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雲端計算環境下基於網路行為 

之殭屍網路偵測機制 

 

學生：蔡禮陽     指導教授：王國禎 博士 

國立交通大學 資訊學院 網路工程研究所 

 

摘 要 

殭屍網路在近幾年非常盛行，造成經濟及隱私上的安全危害及分

散式阻斷攻擊等網路犯罪的問題。傳統的字串比對偵測方法在殭屍網

路的偵測上容易發生誤判或漏判的情況。為了解決這個問題，在本論

文中，我們提出雲端計算環境下基於網路行為之僵屍網路偵測機制，

簡稱 BBDC，來分析網路流量以偵測僵屍網路。我們根據錄製的各

網路封包之行為來做僵屍網路之分析與偵測。BBDC 分成五個階段，

第一個階段是利用僵屍網路的特性來過濾掉不需要檢查的封包。第二

個階段則是取出封包流量的特徵。第三個階段則將已經過濾完剩下的

待測封包流量切割成多個相同大小的資料量送入雲端系統的多個虛

擬機器進行殭屍網路檢測。第四個階段及第五個階段則是透過模糊識

別對 DNS 封包及 TCP 封包的行為來進行殭屍網路偵測。當待測封包
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被確認為殭屍網路的流量，本機端的電腦以及在雲端內的伺服器群可

以預防殭屍網路的危害經由儲存在資料庫的殭屍網路的相關資料。為

了評估此方法的有效性，我們收集了真實殭屍網路流量及校園宿舍正

常流量來評量我們的方法。實驗結果顯示，我們提出的 BBDC 對於

僵屍網路的流量辨識正確率高達 95.83%，且對於正常網路流量只有

0% ~ 3.453%的誤判率。此外，我們引入雲端計算的技術，使用五台

虛擬機器去進行殭屍網路的流量偵測，與只在本機端的殭屍網路偵測

相比，我們提升 4.73 倍的殭屍網路偵測速度。此證明我們提出的偵

測機制可藉由雲端計算環境資源達到快速偵測殭屍網路之結果。 

 

關鍵詞：基於行為比對、殭屍網路偵測、雲端計算環境、模糊識別、

基於字串比對。 
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Behavior-based Botnet Detection  

in Cloud Computing Environments 

 Student：Li-Yang Tsai    Advisor：Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 

In recent years, botnets become a major issue to Internet security; however, 

existing string signature-based matching methods usually lead to high false positive 

rates (FPR) and low true positive rates (TPR) for botnet detection. In this paper, we 

proposed a behavior-based botnet detection mechanism in cloud computing 

environments (BBDC). Our BBDC algorithm is divided into five stages: (1) traffic 

reduction: removing unwanted packets from an input trace for speeding up bot 

detection; (2) feature extraction: extracting features from the reduced input trace; (3) 

traffic partitioning: dividing the reduced input trace into pieces for a cloud-based 

system to detect botnets concurrently; (4) DNS phase: extracting botnet DNS features 

to detect bots; (5) TCP phase: extracting TCP request and response features to detect 

bots. Since stage four and five consume almost 90% of the total execution time in our 

design, we dispatch reduced input traces to the cloud to speed up botnet detection. In 

order to achieve a high detection rate, we utilize fuzzy pattern recognition for botnet 

detection in DNS and TCP phases. Once bot activities are identified from the input 

trace, local hosts and servers in the cloud will be alerted to avoid bot related IP 

addresses or domain names (DNs). Experimental results show that the proposed 

BBDC can achieve high TPR and low FPR. Furthermore, the proposed cloud-based 
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botnet detection system with five virtual machines is 4.73 times faster than a 

host-based system. 

 

Keywords: behavior-based, botnet detection, cloud computing environment, fuzzy 

pattern recognition, signature-based. 
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Chapter 1  

Introduction 

In recent years, Botnets have become new threats to Internet. They can duplicate 

themselves and spread to other hosts quickly. Once a host is compromised, user 

privacy data on the host may be stolen and it may result in severe damages (e.g., 

finance and security). 

Nowadays, most anti-virus systems and botnet detection methods primarily use 

string signature-based methods to detect well-known botnets [2][7][8][9][10]. 

Although a signature-based solution may have high detection results, it has the 

following drawbacks. First, since botnets may change their behaviors (e.g., 

communication, attacking, etc.) from time to time, the string signature-based pattern 

matching methods have difficulties to deal with varying behaviors of botnets [1]. 

Second, a bot is able to evade signature-based detection easily by using techniques 

such as code obfuscations and mutations [12]. Finally, the string signature-based 

database must be maintained by humans. On the contrary, behavior-based solutions 

try to identify bot activities by observing particular bot network behaviors. In addition, 

a behavior-based system does not need to maintain a signature database to detect bots. 

Furthermore, behavior-based solutions are able to perform similar detection rates to 

signature-based solutions [1].  

In this paper, we propose a novel technique which identifies botnet behaviors by 

two phases botnet matching. The two phases includes: the DNS phase and the TCP 

phase. The DNS phase focuses on analyzing botnet DNS queries since bots activities 

often start with DNS traffic. The TCP phase involves on TCP request and response 
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packets. Moreover, we raise our detection rates by utilizing fuzzy pattern recognition 

to identify bot behaviors in the DNS and TCP phases. DNS and TCP phases’ features 

have been extracted from observed bot behaviors. These features can be fed into the 

fuzzy pattern recognition module to calculate membership values to identify possible 

bot activities. 

By observing the activities of collected network traces, we can identify bot 

activities based on extracted bot features and conclude that the corresponding input 

trace is compromised by a bot. Finally, we use a Windows Azure’s cloud computing 

platform [11] to speed up bot detection. Each server instance in the cloud can handle 

any phase of the proposed two phases botnet matching algorithm to determine if an 

input trace is bot or not. Once identifying bots from the input trace, local hosts and 

servers in the cloud will be alerted to be aware of the bot related IP addresses or 

domain names. 

   The rest of this paper is organized as follows. Chapter 2 briefly reviews related 

work. Chapter 3 details the proposed approach for cloud-based botnet detection. 

Chapter 4 presents the evaluation results of the proposed algorithm using real-world 

botnet traces. Finally, Chapter 5 gives concluding remarks and future work. 
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Chapter 2  

Background and Related Work 

2.1 Overview of botnet behaviors 

The scenario of botnet behaviors can be classified into two phases: the infection 

phase and the attack phase, as shown in Figure 1 [1]. In the infection phase, as shown 

in Figure 1(a), a bot master tries to break into a victim’s host and makes it become a 

bot. There are many methods to break into a host, such as exploiting the host 

vulnerabilities and by social engineering of divulging confidential information [13]. 

Once the intrusion is successful, the infected host sends its status to the bot master and 

tries to install remote controllable software, which can be downloaded from a 

binary-downloaded server. The binary-downloaded server is responsible for reporting 

infected hosts status, error log and receiving upgraded software. In the attack phase, 

as shown in Figure 1(b), a bot master sends commands to compromised bots to ask 

bots to collect valuable information, report botnet status, and launch attacks to target 

hosts.  
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(a) Bot master infects a target host.    (b) Bot master sends commands to infected 

                                      hosts (bots) to initiate attacks. 

Figure 1. Botnet behaviors scenario: infection and attack phases [1]. 
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2.2 Related work 

Park et al. [4] proposed clustering common semantic patterns for botnet detection. 

This paper presents a behavior-based automated approach to generate semantic 

patterns for botnet detection. It uses static analysis to characterize bot behaviors and 

uses hierarchical clustering of the resulting semantic patterns from a set of bot 

programs. The detection requires a pattern matching to compute a matching score. If 

the matching score exceeds a pre-defined decision threshold, the new suspicious bot 

program is an instance of this bot malware class associated with the pattern. The goal 

is to identify common semantic behaviors of bots. It may miss some malicious 

behaviors that involve intentional or non-intentional program obfuscation. 

Yu et al. [5] proposed online botnet detection based on an incremental discrete 

Fourier transform method to detect botnets. It monitors botnet activities in an online 

way. The authors define the concept of “feature streams” to describe raw network 

traffic. If some feature streams show high similarities of tested traces, the 

corresponding hosts will be regarded as suspected bots which will be added into the 

suspected bot hosts set. Since the authors focus only on the overall input traffic, the 

detection system may handle too many data in the same time that may cause the 

detection rate no good enough. 

The major differences of our proposes method with [4][5] are that we define the 

DNS and TCP phases and then detect botnets by differential features in each phase. 

Consequently, the false positive rate can be reduced compared to [4][5], because [4][5] 

use feature streams or semantic patterns to match the overall input traffic, not by each 

phase. They may lose some suspicious details in each phase. The proposed method 

can improve the false positive rate and false negative rate of [4][5].  
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 Wang et al. [1] proposed a fuzzy pattern-based filtering algorithm for botnet 

detection. The proposed method extracts bot features first and then recognizes botnets 

based on collected bot behaviors. The fuzzy pattern recognition stage has two phases. 

The DNS phase analyzes features of DNS packets. If a domain name is determined to 

be malicious, the corresponding DN and its associated IP addresses will be marked 

without going to the next phase. The TCP connection phase analyzes features of TCP 

connection packets. The associated IP addresses will be marked if TCP connection 

packets are determined to be malicious. Note that the detection rate and false positive 

rate can be further improved if more bot features are used. Some false positive cases 

are due to that the algorithm does not handle well on Microsoft Update related traffic. 

For the detection rate, the problems of this algorithm are that it only focuses on 

periodical DNS query traffic and similar TCP packet payload sizes to detect bots. 

  In our approach, we employ more bot features into our proposed algorithm in 

contrast to Wang et al. to enhance the detection rate and the false positive rate. Since 

more bot features from DNS and TCP phases can be extracted to represent bot 

behaviors, the proposed algorithm can be more precisely for botnet detection.     
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Chapter 3  

Proposed Behavior-based Botnet 

Detection Algorithm in Cloud 

Computing Environments 

3.1 Problem statement 

3.1.1 The main problem 

Given a network packet trace, the goal of the proposed solution is to identify 

whether the packet trace is generated by bot activities or not. To overcome the 

drawbacks of string signature-based methods mentioned in Chapter 1, we propose a 

novel behavior-based botnet detection method in cloud computing environments.  

3.1.2 The sub-problems 

 Traffic reduction 

Since there are some bot-unrelated data in the collected input traces, we 

may filter out these data to speed up botnet detection. Bot behaviors always 

involve specific network operations. Therefore, we may retain packets 

related to these operations. 

 Traffic partitioning 

Since we want to reduce the total execution time of the proposed algorithm, 

we use a cloud computing platform to speed up botnet detection. Traffic 

partitioning divides an input trace into pieces. Then, available server 
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instances in the cloud can operate on these pieces concurrently using the 

proposed botnet detection algorithm. 

 Feature extraction 

In our observation, bots always contain specific behaviors that are different 

from normal user’s behaviors. Therefore, we want to detect bots by 

features extracted from bot behaviors. 

 DNS phase 

The DNS phase focuses on the bot DNS query and response packets since 

bot activities often start with DNS traffic. We use fuzzy pattern recognition 

with max membership principle to identify some bot behaviors from DNS 

traffic in the DNS phase. 

 TCP phase 

A bot master may send and update bot binaries programs to bots. The TCP 

phase focuses on the TCP request and response packets. We use fuzzy 

pattern recognition with max membership principle to identify bot 

behaviors from TCP related traffic in the TCP phase. 

3.2 Design of a behavior-based botnet detection 

algorithm 

The proposed behavior-based botnet detection in cloud computing environments 

(BBDC) algorithm is shown in Figure 2. There are five stages in the algorithm: 

traffic reduction, feature extraction, traffic partitioning, DNS phase and TCP phase. 

First, input traffic is passed to the traffic reduction stage by removing bot-unrelated 

traffic. Second, the feature extraction stage will extract bot features from the 

reduced input traffic. The packets’ related information will be recorded into the 

database by bot features that we observed. Third, the reduced input traffic will be 
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divided into several pieces according to available server instances in the cloud. 

Each server instance in the cloud then runs the proposed two phase bot detection 

algorithm to detect bots from the received piece. Fourth, in the DNS phase, the 

detection algorithm checks if any DNS related packets are bot traffic or not based 

on bot features extracted in the second phase. If there is no bot found in the DNS 

phase, the piece will be fed into the TCP phase to determine whether any TCP 

related packets are bot traffic or not. Both the DNS and TCP phases use the 

proposed fuzzy pattern recognition with max membership principle to match bot 

behavior states. If the membership value falls into any bot’s state, the input trace is 

identified as a bot. 

Once an input trace is identified as a bot, we will record the bot related 

information in the database, such as DNs and IP addresses. Then the other hosts can 

be informed of these bots via the alert system. 

 

Figure 2. Proposed behavior-based botnet detection in a cloud computing environment. 
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3.3 Traffic reduction 

It is true that a good traffic reduction filter can reduce the data needed to be 

processed and also increase classification accuracy [1]. That is, by removing these 

unrelated data, both bot detection time and bot detection accuracy can be improved. 

Figure 3 shows the procedure in traffic reduction stage. An input trace usually 

involves several network protocols. In our observations, a bot master may register 

many domain names and let bots to inquire IP addresses of these domain names. 

Therefore, bots often send DNS queries to domain name servers frequently to retrieve 

IP addresses. Then, bots will establish TCP connections to these IP addresses. That is, 

bot behaviors always involve DNS query/response and TCP request/response packets. 

Based on these observations, we can filter out packets that are not related to DNS or 

TCP protocols. The retained packets will then be stored in a database (DB) for feeding 

into the feature extraction stage. 

 

Figure 3. The procedure in the traffic reduction stage. 
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3.4 Feature extraction 

Since bots always contain specific behaviors that are different from normal users’ 

behaviors, we can detect bots by extracted features from bot behaviors. 

3.4.1 Feature extraction from DNS packets 

We observed that bots send DNS queries periodically in a time period since bot 

behaviors always involve DNS queries. For example, Figure 4 shows the distribution 

of botnet DNS query packets. We may use some features that we observed from bots 

specific behaviors to detect bots, such as total number of DNS packets between query 

and response packets, total times that a node used the same IP addresses, etc. Those 

packets that are related to bot DNS features will be stored in the database. 

 

Figure 4. The distribution of botnet DNS query packets. [x axis: seconds; y axis: 

number of DNS query packets]. 

3.4.2 Feature extraction from TCP connection packets 

Figure 5 shows the distribution of botnet TCP request packets. It illustrates that the 

TCP request packets distribution of botnet traffic is periodical. We use some features 

that we observed from bots specific behaviors to detect bots, such as packets count 

per second, bytes count per packet, etc. Those packets that are related to bot TCP 

features will be stored in the database.  
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Figure 5. The distribution of botnet TCP request packets. [x axis: seconds; y axis: 

number of TCP request packets]. 

3.5 Fuzzy pattern recognition for DNS and TCP 

phases 

As mentioned before, bot behaviors can be obfuscated to evade a string 

signature-based detection system. Therefore, we propose a behavior-based botnet 

detection algorithm in cloud computing environments (BBDC) that uses fuzzy pattern 

recognition to identify bots, including obfuscated bots. In the proposed BBDC 

algorithm, the fuzzy pattern recognition has two phases: DNS phase and TCP phase. 

In the DNS phase, we determine if it is a bot based on DNS features that were 

collected from the feature extraction stage, as shown in Figure 6. If it is not a bot, then 

the input trace is passed to the TCP phase. Oterwise, the input trace is identified as a 

bot. In the TCP phase, we detect a bot based on TCP features that were collected from 

the feature extraction stage, as shown in Figure 7. Both phases use fuzzy pattern 

recognition to classify bot and non-bot behaviors based on the max membership 

principle. Each membership function corresponds to a state and has a membership 

value, which will be described in the DNS and TCP phases later. The BBDC 

algorithm will find a max membership value, and the bot trace or normal trace is in 
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the state associated with this max membership value.  

 

 

3.5.1 DNS phase 

In the DNS phase, we define a packet features vector x = (α, β, γ, λ). α is a 

set of time intervals {αi | 1 ≦ i ≦ n} between DNS query and response 

packets, where αi is the length of time interval i between DNS query and 

 

Figure 7. The TCP phase of the proposed botnet detection algorithm. 

 

 

Figure 6. The DNS phase of the proposed botnet detection algorithm. 
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response packets, and n is the total number of DNS queries; β is a set of total 

number of DNS query packets {βi | 1 ≦ i ≦ n} in contrast to α, where βi is 

the total number of DNS query packets in contrast to αi, and n is the total 

number of DNS queries; γ is a set of {γi | 1 ≦ i ≦ N}, where    is total 

times of the i
th

 IP address used by this node, and N is the number of IP 

addresses that a node used. λ is total number of DNS query and response 

packets per second. Figure 8 shows the fuzzy pattern recognition with max 

membership principle in the DNS phase. In this phase, we define four states 

and their associated membership functions, as described in the following. 

 

 Bot trace states 

(a) Normalized abnormal variance of total number of DNS packets between 

query and response packets 

An active malicious DNS traffic usually has a large packet count in a time 

period. More DNS packets in a time period lead to a higher membership 

value. We define a membership function    for calculating the normalized 

abnormal variance of total number of DNS packets between query and 

response packets, as follows: 

       

               
        

     

             
        

      
   

             
       

          

                            

         (1) 

                , where N is the duration of time interval    in seconds, 

n is the total number of DNS queries,       is the total number of DNS 

 

Figure 8. Fuzzy max membership principle in DNS phase. 
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query packets in time interval    at the j
th

 second, and    is the threshold 

of being abnormal variance of DNS packets. 

(b) Normalized abnormal total times that a node used the same IP 

addresses 

Bots may contact specific IP addresses many times in their execution period. 

Therefore, we calculate the contact times per IP address to identify 

abnormal connections by bots. We define a membership function    for 

calculating normalized abnormal total times that a node used the same IP 

addresses. 

       

       

   
 
   

         

                                

                          (2) 

where N is the number of IP addresses that a node used,    is total times of 

the i
th

 IP address used by this node, and    is the threshold of the abnormal 

contact times per IP address. 

(c) Normalized abnormal total number of DNS query and response packets 

per second 

Bots may send DNS query packets many times in their execution time. 

Therefore, we calculate the times of DNS queries per second to identify 

abnormal DNS queries. We define a membership function    for 

calculating normalized abnormal total number of DNS query and response 

packets per second. 

       

       

   
 
   

         

                                

                          (3) 

where N is the duration of an input trace in seconds,    is the total number 

of DNS query and response packets in the i
th

 second, and    is the 

threshold of the total number of DNS query and response packets per 
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second. 

 Normal trace state 

We define a membership function    for calculating the probability of 

being a normal trace.  

                                        (4)  

3.5.2 TCP phase 

In the TCP phase, we define a packet features vector x = (α, β, γ, λ). α is a 

set of time intervals {αi | 1 ≦ i ≦ n} between TCP request and response 

packets, where αi is the length of time interval i between TCP request and 

response packets, and n is the total number of TCP request packets; β is a set of 

total number of TCP packets {βi | 1 ≦ i ≦ n} in contrast to α, where βi is the 

total number of TCP packets in contrast to αi, and n is the total number of TCP 

requests; γ is a set of total number of bytes {γi | 1 ≦ i ≦ n} in contrast to α, 

where γi is the total number of bytes in contrast to αi, and n is the total number of 

TCP requests. λ is total number of TCP request and response packets per second. 

Figure 9 shows the fuzzy pattern recognition with max membership principle in 

the TCP phase. In this phase, we define six states and their associated 

membership functions, as follows: 

 

 

 

 

Figure 9. Fuzzy max membership principle in TCP phase. 
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 Bot trace states 

(a) Normalized abnormal packets count per second 

If a TCP connection sent too many requests in a second, the TCP packets 

count per second would reflect the abnormal behavior. We define a 

membership function    for calculating the normalized abnormal packets 

count per second.  

      

 
 
 

 
 
     

   
     

     

   
  

         
     

   
  

                  

                 (5) 

where    is the total number of TCP packets in an input trace,    is the 

duration of an input trace in seconds, and    is the threshold for abnormal 

packets count per second.  

(b) Normalized abnormal bytes count per packet  

If a bot master wants to send commands to other bots, the bytes count per 

TCP packet will reflect the abnormal behavior. We define a membership 

function    for calculating the normalized abnormal bytes count per packet. 

      

 
 
 

 
 
     

   
     

     

   
  

        
     

   
  

                 

                (6) 

where    is the total number of bytes in an input trace,    is the total 

number of TCP packets in an input trace, and    is the threshold for 

abnormal bytes count per packet. 

(c) Normalized abnormal variance of total number of TCP packets between 

request and response packets 

An active malicious TCP traffic usually has a large packet count in a time 

period. More TCP packets in a time period lead to a higher membership 
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value. We define a membership function    for calculating the normalized 

abnormal variance of total number of TCP packets. 

       

               
        

     

             
        

      
   

             
       

          

                           

      (7) 

                , where N is the duration of time interval    in seconds, 

n is the total number of TCP request packets and       is total number of 

TCP request packets in time interval    at the j
th

 second, and    is the 

threshold of the variance of total number of TCP packets. 

(d) Normalized abnormal variance of total number of bytes 

An active malicious TCP traffic usually has a large byte count of TCP 

packets in a time period. More bytes in a time period lead to a higher 

membership value. We define a membership function    for calculating the 

normalized abnormal variance of total number of bytes. 

       

                       
     

                     
      

   

                    
          

                            

      (8) 

                , where N is the duration of time interval    in seconds, 

n is the total number of TCP request packets and       is the total number 

of bytes in time interval    at the j
th

 second, and    is the threshold of the 

variance of abnormal total number of bytes. 

(e) Normalized abnormal total number of TCP request and response 

packets per second 

Bots may send TCP request and response packets many times in their 

execution periods. Therefore, we calculate the total number of TCP request 

and response packets per second to identify abnormal behaviors. We define 

a membership function    for calculating the normalized abnormal total 

number of TCP request and response packets per second. 
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where N is the duration of an input trace in seconds,   is the total number 

of TCP request and response packets in the i
th

 second, and    is the 

threshold of the total number of TCP packets per second. 

 Normal trace state 

We define a membership function    for calculating the probability of 

being a normal trace.  

                                               (10) 

 

3.5.3 Observation 

We observed 50 bots and 50 normal traces. Each trace lasts for two hours. 

In these experiments, we found that there are different behaviors between 

bots and normal traces. Figure 10 shows some observations of six bot 

characteristics. In Figure 10(a) and 10(b) show the statistics about the 

variance of packet inter arrival time and the variance of bytes per packet, 

respectively. In Figure 10(c) and 10(d) show the statistics about the number 

of packets between request and response packets and the contact times per 

IP address. In Figure 10(e) and 10(f) show the statistics about the average 

number of packets per second and the average number of bytes per packet. 

Each characteristic reflects different behaviors of some bots. To reduce 

the false-positive rate, we choose more bot’s behavior characteristics that 

can characterize botnets. To reflect the behaviors of IRC bots, the contact 

times that a node used the same IP addresses and the total number of DNS 

query and response packets per second can be used to detect IRC bots. To 
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reflect the behaviors of HTTP bots, the packet count per second and the 

byte count per packet can be used to detect HTTP bots. 
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      (a)                      (b) 

 
      (c)                      (d) 

 
      (e)                      (f) 

Figure 10. Some observations of six bot characteristics. 
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Chapter 4  

Performance Evaluation  

4.1 Traces collection 

To collect real botnet traces, we installed an unpatched Windows XP SP3 in a 

virtual machine using Ubuntu and Virtualbox, and executed 250 real bot samples 

inside a Windows environment (HoneyTrap). We used a share folder to manage 

honeytraps (1 to N), as shown in Figure 10. Both input and output network traffic of 

the virtual machine were recorded by a Recorder and stored in an Apache database via 

DBInserter. Among 250 bots, only 240 bots had network traces. The rest of bots were 

not executable. The botnet traces were recorded for 2 hours via Recorder. Both the 

packet header and complete packet payload were stored in the database for further 

botnet analysis. 

 

Figure 10. Experimental environment for botnet traces collection. 
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4.2 Test results of botnet traces 

We used real botnet traces to evaluate our BBDC algorithm. Statistics of the 

botnet traces and the false negative rate are shown in Table 1. The evaluation result 

shows that BBDC a low false negative rate (FNR), 4.17%.  

Table 1. Botnet traces statistics and false negative rate. 

Number 

of bots 

Inactive 

bots 

Active 

bots 

Traffic 

reduction rate 

Number of active 

bots detected 

False negative 

rate  

250 10 240 75.4% 230 4.17% 

We also collected two normal traces (T1 through T2) to evaluate the BBDC’s 

traffic reduction rate and the false positive rate (FPR). T1 traces were collected from 

the National Chiao Tung University’s campus beta site. We collected 695 traces in T1 

for 2 hours. T2 traces were obtained from our MAL laboratory. We collected 5 traces 

in T2 from laboratory’s members. These traces contain various types of benign 

applications using IRC, HTTP, and P2P, etc. In Table 2, we found that the BBDC 

achieves high reduction rates and low FPRs.  

Table 2. Normal traces statistics and false positive rates. 

Test site 
Number of 

normal traces 

Traffic 

reduction rate 

Number of traces 

identified as bots  

False positive 

rate (FPR)  

T1 695 77.3% 24 3.453% 

T2 5 73.1% 0 0% 

  Figure 11 shows the proposed botnet detection system’s total execution time in 

Windows azure cloud and host-based environment. We used 1 to 5 server instances 
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(SIs) to evaluate the total execution time in our proposed system. In the experiments, 

we evaluate both host-based and cloud-based execution time. Experimental results 

show that the total execution time can be reduced in proportion to number of SIs used. 

The cloud-based system is 4.73 times faster than the host-based system in terms of 

total execution time with 5 SIs used. 

 

Figure 11. Total execution time (sec) for 950 traces using various number of  

server instances (SIs) in Windows Azure cloud. 

 Figure 12 shows the false positive bots distribution among bot behaviors in the DNS 

phase. Figure 13 shows the false positive bots distribution among bot behaviors in the 

TCP phase. Since our proposed botnet detection system may have false positive bots, 

we want to find out the causes of such bot features. Both figures show the bot features 

that cause normal traces being identified as bots. By these statistics, we can adjust 

membership functions to reduce the proposed system’s FPR in the future. 
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Figure 12. False positive bots distribution with respect to bot features in DNS 

phase. 

 

 

Figure 13. False positive bots distribution with respect to bot features in TCP phase. 

 . 
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Figure 14 shows the false negative bots distribution for each bot type, IRC or HTTP 

bots. Since bots may evade and obfuscate the botnet detection system, our proposed 

system may have false negative bots. By observing the bots’ traces which cause false 

negative (FN), we may modify or add bot features to reduce FN bots. 

 

 

Figure 14. False negative bots distribution for different bot types. 

We also evaluate the execution time in each stage in our botnet detection system. 

The traffic reduction phase spent 10% of time. The DNS phase spent about 37% of 

time. The TCP phase spent about 53% of time. Since the DNS and TCP phases spent 

most total execution time, we port the proposed system into a cloud environment in 

order to reduce the botnet detection system’s total execution time. 

In Table 3, we compare the proposed BBDC and the other three existing botnet 

detection methods. Unlike these three existing methods, BBDC used 250 real bot 

samples to emulate real botnet traffic. Except Yu [5], the proposed BBDC performs 

better than Park [4] and Lin [1] in terms of false positive rate and false negative rate. 

Note that the botnet traces of Yu [5] only contain four fabricated bots, not real bots. 
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Table 3. Comparison of different behavior-based botnet detection methods. 

Approach 
BBDC 

(proposed) 
Park [4] Yu [5] Lin [1] 

Basic idea 

Using fuzzy 

pattern 

recognition  

cloud to 

detect bots 

Using static 

analysis with 

a data-mining 

technique to 

detect bots 

Using feature 

streams to 

match whole 

input trace to 

detect bots 

Using fuzzy 

pattern 

recognition 

filtering 

algorithm to 

detect bots 

Botnet trace 
Real botnet 

traffic 

Real botnet 

traffic 

 4 fabricated 

bots 

Real botnet 

traffic 

True positive 

rate 
95.83% 94.35% 100% 90.41% 

False positive 

rate 
3.429% 4.393% 14.7% 9.59% 

False negative 

rate 
4.17% 5.65% 0% 5.41% 

Bot samples 250 110 4 250 

Categories of bot 

samples 
IRC+HTTP IRC+HTTP IRC IRC+HTTP 

Total execution 

time (host-based) 
398.1 sec. N/A N/A N/A 

Total execution 

time  

(cloud-based 

with 5-server 

instances) 

84.2 sec. N/A N/A N/A 
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Chapter 5  

Conclusion 

5.1 Concluding remarks 

  In this thesis, we have presented a behavior-based botnet detection algorithm 

using a cloud computing environment to speed up botnet detection. Our algorithm can 

reduce false positive and false negative rates compared with other behavior-based 

detection systems. We reduce the total execution time by traffic reduction and cloud 

computing. Since the proposed algorithm identifies different protocols used in an 

input trace and detect bots based on bot behaviors in each protocol, it can have a high 

detection rate (true positive rate). We use a fuzzy pattern recognition with 

max-membership principle to perform bot behaviors matching in the DNS and TCP 

phases. We have used real bots to generate real botnet traces for evaluating the 

proposed BBDC algorithm. As a result, the proposed botnet detection system can be 

feasible in a real world. Experimental results show that our proposed system can 

achieve a high true positive rate of 95.83% and a low false positive rate of 3.429% in 

the Windows Azure cloud computing platform. Furthermore, the proposed 

cloud-based system with five server instances is 4.73 times faster than a host-based 

system. 

5.2 Future work 

In the future, we will extend our work to detect P2P botnets by including P2P bots 

features in the proposed botnet detection system. Moreover, we want to reduce the 

FPR and FNR of the proposed botnet detection system by extracting more bot’s 

behavior features that can characterize botnets. 
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