

國 立 交 通 大 學

網路工程研究所

建構於雲端環境之多人線上遊戲動態資源分配機制

Dynamic Resource Allocation for MMOGs

in Cloud Computing Environments

研 究 生：翁振芳

指導教授：王國禎 博士

建構於雲端環境之多人線上遊戲

動態資源分配機制

Dynamic Resource Allocation for MMOGs

in Cloud Computing Environments

研 究 生：翁振芳 Student：Chen-Fang Weng

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 學 院

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2010

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

i

建構於雲端環境之多人線上遊戲

動態資源分配機制

學生：翁振芳 指導教授：王國禎 博士

國立交通大學網路工程研究所

摘 要

大型多人線上遊戲是指數十萬的玩家同時上網進行遊戲。而運行

大型多人線上遊戲時所消耗的 CPU、記憶體以及網路頻寬等資源主要

在客戶端玩家。我們將大型多人線上遊戲與雲端計算結合。在雲端計

算環境下，我們利用虛擬伺服器來取代傳統實體伺服器。利用

multi-server 的遊戲架構，我們把虛擬遊戲世界切割成數個地圖區

域，每個地圖區域由至少一個虛擬伺服器負責運行遊戲以及客戶端玩

家間的訊息傳遞。我們根據每個虛擬伺服器的 CPU、記憶體以及網路

頻寬，利用類神經網路以及適應性類神經模糊系統來預測及決定該虛

擬伺服器執行何種資源分配機制。這些資源分配機制包括：(1)可支

援周圍虛擬伺服器；(2)解除被周圍虛擬伺服器支援的狀態或釋放支

ii

援本身的次要虛擬伺服器；(3)維持現有狀態；(4)須要請求周圍的虛

擬伺服器支援；(5)在本身及周圍一個虛擬伺服器之間新增一個次要

伺服器進行支援。根據我們的研究發現，適應性類神經模糊推論系統

比起類神經網路有較低的均方根誤差，亦即有較好的學習效率。因此

我們選擇適應性類神經模糊推論系統來實作上述五項資源分配機制。

就資源分配機制而言，我們的方法比 deep-level partitioning 的存

取時間快 16.7%。

關鍵詞：適應性類神經模糊推論系統、類神經網路、雲端計算、資源

分配、負載預測。

iii

Dynamic Resource Allocation for

MMOGs in Cloud Computing

Environments

Student：Chen-Fang Weng Advisor：Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

A massively multiplayer online game (MMOG) has hundreds of thousands of

players who play in the game concurrently. The players consume a great deal of CPU,

memory and network bandwidth resources in MMOGs. We combine MMOGs with

cloud computing environments. We use virtual machine servers (VMSs) in cloud

computing environments instead of traditional physical game servers. By using a

multi-server architecture, we divide a game world into several zones, and each zone

consists of at least a VMS to execute game processes and exchange game information

among players in the zone. In addition, we design an artificial neural network (ANN)

and also an adaptive neural fuzzy inference system (ANFIS) to predict the load of

each zone and decide a resource allocation policy to be performed by the VMS. These

policies include (1) this VMS is sufficient to support adjacent VMSs; (2) this VMS

will release the resources which has been supported by adjacent VMSs or a secondary

VMS which supports this VMS; (3) this VMS will remain in the current state; (4) this

VMS requires adjacent VMSs to support it; (5) a secondary VMS will be created

between this VMS and an adjacent VMS. Experimental results show that the mean

square error of the ANFIS-based load prediction is lower than that of the ANN-based

iv

load prediction. Therefore, we incorporate the ANFIS prediction method along with

the five resource allocation policies to the MMOG cloud. In terms of average access

time, the proposed ANFIS-based resource allocation method is 16.7% better than the

deep-level partitioning (DLP) method.

Keywords: ANFIS, ANN, cloud computing, load prediction, resource allocation.

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the

National Science Council under Grant NSC99-2221-E-009-081-MY3 is also

gratefully acknowledged. Finally, I thank my family for their endless love and

support.

vi

Contents
Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction .. 1

Chapter 2 Related Work ... 3

2.1 Existing load balancing methods for MMOGs .. 3

2.2 A dynamic resource prediction method for MMOGs 4

2.3 Multiple hotspots problem for MMOGs .. 4

Chapter 3 Dynamic Resource Allocation for MMOG Clouds 6

3.1 Cloud computing environments ... 6

3.2 Defining resource allocation policies ... 7

3.3 Proposed dynamic resource allocation scheme .. 9

3.4 Proposed artificial neural network based load prediction 11

3.5 Adaptive neural fuzzy inference system based load prediction 14

Chapter 4 Simulation Results ... 21

4.1 Simulation setup... 21

4.2 Game data collection.. 21

4.3 Comparison of load prediction methods .. 22

4.4 Comparison of three resource allocation methods ... 24

Chapter 5 Conclusion .. 26

5.1 Concluding remarks ... 26

5.2 Future work .. 26

vii

References ... 27

viii

List of Figures
Figure 1: Deep-level partitioning for MMOGs. ... 5

Figure 2: Multiple hotspots problem.. 5

Figure 3: MMOG architecture in a cloud computing environment. 7

Figure 4: Two areas in a game zone. .. 7

Figure 5: Creating an SVMS between two adjacent VMSs. 8

Figure 6: Resource allocation flowchart for each VMS. 10

Figure 7: MMOG load prediction using ANN. .. 12

Figure 8: The first neuron in the hidden layer. ... 12

Figure 9: A neuron in the output layer. .. 13

Figure 10: Proposed ANFIS-based MMOG load prediction architecture. .. 15

Figure 11: Input membership functions of CPULoad in ANFIS. 16

Figure 12: An example rule in ANFIS. .. 18

Figure 13: Game data from Lineage. ... 22

Figure 14: Mean square errors between two load prediction methods. 23

Figure 15: Prediction time between two load prediction methods. 23

Figure 16: Average access time among three resource allocation methods. 24

Figure 17: Number of VMSs used among the three resource allocation

methods. ... 25

file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877647
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877648
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877649
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877650
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877651
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877652
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877653
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877654
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877655
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877656
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877657
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877658
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877659
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877660
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877661
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877662
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877663
file:///E:/翁振芳_thesis_0823_1.docx%23_Toc301877663

ix

List of Tables
Table 1: VMS based resource allocation policies. ... 9

Table 2: The premise parameters of input membership functions of CPULoad

(x1). ... 17

Table 3: The 25 fuzzy rules. ... 19

Table 4: Simulation setup. .. 21

file:///E:/翁振芳_thesis_0818_1.docx%23_Toc301815835
file:///E:/翁振芳_thesis_0818_1.docx%23_Toc301815836
file:///E:/翁振芳_thesis_0818_1.docx%23_Toc301815836
file:///E:/翁振芳_thesis_0818_1.docx%23_Toc301815837
file:///E:/翁振芳_thesis_0818_1.docx%23_Toc301815838

1

Chapter 1

Introduction

Resource allocation discusses how to make available resources be allocated more

efficiently. Resource allocation includes two topics [5]: (1) basic allocation

decision — it determines which resources can be used by which objects; (2)

contingency mechanism — it chooses which tasks will be sacrificed when the system

is overloaded, and it chooses which tasks will enter when the system is idle. There are

two methods for resource allocation [5]: (1) real-time resource allocation — it can

allocate resources dynamically when needed; (2) pre-allocation — it predicates the

loads by historical data then assigns the available resources. In addition, there are two

types of resource allocation [5]: (1) centralized approach — all the available resources

are controlled by one central device. It is easier to control and deploy all the resources

in a system, but the central device might be the bottleneck in the system; (2)

distributed approach — all the devices can make some decisions for resources by

themselves, but it is hard to implement.

A massively multiplayer online game (MMOG) is a multiplayer video game

which is capable of supporting hundreds of thousands of players simultaneously.

There are two kinds of actions for each player: (1) independent action — players only

concern about the items, equipments or status in the game; (2) interaction — players

interact to the game server or communicate with other players [3]. Most MMOGs are

MMORPG (massively multiplayer online role, such as Lineage [21] and WOW [22].

There are three architectures for MMOGs: (1) Client-server architecture — a game

server governs all the players in this game. However, the client-server architecture has

2

poor scalability. (2) Peer-to-peer architecture — a player is regarded as a peer who

shares their game information by itself. However, peer-to-peer architecture is hard to

implement for the security problem. (3) Multi-server architecture — it enhances the

client-server architecture. The game world is divided into several zones and each zone

is governed by a server. However, load unbalancing might still occur in game servers

when some zones with crowed players exist in the multi-server architecture. Therefore,

we propose a cloud-based dynamic resource allocation method to resolve the

multi-server load unbalancing problem by flexible allocating of resources.

There are four resource components in MMOGs [4]: (1) authentication

component, (2) storage component, (3) computation component, and (4)

communication component. Since communication and computation components

consume most of resources, we only consider these two components in this paper.

The rest of this paper is organized as follows. In Chapter 2, we discuss an

MMOG load balancing mechanism, deep-level partitioning (DLP) and its multiple

hotspots problem [19]. In Chapter 3, we design an artificial neural network (ANN)

and also an adaptive neural fuzzy inference system (ANFIS) to predict MMOG load

and decide a resource allocation policy which can be performed by a VMS. In Chapter

4, we describe a simulation environment and discuss simulation results. Finally,

concluding remarks and future work are given in Chapter 5.

3

Chapter 2

Related Work

2.1 Existing load balancing methods for MMOGs

In zonal MMOGs, a virtual game world is divided into several zones (or

microcells). Each zone consists of a game server to execute game processes and to

exchange game information among players in the zone. Ahmed et al. [24] proposed a

server pool concept in the virtual game world. A server pool contains several game

servers. Each game server serves a zone. The server pool operates load distribution of

the game servers which are in it. Moreover, the authors proposed a buffer region

between two zones. The buffer region can share game messages between two adjacent

zones which are in different server pools. In this approach, since it will transfer zones

between game servers, the cost of inter-server communication may increase.

Wang et al. [25] proposed a method for MMOGs to find less loaded game

servers. They defined a threshold W. If the server loading S is larger than W, the game

server is regarded as overloading. They used two kinds of lists in their approach,

select list and candidate list. In the first list, they select an overloading game server A

in the select list, and they chose the servers which are adjacent to A in the candidate

list. Then if there is an overloaded game server B in the candidate list, B will be

inserted in the select list. And the game servers which are adjacent to B will be

inserted in the candidate list. If there are less loaded game servers in the select list, the

least loaded game server C will be inserted in the select list. And the game servers

which are adjacent to C will be inserted in the candidate list. In this method, the more

4

the number of game zones is, the higher the complexity of the algorithm is.

Carlos Eduardo et al. [26] proposed to use a KD-tree to divide a virtual game

world into several zones. Each node of the KD-tree represents a game zone. In this

approach, a game zone A (we mark node A in the KD-tree) contains two subzones B

and C (we mark nodes B and C in the KD-tree). And nodes B and C are the children

of node A in the KD-tree. Each node contains two kinds of values. One value is the

load of its children, and the other is the capacity of its children. When a game server

is overloaded, it will readjust the load of the server using the KD-tree method. The

limitation of this approach is that the game zones should keep a rectangle shape.

2.2 A dynamic resource prediction method for

MMOGs

Vlad Nae et al [28] proposed a load model for MMOGs. The load model

includes CPU load model, memory load model and network load model. In addition,

they used the neural network, average, moving average, last value and exponential

smoothing to predict the load of CPU, memory and network based on real game traces

from RuneScape. They showed that the prediction error of the neural network based

method is lower than that of the other prediction methods. And the neural network

based method is faster than the other methods. They also found that the dynamic

resource provisioning is more efficient than static resource provisioning.

2.3 Multiple hotspots problem for MMOGs

In the deep-level partitioning (DLP) method, as show in Figure 1, designed for

zonal MMOGs, there is a load threshold Tm, and it defines Si as the load of game

server i. When Si ≧ Tm, game server j, which is an adjacent game server i and Sj < Tm,

will support game server i. In this way, the overloading problem can be resolved.

5

However, the DLP method becomes inefficient when there are some contiguous zones

with crowded players (multiple hotspots problem), as shown in Figure 2.

Figure 2: Multiple hotspots problem.

Figure 1: Deep-level partitioning for MMOGs.

6

Chapter 3

Dynamic Resource Allocation for

MMOG Clouds

3.1 Cloud computing environments

Most MMOGs mainly employ a multi-server architecture. In the multi-server

architecture, the game world is divided into several zones, and each zone consists of a

game server. In our design, we combine MMOGs with cloud computing environments.

We use virtual machine servers (VMSs) instead of physical game servers. There are

two advantages for using VMSs: (1) We can easily allocate appropriate VMSs

resources from physical game servers; (2) It is easy to migrate players from a VMS to

other VMSs. Figure 3 show our MMOG architecture in a cloud computing

environment.

7

3.2 Defining resource allocation policies

We divide a zone, which is served by a VMS, into two areas, area A and area B,

as shown in Figure 4. Area A is in the central part of the zone, which occupies 40%

of a zone. Players in area A is always handled by this VMS. Players in area B can

be supported by adjacent VMSs (deep-level partitioning, DLP [19]) or the proposed

secondary VMSs (SVMSs) when this VMS is overloaded.

For players in area B, they have higher probabilities to move to adjacent zones.

Figure 4: Two areas in a game zone.

Figure 3: MMOG architecture in a cloud computing environment.

8

Therefore, we will create a SVMS between two adjacent overloaded VMSs to

resolve the multiple hotspots problem, as shown in Figure 5. In addition, using the

SVMS method can avoid the high cost of supporting the entire game zone by using

an extra VMS.

We define five resource allocation policies based on the load level of each VMS,

as shown in Table 1:

1. This VMS can support adjacent VMSs. When the load of this VMS is light,

this VMS will inform adjacent VMS that it has redundant resource to

support those adjacent VMSs with high or heavy load.

2. This VMS releases the area which is supported by adjacent VMSs or SVMSs.

If there are some areas of this VMS which has high load, have been

supported by adjacent VMSs or the SVMSs, this VMS will take back these

areas and support them by itself. If it is a SVMS, the SVMS will be released

Figure 5: Creating an SVMS between two adjacent VMSs.

9

when the SVMS does not support any area between this VMS and the

adjacent VMSs.

3. This VMS will remain in the current state. This VMS will not change its

resource allocation policy even if this VMS has supported adjacent VMSs,

or has been supported by adjacent VMSs or SVMS.

4. This VMS will require adjacent VMSs to support it. Since this VMS

becomes overloaded, it informs adjacent VMSs that it needs to be supported.

And an adjacent VMS with lightest load can support this VMS.

5. An SVMS will be created between this VMS and an adjacent VMS with

heaviest load.

3.3 Proposed dynamic resource allocation scheme

In this section, the proposed dynamic resource allocation scheme for MMOGs in

cloud computing environment is described in Figure 5. First, we collect MMOG game

Table 1: VMS based resource allocation policies.

10

traffic which includes CPU, memory and network bandwidth load from Lineage [21]

for each VMS and obtain a historical game dataset. Then we analyze the historical

game dataset to predict the load level of each VMS using the proposed artificial

neural network (ANN) or the proposed adaptive neural fuzzy inference system

(ANFIS). According to the predicted load level, the VMS can execute a selected

resource allocation policy. Finally, we measure the VMSs’ CPU, memory and network

loads and then add these data to the historical game dataset.

Figure 6: Resource allocation flowchart for each VMS.

11

3.4 Proposed artificial neural network based load

prediction

We define the loads for CPU, memory and network, as follows:

There are three layers, as shown in Figure 7, input layer, hidden layer and output

layer in an artificial neural network (ANN), the input layer is composed of CPUload,

MEMload and BWload, which are from the historical game dataset (we use x1, x2 and x3

to represent CPUload, MEMload and BWload). The hidden layer contains ten neurons and

the output layer contains one neuron.

VMS

Load
CPU

usageCPU
CPU

_


VMS

Load
MEM

usageMEM
MEM

_


VMS

Load
BW

usageBW
BW

_


12

Each neuron in the hidden layer must perform the sum up of the weighted inputs

(x1, x2 and x3) and compute them by a log-sigmoid function (f
(1)

). Figure 8 shows the

first neuron in the hidden layer.

Figure 8: The first neuron in the hidden layer.

Figure 7: MMOG load prediction using ANN.

13

For each neuron j (1≦ j≦10) in the hidden layer, we have

jj

i

iji nbxw 


3

1

,
 (1)

jnj a
e

nf
j






1

1
)()1(

 (2)

A neuron of the output layer sums up the weighted aj, for j = 1, …, 10, which are

generated by the neurons in the hidden layer and compute them by a linear function

(f
(2)

). By this procedure, we can get an output value O which is the load level, as

shown in Table 1. Figure 9 shows a neuron in the output layer.

In the learning process for an ANN, we define W as a set of all weights, that is,

W = {wi,j | 1≦ i≦ 3, 1≦ j≦ 10}∪ {wk’ | 1≦ k ≦ 10} at first. Then we define B as a

set of biases for an ANN, that is, B={bi | 1≦ i≦ 10}∪ {b’}. We use partial

differential mean square error (MSE) equations for weights and biases to adjust

weights and biases in the ANN.

2)(: OdEMSE  (3)

where d is an expected value. ,W ω has a training rate Δω. ,B β has a

training rate Δβ. We have:

Figure 9: A neuron in the output layer.

14









E
 (4)

  )()1(tt
 (5)









E
 (6)

  )()1(tt
 (7)

where t is an epoch in the ANN [27].

3.5 Adaptive neural fuzzy inference system based

load prediction

An adaptive neural fuzzy inference system (ANFIS) combines a neural network

with fuzzy inference. The ANFIS contains five layers which include inputs, input

membership functions, fuzzy rules, output membership functions and defuzzification

output. Figure 10 shows the proposed ANFIS-based MMOG load prediction

architecture.

15

The inputs for ANFIS contain CPUload, MEMload and BWload which are defined in

section 3.4. We use x1, x2 and x3 to represent CPUload, MEMload and BWload. For each

input, we define five generated bell-shaped input membership functions which are

based on an MMOG. We illustrate the five input membership functions of CPUload in

ANFIS, as shown in Figure 11.

Figure 10: Proposed ANFIS-based MMOG load prediction architecture.

16

Figure 11: Input membership functions of CPULoad in ANFIS.

17

We define S1= {ai,j, bi,j, ci,j | 1≦ i≦ 3, 1≦ j≦ 5} as a set of premise parameters

of j
th

 input membership function of xi in ANFIS. For illustration, the premise

parameters of input membership functions of CPULoad (x1) is shown in Table 2.

Premise parameters will be adjusted by the training process of ANFIS. Next, we set

up twenty five fuzzy rules based on MMOG data, as shown in Table 3. Fuzzy rules

are in if-then forms. The conditional statements are expressions of the input

membership functions. And we choose the product to be the AND method. Figure 12

shows an example that “if x1 is light and x2 is light and x3 is light.” And we normalize

the products from all the fuzzy rules.

Table 2: The premise parameters of input membership functions of CPULoad

(x1).

18

Figure 12: An example rule in ANFIS.

19

Each rule corresponds to an output membership function. The output

membership functions are linear combination functions with inputs x1, x2 and x3. An

output membership function for a rule k is as follow:

 kkkkk sxrxqxpxxxf  321321),,((8)

Table 3: The 25 fuzzy rules.

Rule

If Then

CPULoad MEMload BWload.

Output

membership

function

1 light light light f1

2 light light low f2

3 light low light f3

4 low light light f4

5 low low light f5

6 low light low f6

7 light low low f7

8 low low low f8

9 low low medium f9

10 low medium low f10

11 medium low low f11

12 medium medium low f12

13 low medium medium f13

14 medium low medium f14

15 medium medium medium f15

16 medium medium high f16

17 high medium medium f17

18 medium high medium f18

19 medium high high f19

20 high medium high f20

21 high high medium f21

22 high high high f22

23 heavy - - f23

24 - heavy - f24

25 - - heavy f25

20

where 1≦ k≦ 25 since we set up twenty five fuzzy rules. We define S2 = {pk, qk, rk, sk

| 1≦ k≦ 25} as a set of consequent parameters. The consequent parameters will be

adjusted by the training process of ANFIS.

Finally, the output value O in ANFIS is the load level of each VMS. O is the

summation of all the output membership functions fk, k = 1 to 25, with normalized

weight kw
,
which is generated by the k

th
 fuzzy rule:

 



25

1k

kk fwO (9)

There are two steps in the learning process of ANFIS. In the first step, we use a least

square estimator (LSE) to adjust the consequent parameters in S2. X is a vector which

is composed of consequent parameters.

TsrqpsrqpsrqpX],,,,. . .,,,,,,,,[2525252522221111 (10)

B is a vector which is composed of the expected value of each epoch.

TtdddB]. . .,,[)()2()1( (11)

where d
 (1)

, d
 (2)

, … , and d
 (t)

 mean that there are t epochs and d
 (n)

 is the expected

value of n epoch. We expand equations (8) and (9) and express them as a matrix

equation as follows:

BAX  (12)

where A is a coefficient matrix. And we use the LSE to adjust the consequent

parameters.

ABAAX T 1)( (13)

In the second step, we use partial differential input membership functions for premise

parameters, such as the learning process in the ANN [31].

21

Chapter 4

Simulation Results

4.1 Simulation setup

We collected game traffic which includes CPU, memory and network loads from

Lineage. We used MATLAB as our prediction tool. Both of ANN and ANFIS are APIs

(application programming interfaces) in MATLAB [29] to predict the load level of

game traffic. We used CloudSim [30] as our simulation tool. We used 16 VMSs to

deploy in the game world. The number of players in each VMS is 40 ~ 100. The

details of the simulation setup are shown in Table 2.

4.2 Game data collection

We installed Lineage in our game server. The CPU utilization, memory

consumption and network bandwidth usages will be recorded at every minute in our

Table 4: Simulation setup.

22

gaming experiment. Figure 13 shows the collected game data from Lineage [21]. CPU

and network bandwidth usages are proportional to players in Lineage [21]. Also,

players’ actions affect CPU utilization and network bandwidth usage. The memory

usage increased slowly as the players increased.

4.3 Comparison of load prediction methods

We compared the mean square errors for the ANN-based load prediction method

and the ANFIS-based load prediction method. Since the ANFIS-based load prediction

method has fuzzy rules which were based on the game features from Lineage [21], the

Figure 13: Game data from Lineage.

23

mean square error is lower than that of the ANN-based load prediction method, as

shown in Figure 14. Moreover, the prediction time of the ANFIS load prediction

method is much smaller than that of the ANN-based load prediction method, as shown

in Figure 15.

Figure 15: Prediction time between two load prediction methods.

Figure 14: Mean square errors between two load prediction methods.

24

4.4 Comparison of three resource allocation

methods

We implemented multi-server, ANFIS-based DLP and DLP+SVMS with ANFIS

methods. Experimental results show that the average access time (queuing time +

CPU time) of the proposed ANFIS-based DLP+SVMS resource allocation method is

16.7% shorter than that of the ANFIS-based DLP method, as shown in Figure 16. In

Figure 17, we show the VMS usages of the three resource allocation methods. The

proposed ANFIS-based DLP+SVMS method has the smallest number of VMSs used

among the three methods.

Figure 16: Average access time among three resource allocation methods.

25

Figure 17: Number of VMSs used among the three resource allocation methods.

26

Chapter 5

Conclusion

5.1 Concluding remarks

There are two phases in the proposed dynamic resource allocation method: load

prediction phase and resource allocation phase. In the load prediction phase, we

collected historical game data which includes CPU, memory and network loads from

a popular MMOG, Lineage. We have designed and simulated an artificial neural

network (ANN) and an adaptive neural fuzzy inference system (ANFIS) to predict an

appropriate resource allocation policy to be executed in each game zone.

Experimental results show that in the load prediction phase, the mean square error and

prediction time of the ANFIS-based load prediction scheme are lower than those of

the ANN-based load prediction scheme. In the resource allocation phase, the average

access time (execution time plus queuing time) of the proposed ANFIS-based

deep-level partitioning (DLP) with secondary virtual machine servers (SVMSs)

method is 16.7% shorter than that of the ANFIS-based DLP method. In addition, the

proposed method has the smallest number of VMSs used among the three methods.

5.2 Future work

In our current design, we focused only on CPU, memory and network loads in a

VMS. In the future, we will include the access time of storage devices in our load

prediction. In addition, we will implement and evaluate our proposed load prediction

methods and the proposed resource allocation policies in a real cloud computing

environment.

27

References

[1] “Resource allocation,” [Online]. Available:

http://en.wikipedia.org/wiki/Resource_allocation.

[2] “Resource allocation for network communication,” [Online]. Available:

http://www.cs.nccu.edu.tw/~lien/VOIP/BBQresrc/.

[3] J. Muller, "On correctness of scalable multi-server state replication in online

games," in Proceedings of the 5
th

 ACM SIGCOMM Workshop on Network and

System Support for Games, pp. 1-11, 2006.

[4] C. G. Dickey, "A fully distributed architecture for massively multiplayer online

games,” in Proceedings of the 3
rd

 ACM SIGCOMM Workshop on Network and

System Support for Games, pp. 171, 2004.

[5] K.-W. Lee, B.-J. Ko, and S. Calo, "Adaptive server selection for large scale

interactive online games," in Proceedings of Computer Networks, vol. 49, pp.

84-102, September 2005.

[6] B. Hariri, S. Shirmohammadi, M. R. Pakravan, and M. H. Alavi, “An adaptive

latency mitigation scheme for massively multiuser virtual environments,” in

Journal of Network and Computer Applications, 32(5), pp. 1049-1063, 2009.

[7] W. Kok Wai, "Resource allocation for massively multiplayer online games using

fuzzy linear assignment technique," in Proceedings of the 5
th

 IEEE on Consumer

Communications and Networking Conference, pp. 1035-1039, January 2008.

[8] R. Prodan and V. Nae, "Prediction-based real-time resource provisioning for

massively multiplayer online games," in Proceedings of Future Generation

Computer Systems, vol. 25, pp. 785-793, July 2009.

http://en.wikipedia.org/wiki/Resource_allocation
http://www.cs.nccu.edu.tw/~lien/VOIP/BBQresrc/

28

[9] L. D. Brice, "Robust resource allocation in a massive multiplayer online gaming

environment," in Proceedings of the 4
th

 International Conference on Foundations

of Digital Games, pp 232-239, 2009.

[10] J. Slegers, I. Mitrani, and N. Thomas, "Evaluating the optimal server allocation

policy for clusters with on/off sources," in Proceedings of Performance

Evaluation, vol. 66, pp. 453-467, August 2009.

[11] W. Streitberger and T. Eymann, "A simulation of an economic, self-organizing

resource allocation approach for application layer networks," in Proceedings of

Computer Networks, vol. 53, pp. 1760-1770, July 2009.

[12] R. Stanojevic and R. Shorten, "Load balancing vs. distributed rate limiting: an

unifying framework for cloud control," in Proceedings of the IEEE International

Conference on Communications, pp. 1-6, August 2009.

[13] E. Caron, F. Desprez, D. Loureiro, and A. Muresan, "Cloud computing resource

management through a grid middleware: a case study with DIET and Eucalyptus,"

in Proceedings of the IEEE International Conference on Cloud Computing, pp.

151-154, September 2009.

[14] C. Yang, W. Tianyu, and L. Jianxin, "An efficient resource management system

for on-line virtual cluster provision," in Proceedings of the IEEE International

Conference on Cloud Computing, pp. 72-79, December 2009.

[15] Y. T. Lee and K. T. Chen, “Is server consolidation beneficial to MMORPG? a

case study of World of Warcraft,” in Proceedings of the IEEE 3
rd

 International

Conference on Cloud Computing (CLOUD), pp 435-442, August 2010.

[16] C. C. Lee, “Design and implement dynamic load balancing mechanism for

MMOG,” [Online]. Available: http://www.cs.npue.edu.tw.

[17] S. Zhang, S Zhang, X. Chen and X. Huo, “Cloud computing research and

development trend,” in Proceedings of the Second International Conference on

http://www.cs.npue.edu.tw/

29

Future Networks, pp 39-97, March 2010.

[18] “Hadoop and Map-Reduce,” [Online.] Available:

http://dotnetmis91.blogspot.com/2010/04/vs-hadoop-mapreduce.html.

[19] D. T. Ahmed and S. Shirmohammadi “Uniform and non-uniform zoning for load

balancing in virtual environments,” in Proceedings of 5
th

 International Conference

on Embedded and Multimedia Computing (EMC), pp. 1-6, August 2010.

[20] D. T. Ahmed and S. Shirmohammadi, “An auxiliary area of interest management

for synchronization and load regulation in zonal P2P MMOGs,” in Proceedings of

IEEE International Workshop on Haptic Audio visual Environments and Games,

pp. 36-41, October 2009.

[21] “Lineage,” [Online.] Available: http://tw.beanfun.com/lineage/index.aspx.

[22] “World of Warcraft,” [Online.] Available:

http://www.wowtaiwan.com.tw/main_index.asp.

[23] M.R. Head, A. Kochut, C. Schulz and H. Shaikh, “Virtual hypervisor: enabling

fair and economical resource partitioning in cloud environments,” in Proceedings

of Network Operations and Management Symposium (NOMS), pp 104-111, June

2010.

[24] D. T. Ahmed and S. Shirmohammadi, “A microcell oriented load balancing

model for collaborative virtual environments,” in Proceedings of IEEE

Conference on Virtual Environments, Human-Computer Interfaces and

Measurement Systems, pp. 86-91, August 2008.

[25] J. Wang and Z. Yue, “A finding less-loaded server algorithm based on MMOG

and analysis,” in Proceedings of IEEE Conference on Intelligent Computation

Technology and Automation (ICICTA), pp. 96-99, July 2010.

[26] C. Bezerra, J. Comba and C. Geyer, “A fine granularity load balancing technique

for MMOG servers using a KD-tree to partition the space,” in Proceedings of

http://dotnetmis91.blogspot.com/2010/04/vs-hadoop-mapreduce.html
http://tw.beanfun.com/lineage/index.aspx
http://www.wowtaiwan.com.tw/main_index.asp

30

VIII Brazilian Symposium on Games and Digital Entertainment (SBGAMES), pp.

17-26, June 2009.

[27] V. Nae, A. Iosup and R. Prodan, “Dynamic resource provisioning in massively

multiplayer online games,” in the IEEE Transactions on Parallel and Distributed

Systems, pp. 380-395, January 2010.

[28] A. K. Jain, M. Jianchang and K. M. Mohiuddin, “Artificial neural network: a

tutorial,” in the IEEE Computer, pp. 31-44, August 2002.

[29] “MATLAB,” [Online.] Available: http://www.mathworks.com/.

[30] “CloudSim,” [Online.] Available: http://www.cloudbus.org/cloudsim/.

[31] J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” in the

IEEE Transactions on Man and Cybernetics Systems, pp. 665-685, May 1993.

http://www.mathworks.com/
http://www.cloudbus.org/cloudsim/

