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Behavior-based Botnet Detection
In Cloud Computing Environments

Student : Li-Yang Tsai Advisor : Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

In recent years, botnets become a major issue to Internet security; however,
existing string signature-based matching methods usually lead to high false positive
rates (FPR) and low true positive rates (TPR) for botnet detection. In this paper, we
proposed a behavior-based _botnet - detections mechanism in cloud computing
environments (BBDC). Our BBDC algorithm is divided into five stages: (1) traffic
reduction: removing unwanted packets from-an input. trace for speeding up bot
detection; (2) feature extraction; extracting features from the reduced input trace; (3)
traffic partitioning: dividing the reduced input trace into pieces for a cloud-based
system to detect botnets concurrently; (4) DNS phase: extracting botnet DNS features
to detect bots; (5) TCP phase: extracting TCP request and response features to detect
bots. Since stage four and five consume almost 90% of the total execution time in our
design, we dispatch reduced input traces to the cloud to speed up botnet detection. In
order to achieve a high detection rate, we utilize fuzzy pattern recognition for botnet
detection in DNS and TCP phases. Once bot activities are identified from the input
trace, local hosts and servers in the cloud will be alerted to avoid bot related IP
addresses or domain names (DNs). Experimental results show that the proposed

BBDC can achieve high TPR and low FPR. Furthermore, the proposed cloud-based



botnet detection system with five virtual machines is 4.73 times faster than a

host-based system.

Keywords: behavior-based, botnet detection, cloud computing environment, fuzzy

pattern recognition, signature-based.
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Chapter 1

Introduction

In recent years, Botnets have become new threats to Internet. They can duplicate
themselves and spread to other hosts quickly. Once a host is compromised, user
privacy data on the host may be stolen and it may result in severe damages (e.g.,
finance and security).

Nowadays, most anti-virus systems and botnet detection methods primarily use
string signature-based methods «to  detect- well-known botnets [2][7][8][9][10].
Although a signature-based“solution may rhave  high~detection results, it has the
following drawbacks. First, _since—botnets” may change their behaviors (e.g.,
communication, attacking;-etc.) from time_ to time, the string signature-based pattern
matching methods have difficulties to deal -with varying behaviors of botnets [1].
Second, a bot is able to evade" signature-based-detection easily by using techniques
such as code obfuscations and mutations [12]. Finally, the string signature-based
database must be maintained by humans. On the contrary, behavior-based solutions
try to identify bot activities by observing particular bot network behaviors. In addition,
a behavior-based system does not need to maintain a signature database to detect bots.
Furthermore, behavior-based solutions are able to perform similar detection rates to
signature-based solutions [1].

In this paper, we propose a novel technique which identifies botnet behaviors by
two phases botnet matching. The two phases includes: the DNS phase and the TCP
phase. The DNS phase focuses on analyzing botnet DNS queries since bots activities

often start with DNS traffic. The TCP phase involves on TCP request and response
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packets. Moreover, we raise our detection rates by utilizing fuzzy pattern recognition
to identify bot behaviors in the DNS and TCP phases. DNS and TCP phases’ features
have been extracted from observed bot behaviors. These features can be fed into the
fuzzy pattern recognition module to calculate membership values to identify possible
bot activities.

By observing the activities of collected network traces, we can identify bot
activities based on extracted bot features and conclude that the corresponding input
trace is compromised by a bot. Finally, we use a Windows Azure’s cloud computing
platform [11] to speed up bot detection. Each server instance in the cloud can handle
any phase of the proposed two phases botnet matching algorithm to determine if an
input trace is bot or not. Once.identifying bots-from.the input trace, local hosts and
servers in the cloud will beralerted-to be aware of the bot related IP addresses or
domain names.

The rest of this paper=is organized as follows. Chapter 2 briefly reviews related
work. Chapter 3 details the-proposed approach for cloud-based botnet detection.
Chapter 4 presents the evaluation‘resulis-of the proposed algorithm using real-world

botnet traces. Finally, Chapter 5 gives concluding remarks and future work.



Chapter 2
Background and Related Work

2.1 Overview of botnet behaviors

The scenario of botnet behaviors can be classified into two phases: the infection
phase and the attack phase, as shown in Figure 1 [1]. In the infection phase, as shown
in Figure 1(a), a bot master tries to break into a victim’s host and makes it become a
bot. There are many methods to break into a host, such as exploiting the host
vulnerabilities and by social engineering of divulging confidential information [13].
Once the intrusion is successful, the-infected host sends its status to the bot master and
tries to install remote controllable software; which™ can: be downloaded from a
binary-downloaded server=The binary-downloaded server is responsible for reporting
infected hosts status, error log.and receiving upgraded software. In the attack phase,
as shown in Figure 1(b), a bot master;sends-commands to compromised bots to ask
bots to collect valuable information, report botnet status, and launch attacks to target

hosts.
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Figure 1. Botnet behaviors scenario: infection and attack phases [1].



2.2 Related work

Park et al. [4] proposed clustering common semantic patterns for botnet detection.
This paper presents a behavior-based automated approach to generate semantic
patterns for botnet detection. It uses static analysis to characterize bot behaviors and
uses hierarchical clustering of the resulting semantic patterns from a set of bot
programs. The detection requires a pattern matching to compute a matching score. If
the matching score exceeds a pre-defined decision threshold, the new suspicious bot
program is an instance of this bot malware class associated with the pattern. The goal
is to identify common semantic behaviors of bots. It may miss some malicious
behaviors that involve intentional or non-intentional program obfuscation.

Yu et al. [5] proposed online botnet detection“based on an incremental discrete
Fourier transform method to detect-botnets. It monitors botnet activities in an online
way. The authors define ithe concept of “feature streams” to describe raw network
traffic. If some feature “Streams:‘show- high.=similarities of tested traces, the
corresponding hosts will be regarded as suspected-bots'which will be added into the
suspected bot hosts set. Since the authors facus only on the overall input traffic, the
detection system may handle too many data in the same time that may cause the
detection rate no good enough.

The major differences of our proposes method with [4][5] are that we define the
DNS and TCP phases and then detect botnets by differential features in each phase.
Consequently, the false positive rate can be reduced compared to [4][5], because [4][5]
use feature streams or semantic patterns to match the overall input traffic, not by each
phase. They may lose some suspicious details in each phase. The proposed method

can improve the false positive rate and false negative rate of [4][5].



Wang et al. [1] proposed a fuzzy pattern-based filtering algorithm for botnet
detection. The proposed method extracts bot features first and then recognizes botnets
based on collected bot behaviors. The fuzzy pattern recognition stage has two phases.
The DNS phase analyzes features of DNS packets. If a domain name is determined to
be malicious, the corresponding DN and its associated IP addresses will be marked
without going to the next phase. The TCP connection phase analyzes features of TCP
connection packets. The associated IP addresses will be marked if TCP connection
packets are determined to be malicious. Note that the detection rate and false positive
rate can be further improved if more bot features are used. Some false positive cases
are due to that the algorithm does not handle well on Microsoft Update related traffic.
For the detection rate, the problems~of this algorithm are that it only focuses on
periodical DNS query traffic'and similar TCP_packet payload sizes to detect bots.

In our approach, we employ more bot features into our proposed algorithm in
contrast to Wang et al. to enhance;the detection rate and the false positive rate. Since
more bot features from DNS. and<TCP phases can be extracted to represent bot

behaviors, the proposed algorithm<can be more precisely for botnet detection.



Chapter 3
Proposed Behavior-based Botnet
Detection Algorithm in Cloud

Computing Environments

3.1 Problem statement

3.1.1 The main problem

Given a network packet trace,-the goal -of the proposed solution is to identify
whether the packet trace«is generated by bot activities-or not. To overcome the
drawbacks of string signature-based methods-mentioned in Chapter 1, we propose a

novel behavior-based botnet detection method in cleud computing environments.

3.1.2 The sub-problems

® Traffic reduction
Since there are some bot-unrelated data in the collected input traces, we
may filter out these data to speed up botnet detection. Bot behaviors always
involve specific network operations. Therefore, we may retain packets
related to these operations.

® Traffic partitioning
Since we want to reduce the total execution time of the proposed algorithm,
we use a cloud computing platform to speed up botnet detection. Traffic

partitioning divides an input trace into pieces. Then, available server
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instances in the cloud can operate on these pieces concurrently using the
proposed botnet detection algorithm.

® Feature extraction
In our observation, bots always contain specific behaviors that are different
from normal user’s behaviors. Therefore, we want to detect bots by
features extracted from bot behaviors.

® DNS phase
The DNS phase focuses on the bot DNS query and response packets since
bot activities often start with DNS traffic. We use fuzzy pattern recognition
with max membership principle to identify some bot behaviors from DNS
traffic in the DNS phase.

® TCP phase
A bot master may; send and update bot binaries programs to bots. The TCP
phase focuses on the TCP request and response packets. We use fuzzy
pattern recognition. \with™ max membership. principle to identify bot

behaviors from TCP related traffic-inithe TCP phase.

3.2 Design of a behavior-based botnet detection

algorithm

The proposed behavior-based botnet detection in cloud computing environments
(BBDC) algorithm is shown in Figure 2. There are five stages in the algorithm:
traffic reduction, feature extraction, traffic partitioning, DNS phase and TCP phase.
First, input traffic is passed to the traffic reduction stage by removing bot-unrelated
traffic. Second, the feature extraction stage will extract bot features from the
reduced input traffic. The packets’ related information will be recorded into the

database by bot features that we observed. Third, the reduced input traffic will be

9



divided into several pieces according to available server instances in the cloud.
Each server instance in the cloud then runs the proposed two phase bot detection
algorithm to detect bots from the received piece. Fourth, in the DNS phase, the
detection algorithm checks if any DNS related packets are bot traffic or not based
on bot features extracted in the second phase. If there is no bot found in the DNS
phase, the piece will be fed into the TCP phase to determine whether any TCP
related packets are bot traffic or not. Both the DNS and TCP phases use the
proposed fuzzy pattern recognition with max membership principle to match bot
behavior states. If the membership value falls into any bot’s state, the input trace is
identified as a bot.

Once an input trace is identified as a“bot,swe will record the bot related
information in the database; such-as"DNs and IP addresses. Then the other hosts can
be informed of these bots via the alert system.

Local Host Cloud

(%]

Traffic
partitioning

B 1 4] DNS Mo 5| TCP No
Iece phase phase
server instance server instance
[ ] “L® L®
Piece 2 4] DNS @ Nojf 5) TCP N_G
phase phase
Traffic

server instance v server instance v
reduction €s e €s o

2| Feature -
Piece N 4| DNS Mo | 5| TCP N_G
phase phase
server instance server instance

extraction
Yes ° Yes o
(D men ] [ pore ]

—

Figure 2. Proposed behavior-based botnet detection in a cloud computing environment.
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3.3 Traffic reduction

It is true that a good traffic reduction filter can reduce the data needed to be
processed and also increase classification accuracy [1]. That is, by removing these
unrelated data, both bot detection time and bot detection accuracy can be improved.
Figure 3 shows the procedure in traffic reduction stage. An input trace usually
involves several network protocols. In our observations, a bot master may register
many domain names and let bots to inquire IP addresses of these domain names.
Therefore, bots often send DNS queries to domain name servers frequently to retrieve
IP addresses. Then, bots will establish TCP connections to these IP addresses. That is,
bot behaviors always involve DNS query/respense and TCP request/response packets.
Based on these observations, we can filter out packets+that are not related to DNS or
TCP protocols. The retained packets-will then be stored in a database (DB) for feeding

into the feature extraction:stage.

| 1‘Traffic reduction ‘ |

For each Input trace
packet (PCAP)

DNS
Request/ TCP -
Response Packet Discard the packet
Packet

Yes

Save the packet to database (DB)

H 2‘ Feature extraction ‘ |%| 3‘ Traffic partitioning ‘ |

Figure 3. The procedure in the traffic reduction stage.
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3.4 Feature extraction

Since bots always contain specific behaviors that are different from normal users’

behaviors, we can detect bots by extracted features from bot behaviors.

3.4.1 Feature extraction from DNS packets

We observed that bots send DNS queries periodically in a time period since bot
behaviors always involve DNS queries. For example, Figure 4 shows the distribution
of botnet DNS query packets. We may use some features that we observed from bots
specific behaviors to detect bots, such as total number of DNS packets between query
and response packets, total times that a node used the same IP addresses, etc. Those

packets that are related to bot DNS, features will be stored in the database.

|
-
o

T

T T l | [ | T
w

o

Total number of DNS

T T T T T T T T T T T T T T T T T T T T
13340s 13360s 13380s 13400s 13420s 13440s

Time
Figure 4. The distribution of botnet DNS query packets. [x axis: seconds; y axis:

number of DNS query packets].

3.4.2 Feature extraction from TCP connection packets

Figure 5 shows the distribution of botnet TCP request packets. It illustrates that the
TCP request packets distribution of botnet traffic is periodical. We use some features
that we observed from bots specific behaviors to detect bots, such as packets count
per second, bytes count per packet, etc. Those packets that are related to bot TCP

features will be stored in the database.

12
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request packets

T I T | T I T | T ] T | T I U | T I T | T I o

28580s 28600s 28620 28640s 28660s 28680s

Total number of TCP

Time
Figure 5. The distribution of botnet TCP request packets. [x axis: seconds; y axis:

number of TCP request packets].

3.5 Fuzzy pattern recognition for DNS and TCP

phases

As mentioned before, bot behaviors .can be obfuscated to evade a string
signature-based detection=system. Therefore,~we propase-a behavior-based botnet
detection algorithm in cloud computing-environments (BBDC) that uses fuzzy pattern
recognition to identify bots, including obfuscated<bots. In the proposed BBDC
algorithm, the fuzzy pattern recognition ‘hastwo phases: DNS phase and TCP phase.
In the DNS phase, we determine if it is a bot based on DNS features that were
collected from the feature extraction stage, as shown in Figure 6. If it is not a bot, then
the input trace is passed to the TCP phase. Oterwise, the input trace is identified as a
bot. In the TCP phase, we detect a bot based on TCP features that were collected from
the feature extraction stage, as shown in Figure 7. Both phases use fuzzy pattern
recognition to classify bot and non-bot behaviors based on the max membership
principle. Each membership function corresponds to a state and has a membership
value, which will be described in the DNS and TCP phases later. The BBDC

algorithm will find a max membership value, and the bot trace or normal trace is in

13



the state associated with this max membership value.

/ Alert /
[4] DNSPhase | |

Yes
mxacted Fuzzy pattern
f o — | recognition in — Is bot?
eatures DN of
from DB phase

No

[5] TcPphase | |

Figure 6. The DNS phase of the proposed botnet detection algorithm.

Normal

No
Extracted
TCP Fuzzy pattern
f —> recognition in ’
eatures TCP phase
from DB P
Yes

Figure 7. The TCP phase of the proposed botnet detection algorithm.

3.5.1 DNS phase

In the DNS phase, we define a packet features vector x = (o, £, y, 4). a IS a
set of time intervals {ai| 1 = i = n} between DNS query and response

packets, where ¢; is the length of time interval i between DNS query and
14



response packets, and n is the total number of DNS queries; g is a set of total
number of DNS query packets {#i| 1 = i = n} in contrast to a, where f; is
the total number of DNS query packets in contrast to «;, and n is the total
number of DNS queries; y is a set of {yi| 1 = i = N}, where y; is total
times of the i™ IP address used by this node, and N is the number of IP
addresses that a node used. 4 is total number of DNS query and response
packets per second. Figure 8 shows the fuzzy pattern recognition with max
membership principle in the DNS phase. In this phase, we define four states

and their associated membership functions, as described in the following.

Membership functions | Xi(x) : MAX(X (x)}
/ Feature vector /ﬁ for DNS packets = X2(X)[:> [> ie {1 53 4
Xi(x),i€{1,23,4} —> X,(x) .
Find MAX )
Calculate membership X(x) with MAX

membership values membership value

value
Figure 8. Fuzzy max membership principle in DNS phase.

® Bot trace states

(a) Normalized abnormal-variance of-total number of DNS packets between
query and response packets

An active malicious DNS traffic usually has a large packet count in a time
period. More DNS packets in a time period lead to a higher membership
value. We define a membership function X; for calculating the normalized
abnormal variance of total number of DNS packets between query and

response packets, as follows:

MAX(E?:KBa”—ﬁ_aL)Z)) N _— 2
J L YN o T.
X1 (%) = {2, E (Bay -Ba)?) j=1Pay;-Pa)) > T, (1)
0 ,otherwise

fori €{1,2,...,n}, where N is the duration of time interval «; in seconds,

n is the total number of DNS queries, ﬁai’]_ is the total number of DNS

15



query packets in time interval «; at the j second, and T, is the threshold

of being abnormal variance of DNS packets.

(b) Normalized abnormal total times that a node used the same IP
addresses

Bots may contact specific IP addresses many times in their execution period.

Therefore, we calculate the contact times per IP address to identify

abnormal connections by bots. We define a membership function X, for

calculating normalized abnormal total times that a node used the same IP

addresses.
MAX(y;)
) i = T .
X,x) =1 et X870 fori €{1,2,..,N} @)
0, otherwise

where N is the number of 1P-addresses that a:node used, y; is total times of
the i™ IP address-used by this node, and T, is the-threshold of the abnormal
contact times per’ IR address:

(c) Normalized abnormal total number of DNS.query and response packets

per second

Bots may send DNS query packets many times in their execution time.
Therefore, we calculate the times of DNS queries per second to identify
abnormal DNS queries. We define a membership function X; for
calculating normalized abnormal total number of DNS query and response

packets per second.

MAX(;)
=, A>T,
X3(x) = LA T % fori €(1,2,..,N} (3)
0 , otherwise

where N is the duration of an input trace in seconds, A; is the total number
of DNS query and response packets in the i" second, and Ty,is the

threshold of the total number of DNS query and response packets per
16



second.

® Normal trace state
We define a membership function X, for calculating the probability of
being a normal trace.

X4(x) = 1 = MAX{X; (%), X5 (x), X3(x)} (4)

3.5.2 TCP phase

In the TCP phase, we define a packet features vector x = (a, S, 7, A). a is a
set of time intervals {oi| 1 = i = n} between TCP request and response
packets, where ¢; is the length of time interval i between TCP request and
response packets, and n is the total number of TCP request packets; g is a set of
total number of TCP packets{/i| 1 = i = "n}.in contrast to a, where p; is the
total number of TCP jpackets in-contrast to «;;_and.n.is the total number of TCP
requests; y is a set of-tatal number of bytes {7i| 1 =«i = n} in contrast to «,
where y; is the total number of bytes-in-contrast to ¢;, and n is the total number of
TCP requests. 4 is total number of TCP request and response packets per second.
Figure 9 shows the fuzzy pattern recagnition with max membership principle in

the TCP phase. In this phase, we define six states and their associated

membership functions, as follows:

e [ X(X)
Membership functions : MAX{X (%)}
/ Feature vector /—) for TCP packets = X(X) Sorting [:> i€ {1 2 6}
Xix),ie{12,..6 | X,(x) |
Find MAX ,
Calcu[ate membership X(x) W|th MAX
membership values value membership value

Figure 9. Fuzzy max membership principle in TCP phase.
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Bot trace states

(a) Normalized abnormal packets count per second

If a TCP connection sent too many requests in a second, the TCP packets
count per second would reflect the abnormal behavior. We define a
membership function X; for calculating the normalized abnormal packets

count per second.

(Be/ac 1, 1< Be/at <2

X1 X1
X1(x) = I 1, Bt/at > 2 ®)
X1
k 0 , otherwise

where B; is the total number of TCP packets in an input trace, a; is the
duration of an input tracetin.seconds; and T, is the threshold for abnormal
packets count per second.

(b) Normalized abnormal-bytes-count per packet

If a bot master wants to send commands to“other bots, the bytes count per
TCP packet will"reflect the abnormal behavior” We define a membership

function X, for calculating-the normalized abnormal bytes count per packet.

V;/Bt —1, 1< Ye/Bt <2

2 X2
X,(x) = 1 nBes o (6)
Ty,
k 0 , otherwise

where y, is the total number of bytes in an input trace, S, is the total

number of TCP packets in an input trace, and T,,is the threshold for

abnormal bytes count per packet.

(c) Normalized abnormal variance of total number of TCP packets between
request and response packets

An active malicious TCP traffic usually has a large packet count in a time

period. More TCP packets in a time period lead to a higher membership
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value. We define a membership function X5 for calculating the normalized

abnormal variance of total number of TCP packets.

MAX(E)L: (B -Ba)®) Ly —,
J YN (B, _ > T,
X3(x) = { T sy Bty ' 2i=1 PP > Ty g
0 , otherwise

fori €{1,2,...,n}, where N is the duration of time interval «; in seconds,
n is the total number of TCP request packets and ﬁai’]_ is total number of
TCP request packets in time interval «; at the j™ second, and T,is the
threshold of the variance of total number of TCP packets.

(d) Normalized abnormal variance of total number of bytes

An active malicious TCP traffic usually has a large byte count of TCP
packets in a time period.-More bytes:in a time period lead to a higher
membership valug.\We define a membership function X, for calculating the

normalized abnormal variance of total humber of-bytes.

MAX(ZﬁLl(Vai ]—Yth)Z)) N 2
. Ve, -Va,)?) > T
X4 (X) - E?=1(Z§V=1(yai_j_rxl)2)) ’ Z]—l(ya’l,] yOll) ) X4 (8)

0 Jotherwise

fori € {1,2,...,n}, where Nyis the duration of time interval «; in seconds,
n is the total number of TCP request packets and Va, is the total number
of bytes in time interval «; at the j" second, and T,,is the threshold of the
variance of abnormal total number of bytes.

(e) Normalized abnormal total number of TCP request and response

packets per second

Bots may send TCP request and response packets many times in their
execution periods. Therefore, we calculate the total number of TCP request
and response packets per second to identify abnormal behaviors. We define
a membership function X for calculating the normalized abnormal total

number of TCP request and response packets per second.
19



MAX(4;)
Xs(x) = N
0 , otherwise

A > T fori €{1,2,..,N}

where N is the duration of an input trace in seconds, A;is the total number
of TCP request and response packets in the i second, and Ty is the
threshold of the total number of TCP packets per second.

® Normal trace state
We define a membership function X for calculating the probability of
being a normal trace.

Xe(x) = 1 = MAX{X; (%), X5 (x), X3(x), X4 (x), X5 (x)} (10)

3.5.3 Observation

We observed 50 bots and-50 normal traces. Each trace lasts for two hours.
In these experiments, we found that there are different behaviors between
bots and normal traces. Figure~10-shows some observations of six bot
characteristics. In Figure 10(a) and 10(b) show the statistics about the
variance of packet inter arrival time and the variance of bytes per packet,
respectively. In Figure 10(c) and 10(d) show the statistics about the number
of packets between request and response packets and the contact times per
IP address. In Figure 10(e) and 10(f) show the statistics about the average
number of packets per second and the average number of bytes per packet.

Each characteristic reflects different behaviors of some bots. To reduce
the false-positive rate, we choose more bot’s behavior characteristics that
can characterize botnets. To reflect the behaviors of IRC bots, the contact
times that a node used the same IP addresses and the total number of DNS

query and response packets per second can be used to detect IRC bots. To

20



reflect the behaviors of HTTP bots, the packet count per second and the

byte count per packet can be used to detect HTTP bots.

21



Bots

Normal
traces
(f)

160

22

14

Bots

(e)

Normal
traces

v v
o | o anosmms |oe M o |o ode e oo . . . M S [0+ wnermme W » o
_ —
o wn w un
a 2 ¥ o
o o 20e o m s o st bessammies m 8 = * 00 smne
c £ c £
= - =z 5
=] [=] =) =] =] =] S}
o o 9 o o o o o o O 20 O 0O 0O O 9 o o o =] =] =] =] [=] =]
S 8 © © © F N S & ®©®@ K ©® B F A& & o =] ) =] N =] "
— — = — m ~ o — -
z(so1Ag) ssalppe d| 1ad sawi} 19e3u0) 1@ded /sajAg
b4} LR R . e .M
o 00 0e SeBIN s ¢ @ 5 @ WS BN S HSNBNS | »
— —
= L . e R R M @ L
+* o o 00N 0VE GO0 m e 5 o PPN DN S @
2= =
o [=} o [=} o o [=]
~ =] o0 © < ~
=] « o ~ o~ < n m n o~ n — n =]
A s3a)ded asuodsai pue 3sanbai o ~N o o
z(s1ded jo saquiny) uaamiaq siayded o JaquinN 33s / s19poed

Figure 10. Some observations of six bot characteristics.




Chapter 4

Performance Evaluation

4.1 Traces collection

To collect real botnet traces, we installed an unpatched Windows XP SP3 in a
virtual machine using Ubuntu and Virtualbox, and executed 250 real bot samples
inside a Windows environment (HoneyTrap). We used a share folder to manage
honeytraps (1 to N), as shown in Figure 10. Both input and output network traffic of
the virtual machine were recorded. by-a'Recorder-and stored in an Apache database via
DBiInserter. Among 250 bots; only-240 hots had network traces. The rest of bots were
not executable. The botnet traces were recorded for 2 hours via Recorder. Both the
packet header and complete packet payload were stored in the database for further

botnet analysis.

\ Ubuntu 9.04
VirtualBox with XinXP sp3
HoneyTrap 1
HoneyTrap 2
- Network
interface
HoneyTrap N
Share Folder
Recorder

Apache database DBInserter
\ /

Figure 10. Experimental environment for botnet traces collection.

:> Internet
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4.2 Test results of botnet traces

We used real botnet traces to evaluate our BBDC algorithm. Statistics of the
botnet traces and the false negative rate are shown in Table 1. The evaluation result

shows that BBDC a low false negative rate (FNR), 4.17%.

Table 1. Botnet traces statistics and false negative rate.

Number | Inactive | Active Traffic Number of active | False negative
of bots bots bots reduction rate bots detected rate
250 10 240 75.4% 230 4.17%

We also collected two normal traces-(T1 through T2) to evaluate the BBDC’s
traffic reduction rate and the false positive rate (FPR). Tl traces were collected from
the National Chiao Tung University’s-campus-beta site.. We'collected 695 traces in T1
for 2 hours. T2 traces were obtained from our MAL laboratory. We collected 5 traces
in T2 from laboratory’s members. .These traces: contain various types of benign
applications using IRC, HTTP, @and. P2P,.etc-In-Table 2, we found that the BBDC

achieves high reduction rates and low FPRs.

Table 2. Normal traces statistics and false positive rates.

Number of Traffic Number of traces | False positive
Test site
normal traces | reduction rate | identified as bots rate (FPR)
Tl 695 77.3% 24 3.453%
T2 5 73.1% 0 0%

Figure 11 shows the proposed botnet detection system’s total execution time in

Windows azure cloud and host-based environment. We used 1 to 5 server instances
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(Sls) to evaluate the total execution time in our proposed system. In the experiments,
we evaluate both host-based and cloud-based execution time. Experimental results
show that the total execution time can be reduced in proportion to number of Sls used.
The cloud-based system is 4.73 times faster than the host-based system in terms of

total execution time with 5 Sls used.

S
N
Q
£
whd
c
2
5
o
<
>
L
8
o
-
13l 238ls 33Sls 4 Sls 9 3Sls
<-Cloud  419.14 209.76 138.71 104.15 84.16
' Host 398.1 398.1 398.1 398.1 398.1

Figure 11. Total execution time (sec) for 950-traces using various number of
server instances (Sis) in Windows.Azure cloud.

Figure 12 shows the false positive bots distribution among bot behaviors in the DNS
phase. Figure 13 shows the false positive bots distribution among bot behaviors in the
TCP phase. Since our proposed botnet detection system may have false positive bots,
we want to find out the causes of such bot features. Both figures show the bot features
that cause normal traces being identified as bots. By these statistics, we can adjust

membership functions to reduce the proposed system’s FPR in the future.
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Figure 12. False positive bots distribution with respect to bot features in DNS
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Figure 13. False positive bots distribution with respect to bot features in TCP phase.
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Figure 14 shows the false negative bots distribution for each bot type, IRC or HTTP
bots. Since bots may evade and obfuscate the botnet detection system, our proposed
system may have false negative bots. By observing the bots’ traces which cause false

negative (FN), we may modify or add bot features to reduce FN bots.

Number of FN bots

IRC HTTP
Bot types

Figure 14. False negative bots distribution for different bot types.

We also evaluate the execution time injeach stage in our botnet detection system.
The traffic reduction phase spent 10% of time. The DNS phase spent about 37% of
time. The TCP phase spent about 53% of time. Since the DNS and TCP phases spent
most total execution time, we port the proposed system into a cloud environment in
order to reduce the botnet detection system’s total execution time.

In Table 3, we compare the proposed BBDC and the other three existing botnet
detection methods. Unlike these three existing methods, BBDC used 250 real bot
samples to emulate real botnet traffic. Except Yu [5], the proposed BBDC performs
better than Park [4] and Lin [1] in terms of false positive rate and false negative rate.

Note that the botnet traces of Yu [5] only contain four fabricated bots, not real bots.
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Table 3. Comparison of different behavior-based botnet detection methods.

BBDC
Approach Park [4] Yu [5] Lin [1]
(proposed)
) ) _ ) Using fuzzy
Using fuzzy | Using static | Using feature
pattern
pattern analysis with streams to
recognition
Basic idea recognition | adata-mining | match whole ilteri
iltering
cloud to technique to | input trace to )
algorithm to
detect bots detect bots detect bots
detect bots
Real botnet Real botnet 4 fabricated | Real botnet
Botnet trace _ _ _
traffic traffic bots traffic
True positive
95.83% 94.35% 100% 90.41%
rate
False positive
31429% 4.393% 14.7% 9.59%
rate
False negative
4.17% 5.65% 0% 5.41%
rate
Bot samples 250 110 4 250
Categories of bot
IRC+HTTP IRC+HTTP IRC IRC+HTTP
samples
Total execution
398.1 sec. N/A N/A N/A
time (host-based)
Total execution
time
(cloud-based 84.2 sec. N/A N/A N/A
with 5-server
instances)
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Chapter 5

Conclusion

5.1 Concluding remarks

In this thesis, we have presented a behavior-based botnet detection algorithm
using a cloud computing environment to speed up botnet detection. Our algorithm can
reduce false positive and false negative rates compared with other behavior-based
detection systems. We reduce the total execution time by traffic reduction and cloud
computing. Since the proposed algorithm -identifies different protocols used in an
input trace and detect bots based on bot behaviers.in‘each protocol, it can have a high
detection rate (true positive_rate).— We use «a  fuzzy .pattern recognition with
max-membership principle‘to perform bot behaviors matehing in the DNS and TCP
phases. We have used real. bots. to generate teal botnet traces for evaluating the
proposed BBDC algorithm. As‘a result, the proposed botnet detection system can be
feasible in a real world. Experimental results show that our proposed system can
achieve a high true positive rate of 95.83% and a low false positive rate of 3.429% in
the Windows Azure cloud computing platform. Furthermore, the proposed
cloud-based system with five server instances is 4.73 times faster than a host-based

system.

5.2 Future work

In the future, we will extend our work to detect P2P botnets by including P2P bots
features in the proposed botnet detection system. Moreover, we want to reduce the
FPR and FNR of the proposed botnet detection system by extracting more bot’s

behavior features that can characterize botnets.
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