

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

雲端計算環境下基於網路行為之殭屍網路偵測機制

Behavior-based Botnet Detection in Cloud Computing Environments

 研 究 生：蔡禮陽

 指導教授：王國禎 博士

中 華 民 國 一 百 年 六 月

雲端計算環境下基於網路行為

之殭屍網路偵測機制

Behavior-based Botnet Detection in Cloud Computing

Environments

雲端計算環境下基於網路行為

之殭屍網路偵測機制

研 究 生：蔡禮陽 Student：Li-Yang Tsai

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 學 院

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

i

雲端計算環境下基於網路行為

之殭屍網路偵測機制

學生：蔡禮陽 指導教授：王國禎 博士

國立交通大學 資訊學院 網路工程研究所

摘 要

殭屍網路在近幾年非常盛行，造成經濟及隱私上的安全危害及分

散式阻斷攻擊等網路犯罪的問題。傳統的字串比對偵測方法在殭屍網

路的偵測上容易發生誤判或漏判的情況。為了解決這個問題，在本論

文中，我們提出雲端計算環境下基於網路行為之僵屍網路偵測機制，

簡稱 BBDC，來分析網路流量以偵測僵屍網路。我們根據錄製的各

網路封包之行為來做僵屍網路之分析與偵測。BBDC 分成五個階段，

第一個階段是利用僵屍網路的特性來過濾掉不需要檢查的封包。第二

個階段則是取出封包流量的特徵。第三個階段則將已經過濾完剩下的

待測封包流量切割成多個相同大小的資料量送入雲端系統的多個虛

擬機器進行殭屍網路檢測。第四個階段及第五個階段則是透過模糊識

別對 DNS 封包及 TCP 封包的行為來進行殭屍網路偵測。當待測封包

ii

被確認為殭屍網路的流量，本機端的電腦以及在雲端內的伺服器群可

以預防殭屍網路的危害經由儲存在資料庫的殭屍網路的相關資料。為

了評估此方法的有效性，我們收集了真實殭屍網路流量及校園宿舍正

常流量來評量我們的方法。實驗結果顯示，我們提出的 BBDC 對於

僵屍網路的流量辨識正確率高達 95.83%，且對於正常網路流量只有

0% ~ 3.453%的誤判率。此外，我們引入雲端計算的技術，使用五台

虛擬機器去進行殭屍網路的流量偵測，與只在本機端的殭屍網路偵測

相比，我們提升 4.73 倍的殭屍網路偵測速度。此證明我們提出的偵

測機制可藉由雲端計算環境資源達到快速偵測殭屍網路之結果。

關鍵詞：基於行為比對、殭屍網路偵測、雲端計算環境、模糊識別、

基於字串比對。

iii

Behavior-based Botnet Detection

in Cloud Computing Environments

 Student：Li-Yang Tsai Advisor：Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

In recent years, botnets become a major issue to Internet security; however,

existing string signature-based matching methods usually lead to high false positive

rates (FPR) and low true positive rates (TPR) for botnet detection. In this paper, we

proposed a behavior-based botnet detection mechanism in cloud computing

environments (BBDC). Our BBDC algorithm is divided into five stages: (1) traffic

reduction: removing unwanted packets from an input trace for speeding up bot

detection; (2) feature extraction: extracting features from the reduced input trace; (3)

traffic partitioning: dividing the reduced input trace into pieces for a cloud-based

system to detect botnets concurrently; (4) DNS phase: extracting botnet DNS features

to detect bots; (5) TCP phase: extracting TCP request and response features to detect

bots. Since stage four and five consume almost 90% of the total execution time in our

design, we dispatch reduced input traces to the cloud to speed up botnet detection. In

order to achieve a high detection rate, we utilize fuzzy pattern recognition for botnet

detection in DNS and TCP phases. Once bot activities are identified from the input

trace, local hosts and servers in the cloud will be alerted to avoid bot related IP

addresses or domain names (DNs). Experimental results show that the proposed

BBDC can achieve high TPR and low FPR. Furthermore, the proposed cloud-based

iv

botnet detection system with five virtual machines is 4.73 times faster than a

host-based system.

Keywords: behavior-based, botnet detection, cloud computing environment, fuzzy

pattern recognition, signature-based.

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions and the Network

Benchmarking Lab (NBL) for their botnet samples. The supports by the National

Science Council under Grant NSC 99-2221-E-009-081-MY3 and Microsoft are also

gratefully acknowledged.

Finally, I thank my family for their endless love and support.

vi

Contents
Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables .. ix

Abbreviations List .. 1

Chapter 1 Introduction .. 2

Chapter 2 Background and Related Work .. 4

2.1 Overview of botnet behaviors .. 4

2.2 Related work .. 6

Chapter 3 Proposed Behavior-based Botnet Detection Algorithm in Cloud

Computing Environments ... 8

3.1 Problem statement .. 8

3.1.1 The main problem ... 8

3.1.2 The sub-problems ... 8

3.2 Design of a botnet detection algorithm .. 9

3.3 Traffic reduction ... 11

3.4 Feature extraction... 12

3.4.1 Feature extraction from DNS packets ... 12

3.4.2 Feature extraction from TCP connection packets 12

3.5 Fuzzy pattern recognition .. 13

3.5.1 DNS phase .. 14

3.5.2 TCP phase ... 17

3.5.3 Observation ... 20

vii

Chapter 4 Performance Evaluation ... 23

4.1 Traces collection .. 23

4.2 Test results of botnet traces .. 24

Chapter 5 Conclusion .. 29

5.1 Concluding remarks ... 29

5.2 Future work .. 29

References ... 30

viii

List of Figures
Figure 1. Botnet behaviors scenario: infection and attack phases 5

Figure 2. Proposed behavior-based botnet detection in a cloud computing

environment. .. 10

Figure 3. The procedure in traffic reduction stage. ... 11

Figure 4. The distribution of botnet DNS query packets. [x axis: seconds; y axis:

number of DNS query packets].. 12

Figure 5. The distribution of botnet TCP request packets. [x axis: seconds; y axis:

number of TCP request packets]. ... 13

Figure 6. The DNS phase of the proposed botnet detection algorithm. 14

Figure 7. The TCP phase of the proposed botnet detection algorithm. 14

Figure 8. Fuzzy max membership principle in DNS phase. 15

Figure 9. Fuzzy max membership principle in TCP phase. .. 17

Figure 10. Experimental environment for botnet traces collection. 23

Figure 11. Total execution time (sec) for 950 traces using various number of server

instances (SIs) in Windows Azure cloud ... 25

Figure 12. False positive bots distribution with respect to bot features in DNS phase.

.. 26

Figure 13. False positive bots distribution with respect to bot features in TCP phase.

.. 26

Figure 14. False negative bots distribution for different bot types. 27

file:///C:/Users/liyang/Desktop/Liyang_thesis_0719-rev1.docx%23_Toc298868181
file:///C:/Users/liyang/Desktop/Liyang_thesis_0719-rev1.docx%23_Toc298868182
file:///C:/Users/liyang/Desktop/Liyang_thesis_0719-rev1.docx%23_Toc298868183
file:///C:/Users/liyang/Desktop/Liyang_thesis_0719-rev1.docx%23_Toc298868184

ix

List of Tables
Table 1. Botnet traces statistics and false negative rate. ... 24

Table 2. Normal traces statistics and false positive rates. ... 24

Table 3. Comparison of different behavior-based botnet detection methods. 28

1

Abbreviations List
The list contains the main abbreviations used throughout this thesis.

BBDC: Behavior-based botnet detection in cloud computing environments

C&C: Command and control

DDoS: Distributed denial of service

DN: Domain name

DNS: Domain name system

FN: False negative

FNR: False negative rate

FP: False positive

FPR: False positive rate

SI: Server instance

TP: True positive

TPR: True positive rate

2

Chapter 1

Introduction

In recent years, Botnets have become new threats to Internet. They can duplicate

themselves and spread to other hosts quickly. Once a host is compromised, user

privacy data on the host may be stolen and it may result in severe damages (e.g.,

finance and security).

Nowadays, most anti-virus systems and botnet detection methods primarily use

string signature-based methods to detect well-known botnets [2][7][8][9][10].

Although a signature-based solution may have high detection results, it has the

following drawbacks. First, since botnets may change their behaviors (e.g.,

communication, attacking, etc.) from time to time, the string signature-based pattern

matching methods have difficulties to deal with varying behaviors of botnets [1].

Second, a bot is able to evade signature-based detection easily by using techniques

such as code obfuscations and mutations [12]. Finally, the string signature-based

database must be maintained by humans. On the contrary, behavior-based solutions

try to identify bot activities by observing particular bot network behaviors. In addition,

a behavior-based system does not need to maintain a signature database to detect bots.

Furthermore, behavior-based solutions are able to perform similar detection rates to

signature-based solutions [1].

In this paper, we propose a novel technique which identifies botnet behaviors by

two phases botnet matching. The two phases includes: the DNS phase and the TCP

phase. The DNS phase focuses on analyzing botnet DNS queries since bots activities

often start with DNS traffic. The TCP phase involves on TCP request and response

3

packets. Moreover, we raise our detection rates by utilizing fuzzy pattern recognition

to identify bot behaviors in the DNS and TCP phases. DNS and TCP phases’ features

have been extracted from observed bot behaviors. These features can be fed into the

fuzzy pattern recognition module to calculate membership values to identify possible

bot activities.

By observing the activities of collected network traces, we can identify bot

activities based on extracted bot features and conclude that the corresponding input

trace is compromised by a bot. Finally, we use a Windows Azure’s cloud computing

platform [11] to speed up bot detection. Each server instance in the cloud can handle

any phase of the proposed two phases botnet matching algorithm to determine if an

input trace is bot or not. Once identifying bots from the input trace, local hosts and

servers in the cloud will be alerted to be aware of the bot related IP addresses or

domain names.

 The rest of this paper is organized as follows. Chapter 2 briefly reviews related

work. Chapter 3 details the proposed approach for cloud-based botnet detection.

Chapter 4 presents the evaluation results of the proposed algorithm using real-world

botnet traces. Finally, Chapter 5 gives concluding remarks and future work.

4

Chapter 2

Background and Related Work

2.1 Overview of botnet behaviors

The scenario of botnet behaviors can be classified into two phases: the infection

phase and the attack phase, as shown in Figure 1 [1]. In the infection phase, as shown

in Figure 1(a), a bot master tries to break into a victim’s host and makes it become a

bot. There are many methods to break into a host, such as exploiting the host

vulnerabilities and by social engineering of divulging confidential information [13].

Once the intrusion is successful, the infected host sends its status to the bot master and

tries to install remote controllable software, which can be downloaded from a

binary-downloaded server. The binary-downloaded server is responsible for reporting

infected hosts status, error log and receiving upgraded software. In the attack phase,

as shown in Figure 1(b), a bot master sends commands to compromised bots to ask

bots to collect valuable information, report botnet status, and launch attacks to target

hosts.

5

(a) Bot master infects a target host. (b) Bot master sends commands to infected

 hosts (bots) to initiate attacks.

Figure 1. Botnet behaviors scenario: infection and attack phases [1].

6

2.2 Related work

Park et al. [4] proposed clustering common semantic patterns for botnet detection.

This paper presents a behavior-based automated approach to generate semantic

patterns for botnet detection. It uses static analysis to characterize bot behaviors and

uses hierarchical clustering of the resulting semantic patterns from a set of bot

programs. The detection requires a pattern matching to compute a matching score. If

the matching score exceeds a pre-defined decision threshold, the new suspicious bot

program is an instance of this bot malware class associated with the pattern. The goal

is to identify common semantic behaviors of bots. It may miss some malicious

behaviors that involve intentional or non-intentional program obfuscation.

Yu et al. [5] proposed online botnet detection based on an incremental discrete

Fourier transform method to detect botnets. It monitors botnet activities in an online

way. The authors define the concept of “feature streams” to describe raw network

traffic. If some feature streams show high similarities of tested traces, the

corresponding hosts will be regarded as suspected bots which will be added into the

suspected bot hosts set. Since the authors focus only on the overall input traffic, the

detection system may handle too many data in the same time that may cause the

detection rate no good enough.

The major differences of our proposes method with [4][5] are that we define the

DNS and TCP phases and then detect botnets by differential features in each phase.

Consequently, the false positive rate can be reduced compared to [4][5], because [4][5]

use feature streams or semantic patterns to match the overall input traffic, not by each

phase. They may lose some suspicious details in each phase. The proposed method

can improve the false positive rate and false negative rate of [4][5].

7

 Wang et al. [1] proposed a fuzzy pattern-based filtering algorithm for botnet

detection. The proposed method extracts bot features first and then recognizes botnets

based on collected bot behaviors. The fuzzy pattern recognition stage has two phases.

The DNS phase analyzes features of DNS packets. If a domain name is determined to

be malicious, the corresponding DN and its associated IP addresses will be marked

without going to the next phase. The TCP connection phase analyzes features of TCP

connection packets. The associated IP addresses will be marked if TCP connection

packets are determined to be malicious. Note that the detection rate and false positive

rate can be further improved if more bot features are used. Some false positive cases

are due to that the algorithm does not handle well on Microsoft Update related traffic.

For the detection rate, the problems of this algorithm are that it only focuses on

periodical DNS query traffic and similar TCP packet payload sizes to detect bots.

 In our approach, we employ more bot features into our proposed algorithm in

contrast to Wang et al. to enhance the detection rate and the false positive rate. Since

more bot features from DNS and TCP phases can be extracted to represent bot

behaviors, the proposed algorithm can be more precisely for botnet detection.

8

Chapter 3

Proposed Behavior-based Botnet

Detection Algorithm in Cloud

Computing Environments

3.1 Problem statement

3.1.1 The main problem

Given a network packet trace, the goal of the proposed solution is to identify

whether the packet trace is generated by bot activities or not. To overcome the

drawbacks of string signature-based methods mentioned in Chapter 1, we propose a

novel behavior-based botnet detection method in cloud computing environments.

3.1.2 The sub-problems

 Traffic reduction

Since there are some bot-unrelated data in the collected input traces, we

may filter out these data to speed up botnet detection. Bot behaviors always

involve specific network operations. Therefore, we may retain packets

related to these operations.

 Traffic partitioning

Since we want to reduce the total execution time of the proposed algorithm,

we use a cloud computing platform to speed up botnet detection. Traffic

partitioning divides an input trace into pieces. Then, available server

9

instances in the cloud can operate on these pieces concurrently using the

proposed botnet detection algorithm.

 Feature extraction

In our observation, bots always contain specific behaviors that are different

from normal user’s behaviors. Therefore, we want to detect bots by

features extracted from bot behaviors.

 DNS phase

The DNS phase focuses on the bot DNS query and response packets since

bot activities often start with DNS traffic. We use fuzzy pattern recognition

with max membership principle to identify some bot behaviors from DNS

traffic in the DNS phase.

 TCP phase

A bot master may send and update bot binaries programs to bots. The TCP

phase focuses on the TCP request and response packets. We use fuzzy

pattern recognition with max membership principle to identify bot

behaviors from TCP related traffic in the TCP phase.

3.2 Design of a behavior-based botnet detection

algorithm

The proposed behavior-based botnet detection in cloud computing environments

(BBDC) algorithm is shown in Figure 2. There are five stages in the algorithm:

traffic reduction, feature extraction, traffic partitioning, DNS phase and TCP phase.

First, input traffic is passed to the traffic reduction stage by removing bot-unrelated

traffic. Second, the feature extraction stage will extract bot features from the

reduced input traffic. The packets’ related information will be recorded into the

database by bot features that we observed. Third, the reduced input traffic will be

10

divided into several pieces according to available server instances in the cloud.

Each server instance in the cloud then runs the proposed two phase bot detection

algorithm to detect bots from the received piece. Fourth, in the DNS phase, the

detection algorithm checks if any DNS related packets are bot traffic or not based

on bot features extracted in the second phase. If there is no bot found in the DNS

phase, the piece will be fed into the TCP phase to determine whether any TCP

related packets are bot traffic or not. Both the DNS and TCP phases use the

proposed fuzzy pattern recognition with max membership principle to match bot

behavior states. If the membership value falls into any bot’s state, the input trace is

identified as a bot.

Once an input trace is identified as a bot, we will record the bot related

information in the database, such as DNs and IP addresses. Then the other hosts can

be informed of these bots via the alert system.

Figure 2. Proposed behavior-based botnet detection in a cloud computing environment.

11

3.3 Traffic reduction

It is true that a good traffic reduction filter can reduce the data needed to be

processed and also increase classification accuracy [1]. That is, by removing these

unrelated data, both bot detection time and bot detection accuracy can be improved.

Figure 3 shows the procedure in traffic reduction stage. An input trace usually

involves several network protocols. In our observations, a bot master may register

many domain names and let bots to inquire IP addresses of these domain names.

Therefore, bots often send DNS queries to domain name servers frequently to retrieve

IP addresses. Then, bots will establish TCP connections to these IP addresses. That is,

bot behaviors always involve DNS query/response and TCP request/response packets.

Based on these observations, we can filter out packets that are not related to DNS or

TCP protocols. The retained packets will then be stored in a database (DB) for feeding

into the feature extraction stage.

Figure 3. The procedure in the traffic reduction stage.

12

3.4 Feature extraction

Since bots always contain specific behaviors that are different from normal users’

behaviors, we can detect bots by extracted features from bot behaviors.

3.4.1 Feature extraction from DNS packets

We observed that bots send DNS queries periodically in a time period since bot

behaviors always involve DNS queries. For example, Figure 4 shows the distribution

of botnet DNS query packets. We may use some features that we observed from bots

specific behaviors to detect bots, such as total number of DNS packets between query

and response packets, total times that a node used the same IP addresses, etc. Those

packets that are related to bot DNS features will be stored in the database.

Figure 4. The distribution of botnet DNS query packets. [x axis: seconds; y axis:

number of DNS query packets].

3.4.2 Feature extraction from TCP connection packets

Figure 5 shows the distribution of botnet TCP request packets. It illustrates that the

TCP request packets distribution of botnet traffic is periodical. We use some features

that we observed from bots specific behaviors to detect bots, such as packets count

per second, bytes count per packet, etc. Those packets that are related to bot TCP

features will be stored in the database.

13

Figure 5. The distribution of botnet TCP request packets. [x axis: seconds; y axis:

number of TCP request packets].

3.5 Fuzzy pattern recognition for DNS and TCP

phases

As mentioned before, bot behaviors can be obfuscated to evade a string

signature-based detection system. Therefore, we propose a behavior-based botnet

detection algorithm in cloud computing environments (BBDC) that uses fuzzy pattern

recognition to identify bots, including obfuscated bots. In the proposed BBDC

algorithm, the fuzzy pattern recognition has two phases: DNS phase and TCP phase.

In the DNS phase, we determine if it is a bot based on DNS features that were

collected from the feature extraction stage, as shown in Figure 6. If it is not a bot, then

the input trace is passed to the TCP phase. Oterwise, the input trace is identified as a

bot. In the TCP phase, we detect a bot based on TCP features that were collected from

the feature extraction stage, as shown in Figure 7. Both phases use fuzzy pattern

recognition to classify bot and non-bot behaviors based on the max membership

principle. Each membership function corresponds to a state and has a membership

value, which will be described in the DNS and TCP phases later. The BBDC

algorithm will find a max membership value, and the bot trace or normal trace is in

14

the state associated with this max membership value.

3.5.1 DNS phase

In the DNS phase, we define a packet features vector x = (α, β, γ, λ). α is a

set of time intervals {αi | 1 ≦ i ≦ n} between DNS query and response

packets, where αi is the length of time interval i between DNS query and

Figure 7. The TCP phase of the proposed botnet detection algorithm.

Figure 6. The DNS phase of the proposed botnet detection algorithm.

15

response packets, and n is the total number of DNS queries; β is a set of total

number of DNS query packets {βi | 1 ≦ i ≦ n} in contrast to α, where βi is

the total number of DNS query packets in contrast to αi, and n is the total

number of DNS queries; γ is a set of {γi | 1 ≦ i ≦ N}, where is total

times of the i
th

 IP address used by this node, and N is the number of IP

addresses that a node used. λ is total number of DNS query and response

packets per second. Figure 8 shows the fuzzy pattern recognition with max

membership principle in the DNS phase. In this phase, we define four states

and their associated membership functions, as described in the following.

 Bot trace states

(a) Normalized abnormal variance of total number of DNS packets between

query and response packets

An active malicious DNS traffic usually has a large packet count in a time

period. More DNS packets in a time period lead to a higher membership

value. We define a membership function for calculating the normalized

abnormal variance of total number of DNS packets between query and

response packets, as follows:

 (1)

 , where N is the duration of time interval in seconds,

n is the total number of DNS queries, is the total number of DNS

Figure 8. Fuzzy max membership principle in DNS phase.

16

query packets in time interval at the j
th

 second, and is the threshold

of being abnormal variance of DNS packets.

(b) Normalized abnormal total times that a node used the same IP

addresses

Bots may contact specific IP addresses many times in their execution period.

Therefore, we calculate the contact times per IP address to identify

abnormal connections by bots. We define a membership function for

calculating normalized abnormal total times that a node used the same IP

addresses.

 (2)

where N is the number of IP addresses that a node used, is total times of

the i
th

 IP address used by this node, and is the threshold of the abnormal

contact times per IP address.

(c) Normalized abnormal total number of DNS query and response packets

per second

Bots may send DNS query packets many times in their execution time.

Therefore, we calculate the times of DNS queries per second to identify

abnormal DNS queries. We define a membership function for

calculating normalized abnormal total number of DNS query and response

packets per second.

 (3)

where N is the duration of an input trace in seconds, is the total number

of DNS query and response packets in the i
th

 second, and is the

threshold of the total number of DNS query and response packets per

17

second.

 Normal trace state

We define a membership function for calculating the probability of

being a normal trace.

 (4)

3.5.2 TCP phase

In the TCP phase, we define a packet features vector x = (α, β, γ, λ). α is a

set of time intervals {αi | 1 ≦ i ≦ n} between TCP request and response

packets, where αi is the length of time interval i between TCP request and

response packets, and n is the total number of TCP request packets; β is a set of

total number of TCP packets {βi | 1 ≦ i ≦ n} in contrast to α, where βi is the

total number of TCP packets in contrast to αi, and n is the total number of TCP

requests; γ is a set of total number of bytes {γi | 1 ≦ i ≦ n} in contrast to α,

where γi is the total number of bytes in contrast to αi, and n is the total number of

TCP requests. λ is total number of TCP request and response packets per second.

Figure 9 shows the fuzzy pattern recognition with max membership principle in

the TCP phase. In this phase, we define six states and their associated

membership functions, as follows:

Figure 9. Fuzzy max membership principle in TCP phase.

18

 Bot trace states

(a) Normalized abnormal packets count per second

If a TCP connection sent too many requests in a second, the TCP packets

count per second would reflect the abnormal behavior. We define a

membership function for calculating the normalized abnormal packets

count per second.

 (5)

where is the total number of TCP packets in an input trace, is the

duration of an input trace in seconds, and is the threshold for abnormal

packets count per second.

(b) Normalized abnormal bytes count per packet

If a bot master wants to send commands to other bots, the bytes count per

TCP packet will reflect the abnormal behavior. We define a membership

function for calculating the normalized abnormal bytes count per packet.

 (6)

where is the total number of bytes in an input trace, is the total

number of TCP packets in an input trace, and is the threshold for

abnormal bytes count per packet.

(c) Normalized abnormal variance of total number of TCP packets between

request and response packets

An active malicious TCP traffic usually has a large packet count in a time

period. More TCP packets in a time period lead to a higher membership

19

value. We define a membership function for calculating the normalized

abnormal variance of total number of TCP packets.

 (7)

 , where N is the duration of time interval in seconds,

n is the total number of TCP request packets and is total number of

TCP request packets in time interval at the j
th

 second, and is the

threshold of the variance of total number of TCP packets.

(d) Normalized abnormal variance of total number of bytes

An active malicious TCP traffic usually has a large byte count of TCP

packets in a time period. More bytes in a time period lead to a higher

membership value. We define a membership function for calculating the

normalized abnormal variance of total number of bytes.

 (8)

 , where N is the duration of time interval in seconds,

n is the total number of TCP request packets and is the total number

of bytes in time interval at the j
th

 second, and is the threshold of the

variance of abnormal total number of bytes.

(e) Normalized abnormal total number of TCP request and response

packets per second

Bots may send TCP request and response packets many times in their

execution periods. Therefore, we calculate the total number of TCP request

and response packets per second to identify abnormal behaviors. We define

a membership function for calculating the normalized abnormal total

number of TCP request and response packets per second.

20

where N is the duration of an input trace in seconds, is the total number

of TCP request and response packets in the i
th

 second, and is the

threshold of the total number of TCP packets per second.

 Normal trace state

We define a membership function for calculating the probability of

being a normal trace.

 (10)

3.5.3 Observation

We observed 50 bots and 50 normal traces. Each trace lasts for two hours.

In these experiments, we found that there are different behaviors between

bots and normal traces. Figure 10 shows some observations of six bot

characteristics. In Figure 10(a) and 10(b) show the statistics about the

variance of packet inter arrival time and the variance of bytes per packet,

respectively. In Figure 10(c) and 10(d) show the statistics about the number

of packets between request and response packets and the contact times per

IP address. In Figure 10(e) and 10(f) show the statistics about the average

number of packets per second and the average number of bytes per packet.

Each characteristic reflects different behaviors of some bots. To reduce

the false-positive rate, we choose more bot’s behavior characteristics that

can characterize botnets. To reflect the behaviors of IRC bots, the contact

times that a node used the same IP addresses and the total number of DNS

query and response packets per second can be used to detect IRC bots. To

21

reflect the behaviors of HTTP bots, the packet count per second and the

byte count per packet can be used to detect HTTP bots.

22

 (a) (b)

 (c) (d)

 (e) (f)

Figure 10. Some observations of six bot characteristics.

23

Chapter 4

Performance Evaluation

4.1 Traces collection

To collect real botnet traces, we installed an unpatched Windows XP SP3 in a

virtual machine using Ubuntu and Virtualbox, and executed 250 real bot samples

inside a Windows environment (HoneyTrap). We used a share folder to manage

honeytraps (1 to N), as shown in Figure 10. Both input and output network traffic of

the virtual machine were recorded by a Recorder and stored in an Apache database via

DBInserter. Among 250 bots, only 240 bots had network traces. The rest of bots were

not executable. The botnet traces were recorded for 2 hours via Recorder. Both the

packet header and complete packet payload were stored in the database for further

botnet analysis.

Figure 10. Experimental environment for botnet traces collection.

24

4.2 Test results of botnet traces

We used real botnet traces to evaluate our BBDC algorithm. Statistics of the

botnet traces and the false negative rate are shown in Table 1. The evaluation result

shows that BBDC a low false negative rate (FNR), 4.17%.

Table 1. Botnet traces statistics and false negative rate.

Number

of bots

Inactive

bots

Active

bots

Traffic

reduction rate

Number of active

bots detected

False negative

rate

250 10 240 75.4% 230 4.17%

We also collected two normal traces (T1 through T2) to evaluate the BBDC’s

traffic reduction rate and the false positive rate (FPR). T1 traces were collected from

the National Chiao Tung University’s campus beta site. We collected 695 traces in T1

for 2 hours. T2 traces were obtained from our MAL laboratory. We collected 5 traces

in T2 from laboratory’s members. These traces contain various types of benign

applications using IRC, HTTP, and P2P, etc. In Table 2, we found that the BBDC

achieves high reduction rates and low FPRs.

Table 2. Normal traces statistics and false positive rates.

Test site
Number of

normal traces

Traffic

reduction rate

Number of traces

identified as bots

False positive

rate (FPR)

T1 695 77.3% 24 3.453%

T2 5 73.1% 0 0%

 Figure 11 shows the proposed botnet detection system’s total execution time in

Windows azure cloud and host-based environment. We used 1 to 5 server instances

25

(SIs) to evaluate the total execution time in our proposed system. In the experiments,

we evaluate both host-based and cloud-based execution time. Experimental results

show that the total execution time can be reduced in proportion to number of SIs used.

The cloud-based system is 4.73 times faster than the host-based system in terms of

total execution time with 5 SIs used.

Figure 11. Total execution time (sec) for 950 traces using various number of

server instances (SIs) in Windows Azure cloud.

 Figure 12 shows the false positive bots distribution among bot behaviors in the DNS

phase. Figure 13 shows the false positive bots distribution among bot behaviors in the

TCP phase. Since our proposed botnet detection system may have false positive bots,

we want to find out the causes of such bot features. Both figures show the bot features

that cause normal traces being identified as bots. By these statistics, we can adjust

membership functions to reduce the proposed system’s FPR in the future.

26

Figure 12. False positive bots distribution with respect to bot features in DNS

phase.

Figure 13. False positive bots distribution with respect to bot features in TCP phase.

 .

27

Figure 14 shows the false negative bots distribution for each bot type, IRC or HTTP

bots. Since bots may evade and obfuscate the botnet detection system, our proposed

system may have false negative bots. By observing the bots’ traces which cause false

negative (FN), we may modify or add bot features to reduce FN bots.

Figure 14. False negative bots distribution for different bot types.

We also evaluate the execution time in each stage in our botnet detection system.

The traffic reduction phase spent 10% of time. The DNS phase spent about 37% of

time. The TCP phase spent about 53% of time. Since the DNS and TCP phases spent

most total execution time, we port the proposed system into a cloud environment in

order to reduce the botnet detection system’s total execution time.

In Table 3, we compare the proposed BBDC and the other three existing botnet

detection methods. Unlike these three existing methods, BBDC used 250 real bot

samples to emulate real botnet traffic. Except Yu [5], the proposed BBDC performs

better than Park [4] and Lin [1] in terms of false positive rate and false negative rate.

Note that the botnet traces of Yu [5] only contain four fabricated bots, not real bots.

28

Table 3. Comparison of different behavior-based botnet detection methods.

Approach
BBDC

(proposed)
Park [4] Yu [5] Lin [1]

Basic idea

Using fuzzy

pattern

recognition

cloud to

detect bots

Using static

analysis with

a data-mining

technique to

detect bots

Using feature

streams to

match whole

input trace to

detect bots

Using fuzzy

pattern

recognition

filtering

algorithm to

detect bots

Botnet trace
Real botnet

traffic

Real botnet

traffic

 4 fabricated

bots

Real botnet

traffic

True positive

rate
95.83% 94.35% 100% 90.41%

False positive

rate
3.429% 4.393% 14.7% 9.59%

False negative

rate
4.17% 5.65% 0% 5.41%

Bot samples 250 110 4 250

Categories of bot

samples
IRC+HTTP IRC+HTTP IRC IRC+HTTP

Total execution

time (host-based)
398.1 sec. N/A N/A N/A

Total execution

time

(cloud-based

with 5-server

instances)

84.2 sec. N/A N/A N/A

29

Chapter 5

Conclusion

5.1 Concluding remarks

 In this thesis, we have presented a behavior-based botnet detection algorithm

using a cloud computing environment to speed up botnet detection. Our algorithm can

reduce false positive and false negative rates compared with other behavior-based

detection systems. We reduce the total execution time by traffic reduction and cloud

computing. Since the proposed algorithm identifies different protocols used in an

input trace and detect bots based on bot behaviors in each protocol, it can have a high

detection rate (true positive rate). We use a fuzzy pattern recognition with

max-membership principle to perform bot behaviors matching in the DNS and TCP

phases. We have used real bots to generate real botnet traces for evaluating the

proposed BBDC algorithm. As a result, the proposed botnet detection system can be

feasible in a real world. Experimental results show that our proposed system can

achieve a high true positive rate of 95.83% and a low false positive rate of 3.429% in

the Windows Azure cloud computing platform. Furthermore, the proposed

cloud-based system with five server instances is 4.73 times faster than a host-based

system.

5.2 Future work

In the future, we will extend our work to detect P2P botnets by including P2P bots

features in the proposed botnet detection system. Moreover, we want to reduce the

FPR and FNR of the proposed botnet detection system by extracting more bot’s

behavior features that can characterize botnets.

30

References

[1] K. Wang, C. Huang, S. Lin, Y. Lin, “A fuzzy pattern-based filtering algorithm for

botnet detection,” Computer Networks, 2011 (accepted for publication).

[2] “Snort,” [Online]. Available: http://www.snort.org/.

[3] B. AsSadhan, José M. F. Moura and D. Lapsley, “Periodic behavior in botnet

command and control channels traffic,” in Proc. IEEE Global Telecommunication

Conf., 2009, pp. 2157-2162.

[4] Y. Park, Q. Zhang, D. Reeves, V. Mulukutla, “AntiBot: clustering common

semantic patterns for bot detection,” in Proc. IEEE Computer Software and

Applications Conf., 2010.

[5] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, “Online botnet detection based on

incremental discrete Fourier transform,” Networks Journal, May 2010, pp.

568-576.

[6] J. Kang, J. Zhang, Q. Li, Z. Li, “ Detecting new P2P botnet with multi-chart

CUSUM,” in Proc. IEEE Wireless Communications and Trusted Computing Conf.,

2009.

[7] W. Lu, M. Tavallaee, G. Rammidi, A.A. Ghorbani, “BotCop: An online botnet

traffic classifier,” in Proc. IEEE Communication Networks and Services Research

Conf., 2009.

[8] F. Alserhani, M. Akhlaq, I.U. Awan, A.J. Cullen, “Detection of coordinated

attacks using alert correlation model,” in Proc. IEEE Progress in Informatics and

Computing Conf., 2010.

[9] M. Szymczyk, “Detecting botnets in computer networks using multi-agent

technology,” in Proc. IEEE Dependability of Computer Systems Conf., 2009.

[10] L. Braun, G. Munz, G. Carle,” Packet sampling for worm and botnet detection in

http://www.snort.org/

31

TCP connections”, in Proc. Network Operations and Management Symposium

(NOMS), 2010.

[11] “Windows azure,” [Online]. Available:

http://msdn.microsoft.com/zh-tw/windowsazure/cc947856.

[12] P. Sinha, A. Boukhtouta, V.H. Belarde, M. Debbabi, “Insights from the analysis

of the Mariposa botnet”, in Proc. IEEE Risks and Security of Internet and Systems

Conf., 2010.

[13] “Social engineering,” [Online]. Available:

http://en.wikipedia.org/wiki/Social_engineering_%28security%29

http://msdn.microsoft.com/zh-tw/windowsazure/cc947856
http://en.wikipedia.org/wiki/Social_engineering_%28security%29

