;

(A = Rb, Cs; X = CI, Br) crystals were investigated experimentally to
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elucidate the anion and cation substitution effect. Based on these results,
a linear increase in x of CsGe(Br,Cl,_,); increased the lattice constant and
the second-order NLO susceptibility, but reduced the cell angle and
bandgap. Linearly increasing y in (Rb,Cs,.,)GeBr; yielded the opposite
results. Since the optical damage threshold and the range of transparency
of the materials are related to the magnitude of the band gap, while the
optical non-linearity is inversely proportional to the cubic power of the
band gap, the nonlinear susceptibility coefficient, energy bandgap, laser
damage threshold of halides can be modulated simultaneously by anion

substitution but not eation substitution,
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