]+t X

AP P S B e 5N 2
ERASNEEIREL 2

Recognizing Malware Families with

Invocation Pattern of Kernel Functions

SEE SRS SR

TR e R S

FEREBE 100 £8 A

%*ﬂﬁ&&@“ﬁﬁi
ERLANEHEIREL
Recognizing Malware Families with Invocation Pattern
of Kernel Functions
o4 LR ;é?l Student : Fang-Yu Liu

R M 2L Advisor : Dr. Shiuhpyng Shieh

S R =

i 2h

ot
7
T

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Science
August 2011

Hsinchu, Taiwan, Republic of China

dESF 100 & 8

- Sl A ki i S
ER AN IR 2
SR T dcE AT

e

ERARNEIEL 2 A RS LR R E RN L LN T

-QA

Bpens R Of,{fv—fé;r%':;,w”jz#‘jgri.l&‘ﬁ’ﬁ B4 AE N R LAY TS Bk &
@ T A A T e N iR BlAe T P B =t e Rootkit At £ MEiE A
F7H SN g R R AR SN EAR R R e AAEHY Y o APE -

Baafg A2 M A B ERRNF S o)t 2 2 BT AN E R

TS

B R J{ T ERE LA D
Mg bR E T IGRE E A sesbe S At e Ao gt vk 0
PR R SniE A TR A T T 0 e R hes e e 03t 2 S
APRIENE R AR G Mo B F o et SN SRR PTG AR 7 S

ERAZN @ BRHIL2 F 80 p fdp b 0 3063 Plehe dfs A 4
b SN e e Ze gt e & MM SRR 0 1T S A T BRSBTS ke d
SRR I A G A A (T L BACTFELE RS AR i A Tt

¥ M RAR X o

Recognizing Malware Families with

Invocation Pattern of Kernel Functions

Student: Fang-Yu Liu Advisor: Dr. Shiuhpyng Shieh

Department of Network Engineering

National Chiao-Tung University

Abstract

Malware family recognition is the process of judging whether a malicious binary
program belongs to certain family..In this process, a pattern representing a sequence
of malicious behaviors shared among malware in the same family shall be
automatically generated. Existing mechanisms'such as in-system API profiling can be
circumvented by some malware such as kernel-level rootkit. In this thesis, a novel
scheme is proposed which generates a unique behavior pattern for each family of
malware. In our scheme, malware are executed on a virtual machine. By hooking
in-kernel functions underlying the VMM, invocation sequences of a malware program
cannot be disguised and therefore are accurately profiled. Our scheme covers the
whole-system taint analysis to identify the in-kernel function invocations where
parameters are contaminated by the malware being tested. Our scheme also tracks
cross-process malware, which is not covered by previous work. Profiled invocation
sequences are further converted to HMM-based pattern. The evaluation result shows

that our behavior patterns give extremely low false negative in the recognition phase.

SRR BT A E RO LS B e F A K R B
RN 4. rg%‘ﬁ_ﬁ A AV .@;:'_%ﬁmm}_, ?ﬁx\.m‘j\g .} ,}i_;.%;% N ;‘}Z”ﬁ is

2B a YA S AMLT f b R ROLAEREE S A3 AT

i:

[

TR ERRF B TR FEE AT ES A LA o

Arrd GDONS Lab s % o B R LB o AR GndgY £ &

N

-i VL IJ‘ ﬁxlfljlﬁfmn\1€ g‘r\%.ﬂi:p;(/i_"“ ,j!;g,\ ’L‘/‘ ,? A m;ﬁt#é%—r) i

@
e

REPePBEIFBRS S FTHEIL FERTEFB ITHREAL 0 &
- BR®mE 0 G ORGSR EMMET o PRI S e £
PHREAP IR RER QR Il P EE - RS B A P
AEBREAPEF AL PERETEF e AL S EET R AR E

S Rhes 7o R BER B4 a0 A2 FF P00 Michael ~Sky ~ Pokai ~ < W& ~ o] R 0 5 d 22
AR FarsF SR E R R (b B R o RIR B 3 R

¥~ Vic~Mashi ~ ##+ % ~ =2 ~Fallman~'f* % £ ~ Alan~ .77 » & g 3

—

AN
v ai

2
X

SEBEEPRE BT A oaw FA o FR R iy iy 0
BRREA ST - X - K ate R EANG EAE R RITHB
> ojg.ggj—yfa;\p;.f;,mgg \;_T_;_T_\f,;gg, * ﬁ Aoy 4 4“@*7" RN il R
B - A @ E iz g R AR OR ST FRE TS G
R RS e

A RS F 98B ATHF e~ B E R S5] 2 ~KAKA
e~ c AR Ry A SR # R REF S BIPEE TR
FASHA L FEEAA S AR A PR B AR
A SRR o R EIRT e

EPH AR BTG 4o AR e \i%ﬁﬂ%‘lﬁﬁﬁiﬁﬁﬁ’ﬂ““ﬂ e

Table of Content

B e e I
ADSTFACT ... I
== =1 i
Table of CoNteNnt ..o AV
LISt Of FIQUIES ...eeeee e VI
LiSt Of TabIeS.......ooiieiiee e, VIl
1. INErOdUCTION ..o 1
1.1, Background........... o b i e 1
1.2, REQUITEIMENT......ci itk ibirieisnnsssess deemseesseessseaseesseessessseessseaseessensses 3
1.3, CONCEPL ... i i e ettt ettt eenee s 4
1.4, CONIIDULIONcoiiiiiic et 5
1.5, SYNOPSIS..eiiiiiiiiiiiii ettt 5
2 Related WOrK ..o 6
2.1, StatiC @NAIYSIScoovieiiiiieieeee e 6
2.2. DYNamicC analySiS........ccoouviriieniiinii e 7
3. SYStEM OVEIVIEW........ociiiiieiiiee e 10
3.1, Behavior MONItOr........ccviiviieiee e 11
3.2, Pattern generator.........cocveiiieiiieeiiie e 12
3.3, Family matCher ... 15
4, IMplementation..........cccveiiie e 19

6.

7.

4.1. In-kernel function hooking.........cccccovviiiinniii e 19

4.2, CIUSLEIING SYSEM ...ooiiiiiie e 22
4.3, HMM 10O ...t 22
Evaluation............ccccooviiiiiie e, 23
5.1. Experimental SETUPccceeveiiiiiiie e 23
5.2. Result of evaluationscccovieiiiiiiniiisiseeee s 24
5.3, DISCUSSION....ccuiiiiieiieiiieiesiee st srie sttt 26
(0] 0] 115157 o] o [27
REfEIeNCE ... 28

List of Figures

FIGUREL. SYSTEM CALLS WORKFLOW

FIGURE2. SYSTEM OVERVIEW

FIGURE3. PROCEDURE OF PATTERN GENERATOR

FIGURE4. COMPLETE-LINK CLUSTERING

FIGURES. PATTERN GENERATOR’S OUTPUT

FIGURE6. FAMILY MATCHER’S ALGORITHM — 1/O SECTION

FIGURE7. INVOCATION SEQUENCE MAPPING — SETTING CLUSTER

FIGURES. HMM RECOGNIZING’S ALGORITHM

FIGURE9.FAMILY MATCHING PROCEDURE

FIGURE10.MoODIFIED QEMU DYNAMIC BINARY TRANSLATION: PROCEDURE

FIGURE11.IN-KERNEL FUNCTION HOOKING WORKFLOW

FIGURE12.EFFECTS OF FRAGMENT LENGTH

FIGURE13. EFFECTS OF DISTANCE THRESHOLD

VI

10

12

13

15

16

16

17

18

19

20

25

26

List of Tables

TABLE1.HOOKED IN-KERNEL FUNCTIONS AND ARGUMENTS

TABLE2.FAMILY LIST WITH INVOKED IN-KERNEL FUNCTION OBJECTS AND INSTANCE NUMBERuuuuuuuunenennnnnnnnnnnnnnnnnnnns

TABLE3. PROFILING RESULT AND COMPUTING AVERAGE

VIl

1. Introduction

Malware (malicious software) remain a serious problem in spite of the wide use of various
anti-virus applications. For the time being, thousands of new malware are being generated per
day. According to the reports [1] [2], there are 1,017,208 instances of new malware were
detected in the first half of 2010, approximately 10% more than the previous half year. The
malware writers continuously develop new methods of polymorphism and metamorphism
such as obfuscation, encryption, or packing to evade signature-based detection. Furthermore,
metamorphism enables malware to change its appearance when every time it propagates. To
deal with such large numbers of malware instances efficiently, automatically deriving
representative malware behavior patterns, which are used to recognize a whole malware
family, is necessary. Fortunately, the observation that numerous malware share common
behaviors enables us to derive a generalized signature for each group of them. In doing so,
testing whether a malicious program belongs-to-an existing well-known group of malware can
be determined efficiently. In this chapter, we give a brief introduction to existing related

schemes, proposed methods, and our contribution.

1.1. Background

For recognizing malware families with behavior pattern, in this section, we indicate that
why not use signatures but behavior patterns, the existing monitoring mechanisms and their
drawback, and the malicious behaviors generally focus.

1.1.1. Behavior Patterns

Signature-based recognition is the most widely used approach, but one signature could not

identify other malware. Due to the continuously development of malware program, it is no

longer valid to deal with the large number of mutant malware programs.
1

Using behavior patterns to recognize malware family is efficient. As indicated by recent
studies [3], each malware instance in the same family shows similar behavior patterns.
Because most of original malware are created by the same authors, they also have several
different versions though many times upgrade. In addition, other authors often rewrite the
existing malware programs. According to these reasons, one behavior pattern is useful to
recognize lots of malware that in the same family.

Checking arguments of API is effective. When the malware is executed, it must invoke
APIs with several arguments. Hence, the API invocation sequences are adapted to represent
the malware behavior. Moreover, each API’s name and argument represents with meaningful
word, so that it is easy to use when analyzers want to functionality of malware programs. To
profile arguments of known malware and the frequently used arguments of each family could
be apply as behavior pattern for future recognition.

1.1.2. Monitoring mechanism

In order to observe malware behavior, based on considering the system call workflow
from user level to kernel level, we separate the monitoring mechanisms into two perspectives
for discussion. The former mention that what kind of the object we monitor, the latter is about
where to monitor. In addition, we define” in-kernel function” as the low level kernel
functions that system call must invoke. The reference of the section is depicted in Figure 1.

Objectives for monitoring: Monitoring on user-level library APIs, attacker cloud invoke
system call directly without using the user-level library APIs, therefore, the monitor
mechanism is bypassed. Otherwise, monitoring on system call, Rootkit could enter kernel
level directly instead of invoking system call, hence the monitor is invalid.

In-system monitoring: As long as the monitor and malware exist in the same
circumstance, the monitor mechanism could be overridden by in-kernel level Rootkit. No

matter monitoring on kernel level APIs or user-level library APIs, such us the approaches in

the previous mention, the result are no different.
1.1.3. Malware Behavior

In this paper, we monitor process, registry, file, network as recent studies and the famous
malware analysis website [4] [5] [6] , because all malware have the subset of these four types
object’s behaviors. Out research is integrity and sufficient that not less than other related
works. Running malware under our monitor system, the outcome is a human readable report
which profile malware behaviors. The report contains sufficient information, including the
cross-process malware interaction, the contents of malware communication over network,

registry modification, dynamic API loading, etc.

User mode
Library API

v

Native API

Kernel mode

System Call

L

In-kernel function

Figurel. System calls workflow

1.2. Requirement

We believed that an ideal recognizing malware family system should provide following
features: Automatic behavior pattern generation, in order to cope with malware efficiently;
Accuracy, means that using behavior patterns to recognize malware family with low false
positives and low false negatives; Non-circumventable, no malware is liable to bypass the

monitor, which is to ensure that the system could get the malware behavior completely.
3

1.3. Concept

In order to achieve non-circumventable monitor, we analyze malware behavior by
collecting in-kernel function calls and arguments from the underlying emulator. All of above
monitor mechanisms are too easy to bypass and cannot capture the malware behavior
information completely. Because of no matter how malware program avoids using user-level
API, it must invoke in-kernel function finally. For the reason, we monitor in-kernel functions
even arguments. Also, when monitoring in-kernel level functions, in-kernel level Rootkit
could override the monitor mechanism. To overcome this problem, we use out-of-box hooking
technique, to build our monitor on the underlying emulator, so monitor and malware are not in
the same space that the monitor mechanism works well.

For the purpose of recognizing malware family with high accuracy, we use tainting to
precise the monitor result. Taint could track which arguments are related with malware.
When a monitor system working without taint, /it cloud only distinguish process between
tested malware and other program by the help of the CR3 processor register, nevertheless, not
know which arguments have high relationship with malicious behavior. Especially, taint could
monitor relations between data across multiple processes, even in kernel. Using taint help us
to get the malware information more completely, thus, improving the accuracy of recognize
malware family.

We produce an automatic pattern generation system, the basic function of malware
analysis. We extract invocation sequence to dilute unrepresentative information, in order to
precise the behavior traces before generate pattern. For example, when in-kernel function
arguments involve meaningless string such as hashed filenames, this information must be
dilute. Finally, the system describes in-kernel function transitions with Hidden Markov Model

(HMM). The HMM is easy used to recognize malware family, so is suitable for our system.

1.4. Contribution

In this paper, we proposed a novel approach to generate a behavior pattern for a family
of malware. In addition, two important features distinguish our work from existing researches.
Firstly, unlike previous approaches, which can be circumvented by lower-level hooking or
overwriting, our out-of-box in-kernel function hooking is inescapable for malware being
tested. Secondly, taint-based argument checking gives more accurate behavior profiling
because the taint status help us differentiate between arguments fed by malware and those by
benign programs running in background. Thirdly, the taint propagation is done system-wide,
and it can hence deal with cross-process malware, which are not covered by previous work.
Obviously, our system produces more complete malware behavior patterns than other
approaches. An experiment on 511 malicious:samples originating from 15 different families
was performed. The evaluation result shows that our behavior patterns give zero false positive

and low false negative (less than 5.8%) at recognition phase.

1.5. Synopsis

The paper is organized as follow. Chapter 2 gives introduction to related works. Chapter
3 gives the detailed description of our system. Implementation and evaluation are in Chapter 4

and Chapter 5. At the end of the paper, we make an overall conclusion in Chapter 6.

2. Related Work

Automatically grouping malware of the analysis results is a necessary procedure in some
malware research [7] [8] [9] [10]. The crucial condition to get accuracy grouping result
depends on the ideal analysis results. For this purpose, researchers have to design an analysis
method.

The figure of similarity pattern is the key point for every system that aims to group
malware to identify a malware family. To this end, the systems have to consider how to
represent each malware analysis result is suitable; moreover, which evaluation model is able
to fit the analysis result and appropriate to compute the distance between malware. These
approaches to generate malware family pattern can be divided into two parts: static analysis

and dynamic analysis techniques.

2.1. Static analysis

Static analysis [24] [30] [36] is the technique of analyzing executable program without
executing it. These propose work by disassembling the binary first. Existing method use
control flow and dataflow analysis techniques to describe the analyzed program. The most
significant advantage of static analysis is usually faster than dynamic analysis. On the other
side, the main weakness is ineffective against the polymorphic and metamorphic malware.
There exist the self-modifying programs that packed executable instructions which often
related to malicious behaviors and unpack themselves during run-time. Static analysis is
useless in this situation because it cloud not get the complete instructions without execute the
program. Following are related works that classified by the focus objective.

Opcode. The approach was presented by Bilar et al. [11]. The system decomposes
malware code through statistical analysis of opcode distributions which used to distinguish

malware samples and non-malicious samples. However, it also has weakness in general static
6

analysis method.

Function or String. Tian et al. [12] measure the function length by the number of bytes
that in the code. In addition, considering the malware function length frequency appear in a
malware sample. In [13], the author proposes an automated malware classification system.
Classification of malware based on the function length and the printable strings information.
To examine the feature of which string often be used as an argument. As long as, malware
writer insert junk instructions, replace instructions or registers, these low-level assembler
mnemonics would change the code size and appearance, these malware signature is no use.

API calls. Sathyanarayan et al. [14] suggest generating signatures and detection of
malware families based on the semantics and API calls. The system extracts and statistics the
frequency of the critical API calls from the executable program to evaluate the likelihood test
then identify the malware family. Unlike the'previous static analysis systems, this approach is
immune to common obfuscations that only affect the code pattern but do not change the
behavior. Because of considering the API calls, such obfuscations have no effect on this

signature generation approach. But still invalid against analysis the packed malware.

2.2. Dynamic analysis

Dynamic analysis is the technique of supervising executable program during run-time.
This technique is a solution to break the limitations of static analysis. While dynamic analysis
has no problem with polymorphic and metamorphic malware, and is effective to deal with
self-modifying programs. The method in this paper is closely related to these works. This
section discusses different approaches for generating malware family pattern with dynamic
analysis, and compares them with our approach.

Instructions. In [15] [16], grouping instructions together as the malware behavior

information to identify whether the tested program is benign or malicious. First, the system

captures runtime instruction sequences from an executable program and organizes instruction
sequences into basic block. Then, extract the instruction groups that frequently used within
basic blocks. Compared with our approach, using instruction information to deals with the
malware is probable to evade by metamorphic malware. Other researchers [17] have proposed
to detect malware through checking instruction semantics. The weakness of the approaches is
that it has no ability to handle the reorder instructions situation. Nevertheless, the obscure
technique would not change the behavior of malware, has no effect on our behavior pattern.

Network trace. These systems use the extracted features such as HTTP requests [18],
domain names [19], and similar communication patterns [20] for clustering. Our system
monitor the network communication completely, we not only analysis network-based
malware, but also other malicious programs.

System call graph. These researches [22] [23] capture the system call invocation traces
and construct to the system-call graphs, then design a method to extract the sub-graph as the
behavior pattern. Using an algorithm to compute the distance between the patterns, and
identify the malware family. The difference with our approach is that they monitor behavior
on the system calls but our system monitor on in-kernel functions. As mentioned above,
monitoring on system calls would be bypassed by Rootkit, but non-circumventable on the
in-kernel functions.

Arguments. [4] [24] [26] [27] [28] [29] extract patterns from malware invoked system
call and arguments to identify malware family. Park et al. [21] use of one representative
common behavioral graph that is created from individual behavior graphs for all malware
instance in the same family. The approach that present by Bayer et al. [4] use out-of-box
hooking and focus behavior on the file, process, network, registry as our system. But the
system has not use taint technique, could not monitor the behavior between processes and

know the malware related argument explicitly. The system [27] in the related works is closest

to ours, not only use out-of-box hooking but also taint analysis. It taint all the system call‘s
arguments and return values. Every time system call is invoked, check whether any argument
is tainted, if the answer is yes, log the system call and arguments on the track record. All
system calls serve as its taint sources, but we have a whole-system taint, so that our monitor
result must be more accuracy. All the related works in this section use system call level

monitor mechanism, as we have seen, it is insufficient.

3. System Overview

Our system captures invocation sequence of in-kernel functions with arguments and
generates behavior patterns that use to recognize malware families. We can roughly divide the
procedures into three components, behavior monitor, pattern generator, and family matcher.
Firstly, in the training phase, behavior monitor plays an important role of supervising
malware and produces a behavior trace. Secondly, pattern generator train the same family’s
malware behavior traces to a family’s pattern. Finally, the testing phase has a component
called family matcher, the system state can recognize a tested malware in or not in the each
family. Furthermore, the system focus of the object is standalone malware instead of infecting
malware and VM-Aware malware is not in the scope of our discussion. The reference of the

chapter is depicted in Figure 2. We would describe them in following.

Training Phase * Invocation grouping
S e * Invocation sequence producing
* Taint * HMM producing
* In-kernel function hooking Matching threshold computing

Malware
known to
be in same
family

g -
o BT ™[1= oy
Behawor - Pattern Family’s
‘ ‘ acs generator pattern
SR = [o G
race
_Trace |9

Testing Phase

I » Invocation sequence matching
* HMM recognizing

;\\ o
¢
_ ‘ matcher

Testing malware Categorization

Figure2. System overview

10

3.1. Behavior monitor

The malware behavior monitor component of our system is based on QEMU, a
whole-system emulator. We extended QEMU [30] with out-of-box in-kernel functions
hooking and whole-system taint tracking that used the tainting system in previous work [32].
Putting a malware into emulator, then analyzing malware behavior by collecting in-kernel
function calls and arguments from the underlying emulator, we obtain the malware behavior
trace finally.

Taint. We use a system-level emulator (QUMU) with taint capability which covers
registers, memory, and HD. Using tainting is helpful to know which invoked in-kernel
functions’ arguments are related to the monitored malware. To start tainting, we import a
malware to HD sectors, and these sectors'sever as taint source. After that, to execute the
malware for five minutes, at the same time, check whether any argument of the invoked
in-kernel function is tainted.

In-kernel functions hooking. Hooking on the in-kernel functions, rather than user-level
APIs or system calls make malware hard to bypass our monitor. QEMU utilize dynamic
translator doing a runtime transform the target CPU instructions into the host instructions.
During the transform procedure, we check if any hooked in-kernel function is invoked. Our
hooking focus on the four types of the in-kernel function, such as process, registry, file,
network, and choose the functions that necessary for malicious activities, moreover, care the
arguments that include the related object’s specific properties. For instance, malware could
not access network without invoke the sending packet function in the net card driver, and we

analysis argument involve the packet content of the sending packet function.

11

3.2. Pattern generator

Pattern generator use the traces of the family being trained as the materials and produce
the family typical pattern, that consisting of a HMM, representative string for each state in the
HMM, and a threshold for matching the probability. As illustrated in Figure 3, generating
malware family pattern is a multi-step process. It consists of an initial, log clustering,

invocation sequence producing, HMM producing, and a final matching threshold computing.

Invocation Invocation HMM Matching
w» | threshold

_ w) sequence W :
grouping producing producing computing

Figure3. Procedure of Pattern generator

Invocation grouping. Disposing-the arguments that profile in the trace report and then
using clustering method to group similar arguments with distances under certain threshold
into same clusters. Begin with the arguments disposing, we dilute the unrepresentative strings
and expand the influence of the meaningful information, in order to make sense of the traces
then cluster argument more reasonable. The first one is that we remove common log items
appearing in many families, the log items mean each invoked in-kernel function with its
arguments record in the trace. The reason is that common log not only could not represent a
particular family’s behavior but also appear in each trace too many times to reduce the degree
of difference between each trace. Secondly, remove meaningless items such as Windows
random number seed that the monitor system often performs this procedure even in benign
programs. Also, capturing invocation sequences with relaxed string matching is means that

we replace long digital-alphabetic sequence with repeated characters of equal length, the long

12

digital-alphabetic sequence for example from a hashed string is meaningless but make the log
items look divergence. The last one, replace continues identical log items with one single item.
In addition, these is exist integer arguments in the in-kernel functions; each assigned value is
corresponding to a particular purpose. We replace the integer with the particular purpose
name to enhance the meaningful information. After disposing arguments, for clustering the
log items with their distance, we use existing method “Complete-Link Clustering,” it tends to
find compact clusters of approximately equal diameters. Before clustering, we assign the
distance threshold in the beginning. Complete-Link Clustering map each log item to a
coordinate, and grouping two clusters when distance threshold that we had assign is bigger
than the maximum of the distance between any two points in the two clusters(distance
threshold>D(XY)), as can been seen in Figure 4. Finally, we pick most representative string
for each cluster for the purpose of recognizes tested malware efficiently later. In this paper,

the clusters that profile in this step called argument clusters.

D())f, Y) = xemxyéyd(x,yv)

. D(X,Y)
[L L am) ® 9
- -
.
o ¢ i

Figure4. Complete-Link Clustering

Invocation sequence producing. When the previous step finished clustering log items,
the next task is to produce invocation sequences. For ease of comparison similarity between
traces, we map each log item to cluster number, and each log shall be transformed to a
sequence of clusters.

HMM producing. In this step, we use the same family’s malware traces to train a HMM
as the family’s behavior pattern. HMM is an existing approach. It is a sequence-based
correlation model and able to evaluate the deviation between a sequence and the model, that is

13

suitable for our sequence traces and required features for our goal, we use HMM to this end.
Every integer within the invocation sequences is a cluster number; as a consequence, each
argument cluster shall be an HMM state. Then, to train HMM of the family through the
sequences that acquired in previous step. In the end, we add a null state with transition
probability is equal to zero, that the transition probability for HMM is a possibility of
transition between states, however, for the reason why we would explain in the Family
matcher section.

Matching threshold computing. At last, the output of this step is a family matching
threshold. We collect all the invocation sequences that in the same family and compute under
a particular family HMM, each invocation sequence would get a value, and decide the range
from the minimum value is the family’s matching threshold. In this paper, we present related
value, a value that comes from a HMM computed result. In particular, we emphasize that each
family has its own matching threshold and each' invocation sequence compute under each

family’s HMM would get the different related value.

14

Trace

CreateFile(file name = \??\C:\WINDOWS\system32\winspool.drv , file type = CreateFileTypeNone)

OpenFile(file name = \??\v:\898025105 , file type = CreateFileTypeNone)

CreateFile(file name = \?2?\C:\WINDOWS\system32\MSVCP60.dll , file type = CreateFileTypeNone)

CreateFile(file name = \?2?\C:\WINDOWS\system32\snmpapi.dll , file type = CreateFileTypeNone)

SendPacket (EthDHost = 0x520x540x000x120x350x02 , EthSHost = 0x520x540x000x120x340x56 , EthType = 0x080x00 , Source
SendPacket (EthDHost = 0x520x540x000x120x350x02 , EthSHost = 0x520x540x000x120x340x56 , EthType = 0x080x00 , Source

Argument clusters l, Invocation grouping

CreateFile(file name = \??\C:\DOCUME~1\dsns\32\comct132.d11.124.Config , file_type = CreateFileTypeNone) 1
CreateFile(file name = \2?\C:\DOCUME~1\dsns\LOCALS~1\32.d11.124.Config , file_type = CreateFileTypeNone) 1
CreateFile(file name = \2?\C:\DOCUME~1\ystem32\comctl132.d11.124.Config , file_type = CreateFileTypeNone) 1

CreateFile(file name = \2?\C:\WINDOWS\system32\urlmon.dll.123.Config , file type = CreateFileTypeNone) 2
CreateFile(file name = \2?\C:\WINDOWS\system32\urlmon.dll.123.Manifest , file type = CreateFileTypeNone) 2

.
Invocation sequences ; Invocation sequence producing
10:5;12;10;10:16;16;3:3;3:3;3;3:3;3:3:3:3;3;3;3:3;3:3;3:3:3:3:3;3:3;26;27:47;27;27;28;28;28;28;17;20:20;20;22;22;22;24;24:24:25:25;25;23;23;23;29
10512:12;10,10:16;16:3:3:3:3,3,3:3:3,3;3:3:3:3;3,3:3:3:3,3:38:3:3:3;3:26;27:27:27:27;28;28,28;28;17:20:20:20;22;22;22;24:24:24:25:25;25;23;23;23;2
10;5:12;10;10;16;16,3:3:3:373;3:3:3:3:3;,3:3:3:3,3;,3:3:3:3:3:3:3:3;:3;26:27;27;27:27;28;28;28;28;17;20:20:20;22;22;22;24:24:24:25;25:25;23;23;23;29
10;10;10:;10;10;10:10;10;10;10;10;20;10;10;3;3;13;3;3;10;10;21;19;3;3;3;3;3;3:3;3,3;3;3,3;3;3:3;3:3;3,3;3:3;3:3;3;26;27;27;27;27;28;28;28;28;18;23;
HMM I:MM producing

ol)

Matching threshold computing
Matching threshold

Advare. ZenoSearch-2 MIN: 0.3105S813305521951
Trojan.Adload-2482 MIN: 0.4443679320704545S
Trojan.Agent-1212 MIN: 0.4510868649858042
Trojan.Agent-122844 MIN: 0.5246095157045954
Trojan.Downloader-10163S MIN: 0.4155439888488291
Trojan.Dowvnloader-104203 MIN: 0.3624954774668693

FigureS5. Pattern generator’s output

3.3. Family matcher

In our system testing phase, we use family patterns that created previously to recognize
whether a tested malware is the member of the particular family or not for each family, and
the outcome is an array that consists of zero and one. If the i’th element of the array value is

one, means the tested malware is the classified in to family i.

15

* Input: testing malware m, pattern of each family
* Output: An array C of {0, 1} elements.
C = | 1,if misclassified in to family j
| 0, otherwise

Figure6. Family Matcher’s Algorithm — /O section

Before doing the matching procedure, we have to monitor the tested malware in order to
produce the testing trace. Next, perform the invocation sequence mapping and the HMM
recognizing for each family.

Invocation sequence mapping. In this step, we translate the testing trace into the
family’s tested invocation sequence. For the purpose of mapping tested malware each
behavior log items with the family’s argument clusters, we evaluate the distance between a
tested log items and representative string of each cluster. In this way, we keep track of the
nearest item that has the minimum distance from the transforming tested log item; moreover,
compare the value of minimum distance and the distance threshold that has assigned when

doing the family’s log clustering.

If the minimum distance < distancethreshold:
item’s cluster = nearest item’s cluster

If the minimum distance > = distancethreshold:
item’s cluster = null cluster

Figure7. Invocation sequence mapping — setting cluster

To illustrate in detail, if the minimum distance is bigger than the distance threshold, the
log item’s cluster is equal to the nearest item’s cluster, otherwise, the log item’s cluster would
assign to a null cluster. The null cluster corresponds to a uniform value and do not conflict

with the other argument clusters. Then, we obtain a tested argument sequence finally.

16

HMM recognizing. The last step of our system, we evaluate the tested invocation
sequence under the family HMM, and identify whether the tested malware is the family’s
member or not. As mentioned above, an argument cluster corresponds to a HMM state. In
addition, the null state in the HMM we have added before corresponds to the null cluster. Null
cluster is mapped when the tested log items that could not map to the family’s cluster, so it
does not exist in the training malware traces that no state would transition to null state, we had
set the null state transition probability [33] to zero. For the purpose of increase the identify
flexibility, our system cut the tested malware invocation sequence into small fragments of
equal length for evaluate, and we have to consider the length of a fragment (fragment length).
The principle is that HMM evaluate the probability according to the state transition sequence.
The longer length of the tested sequence the evaluation would be less flexibility, for instance,
when only the argument sequence equal to-the:training malware’s could get a high probability,
the other malware that even in the same family maybe have a very low probability. After
cutting, all of the state has the probability to be the beginning state of the small fragments, so
we set each state with the same initial probabilities. Evaluating each fragment against with
HMM, and get its probability. Then, compare the average probabilities of all fragments to the
family matching threshold; if the average is upper than the family matching threshold, the
malware is a member of the malware family and mark “1” at the family’s position in the

outcome array, otherwise, is not and mark “0”.

sum = 0;

n = len(seq) / fragment_len; //cutting pattern into pieces

for i = 1 to HMM.nbstates()
hmm.setPi(i, 1); //setting the initial probability

forj=0ton-1 //evaluating each piece’s probability
subseq = seq.sublist(j*fragment_len, fragment_len);
sum += hmm.probability(subseq);

avg = sum/n;

Figure8. HMM recognizing’s Algorithm

17

Figure9.Family matching procedure

18

4. Implementation

Based on our approach, we design a system that has three components, there are a monitor
has ability to hooking the in-kernel functions and tainting the whole-system, a clustering
system, and a HMM tool. The whole-system tainting mechanism using the existing system in
our lab machine that built upon the research [32]. We implemented other functionality of the

system. Following are our descriptions in detail.

4.1. In-kernel function hooking

Our monitor is based on QEMU, an open-source system-wide emulator, using dynamic
binary translation in order to run an unmodified operating system with high execution speed.
The dynamic binary translation works on a-basic-block at one time, where a basic block is an
instruction sequences that ends with-a branch-orjump instruction. Because of translate several
constructions at once is more efficiency than only one. The binary translator procedure is to
translate a basic block which had not been translated, then execute it, and continue to translate
the next basic block until the process stop executing.

QEMU Virtual Machine Monitor

Guest OS
Guest Code
QEMU Virtual Machine Behavior monitor
Monitor

Host System

Host Code

Figure10.Modified QEMU dynamic binary translation procedure

19

Modify QEMU for in-kernel function hooking. Each time QEMU translate a basic block it
must be invoke our match functions that used to know whether the translating basic block is
our monitoring in-kernel function or not. If the answer is yes, we would call the helper
functions that we implemented to check the arguments’ taint condition and profile the invoke
record, otherwise, do nothing. Match function identify the in-kernel functions according to
compare the several instructions that at the beginning of the basic block with the in-kernel
function patterns where a pattern is a several previous instructions from an in-kernel function.
When the hooked in-kernel function is invoked, the monitor get the memory location of the
arguments that we care as discussed in chapterl.3 to do the tainted check. If any argument

that in the same function has tainted, we would add the record on the trace.

f Malware ;

v

Translation I
block(TB

A hooked
in-kernel
function?

Arguments
tainted?

Record the in-
kernel function
and arguments

Another
TB?

Behavior trace

Figurell.In-kernel function hooking workflow
20

Tablel.Hooked in-kernel functions and arguments

Object Interaction Function & Monitor arguments Explain

Delete MmDeleteProcessAddressSpace

PEPROCESS Process As the former

Delete CmbDeleteValueKey

UNICODE_STRING ValueName The name of the value entry.

Delete lopDeleteFile

PVOID Object The name of the file.

21

4.2. Clustering system

We use the “Complete-Link Clustering” java library to implement the system.

4.3. HMM tool

To realize our design, we implement the HMM pattern generation with “Jahmm” [34],
which is a HMM library implemented in Java environment. It supports a learning algorithm,
which generates automatically a matrix consisting of transition probabilities and observation
probabilities from several observation sequences. We add the “null state” into a generated
HMM by augmenting the two-dimensional probability matrix with an additional row and

column of zeros.

22

5. Evaluation

To verify the capability of our approach to recognize the malware family with high
accuracy, we use our system to run the dynamic tests on real-world malware data sets. In the
following section, we show the experimental setup. Then in Section5.2, we present our

evaluate result. Finally, we discuss some particular case and the limit of our system.

5.1. Experimental Setup

We implement our system on Linux, and set up the Windows XP SP3 in the modified
QEMU. To evaluate the propose method, we collected 511 instances of malware from the
websites and classified them into 15 different malware families by ClamAV [35], a famous
antivirus tool, as show in Tablel. In addition, we assume that ClamAV classified result is
valid and every malware reveal its-behavior in.QEMU directly. Each of the family consist
more than 15 instances and the most have 66-instances, we need several samples for HMM
training just like speech recognition training. For the propose of evaluation, half of the
malware instances in each family to be used as training data, all of the malware instances as
tested data. As mentioned in proposed scheme, the distance threshold for clustering and the
fragment length are the parameters that must be considered in our system. We evaluate the

recognizing accuracy by adjust the two parameters, and show the result in next section.

Table2.Family list with invoked in-kernel function objects and instance number

Malware Name Process File Registry Network Number
Adware.ZenoSearch-2 \ V \ \ 32
Trojan.Adload-2482 \ \ \ \ 38
Trojan.Agent-1212 N v 34

23

Trojan.Agent-122844 \ \ 21
Trojan.Downloader-101635 \ \ v 16
Trojan.Downloader-104203 \ v 38
Trojan.GenericFF \ \ \ 66
Trojan.Lineage-286 \ \ \ \ 23
Trojan.Ripnip-1 \ v 68
Trojan.Udr \/ \ \ \ 23
W32.Philis-60 v v v ol 27
W32.Philis-138 v ol ol v 35
Worm.Gavir.A \ v \ V 26
Worm.Mydoom.M \ \ \ \ 24
Worm.VB-1761 \ V 40

5.2. Result of evaluations

Figure 9 shows that the relationship between fragment length and accuracy. To observe
the trend of the lines in generally, the longer length has the lower false positive but higher
false negative. Because the other family malware have different behavior with the training
family, there are difficult to match a long behavior sequence for the training family. Also, the
lines in the Figure 10 present that setting stricter limit to cluster the log items would get the
significant diversity of lower false negative and a little higher false positive. According to our

result, when using small distance and suitable length, our false positive is 0%.

24

Table3. Profiling result and Computing average

20 20 0.004753 0.084149 20 20 0.004753 0.084149

20 40 0 0.105675 40 20 0.020268 0.060665
20 60 0 0107632 60 20 0.011183 0.058708
20 80 0 0119374 80 20 0.011602 0.058708
20 100 0 0.123288 Length20 Average 0.011951 0.065558
Distance20 Average| 0.000951 0.108023 20 40 0 0.105675
40 20 0.020268 0.060665 10 10 0.000839 0.068493
40 40 0.000839 0.068493 60 40 0.005871 0.072407
40 60 0.00028 0.080235 80 40 0.005731 0.0743064
40 30 0.00028 0.082192 Length4(Average 0.00311 0.0802335
40 100 0.00028 0.088063 20 60 0 0107632
40 60 0.00028 0.080235
Distanced(Average 0.004389 0.07593
60 60 0.000559 0.09002
60 20 0.011183 0.058708
80 60 0.010484 0.078278
60 40 0.005871 0.072407
Length60 Average 0.002831 0.089041
60 60 0.000559 0.09002
20 80 0 0.119374
60 80 0.000419 0.086106
40 80 0.00028 0.082192
60 100 0.000419 0.088063 60 0 0000419 0.086106
Distance60 Average 0.00369 0.079067 - 20 20 000615 0.076321
80 20 0.011602 0053708 Length80 Average 0.001712 0.090998
30 40 0.005731 0.074364 20 100 0 0.123288
80 60 0.010484 0.078278 40 100 0.00028 0.088063
80 80 0.00615 0.076321 60 100 0.000419 0.088063
80 100 0.00629 0.076321 80 100 0.00629 0.076321
Distance80 Average 0.008051 0.072798 Lengthl(00 Average 0.001747 0.077221

Effects of fragment length

8.90% 5.10% 9.39%

10.00%
9.00%
8.00%
7.00%
6.00%
5.00%
4.00% —FP
3.00% == FN
2.00% 1.20%

1.00% Aﬁi;%—e—}e«%—e%—e—ﬁ%—
0.00% N
20 40 60 80 100
fragment's length(cluster items)

Probabililty(%)

Figurel2.Effects of fragment length

25

Effects of distance threshold

12.00%
B._10.80%
10.00% >

\ 7.59% 7.91%
8.00% 7.28%

X
S 6.00%
© ——FP
< o
2 4.00% —m—FN

2.00%

0.81%
oo 0.10% 0.44% 0.37% 81%
. (o]
20 40 60 80

Distance threshold

Figurel3. Effects of Distance Threshold

5.3. Discussion

According to figurel2, the larger fragment. length has the lower false positive. A long
fragment corresponds to a long term behavior observation, it’s difficult to match the behavior
pattern, and therefore, other family’s malware-is-hard to be recognized to the family. Figure13
shows that the shorter distance has the lower false positive. The shorter distance means the
two log items must more similar that could be clustered together. For malware not in the
family, its log items are easier to assign to the null state and harder to match this hmm.

We describe the two possible outcomes in detail. First, the tested malware has not match
any family pattern, namely, it is a new malware for our training system. Collecting these
several malware together to cluster later, if any cluster has more than 15 malware instances
then we create a new family for this cluster. Otherwise, the tested malware match one or more
malware behavior patterns. Its many families’ member just like a people have many identities.

Our system’s every malware instances must reveal its behavior in QEMU directly.
Otherwise, the instances such as VM-Aware malware would not display their malicious

behavior when it detect that it is running in a virtualized environment.
26

6. Conclusion

Recognizing malware by family makes malware signature generation easier. In addition, it
helps us distinguish malware newly emerge from those which existed already, and therefore a
more efficient malware analysis becomes possible. In this dissertation, a novel approach is
proposed to generate one behavior pattern for a family of malware. The proposed method
relies on executing malware inside an emulated environment. Through monitoring invocations
of in-kernel function and checking argument taintness at VMM-level, our scheme assures that
malware cannot circumvent the monitoring mechanism. Moreover, the use of whole-system
tainting guarantees that cross-process and kernel-space invading, which were not covered by
previous work, are tracked. These features broaden the scope of our system while
concentrating on information directly ‘‘contaminated” by the program being examined.
Behaviors of the same malware family shall be then converted to an HMM-based pattern.
According to our evaluation, our-system-produces no false positives and < 5.8% false

negatives when matching 511 samples against 15 families.

27

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

7. Reference

G Data Malware Report Half-year report January-June 2010.
http://www.gdatasoftware.co.uk/uploads/media/GData_MalwareReport 2010 1 6 EN.p
df

D. Perry. Here comes the flood or end of the pattern file. In Virus Bulletin, Ottawa,2008.

E. Stinson, and J. C. Mitchell, “Characterizing Bots' Remote Control Behavior,” in
Proceedings of the 4th international conference on Detection of Intrusions and Malware
and Vulnerability (DIMVA), Lucerne, Switzerland, July 12-13, 2007.

U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing Malware,” in
Proceedings of the 15th European Institute for Computer Antivirus Research Annual
Conference (EICAR), April 2006.

J. Dai, R. Guha, and J. Lee, “Efficient Virus Detection Using Dynamic Instruction
Sequences,” Journal of computers 4(5), 405-414, May 2009.

ThreatExpert http://www.threatexpert.com/

M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware analysis,” in
Proceedings of the USENIX Annual Technical Conference (ATC), June 2007.

A. Moser, C. Kruegel, and E.-Kirda, “Exploring multiple execution paths for malware
analysis” in Proceedings of ‘the 2007 IEEE Symposium on Security and Privacy,
p.231-245, May 20-23, 2007.

H. Yin, Z. Liang, and D. Song, “HookFinder: Identifying and understanding malware
hooking behaviors,” in Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS), February 2008.

[10] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-wide

information flow for malware detection and analysis,” in Proceedings of the 14th ACM
conference on Computer and communications security (CCS), 2007.

[11] D. Bilar, “Fingerprinting malicious code through statistical opcode analysis,” in

Proceedings of the 3rd International Conference on Global E-Security (ICGeS), London,
UK, April 2007.

[12] R. Tian, L. M. Batten, S. C. Versteeg, “Function Length as a Tool for Malware

Classification,” in Proceedings of the 3rd International Conference on Malicious and
Unwanted Software (MALWARE), pp.69-76, 2008.

[13] R. Islam, R. Tian , L. Batten, and S. Versteeg, “Classification of Malware Based on

String and Function Feature Selection,” in Proceedings of the 2010 Cybercrime and
Trustworthy Computing Workshop (CTC), 19-20, July 2010.

28

http://www.gdatasoftware.co.uk/uploads/media/GData_MalwareReport_2010_1_6_EN.pdf
http://www.gdatasoftware.co.uk/uploads/media/GData_MalwareReport_2010_1_6_EN.pdf
http://www.threatexpert.com/

[14] S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature Generation and Detection
of Malware Families,” in Proceedings of the 13th Australasian conference on
Information Security and Privacy, Wollongong, pp. 336-349.

[15] J. Dai, R. Guha, and J. Lee, “Efficient Virus Detection Using Dynamic Instruction
Sequences,” in Proceedings of the Workshop on Security and High Performance
Computing Systems (SHPC), 2008.

[16] J. Dai, R. Guha, and J. Lee, “Dynamic Instruction Sequences Monitor for Virus
Detection,” in Proceedings of the 4th annual workshop on Cyber Security and
Information Intelligence (CSIIRW), ACM New York, NY, USA, 2008.

[17] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware
malware detection,” in Proceedings of the 2005 IEEE Symposium on Security and
Privacy, Oakland, May 2005.

[18] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based malware and
signature generation using malicious network traces,” in Proceedings of the 7th USENIX
conference on Networked Systems Design and Implementation (NSDI), April 2010.

[19] D. Plonka and P. Barford, “Context-Aware Clustering of DNS Query Traffic,” in
Proceedings of the 8th ACM SIGCOMM conference on Internet Measurement, October
2008.

[20] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering Analysis of Network
Traffic for Protocol and Structure Independent-Botnet Detection,” in Proceedings of the
17th USENIX Security Symposium, July 2008.

[21] Y. Park, and D. Reeves, “Deriving:'=Common Malware Behavior through Graph
Clustering,” in Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (CCS), New York, NY, USA, 2011.

[22] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious behavior,”
in Proceedings of the ACM SIGSOFT symposium on The foundations of software
engineering (FSE), pages 5-14, New York, NY, USA, 2007.

[23] X. Wang, W. Yu, A. Champion, X. Fu, and D. Xuan, “Detecting Worms via Mining
Dynamic Program Execution,” in Proceedings of the Third International Conference on
Security and Privacy in Communication Networks and the Workshops, SecureComm,
pages412-421, Nice, 2007

[24] X. Hu, T. C. Chiueh, and K. G. Shin. “Large-scale malware indexing using function-call
graphs,” in Proceedings of the 16th ACM conference on Computer and communications
security (CCS), pages 611-620, Chicago, Illinois, USA, 2009.

[25] C. Willems, T. Holz, and F. Freiling, “Toward Automated Dynamic Malware Analysis
Using CWSandbox,” IEEE Security and Privacy, 5(2), 2007

[26] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through system call
sequence and argument analysis,” IEEE Transactions on Dependable and Secure

29

Computing (TDSC), October 2010.

[27] U. Bayer, P. M. Comparetti, C. Hlauscheck, C. Kruegel, and E. Kirda, “Scalable,
Behavior-Based Malware Clustering,” in Proceedings of the 16th Symposium on
Network and Distributed System Security (NDSS), 2009.

[28] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware classification by
automated behavioral graph matching,” in Proceedings of the Workshop on Cyber
Security and Information Intelligence Research (CSIIRW), 2010.

[29] G. Jacob, H. Debar, and E. Filiol, “Malware detection using attribute-automata to parse
abstract behavioral descriptions,” CoRR, abs/0902.0322, 2009.

[30] C. Krugel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vigna, “Polymorphic worm
detection using structural information of executables,” In RAID, pages 207226, 2005.

[31] F. Bellard, “Qemu, a Fast and Portable Dynamic Translator,” in Usenix Annual
Technical Conference (ATC), 2005.

[32] C. W. Wang, and S. Shieh, “SWIFT: Decoupling System-Wide Information Flow
Tracking for Malware Analysis”, 2011

[33] Hidden Markov model http://en.wikipedia.org/wiki/Hidden_Markov_model

[34] Jahmm - An HMM library
http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/jahmmViz/

[35] ClamAV http://www.clamav.net/lang/en/

[36] Q. Zhang and D. S. Reeves, “Metaaware: -Identifying metamorphic malware,” in
Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC),
pages 411--420, 2007.

30

http://en.wikipedia.org/wiki/Hidden_Markov_model
http://www.run.montefiore.ulg.ac.be/~francois/software/jahmm/jahmmViz/
http://www.clamav.net/lang/en/

