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I 

 

基於內核函數呼叫模式之 

惡意程式種類辨認方法 

研 究 生：劉芳瑜     指導教授：謝續平 博士 

 

國 立 交 通 大 學 

網 路 工 程 研 究 所 

 

摘要 

惡意程式種類辨認方法是用來判斷一隻被測試的惡意程式是不是屬於某特定種

類的成員。任何一種辨認方法都必須有能力產生代表各種類的共同行為特徵。然

而，現有的產生行為特徵的方式仍存在漏洞，例如：核心層次的 Rootkit 能夠繞過在分

析系統內紀錄有哪些應用程式函式庫被使用的監測方法。在本篇論文中，我們設計了一

個能夠產生代表整個種類之惡意程式行為特徵的方法。此方法利用將惡意程式置於虛

擬機器中執行，以監視惡意程式的行為。為了讓惡意程式無法繞過本系統的分析，

我們藉由在虛擬機器外部設置監控機制，記錄核心函式的呼叫情形。此外，也運

用對於整個系統的污染資料流分析，可以得知有哪些被呼叫的核心函式之參數與

被測試的惡意程式有關聯。再者，這樣的方式也能夠讓我們追蹤到有跨程序行為

的惡意程式，這一個特點是之前與我們目標相同的研究都做不到的。最後將產生

的核心函式呼叫記錄轉換成 HMM 的模型，作為表示惡意程式種類的行為特徵。由

評鑑結果顯示，利用本系統產生的行為特徵於辨認惡意程式種類時，能夠達到非

常低的漏報率。 
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Recognizing Malware Families with 

Invocation Pattern of Kernel Functions 

 

Student: Fang-Yu Liu  Advisor: Dr. Shiuhpyng Shieh 

 

Department of Network Engineering 

National Chiao-Tung University 

Abstract 

Malware family recognition is the process of judging whether a malicious binary 

program belongs to certain family. In this process, a pattern representing a sequence 

of malicious behaviors shared among malware in the same family shall be 

automatically generated. Existing mechanisms such as in-system API profiling can be 

circumvented by some malware such as kernel-level rootkit. In this thesis, a novel 

scheme is proposed which generates a unique behavior pattern for each family of 

malware. In our scheme, malware are executed on a virtual machine. By hooking 

in-kernel functions underlying the VMM, invocation sequences of a malware program 

cannot be disguised and therefore are accurately profiled.  Our scheme covers the 

whole-system taint analysis to identify the in-kernel function invocations where 

parameters are contaminated by the malware being tested. Our scheme also tracks 

cross-process malware, which is not covered by previous work. Profiled invocation 

sequences are further converted to HMM-based pattern. The evaluation result shows 

that our behavior patterns give extremely low false negative in the recognition phase. 
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1.  Introduction 

Malware (malicious software) remain a serious problem in spite of the wide use of various 

anti-virus applications. For the time being, thousands of new malware are being generated per 

day. According to the reports [1] [2], there are 1,017,208 instances of new malware were 

detected in the first half of 2010, approximately 10% more than the previous half year. The 

malware writers continuously develop new methods of polymorphism and metamorphism 

such as obfuscation, encryption, or packing to evade signature-based detection. Furthermore, 

metamorphism enables malware to change its appearance when every time it propagates. To 

deal with such large numbers of malware instances efficiently, automatically deriving 

representative malware behavior patterns, which are used to recognize a whole malware 

family, is necessary. Fortunately, the observation that numerous malware share common 

behaviors enables us to derive a generalized signature for each group of them. In doing so, 

testing whether a malicious program belongs to an existing well-known group of malware can 

be determined efficiently. In this chapter, we give a brief introduction to existing related 

schemes, proposed methods, and our contribution. 

 

1.1. Background 

For recognizing malware families with behavior pattern, in this section, we indicate that 

why not use signatures but behavior patterns, the existing monitoring mechanisms and their 

drawback, and the malicious behaviors generally focus.   

1.1.1. Behavior Patterns 

Signature-based recognition is the most widely used approach, but one signature could not 

identify other malware. Due to the continuously development of malware program, it is no 

longer valid to deal with the large number of mutant malware programs. 
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 Using behavior patterns to recognize malware family is efficient. As indicated by recent 

studies [3], each malware instance in the same family shows similar behavior patterns. 

Because most of original malware are created by the same authors, they also have several 

different versions though many times upgrade. In addition, other authors often rewrite the 

existing malware programs. According to these reasons, one behavior pattern is useful to 

recognize lots of malware that in the same family. 

Checking arguments of API is effective. When the malware is executed, it must invoke 

APIs with several arguments. Hence, the API invocation sequences are adapted to represent 

the malware behavior. Moreover, each API‟s name and argument represents with meaningful 

word, so that it is easy to use when analyzers want to functionality of malware programs. To 

profile arguments of known malware and the frequently used arguments of each family could 

be apply as behavior pattern for future recognition.  

1.1.2. Monitoring mechanism  

In order to observe malware behavior, based on considering the system call workflow 

from user level to kernel level, we separate the monitoring mechanisms into two perspectives 

for discussion. The former mention that what kind of the object we monitor, the latter is about 

where to monitor. In addition, we define” in-kernel function” as the low level kernel 

functions that system call must invoke. The reference of the section is depicted in Figure 1. 

Objectives for monitoring: Monitoring on user-level library APIs, attacker cloud invoke 

system call directly without using the user-level library APIs, therefore, the monitor 

mechanism is bypassed. Otherwise, monitoring on system call, Rootkit could enter kernel 

level directly instead of invoking system call, hence the monitor is invalid. 

In-system monitoring: As long as the monitor and malware exist in the same 

circumstance, the monitor mechanism could be overridden by in-kernel level Rootkit. No 

matter monitoring on kernel level APIs or user-level library APIs, such us the approaches in 
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the previous mention, the result are no different.  

1.1.3. Malware Behavior 

In this paper, we monitor process, registry, file, network as recent studies and the famous 

malware analysis website [4] [5] [6] , because all malware have the subset of these four types 

object‟s behaviors. Out research is integrity and sufficient that not less than other related 

works. Running malware under our monitor system, the outcome is a human readable report 

which profile malware behaviors. The report contains sufficient information, including the 

cross-process malware interaction, the contents of malware communication over network, 

registry modification, dynamic API loading, etc. 

 

Figure1. System calls workflow 

1.2. Requirement 

We believed that an ideal recognizing malware family system should provide following 

features: Automatic behavior pattern generation, in order to cope with malware efficiently; 

Accuracy, means that using behavior patterns to recognize malware family with low false 

positives and low false negatives; Non-circumventable, no malware is liable to bypass the 

monitor, which is to ensure that the system could get the malware behavior completely.       
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1.3. Concept 

In order to achieve non-circumventable monitor, we analyze malware behavior by 

collecting in-kernel function calls and arguments from the underlying emulator. All of above 

monitor mechanisms are too easy to bypass and cannot capture the malware behavior 

information completely. Because of no matter how malware program avoids using user-level 

API, it must invoke in-kernel function finally. For the reason, we monitor in-kernel functions 

even arguments. Also, when monitoring in-kernel level functions, in-kernel level Rootkit 

could override the monitor mechanism. To overcome this problem, we use out-of-box hooking 

technique, to build our monitor on the underlying emulator, so monitor and malware are not in 

the same space that the monitor mechanism works well.    

For the purpose of recognizing malware family with high accuracy, we use tainting to 

precise the monitor result. Taint could track which arguments are related with malware.  

When a monitor system working without taint, it cloud only distinguish process between 

tested malware and other program by the help of the CR3 processor register, nevertheless, not 

know which arguments have high relationship with malicious behavior. Especially, taint could 

monitor relations between data across multiple processes, even in kernel. Using taint help us 

to get the malware information more completely, thus, improving the accuracy of recognize 

malware family. 

We produce an automatic pattern generation system, the basic function of malware 

analysis. We extract invocation sequence to dilute unrepresentative information, in order to 

precise the behavior traces before generate pattern. For example, when in-kernel function 

arguments involve meaningless string such as hashed filenames, this information must be 

dilute. Finally, the system describes in-kernel function transitions with Hidden Markov Model 

(HMM). The HMM is easy used to recognize malware family, so is suitable for our system. 
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1.4. Contribution 

In this paper, we proposed a novel approach to generate a behavior pattern for a family 

of malware. In addition, two important features distinguish our work from existing researches. 

Firstly, unlike previous approaches, which can be circumvented by lower-level hooking or 

overwriting, our out-of-box in-kernel function hooking is inescapable for malware being 

tested. Secondly, taint-based argument checking gives more accurate behavior profiling 

because the taint status help us differentiate between arguments fed by malware and those by 

benign programs running in background. Thirdly, the taint propagation is done system-wide, 

and it can hence deal with cross-process malware, which are not covered by previous work. 

Obviously, our system produces more complete malware behavior patterns than other 

approaches. An experiment on 511 malicious samples originating from 15 different families 

was performed. The evaluation result shows that our behavior patterns give zero false positive 

and low false negative (less than 5.8%) at recognition phase. 

 

1.5. Synopsis 

The paper is organized as follow. Chapter 2 gives introduction to related works. Chapter 

3 gives the detailed description of our system. Implementation and evaluation are in Chapter 4 

and Chapter 5. At the end of the paper, we make an overall conclusion in Chapter 6.    
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2. Related Work 

Automatically grouping malware of the analysis results is a necessary procedure in some 

malware research [7] [8] [9] [10]. The crucial condition to get accuracy grouping result 

depends on the ideal analysis results. For this purpose, researchers have to design an analysis 

method.     

The figure of similarity pattern is the key point for every system that aims to group 

malware to identify a malware family. To this end, the systems have to consider how to 

represent each malware analysis result is suitable; moreover, which evaluation model is able 

to fit the analysis result and appropriate to compute the distance between malware. These 

approaches to generate malware family pattern can be divided into two parts: static analysis 

and dynamic analysis techniques.   

2.1. Static analysis  

Static analysis [24] [30] [36] is the technique of analyzing executable program without 

executing it. These propose work by disassembling the binary first. Existing method use 

control flow and dataflow analysis techniques to describe the analyzed program. The most 

significant advantage of static analysis is usually faster than dynamic analysis. On the other 

side, the main weakness is ineffective against the polymorphic and metamorphic malware. 

There exist the self-modifying programs that packed executable instructions which often 

related to malicious behaviors and unpack themselves during run-time. Static analysis is 

useless in this situation because it cloud not get the complete instructions without execute the 

program. Following are related works that classified by the focus objective.            

Opcode. The approach was presented by Bilar et al. [11]. The system decomposes 

malware code through statistical analysis of opcode distributions which used to distinguish 

malware samples and non-malicious samples. However, it also has weakness in general static 
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analysis method.   

Function or String. Tian et al. [12] measure the function length by the number of bytes 

that in the code. In addition, considering the malware function length frequency appear in a 

malware sample. In [13], the author proposes an automated malware classification system. 

Classification of malware based on the function length and the printable strings information. 

To examine the feature of which string often be used as an argument. As long as, malware 

writer insert junk instructions, replace instructions or registers, these low-level assembler 

mnemonics would change the code size and appearance, these malware signature is no use.    

API calls. Sathyanarayan et al. [14] suggest generating signatures and detection of 

malware families based on the semantics and API calls. The system extracts and statistics the 

frequency of the critical API calls from the executable program to evaluate the likelihood test 

then identify the malware family. Unlike the previous static analysis systems, this approach is 

immune to common obfuscations that only affect the code pattern but do not change the 

behavior. Because of considering the API calls, such obfuscations have no effect on this 

signature generation approach. But still invalid against analysis the packed malware. 

2.2. Dynamic analysis 

Dynamic analysis is the technique of supervising executable program during run-time. 

This technique is a solution to break the limitations of static analysis. While dynamic analysis 

has no problem with polymorphic and metamorphic malware, and is effective to deal with 

self-modifying programs. The method in this paper is closely related to these works. This 

section discusses different approaches for generating malware family pattern with dynamic 

analysis, and compares them with our approach. 

Instructions. In [15] [16], grouping instructions together as the malware behavior 

information to identify whether the tested program is benign or malicious. First, the system 
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captures runtime instruction sequences from an executable program and organizes instruction 

sequences into basic block. Then, extract the instruction groups that frequently used within 

basic blocks. Compared with our approach, using instruction information to deals with the 

malware is probable to evade by metamorphic malware. Other researchers [17] have proposed 

to detect malware through checking instruction semantics. The weakness of the approaches is 

that it has no ability to handle the reorder instructions situation. Nevertheless, the obscure 

technique would not change the behavior of malware, has no effect on our behavior pattern. 

Network trace. These systems use the extracted features such as HTTP requests [18], 

domain names [19], and similar communication patterns [20] for clustering. Our system 

monitor the network communication completely, we not only analysis network-based 

malware, but also other malicious programs.    

System call graph. These researches [22] [23] capture the system call invocation traces 

and construct to the system-call graphs, then design a method to extract the sub-graph as the 

behavior pattern. Using an algorithm to compute the distance between the patterns, and 

identify the malware family. The difference with our approach is that they monitor behavior 

on the system calls but our system monitor on in-kernel functions. As mentioned above, 

monitoring on system calls would be bypassed by Rootkit, but non-circumventable on the 

in-kernel functions.     

Arguments. [4] [24] [26] [27] [28] [29] extract patterns from malware invoked system 

call and arguments to identify malware family. Park et al. [21] use of one representative 

common behavioral graph that is created from individual behavior graphs for all malware 

instance in the same family. The approach that present by Bayer et al. [4] use out-of-box 

hooking and focus behavior on the file, process, network, registry as our system. But the 

system has not use taint technique, could not monitor the behavior between processes and 

know the malware related argument explicitly. The system [27] in the related works is closest 
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to ours, not only use out-of-box hooking but also taint analysis. It taint all the system call„s 

arguments and return values. Every time system call is invoked, check whether any argument 

is tainted, if the answer is yes, log the system call and arguments on the track record. All 

system calls serve as its taint sources, but we have a whole-system taint, so that our monitor 

result must be more accuracy. All the related works in this section use system call level 

monitor mechanism, as we have seen, it is insufficient.  
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3. System Overview 

Our system captures invocation sequence of in-kernel functions with arguments and 

generates behavior patterns that use to recognize malware families. We can roughly divide the 

procedures into three components, behavior monitor, pattern generator, and family matcher. 

Firstly, in the training phase, behavior monitor plays an important role of supervising 

malware and produces a behavior trace. Secondly, pattern generator train the same family‟s 

malware behavior traces to a family‟s pattern. Finally, the testing phase has a component 

called family matcher, the system state can recognize a tested malware in or not in the each 

family. Furthermore, the system focus of the object is standalone malware instead of infecting 

malware and VM-Aware malware is not in the scope of our discussion. The reference of the 

chapter is depicted in Figure 2. We would describe them in following.  

 

Figure2. System overview 
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3.1. Behavior monitor  

The malware behavior monitor component of our system is based on QEMU, a 

whole-system emulator. We extended QEMU [30] with out-of-box in-kernel functions 

hooking and whole-system taint tracking that used the tainting system in previous work [32]. 

Putting a malware into emulator, then analyzing malware behavior by collecting in-kernel 

function calls and arguments from the underlying emulator, we obtain the malware behavior 

trace finally. 

Taint. We use a system-level emulator (QUMU) with taint capability which covers 

registers, memory, and HD. Using tainting is helpful to know which invoked in-kernel 

functions‟ arguments are related to the monitored malware. To start tainting, we import a 

malware to HD sectors, and these sectors sever as taint source. After that, to execute the 

malware for five minutes, at the same time, check whether any argument of the invoked 

in-kernel function is tainted.  

In-kernel functions hooking. Hooking on the in-kernel functions, rather than user-level 

APIs or system calls make malware hard to bypass our monitor. QEMU utilize dynamic 

translator doing a runtime transform the target CPU instructions into the host instructions. 

During the transform procedure, we check if any hooked in-kernel function is invoked. Our 

hooking focus on the four types of the in-kernel function, such as process, registry, file, 

network, and choose the functions that necessary for malicious activities, moreover, care the 

arguments that include the related object‟s specific properties. For instance, malware could 

not access network without invoke the sending packet function in the net card driver, and we 

analysis argument involve the packet content of the sending packet function.  
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3.2. Pattern generator 

Pattern generator use the traces of the family being trained as the materials and produce 

the family typical pattern, that consisting of a HMM, representative string for each state in the 

HMM, and a threshold for matching the probability. As illustrated in Figure 3, generating 

malware family pattern is a multi-step process. It consists of an initial, log clustering, 

invocation sequence producing, HMM producing, and a final matching threshold computing. 

 

 

Figure3. Procedure of Pattern generator 

 

Invocation grouping. Disposing the arguments that profile in the trace report and then 

using clustering method to group similar arguments with distances under certain threshold 

into same clusters. Begin with the arguments disposing, we dilute the unrepresentative strings 

and expand the influence of the meaningful information, in order to make sense of the traces 

then cluster argument more reasonable. The first one is that we remove common log items 

appearing in many families, the log items mean each invoked in-kernel function with its 

arguments record in the trace. The reason is that common log not only could not represent a 

particular family‟s behavior but also appear in each trace too many times to reduce the degree 

of difference between each trace. Secondly, remove meaningless items such as Windows 

random number seed that the monitor system often performs this procedure even in benign 

programs. Also, capturing invocation sequences with relaxed string matching is means that 

we replace long digital-alphabetic sequence with repeated characters of equal length, the long 
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digital-alphabetic sequence for example from a hashed string is meaningless but make the log 

items look divergence. The last one, replace continues identical log items with one single item. 

In addition, these is exist integer arguments in the in-kernel functions; each assigned value is 

corresponding to a particular purpose. We replace the integer with the particular purpose 

name to enhance the meaningful information. After disposing arguments, for clustering the 

log items with their distance, we use existing method “Complete-Link Clustering,” it tends to 

find compact clusters of approximately equal diameters. Before clustering, we assign the 

distance threshold in the beginning. Complete-Link Clustering map each log item to a 

coordinate, and grouping two clusters when distance threshold that we had assign is bigger 

than the maximum of the distance between any two points in the two clusters(distance 

threshold>𝐷(𝑋,𝑌)), as can been seen in Figure 4. Finally, we pick most representative string 

for each cluster for the purpose of recognizes tested malware efficiently later. In this paper, 

the clusters that profile in this step called argument clusters. 

 

 

Figure4. Complete-Link Clustering 

Invocation sequence producing. When the previous step finished clustering log items, 

the next task is to produce invocation sequences. For ease of comparison similarity between 

traces, we map each log item to cluster number, and each log shall be transformed to a 

sequence of clusters. 

HMM producing. In this step, we use the same family‟s malware traces to train a HMM 

as the family‟s behavior pattern. HMM is an existing approach. It is a sequence-based 

correlation model and able to evaluate the deviation between a sequence and the model, that is 
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suitable for our sequence traces and required features for our goal, we use HMM to this end. 

Every integer within the invocation sequences is a cluster number; as a consequence, each 

argument cluster shall be an HMM state. Then, to train HMM of the family through the 

sequences that acquired in previous step. In the end, we add a null state with transition 

probability is equal to zero, that the transition probability for HMM is a possibility of 

transition between states, however, for the reason why we would explain in the Family 

matcher section.   

Matching threshold computing. At last, the output of this step is a family matching 

threshold. We collect all the invocation sequences that in the same family and compute under 

a particular family HMM, each invocation sequence would get a value, and decide the range 

from the minimum value is the family‟s matching threshold. In this paper, we present related 

value, a value that comes from a HMM computed result. In particular, we emphasize that each 

family has its own matching threshold and each invocation sequence compute under each 

family‟s HMM would get the different related value. 
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Figure5. Pattern generator‟s output 

 

3.3. Family matcher 

In our system testing phase, we use family patterns that created previously to recognize 

whether a tested malware is the member of the particular family or not for each family, and 

the outcome is an array that consists of zero and one. If the i‟th element of the array value is 

one, means the tested malware is the classified in to family i.  
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Figure6. Family Matcher‟s Algorithm – I/O section 

 

Before doing the matching procedure, we have to monitor the tested malware in order to 

produce the testing trace. Next, perform the invocation sequence mapping and the HMM 

recognizing for each family. 

Invocation sequence mapping. In this step, we translate the testing trace into the 

family‟s tested invocation sequence. For the purpose of mapping tested malware each 

behavior log items with the family‟s argument clusters, we evaluate the distance between a 

tested log items and representative string of each cluster. In this way, we keep track of the 

nearest item that has the minimum distance from the transforming tested log item; moreover, 

compare the value of minimum distance and the distance threshold that has assigned when 

doing the family‟s log clustering.  

 

Figure7. Invocation sequence mapping – setting cluster   

 

To illustrate in detail, if the minimum distance is bigger than the distance threshold, the 

log item‟s cluster is equal to the nearest item‟s cluster, otherwise, the log item‟s cluster would 

assign to a null cluster. The null cluster corresponds to a uniform value and do not conflict 

with the other argument clusters. Then, we obtain a tested argument sequence finally. 
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HMM recognizing. The last step of our system, we evaluate the tested invocation 

sequence under the family HMM, and identify whether the tested malware is the family‟s 

member or not. As mentioned above, an argument cluster corresponds to a HMM state. In 

addition, the null state in the HMM we have added before corresponds to the null cluster. Null 

cluster is mapped when the tested log items that could not map to the family‟s cluster, so it 

does not exist in the training malware traces that no state would transition to null state, we had 

set the null state transition probability [33] to zero. For the purpose of increase the identify 

flexibility, our system cut the tested malware invocation sequence into small fragments of 

equal length for evaluate, and we have to consider the length of a fragment (fragment length). 

The principle is that HMM evaluate the probability according to the state transition sequence. 

The longer length of the tested sequence the evaluation would be less flexibility, for instance, 

when only the argument sequence equal to the training malware‟s could get a high probability, 

the other malware that even in the same family maybe have a very low probability. After 

cutting, all of the state has the probability to be the beginning state of the small fragments, so 

we set each state with the same initial probabilities. Evaluating each fragment against with 

HMM, and get its probability. Then, compare the average probabilities of all fragments to the 

family matching threshold; if the average is upper than the family matching threshold, the 

malware is a member of the malware family and mark “1” at the family‟s position in the 

outcome array, otherwise, is not and mark “0”.  

 

Figure8. HMM recognizing‟s Algorithm  
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Figure9.Family matching procedure 
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4. Implementation 

Based on our approach, we design a system that has three components, there are a monitor 

has ability to hooking the in-kernel functions and tainting the whole-system, a clustering 

system, and a HMM tool. The whole-system tainting mechanism using the existing system in 

our lab machine that built upon the research [32]. We implemented other functionality of the 

system. Following are our descriptions in detail.   

 

4.1. In-kernel function hooking 

Our monitor is based on QEMU, an open-source system-wide emulator, using dynamic 

binary translation in order to run an unmodified operating system with high execution speed. 

The dynamic binary translation works on a basic-block at one time, where a basic block is an 

instruction sequences that ends with a branch or jump instruction. Because of translate several 

constructions at once is more efficiency than only one. The binary translator procedure is to 

translate a basic block which had not been translated, then execute it, and continue to translate 

the next basic block until the process stop executing. 

 

Figure10.Modified QEMU dynamic binary translation procedure 
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Modify QEMU for in-kernel function hooking. Each time QEMU translate a basic block it 

must be invoke our match functions that used to know whether the translating basic block is 

our monitoring in-kernel function or not. If the answer is yes, we would call the helper 

functions that we implemented to check the arguments‟ taint condition and profile the invoke 

record, otherwise, do nothing. Match function identify the in-kernel functions according to 

compare the several instructions that at the beginning of the basic block with the in-kernel 

function patterns where a pattern is a several previous instructions from an in-kernel function. 

When the hooked in-kernel function is invoked, the monitor get the memory location of the 

arguments that we care as discussed in chapter1.3 to do the tainted check. If any argument 

that in the same function has tainted, we would add the record on the trace.    

 

Figure11.In-kernel function hooking workflow 
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Table1.Hooked in-kernel functions and arguments 

 

 

Object Interaction Function & Monitor arguments Explain 

Process Create MmCreatePeb 

PEPROCESS TargetProcess 

 

Pointer to the process structure 

that involved with the process 

CR3 and name. 

 Delete MmDeleteProcessAddressSpace 

PEPROCESS Process 

 

As the former 

Registry Create CmSetValueKey 

PUNICODE_STRING ValueName 

PVOID Data 

 

The name of the value entry. 

The data for the value entry. 

 Delete CmDeleteValueKey 

UNICODE_STRING  ValueName 

 

The name of the value entry. 

File Create 

/Open 

/Write 

 

IopCreateFile 

POBJECT_ATTRIBUTES ObjectAttributes 

ULONG Disposition  

CREATE_FILE_TYPE CreateFileType 

 

The name of the file. 

Indicate Create, Open, Write  

The type of the file. 

 Delete IopDeleteFile 

PVOID    Object 

 

The name of the file. 

Network Send packet MiniportSend 

PNDIS_PACKET Packet 

 

Pointer to the packet structure 

that involved with the Src/Dst 

mac, ip, port 
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4.2. Clustering system 

We use the “Complete-Link Clustering” java library to implement the system.  

4.3. HMM tool 

To realize our design, we implement the HMM pattern generation with “Jahmm” [34], 

which is a HMM library implemented in Java environment. It supports a learning algorithm, 

which generates automatically a matrix consisting of transition probabilities and observation 

probabilities from several observation sequences. We add the “null state” into a generated 

HMM by augmenting the two-dimensional probability matrix with an additional row and 

column of zeros.  
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5. Evaluation 

To verify the capability of our approach to recognize the malware family with high 

accuracy, we use our system to run the dynamic tests on real-world malware data sets. In the 

following section, we show the experimental setup. Then in Section5.2, we present our 

evaluate result. Finally, we discuss some particular case and the limit of our system.  

5.1. Experimental Setup 

We implement our system on Linux, and set up the Windows XP SP3 in the modified 

QEMU. To evaluate the propose method, we collected 511 instances of malware from the 

websites and classified them into 15 different malware families by ClamAV [35], a famous 

antivirus tool, as show in Table1. In addition, we assume that ClamAV classified result is 

valid and every malware reveal its behavior in QEMU directly. Each of the family consist 

more than 15 instances and the most have 66 instances, we need several samples for HMM 

training just like speech recognition training. For the propose of evaluation, half of the 

malware instances in each family to be used as training data, all of the malware instances as 

tested data. As mentioned in proposed scheme, the distance threshold for clustering and the 

fragment length are the parameters that must be considered in our system. We evaluate the 

recognizing accuracy by adjust the two parameters, and show the result in next section.    

 

Table2.Family list with invoked in-kernel function objects and instance number 

Malware Name Process File Registry Network Number 

Adware.ZenoSearch-2 √ √ √ √ 32 

Trojan.Adload-2482 √ √ √ √ 38 

Trojan.Agent-1212  √ √  34 
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Trojan.Agent-122844  √ √  21 

Trojan.Downloader-101635  √ √ √ 16 

Trojan.Downloader-104203  √ √  38 

Trojan.GenericFF  √ √ √ 66 

Trojan.Lineage-286 √ √ √ √ 23 

Trojan.Ripnip-1  √ √  68 

Trojan.Udr √ √ √ √ 23 

W32.Philis-60 √ √ √ √ 27 

W32.Philis-138 √ √ √ √ 35 

Worm.Gavir.A √ √ √ √ 26 

Worm.Mydoom.M √ √ √ √ 24 

Worm.VB-1761  √ √  40 

 

5.2. Result of evaluations 

Figure 9 shows that the relationship between fragment length and accuracy. To observe 

the trend of the lines in generally, the longer length has the lower false positive but higher 

false negative. Because the other family malware have different behavior with the training 

family, there are difficult to match a long behavior sequence for the training family. Also, the 

lines in the Figure 10 present that setting stricter limit to cluster the log items would get the 

significant diversity of lower false negative and a little higher false positive. According to our 

result, when using small distance and suitable length, our false positive is 0%.   
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Table3. Profiling result and Computing average 

   

  

Figure12.Effects of fragment length  
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Figure13. Effects of Distance Threshold 

5.3. Discussion 

According to figure12, the larger fragment length has the lower false positive. A long 

fragment corresponds to a long term behavior observation, it‟s difficult to match the behavior 

pattern, and therefore, other family‟s malware is hard to be recognized to the family. Figure13 

shows that the shorter distance has the lower false positive. The shorter distance means the 

two log items must more similar that could be clustered together. For malware not in the 

family, its log items are easier to assign to the null state and harder to match this hmm.     

We describe the two possible outcomes in detail. First, the tested malware has not match 

any family pattern, namely, it is a new malware for our training system. Collecting these 

several malware together to cluster later, if any cluster has more than 15 malware instances 

then we create a new family for this cluster. Otherwise, the tested malware match one or more 

malware behavior patterns. Its many families‟ member just like a people have many identities. 

Our system‟s every malware instances must reveal its behavior in QEMU directly. 

Otherwise, the instances such as VM-Aware malware would not display their malicious 

behavior when it detect that it is running in a virtualized environment. 
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6. Conclusion 

Recognizing malware by family makes malware signature generation easier. In addition, it 

helps us distinguish malware newly emerge from those which existed already, and therefore a 

more efficient malware analysis becomes possible. In this dissertation, a novel approach is 

proposed to generate one behavior pattern for a family of malware. The proposed method 

relies on executing malware inside an emulated environment. Through monitoring invocations 

of in-kernel function and checking argument taintness at VMM-level, our scheme assures that 

malware cannot circumvent the monitoring mechanism. Moreover, the use of whole-system 

tainting guarantees that cross-process and kernel-space invading, which were not covered by 

previous work, are tracked. These features broaden the scope of our system while 

concentrating on information directly “contaminated” by the program being examined. 

Behaviors of the same malware family shall be then converted to an HMM-based pattern. 

According to our evaluation, our system produces no false positives and < 5.8% false 

negatives when matching 511 samples against 15 families. 
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