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Student : Chen-Fang Weng  Advisor : Dr. Kuochen Wang
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National Chiao Tung University

Abstract

A massively multiplayer online: game (MMOG) has hundreds of thousands of
players who play in the game concurrently. The players consume a great deal of CPU,
memory and network bandwidth resources in° MMOGSs.-We combine MMOGs with
cloud computing environments. We use virtual_machine servers (VMSs) in cloud
computing environments instead of traditional physical game servers. By using a
multi-server architecture, we divide a game world into several zones, and each zone
consists of at least a VMS to execute game processes and exchange game information
among players in the zone. In addition, we design an artificial neural network (ANN)
and also an adaptive neural fuzzy inference system (ANFIS) to predict the load of
each zone and decide a resource allocation policy to be performed by the VMS. These
policies include (1) this VMS is sufficient to support adjacent VMSs; (2) this VMS
will release the resources which has been supported by adjacent VMSs or a secondary
VVMS which supports this VMS; (3) this VMS will remain in the current state; (4) this
VMS requires adjacent VMSs to support it; (5) a secondary VMS will be created
between this VMS and an adjacent VMS. Experimental results show that the mean

square error of the ANFIS-based load prediction is lower than that of the ANN-based



load prediction. Therefore, we incorporate the ANFIS prediction method along with
the five resource allocation policies to the MMOG cloud. In terms of average access
time, the proposed ANFIS-based resource allocation method is 16.7% better than the

deep-level partitioning (DLP) method.

Keywords: ANFIS, ANN, cloud computing, load prediction, resource allocation.
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Chapter 1

Introduction

Resource allocation discusses how to make available resources be allocated more
efficiently. Resource allocation includes two topics [5]: (1) basic allocation
decision — it determines which resources can be used by which objects; (2)
contingency mechanism — it chooses which tasks will be sacrificed when the system
is overloaded, and it chooses which tasks will enter when the system is idle. There are
two methods for resource allocation [5]: (1) real-time resource allocation — it can
allocate resources dynamically when needed; (2) pre-allocation — it predicates the
loads by historical data then assigns the available resources. In addition, there are two
types of resource allocation [5]: (1) centralized approach — all the available resources
are controlled by one central device. It is easier to control and deploy all the resources
in a system, but the central device might be the bottleneck in the system; (2)
distributed approach — all the devices can make some decisions for resources by
themselves, but it is hard to implement.

A massively multiplayer online game (MMOG) is a multiplayer video game
which is capable of supporting hundreds of thousands of players simultaneously.
There are two kinds of actions for each player: (1) independent action — players only
concern about the items, equipments or status in the game; (2) interaction — players
interact to the game server or communicate with other players [3]. Most MMOGs are
MMORPG (massively multiplayer online role, such as Lineage [21] and WOW [22].
There are three architectures for MMOGs: (1) Client-server architecture — a game

server governs all the players in this game. However, the client-server architecture has

1



poor scalability. (2) Peer-to-peer architecture — a player is regarded as a peer who
shares their game information by itself. However, peer-to-peer architecture is hard to
implement for the security problem. (3) Multi-server architecture — it enhances the
client-server architecture. The game world is divided into several zones and each zone
is governed by a server. However, load unbalancing might still occur in game servers
when some zones with crowed players exist in the multi-server architecture. Therefore,
we propose a cloud-based dynamic resource allocation method to resolve the
multi-server load unbalancing problem by flexible allocating of resources.

There are four resource components in MMOGs [4]: (1) authentication
component, (2) storage component, (3) computation component, and (4)
communication component. Since «communication and computation components
consume most of resources, we only consider these two.components in this paper.

The rest of this paper.is organized as follows. In Chapter 2, we discuss an
MMOG load balancing mechanism, deep-level partitioning (DLP) and its multiple
hotspots problem [19]. In Chapter 3, we design.an artificial neural network (ANN)
and also an adaptive neural fuzzy inference system (ANFIS) to predict MMOG load
and decide a resource allocation policy which can be performed by a VMS. In Chapter
4, we describe a simulation environment and discuss simulation results. Finally,

concluding remarks and future work are given in Chapter 5.



Chapter 2
Related Work

2.1 Existing load balancing methods for MMOGs

In zonal MMOGs, a virtual game world is divided into several zones (or
microcells). Each zone consists of a game server to execute game processes and to
exchange game information among players in the zone. Ahmed et al. [24] proposed a
server pool concept in the virtual game world. A server pool contains several game
servers. Each game server serves a zone. - The server pool operates load distribution of
the game servers which are in it. Moreover, the authors proposed a buffer region
between two zones. The buffer region can share game messages between two adjacent
zones which are in different server pools. In-this-approach, since it will transfer zones
between game servers, the cost of inter-server communication may increase.

Wang et al. [25] proposed a method for MMOGs to find less loaded game
servers. They defined a threshold W. If the server loading S is larger than W, the game
server is regarded as overloading. They used two kinds of lists in their approach,
select list and candidate list. In the first list, they select an overloading game server A
in the select list, and they chose the servers which are adjacent to A in the candidate
list. Then if there is an overloaded game server B in the candidate list, B will be
inserted in the select list. And the game servers which are adjacent to B will be
inserted in the candidate list. If there are less loaded game servers in the select list, the
least loaded game server C will be inserted in the select list. And the game servers

which are adjacent to C will be inserted in the candidate list. In this method, the more



the number of game zones is, the higher the complexity of the algorithm is.

Carlos Eduardo et al. [26] proposed to use a KD-tree to divide a virtual game
world into several zones. Each node of the KD-tree represents a game zone. In this
approach, a game zone A (we mark node A in the KD-tree) contains two subzones B
and C (we mark nodes B and C in the KD-tree). And nodes B and C are the children
of node A in the KD-tree. Each node contains two kinds of values. One value is the
load of its children, and the other is the capacity of its children. When a game server
is overloaded, it will readjust the load of the server using the KD-tree method. The

limitation of this approach is that the game zones should keep a rectangle shape.

2.2 A dynamic resource prediction method for

MMOGs

Vlad Nae et al [28] proposed a load model for. MMOGs. The load model
includes CPU load model, memory:load model and network load model. In addition,
they used the neural network, average, moving average, last value and exponential
smoothing to predict the load of CPU, memory and network based on real game traces
from RuneScape. They showed that the prediction error of the neural network based
method is lower than that of the other prediction methods. And the neural network
based method is faster than the other methods. They also found that the dynamic

resource provisioning is more efficient than static resource provisioning.

2.3 Multiple hotspots problem for MMOGs

In the deep-level partitioning (DLP) method, as show in Figure 1, designed for
zonal MMOGs, there is a load threshold Tn, and it defines S; as the load of game
server i. When S; = T, game server j, which is an adjacent game server iand S; < Tp,

will support game server i. In this way, the overloading problem can be resolved.

4



However, the DLP method becomes inefficient when there are some contiguous zones

with crowded players (multiple hotspots problem), as shown in Figure 2.

Figure 1: Deep-level partitioning for MMOGs.

Figure 2: Multiple hotspots problem.



Chapter 3
Dynamic Resource Allocation for

MMOG Clouds

3.1 Cloud computing environments

Most MMOGs mainly employ a multi-server architecture. In the multi-server
architecture, the game world is divided into several zones, and each zone consists of a
game server. In our design, we combine MMOGs with cloud computing environments.
We use virtual machine servers (VMSs) instead of physical game servers. There are
two advantages for using VMSs: (1) We can easily.allocate appropriate VMSs
resources from physical game servers;(2) It is easy to migrate players from a VMS to
other VMSs. Figure 3 show: our MMOG architecture in a cloud computing

environment.



Figure 3: MMOG architecture in a cloud computing environment.

3.2 Defining resource allocation policies

We divide a zone, which-is served by a VMS, into-two areas, area A and area B,
as shown in Figure 4. Area A is in the central part of the zone, which occupies 40%
of a zone. Players in area A'is always handled by this VMS. Players in area B can
be supported by adjacent VMSs (deep-level-partitioning, DLP [19]) or the proposed

secondary VMSs  (SVMSs) when this VMS is  overloaded.

oy,

\

Figure 4: Two areas in a game zone.

_

For players in area B, they have higher probabilities to move to adjacent zones.
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Therefore, we will create a SVMS between two adjacent overloaded VMSs to
resolve the multiple hotspots problem, as shown in Figure 5. In addition, using the
SVMS method can avoid the high cost of supporting the entire game zone by using

an extra VMS.

Figure 5: Creating an SVMS between two adjacent VMSs.

We define five resource allocation policies based on the load level of each VMS,
as shown in Table 1:

1. This VMS can support adjacent VMSs. When the load of this VMS is light,
this VMS will inform adjacent VMS that it has redundant resource to
support those adjacent VMSs with high or heavy load.

2. This VMS releases the area which is supported by adjacent VMSs or SVMSs.
If there are some areas of this VMS which has high load, have been
supported by adjacent VMSs or the SVMSs, this VMS will take back these

areas and support them by itself. If it is a SVMS, the SVMS will be released

8



when the SVMS does not support any area between this VMS and the
adjacent VMSs.

3. This VMS will remain in the current state. This VMS will not change its
resource allocation policy even if this VMS has supported adjacent VMSs,
or has been supported by adjacent VMSs or SVMS.

4. This VMS will require adjacent VMSs to support it. Since this VMS
becomes overloaded, it informs adjacent VMSs that it needs to be supported.
And an adjacent VMS with lightest load can support this VMS.

5.  An SVMS will be created between this VMS and an adjacent VMS with

heaviest load.

Table 1:'VMS based resource allocation policies.

Loadlevel (O) |~ Load Policy
1 Light * | This VMS ¢an support adjacent VMSs
) L This VMS releases the area which is
oW supported by adjacent VMSs or SVMSs
3 Medium | This VMS will remain in the current state
4 High This VMS will require adjacent VMSs to
support 1t
An SVMS will be created between this
5 Heavy |VMS and an adjacent VMS with heaviest
load

3.3 Proposed dynamic resource allocation scheme

In this section, the proposed dynamic resource allocation scheme for MMOGs in

cloud computing environment is described in Figure 5. First, we collect MMOG game

9



traffic which includes CPU, memory and network bandwidth load from Lineage [21]
for each VMS and obtain a historical game dataset. Then we analyze the historical
game dataset to predict the load level of each VMS using the proposed artificial
neural network (ANN) or the proposed adaptive neural fuzzy inference system
(ANFIS). According to the predicted load level, the VMS can execute a selected
resource allocation policy. Finally, we measure the VMSs’ CPU, memory and network

loads and then add these data to the historical game dataset.

Read a historical game

> dataset
Performload prediction
(using proposed ANN or
MEM ,,_]

BW
Load Selected a resource

allocation policy for each
VMS

Measure each VMS’
CPU, memory and
network loads
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3.4 Proposed artificial neural network based load

prediction

We define the loads for CPU, memory and network, as follows:

CPU,, - CPU _usage
CPU,,\s
MEM ., = MEM _usage
MEM s
BW, = BW _usage
BWVMS

There are three layers, as shown in Figure 7, input layer, hidden layer and output
layer in an artificial neural network (ANN), the input layer is composed of CPUjqqg,
MEM)oaq and BWoaq, Which are from-the historical game dataset (we use xi, Xoand X3

to represent CPU)oag, MEMgag and BWioad). The hidden layer contains ten neurons and

the output layer contains one neuron.

11



CPU,

7 —@

MEM ,,,

BW

f(l)

Figure 7: MMOG load prediction using ANN.

Each neuron in the hidden layer must perform the sum up of the weighted inputs
(X1, X2 and x3) and compute them by a-log-sigmoid function (f V). Figure 8 shows the

first neuron in the hidden layer.

A neuron

CPU,,., .\
X

1
-

MEMLGM.L‘- 1) = =
e fOm) T

1M
=
=
-
[l
=

Figure 8: The first neuron in the hidden layer.
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For each neuron j (1= j=10) in the hidden layer, we have

3
D W% —b; =n, 1)
i=1
1
fOn.)= =a. 2
( ]) 1+e_nj ] ( )

A neuron of the output layer sums up the weighted &, for j = 1, ..., 10, which are
generated by the neurons in the hidden layer and compute them by a linear function
(f?). By this procedure, we can get an output value O which is the load level, as

shown in Table 1. Figure 9 shows a neuron in the output layer.

a_ W
L S
% . 10
' D Y= n'
' Ry I = -0

> ow'a, ~b'=n fow )=n

i=1
{""10—“'10I *

Figure 9: A neuron in the output layer.

In the learning process for an ANN, we define W as a set of all weights, that is,
W={wjj|1=1=3,1=)=10} U {w’| / = k = 10} at first. Then we define B as a
set of biases for an ANN, that is, B={b;j | 1= i= 10} {b}. We use partial
differential mean square error (MSE) equations for weights and biases to adjust

weights and biases in the ANN.
MSE: E = (d —0)? (3)
where d is an expected value. Vo €W, o has a training rate Aw. VS € B, fhasa

training rate AS. We have:

13



_6E

Aow=——
ow
D1y = Dy —-Aw

_E
op

ﬂ(t+1) = :B(t) —Ap

AB

where t is an epoch in the ANN [27].

(4)

(5)

(6)

()

3.5 Adaptive neural fuzzy inference system based

load prediction

An adaptive neural fuzzy.inference system (ANFIS) combines a neural network

with fuzzy inference. The ANFIS contains five layers.which include inputs, input

membership functions, fuzzy rules, output membership-functions and defuzzification

output. Figure 10 shows the’ proposed ANFIS-based MMOG load prediction

architecture.
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Figure 10: Proposed ANFIS-based MMQOG load prediction architecture.

The inputs for ANFIS contain CPUjpag, MEMoaq and BW)oag Which are defined in
section 3.4. We use X1, xpand X3 to represent CPUjpaq, MEM)gag and BW,eaq. FOr each
input, we define five generated bell-shaped input membership functions which are
based on an MMOG. We illustrate the five input membership functions of CPUjgaq in

ANFIS, as shown in Figure 11.

15



Figure 11: Input membership functions of CPU 4q in ANFIS.
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Table 2: The premise parameters of input membership functions of CPUgag

(xa).

Loadlevel |j | 4i; | by | ¢y
light(x,) |1 0.125 | 2 0
low(x;) 210125 | 2 025

medium(x,) | 3| 0.125 | 2 | 0.5
high(x;) |4 0.125 | 2 |0.75
heavy(x,) |5 0.125 | 2 1

We define S;= {aij, bij, Cij| 1= 1= 3, 1= j= 5} as a set of premise parameters
of | input membership function of x; .in_ ANFIS. For illustration, the premise
parameters of input membership functions of. CPU, g (X1) IS shown in Table 2.
Premise parameters will be adjusted by the training process of ANFIS. Next, we set
up twenty five fuzzy rules based on MMOG data, as shown in Table 3. Fuzzy rules
are in if-then forms. The conditional statements are expressions of the input
membership functions. And we choose the product to be the AND method. Figure 12

shows an example that “if x; is light and x; is light and xzis light.” And we normalize

the products from all the fuzzy rules.

17
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Table 3: The 25 fuzzy rules.

If Then
~ule Output
CPU\ag MEM,qqq BW,oag- membership
function
1 light light light fy
2 light light low f,
3 light low light fa
4 low light light f,
5 low low light fs
6 low light low fs
7 light low low f;
8 low low low fs
9 low low medium fq
10 low medium low fio
11 medium low low f11
12 medium medium low fio
13 low medium medium fi3
14 medium low medium fiq
15 medium medium medium fis
16 medium medium high fi6
17 high medium medium fi7
18 medium high medium fig
19 medium high high fig
20 high medium high fa0
21 high high medium fa1
22 high high high f2
23 heavy - - fos
24 - heavy - foa
25 - - heavy fas

Each rule corresponds to an output membership function. The output
membership functions are linear combination functions with inputs x;, x, and xs. An
output membership function for a rule k is as follow:

f (X %0 X5) = P X 0 X, +h X +S, (8)

19



where 1 < k = 25 since we set up twenty five fuzzy rules. We define S, = {px, Gk, I, Sk
| 1= k= 25} as a set of consequent parameters. The consequent parameters will be
adjusted by the training process of ANFIS.

Finally, the output value O in ANFIS is the load level of each VMS. O is the

summation of all the output membership functions fi, k = 1 to 25, with normalized

weight ka which is generated by the k™ fuzzy rule:

25
0=> w,f, (9)

k=1
There are two steps in the learning process of ANFIS. In the first step, we use a least

square estimator (LSE) to adjust the consequent parameters in S,. X is a vector which

is composed of consequent parameters.
X :[pl' ql’ rl' Sl’ p2’ q2’ r2’ 52’ W p25' q25’ r25’ SZS]T (10)
B is a vector which is composed of the expected value of each epoch.
B =[d®;d?-d"T (12)

where d®, d®@, ... and d ® mean that there-are t epochs and d ™ is the expected
value of n epoch. We expand equations (8) and (9) and express them as a matrix
equation as follows:

AX =B (12)
where A is a coefficient matrix. And we use the LSE to adjust the consequent

parameters.
X =(ATA)'AB (13)

In the second step, we use partial differential input membership functions for premise

parameters, such as the learning process in the ANN [31].
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Chapter 4

Simulation Results

4.1 Simulation setup

We collected game traffic which includes CPU, memory and network loads from
Lineage. We used MATLAB as our prediction tool. Both of ANN and ANFIS are APIs
(application programming interfaces) in MATLAB [29] to predict the load level of
game traffic. We used CloudSim [30] as our simulation tool. We used 16 VMSs to
deploy in the game world. The number of players in each VMS is 40 ~ 100. The

details of the simulation setup are shown in Table 2.

Table 4: Simulation setup.

Game data from Lineage [21]

Prediction tool MATLAB API (nntool)
Simulation tool CloudSim

CPU speed of a VMS 10000 MIPS

Memory space of a VMS 4GB

Network bandwidth of a VMS 20 MB/s

Number of VMSs 16

Number of players 40 ~ 100 players in each VMS

4.2 Game data collection

We installed Lineage in our game server. The CPU utilization, memory

consumption and network bandwidth usages will be recorded at every minute in our

21



gaming experiment. Figure 13 shows the collected game data from Lineage [21]. CPU
and network bandwidth usages are proportional to players in Lineage [21]. Also,
players’ actions affect CPU utilization and network bandwidth usage. The memory

usage increased slowly as the players increased.
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Figure 13: Game data from Lineage.

4.3 Comparison of load prediction methods

We compared the mean square errors for the ANN-based load prediction method
and the ANFIS-based load prediction method. Since the ANFIS-based load prediction

method has fuzzy rules which were based on the game features from Lineage [21], the
22



mean square error is lower than that of the ANN-based load prediction method, as
shown in Figure 14. Moreover, the prediction time of the ANFIS load prediction
method is much smaller than that of the ANN-based load prediction method, as shown

in Figure 15.
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Figure 14: Mean square errors between two load prediction methods.
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Figure 15: Prediction time between two load prediction methods.
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4.4 Comparison of three resource allocation

methods

We implemented multi-server, ANFIS-based DLP and DLP+SVMS with ANFIS
methods. Experimental results show that the average access time (queuing time +
CPU time) of the proposed ANFIS-based DLP+SVMS resource allocation method is
16.7% shorter than that of the ANFIS-based DLP method, as shown in Figure 16. In
Figure 17, we show the VMS usages of the three resource allocation methods. The
proposed ANFIS-based DLP+SVMS method has the smallest number of VMSs used

among the three methods.
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Figure 16: Average access time among three resource allocation methods.
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Chapter 5

Conclusion

5.1 Concluding remarks

There are two phases in the proposed dynamic resource allocation method: load
prediction phase and resource allocation phase. In the load prediction phase, we
collected historical game data which includes CPU, memory and network loads from
a popular MMOG, Lineage. We have designed and simulated an artificial neural
network (ANN) and an adaptive neural fuzzy inference system (ANFIS) to predict an
appropriate resource allocation policy to be  ‘executed in each game zone.
Experimental results show that in the load prediction phase, the mean square error and
prediction time of the ANFIS-based load prediction scheme are lower than those of
the ANN-based load prediction scheme. In the resource allocation phase, the average
access time (execution time plus ‘queuing time) of the proposed ANFIS-based
deep-level partitioning (DLP) with secondary virtual machine servers (SVMSs)
method is 16.7% shorter than that of the ANFIS-based DLP method. In addition, the

proposed method has the smallest number of VMSs used among the three methods.

5.2 Future work

In our current design, we focused only on CPU, memory and network loads in a
VMS. In the future, we will include the access time of storage devices in our load
prediction. In addition, we will implement and evaluate our proposed load prediction
methods and the proposed resource allocation policies in a real cloud computing

environment.
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