
1

Chapter 1

Introduction

 The applications of network storage have developed for many years, such as Amazon,

Google, which provide users store or share their data in the storage cloud. Users can upload

their text file, photo, or music to one of the network storage systems, and the files will be

stored in the network storage servers. Afterward, users can fetch the file according to the

URL for retrieving copies or sharing copies to others.

 These years, a new kind storage services are rising. These network storage service

providers build their systems between the users and the network storage servers which

mentioned above. Users can sign up their personal information in each web of network

storage service system, and usually, each identity will be allocated averaged 5GB free

network storage space. In fact, these new storage service systems might not have their own

storage devices. The service builder rent a large amount of network storage space from

network storage space providers, like Amazon and Google, and then develop services on

them. For each user who signed up before can use not only network storage service, but also

more extended services like file synchronization, web access and so on. Current public

network storage service systems are like Dropbox [11], LiveMesh [12] and Synciplicity [13].

2

 Network storage service systems usually provide some security insurances, for instance

1. Encrypt file while transferring

2. Encrypt file in the storage cloud

When user login the webpage and upload file, the system uses TLS/SSL mechanism to make

sure file’s privacy during transferring. After file is completely transferred, the services will

encrypt the files by using user’s personal information and store encrypted files in the storage

servers. Basically, services providers offer users elementary file security guarantees.

 However, once the network storage service system had been compromised, we can

assume that attacker can obtain all users’ personal information, including the information for

encrypting uploaded files. Sometimes, users cannot retrieve from the cloud, because either

the network disconnection, the failure of storage servers or service system is malfunctioned.

One of reasons above will cause users cannot retrieve their critical data in time, which might

result in property loss. Therefore, not only file privacy, but also file robustness we should

concern when we want to improve file security stored on the Internet.

 In current public environment, all network storage service system is independent, and

there is no trusted third party to communicate and negotiate among them. It is almost

impossible to build a system for being a trusted third party due to legal issues and

commercial secret, so we did not apply centralized network storage architecture.

 Traditionally, encryption is categorized into two part, asymmetric encryption and

3

symmetric encryption. The major difference between two categories is the usage of

encryption key. In asymmetric category, the encipher and the decipher owns different key.

The encipher encrypts file with public key and transmits ciphertext to decipher, and then

decipher decrypt ciphertext with secret key to recover plaintext. RSA, ELGAMAL are the

current famous asymmetric encryption. On the other hand, in symmetric encryption category,

the encipher and the decipher share the same encryption key, the well-known

representation, DES, 3DES, AES. Speaking of file security, the asymmetric encryption has an

advantage over the symmetric encryption. On the contrary, the symmetric encryption has

better computational performance.

 Many researches have devoted in improvement of file robustness for decades, such as

RAID system. The simplest method to protect file privacy is replication. Uploaded file can

easily be duplicated into several copies and stored in different storage nodes. The advantage

is low computational cost, but the disadvantage is the high cost of storage space. Another

method to protect file robustness is erasure codes, such as EVENODD code [2], RDP code [3],

B code [4], STAR code [5], and so on. To improve file robustness, file should be encoded by

specified encoder and then generate codeword. Codeword consists of n symbols, the file

owner can retrieve arbitrary k symbols to recover original file, where n>k. For some level,

erasure codes can provide file privacy, because attacker can recover file only retrieve at least

k symbol files successfully. However, it’s barely possible to ensure that attacker only

4

compromise less k storage systems.

 Currently, more and more network storage service systems, like Dropbox [11], LiveMesh

[12], Synciplicity [13], AsusWebStorage [14], provide software to download from website,

and let users install it to generate synchronizing folder in local device, such as PC or mobile

phone. By using synchronizing folder mechanism, users can easily synchronize file with the

cloud. Users can add file into each synchronizing folder and each installed system will

automatically upload files to each cloud. Therefore, with the help of synchronizing folder

mechanism, users can synchronize files between local PC and each network storage servers

with simple method rather than login to website each time. But, users who have bad habit

might be installed each synchronizing folder software in any location in PC, and it is

inconvenient to search every synchronizing folder when users want to use synchronizing

folders.

 In summary, we try to implement a system that provide users an integrating platform so

that users can synchronize files between local PC and each network storage servers and

meanwhile protect the file privacy and robustness in clouds.

 In these following chapters, we will first discuss the overview and background of our

system in chapter 2, and then, the implementation detail will be illustrated in chapter 3. The

rest chapters are performance analysis, future work and conclusion.

5

Chapter2

System overview

 Our system so far is only suitable for local PC, because our system adopts synchronizing

folder to make local file synchronized with the each storage cloud. It does not make sense for

users to install synchronizing folder software in public PC, such as PCs in library, airport or

any public environment. Therefore, our system is not designed for temporary usage in public

environment.

 At the beginning, user’s PC has multiple synchronizing folders, which can automatically

synchronize files with each storage cloud, and user can use them individually. For example,

user Anna installed Dropbox at desktop and LiveMesh at “D:\\”. Once if Anna wants to

upload A.txt to Dropbox and B.mp3 to LiveMesh, she has to add each file into corresponding

synchronizing folders separately, although it is the most convenient method to upload file by

now.

 In order to provide users an integrating platform instead of using synchronizing folders

individually, we have strong motivation to generate a unique folder, which is called “system

folder” in the rest of the article, to synchronize files with each synchronizing folders. In other

words, synchronizing folders synchronize files inside with their own storage servers, and our

6

system folder synchronize file inside with all user-assigned synchronizing folders. At first

glance, our system generates a system folder and continuously detects and synchronizes file

with user-assigned synchronizing folders. Our system does not interfere in any transmission

mechanism of each synchronizing folder.

Figure 1

Our system architecture, as shown in Figure 1, includes the cloud and local PC. In the

cloud, there are n independent network storage service systems and their corresponding

storage servers (SS), which no matter whether belongs to network storage service system

itself. In the local host, there are three roles. First, n synchronizing folders (Sync folders),

7

which user could download software from the website of each network storage service

system. Second, one system folder (System folder), generated by our system, is an ordinary

folder in PC. Third, it’s our system, implemented by JAVA, which execute all computational

functions and continuously detect sync folders and system folder.

 Our system program is in charge of all file computation, including file encryption, file

decryption, file encoding and file decoding. When users want to upload protected file to the

each storage cloud through our system, the input is the file in system folder. After being

encrypted and encoded, our system write each ciphertext codeword symbol files into n sync

folders. On the contrary, our system reads symbol files in each sync folders and execute

decoding and decryption to recover original file and write into system folder.

The sync folders and the components in the clouds are the current public network

resource, and users can easily fetch on the Internet.

Our system is implemented by JAVA, so localhost should install JRE to execute our

system. So far, our system works fine with Windows 7 32bits and Windows 7 64bits, and we

have enough reasons to believe our system can also work fine in other operating systems.

The only issue we concern is that synchronizing folder software does not support any kind of

OSs.

As shown in Figure 2, our system program, ccis.java, is packaged with two text file,

a_181_603.properties and primitive_element.txt. Users can double click the ccis.java to start

8

our system. The two text files are critical, and our system program will fail without these two

text files under the same directory. Without any installation procedure, our system program

and the two text files can be changed to any location in local PC.

Figure 2

After user starts our system program, our system environmental setup UI popups every

time. As shown in Figure 3, our system program requires four parameters, which are system

folder path, sync folders paths, the fault tolerance degree number and an arbitrary string.

The purpose of user-assigned system path is that our system let users to decide where

system folder is. When system program is executing, our system program generate a new

folder, which is named “ccis_repository”, to be our system folder at user-assigned path. Users

can choose an arbitrary valid path in PC and click “Edit” which is next to the first text filed.

9

The second text field is a list of sync folders paths, and users can insert or delete any sync

folders paths. Our system can detect whether the path users assigned is a valid folder, but,

our system cannot detect whether it is a sync folders. User has to assign at least two sync

folders to our system program. The third text field let users insert the fault tolerance degree

users want out system provides. This third text field only adopts number string, furthermore,

this number should be less than the count of sync folder paths and larger than zero. The final

text field user should insert an arbitrary string, and our system will adopt it to generate

user’s public key and secret key. In other words, if user wants to recover ciphertext files, he

should insert the same string he inserted when encrypted files. After finishing all parameters,

click “Start” to launch our system program. At first usage of our system, all text fields are

blank.

Figure 3

10

Out system will keep pre-setup information, so at subsequent usage, user only needs to

insert the arbitrary if he does not want to change the other information. As shown in Figure4,

our system stores previous information. Our system stores the fault tolerance degree in

FT_num.txt, system folder path in repository_dir.txt and sync folder paths in sync_dir.txt. If

these three text files lost, which only cause related information text field blank in this UI.

Unlike a_181_603.properties and primitive_element.txt, the loss of these three file will not

crash our system.

Figure 4

In the next we will introduce our system functionalities. In this chapter, we only

illustrate our system’s functionalities and the detail implementation techniques will be

11

discussed in next chapter. Our system provides

1. Detect whether new files added into system folder.

2. Detect whether file in system folder is modified.

3. Detect whether any loss of codeword symbols file in each sync folders.

4. Detect whether any file is deleted in system folder.

5. Encrypt and encode files to protect file privacy and robustness.

6. Decode and decrypt file to recover protected files.

Because our system program continuously scans system folder and n sync folders with

infinite loop and detects whether 1, 2 or 3 fits. If yes, our system program will figure out

which files should be executed file encryption and file encoding. If 4 fits, our system

interprets this situation that user wants to remove file from the cloud. Therefore, our system

program will delete all related codeword symbol files in n sync folders, and with the help of

synchronizing folder software, the files in the cloud will also be removed. In addition, our

system program will decode and decrypt all files in sync folders and write original files into

system folder.

 Figure 5 is our system execution flow. In the beginning, our system decodes and

decrypts all codeword symbol files in sync folders. If recovery fails, our system will skip all

subsequent procedure and execute next files. Our system only executes decoding and

decryption once during whole system executing time, therefore, our system does not

12

support real-time file synchronization.

Figure 5

After decoding and decryption complete, our system program pops up an execution

information UI and starts next procedure. Subsequently, as shown in Figure 5, our system

continuously detects four events. The execution information UI is showed in Figure 6. User

will be informed the system folder path and the sync folder paths, and click the two “OPEN”

buttons will open the related folders. All information which is generated during system

execution will be printed in system information text field.

13

Figure 6

 When user adds files or folders into system folder “ccis_repository”, our system program

will detect which files in system folder is newly added and start to execute computation. The

information will be printed in the execution information UI, as shown in Figure 7. For

example, if user adds a new file DSCF0365.JPG into system folder, some information will be

shown on the UI, including upload time, file name, progress, and total time cost.

14

Figure 7

 If user uses synchronizing folders, they can modify any file and store directly. Then, the

synchronizing folder software will automatically upload modified file to the cloud. Therefore,

when user want to retrieve file back next time, he or she can obtain the last modified files. To

keep this functionality, our system should let users to modify their file in system folder so

that users can retrieve last modified files when our system executes decoding and

decryption.

 When our system program is executing, user opens his file in system folder and modifies

it. Our system program will detect file changed in system folder, and do file encryption and

encoding that file again to let n sync folders and relative cloud storage store the lastest file

codeword symbol files. The example shown in Figure 8

15

Figure 8

 As mentioned before, one of our system’s major functionalities is synchronizing file

between system folder and n sync folders. The only difference is that file in system folder is

original file, and files in n sync folders are codeword symbol files. In other words, our system

program can detect whether there are valid amount of codeword symbol files in sync folders

by measuring the original file in system folder. Once our system program detects codeword

symbol files lost, out system program will encrypt and encode the related file again to

generate complete codeword symbol files. Figure 9 shows the example.

16

Figure 9

 If user wants to remove file in the cloud, because of our system architecture, he or she

should delete all related codeword symbol files in sync folders, and that is very inconvenient.

Therefore, our system establishes one rule that once if file in system folder is deleted while

our system program is executing, our system will determine that user want to remove file in

sync folders and also in the cloud. As shown in Figure 10,

17

Figure 10

 During system program executing, user can minimize the information UI to let system

program execute background, however, once if user click the close icon, our system will

terminate.

 As shown in Figure 11, our system provides file privacy guarantee, the ABC.txt is original

file stored in system folder. The two files below are contents of file codeword symbol file and

encryption key codeword symbol file. The contents of codeword symbol are unreadable;

hence, our system guarantees that even if the attacks compromised all network storage

service systems, they cannot obtain any information from uploaded files.

 On the other hand, the file robustness ability of our system will be discussed later.

18

Figure 11

 After introducing our system functionalities, we will discuss the preliminary knowledge

of encryption, encoding, decoding and decryption schemas of our system. The technique of

protecting files is based on [1], which was published on IEEE TRANSCANTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS in 2010. In the following paragraphs, we will introduce how [1]

protect file and what parts we modified to be more practically. [1] improves files robustness

and privacy in distributed networked storage environment with cryptographic pairing

technique and distributed erasure code. Unlike other distributed networked storage

researches before, this thesis protect not only file robustness but also file privacy, which

result in that even if attack compromises all storage system, he still cannot obtain original file

information.

19

Figure 12

Figure 12 shows the [1] model. There are k plaintexts 𝑀𝑖, which are encrypted by 𝐶𝑖 =

(𝛼𝑖, 𝛽, 𝛾𝑖) = (𝑔𝑟𝑖 , ℎ𝐼𝐷 , 𝑀𝑖𝑒̃(𝑔𝑥, ℎ𝐼𝐷
𝑟𝑖)) 0 ≤ 𝑖 < 𝑘. g is generator of 𝔾1, which length is p. 𝑟𝑖 is

randomly chosen from ℤ𝑝 . All ciphertexts 𝐶𝑖 have the same ℎ𝐼𝐷 , where

ℎ𝐼𝐷 = H(𝑀1||𝑀2|| … ||𝑀𝑘) and H ∶ *0,1+∗ → 𝔾1. A bilinear mapping function 𝑒̃, which map

elements from 𝔾1 to 𝔾2. x is user’s private key, and 𝑔𝑥 is user’s public key. The user

shares his secret key shares among m key servers (𝐾𝑆𝑖) with (t,m)-threshold secret sharing

scheme. The user uploads v copies of each ciphertexts 𝐶𝑖 to storage servers (SS𝐽), which are

randomly chosen. Afterward, every storage servers will encode their own files which

received from user. For each storage servers SS𝐽 , they encode file to generate codeword

symbols σ𝑗 = (𝐴𝑗 , ℎ𝑖𝑑, 𝐵𝑗, (𝛼1,𝑗, … , 𝛼𝑘,𝑗)) 1 ≤ 𝑗 ≤ 𝑛 , where 𝐴𝑗 = ∏ (𝑔𝑟𝑖)𝛼𝑖,𝑗
0≤𝑖<𝑛−1

and 𝐵𝑗 = ∏ (𝑀𝑖𝑒̃(𝑔𝑥, ℎ𝑖𝑑𝑟𝑖))𝛼𝑖,𝑗
0≤𝑖<𝑛−1 . 𝛼𝑖,𝑗 is randomly chosen from ℤ𝑝 and 𝛼𝑖,𝑗 is not

20

equal to zero. When the user wants to retrieve k messages, he should send ℎ𝐼𝐷 to all key

servers and each 𝐾𝑆𝑖 randomly queries u storage servers with ℎ𝐼𝐷 and obtains at most u

symbols from storage servers. Then, 𝐾𝑆𝑖 decrypts every codeword symols by 𝜁𝑖,𝑗 =

(𝐴𝑗 , ℎ𝑖𝑑, ℎ𝑖𝑑𝑠𝑘𝑖 , 𝐵𝑗 , (𝛼1,𝑗, … , 𝛼𝑘,𝑗)) and sends back to the user. The user randomly chooses t

𝜁𝑖,𝑗 from all received data to compute Lagrange interpolation over exponent to generate ℎ𝐼𝐷
𝑥 .

The user encrypts the data by computing 𝑤𝑗 =
𝐵𝑗

𝑒̃(𝐴𝑗,ℎ𝑖𝑑𝑥)
，1 ≤ 𝑗 ≤ 𝑘 . Finally, the user

decodes the file by retrieving 𝛼𝑖,𝑗 in codeword symbol and forming a submatrix of generator

matrix. If the submatrix is invertible, the user recovers each

message 𝑀𝑗 = ∏ (0≤𝑖<𝑛−1 𝑤𝑖)
𝛽𝑖,𝑗, where 𝛽𝑖,𝑗 entries of the inverse matrix are.

 In [1], the storage servers execute encoding procedure and store codeword symbols.

However, in current practical environment, it is almost impossible to ask each public network

storage service system to compute encoding protocol, hence, we should let storage servers

to only store file in out architecture and left all computational tasks to local PC.

Another issue is the maintenance of key servers. Once if the amount of key servers

failure is beyond threshold, the whole system will crash down and stop serving anymore.

Because of the lack of human resource to maintain the key servers, we decide to remove the

key server mechanism so that our system only has two roles, the system program in local PC

and the public network storage service systems, which should be maintained by experts.

Therefore, our system should work as long as the network storage service systems exist.

21

The other problem is the computation performance. Usually, user’s file size toady is

larger than 1KB, even 1MB. Because the encryption protocol in [1] adopts asymmetric

encryption, the computational cost will very high. For this reason, we extend the original

encryption protocol to develop a new hybrid one. The hybrid encryption combines the

symmetric encryption and the asymmetric encryption, and owns benefits from two kinds of

encryption schemes. In our system architecture, our system program an encryption key to

encrypt file with symmetric encryption first, and then adopts asymmetric encryption method

in [1] to encrypt the information of encryption key. To decrypt files, our system program will

recover encryption key first and use the encryption key to decrypt file. The detail techniques

will be illustrated in the next chapter.

22

Chapter 3

System implementation

3.1 Introduction

Our system program is built by JAVA, and our system consists of theses source code

1. ccis.java

2. main_UI.java

3. Edit_syn_dir_UI.java

4. Dec_download_thread.java

5. download_warn.java

6. AES.java

7. Base64.java

8. group_gau_eli.java

9. Gauss.java

10. Dec_upload_thread.java

11. upload_info.java

12. File_delete_thread.java

13. CloseHandler.java

23

To execute pairing based cryptographic computation in JAVA [6], our system import external

libraries

1. jna-3.1.0.jar

2. jpbc-api-1.1.0.jar

3. jpbc-crypto-1.1.0.jar

4. jpbc-pbc-1.1.0.jar

5. jpbc-plaf-1.1.0.jar

6. bcprov-jdk16-140.jar

Figure 13

 Our system classes flow is shown in Figure 13, and the main entry point is in class ccis.

With following the number sequence, in the beginning, our system program will execute

24

codes of Main_UI to launch the environmental setup UI to let user to insert the information,

and if necessarily, our system program will execute codes of class Edit_syn_dir_UI to let user

modify his synchronizing folder path. After setting all parameter of our system program, our

system program will execute file decoding and decryption, whose source is of

Dec_downlaod_thread class. During file decoding and decryption, our system will call

methods in many different classes, such as download_warn class, Base64 class, AES class,

Gauss class and group_gau_eli class. If our system program cannot decode and decrypt

codeword symbol files, our system program will new a UI object from download_warn class

to inform users. The other classes provide methods to help our system program to finish

decoding and decrypting files, we will discuss in detail step by step in the following

paragraphs. Consequently, our system program will jump into an infinite loop to continuously

scan and detect, which are implemented of Dec_upload_thread class, in meanwhile our

system will new a UI object form upload_info class to notify users our system status. And

during encryption and encoding procedure, our system program will call the methods from

Base64 class, AES class and File_delete_thread class to help our system program to finish

encrypting and encoding.

 In the following paragraphs of this section, we will introduce every parts of our system

program source codes according to our system execution sequence. In addition to the

computational parts, we also introduce how our system scanning files between system folder

25

and sync folders.

 3.2 Parameters setting

 In order to make our system work successfully, our system require users to insert

parameters and our system will execute by these information. When users click ccis.jar, our

system program will soon be launched. In the beginning, our system generates a Main_UI

object to pop up a UI and let user insert parameters, as shown in Figure 3. We set event

listeners on each buttons. The First button in the next to system path text field provides user

to edit system folder path. Once if user clicks the first button, our system program receives

the event messages and starts the following procedures. (1) Check whether this path is valid.

(2) If this path is valid, our system program writes it in repository_dir.txt, which in the same

folder as our system program. Otherwise, the Main_UI will show the warning messages to

users and ask for insert the correct path and click first button again. Our system use JAVA

method exsist() of File class to check whether the target directory exists. If the return value is

true, the target directory exists in local PC; otherwise, the directory does not exist. .The

second button will close the current UI and generate a new UI from Edit_syn_dir_UI class.

The UI let user to insert a new synchronizing folder path or delete old ones. This Edit_syn

26

_dir UI providers the functionality to notify user whether these paths are valid and write the

correct paths list in sync_dir.txt, which is located in the same folder with system program.

The final button will examine the whether number of sync folder paths, n, user inserted is

larger than 1, and the fault tolerance degree user inserted in third text field is larger than

zero. Besides, n minus fault tolerance degree is the word dimension, k. Our system program

will save the fault tolerance degree number in FT_num.txt, which is also at the system

program folder. Finally, Main_UI object write the arbitrary string into Authenticate.txt and

close.

 After reading non-NULL string from Authenticate.txt by main thread, our system will

move on next procedure 2 to decode and decrypt all codeword symbol files.

3.3. Preparation

 After handling all parameters, our system program will call the method

search_data_dec() to scan and generate a file list to execute file decoding and decryption. In

search_data_dec(), the major task is recursively generate file list from sync folders.

 To generate a file list from sync folders, our system program will go through each folders

in the sync folders. Our system uses method listfiles() to read files in every folders of sync

27

folders, and use isFile() and isDirectory() to detect files and folders. Because our system has a

specified naming mechanism to distinguish each files codeword symbols, hence, our system

program can generate a files name list and a folder name list by parsing the name string and

removing the tag our system program added in. Our system program reads all files and

folders in the folders with the same related path in each n sync folders. For example, if there

is a folder “apple” in sync folder A, our system program read all files and folders in “sync

folder 1’s path\\apple\\” and “sync folder 2’s path\\apple\\” until “sync folder n’s

path\\apple\\”. If one of the paths does not exist, our system will treat it as an erasure.

Subsequently, our system program parses the file content in the folder of the same related

path in sync folders, and generates two lists of unique file names and folder names.

 Our system handles files list first. To decode and decrypt files one by one, our system

programs call the member function decrypt_a_file() in class Dec_download_thread again and

again. The parameters of decrypt_a_file() require the executing file name, system folder

path, the sync folder paths, the related path and the word dimension, k.

 After executing all file decoding and decryption in the file list, our system will iteratively

add the folder name in the list to current path and recursively call the function

search_data_dec() with the new paths. Therefore, our system program will scan the child

folders of the original ones.

28

 3.4 Decoding and Decryption

 The Dec_download_thread class consists of four member functions, which are

decrypt_a_file(), detSplitCount(), setFileKeyIndex() and read_sk(). This class is only in charge

of decoding and decrypting file, and the files list and executing sequence is determined by

ccis class. As mentioned before, the Dec_download_thread class will call other member

functions from download_warn class, AES class, Base64 class, Gauss class and group_gau_eli

calss.

 Before starting to discuss how we implement our system program to execute decoding

and decryption, we have to introduce the information of groups our system adopts. To

generate two groups with pairing relation, our system program imports external jPBC

libraries [6]. Our system program also uses the default symmetric pairing parameters, which

stored in a_181_603.properties and provided by jPBC developer. By loading the same

parameters, our system program can always generate two groups 𝔾1 and 𝔾2 with

symmetric pairing relation every time. The length of 𝔾1 is 603 bits and 181 bits is the order

length of both groups. According to the member function of jPBC library, our system program

will map elements in 𝔾1 to elements in 𝔾2 . When execute decryption, in order to use the

same primitive element in 𝔾1, which also used in encryption, our system also keeps the

29

primitive element information by storing in primitive_element.txt. Both groups are

generated on ECC; hence, our system provides higher level of security than RSA with 1024

bits, which fit the NIST security suggestion.

The primitive element in 𝔾1 is g =

{x=615734512873428440477488523826308597799520831636693137614193293379606827

592117047629241685016477711187420535546292089408355875225815409547842815495

49383080126812686938354177995588953,y=2060401751298941287883225831442437614

704865289320923746776455740148877803089231620998617527984360811606712097453

5375335832695868464306816023514802682052300350575909977166528430298774,infF

lag=0}

After generating the files list, our system program will call the member function,

decrypt_a_file() of Dec_download_thread class to decode and decrypt file one by one.

Therefore, in the rest part of this section, we will introduce how our system program

performs file decoding and decryption.

In the beginning, decrypt_a_file() of Dec_download_thread class receives seven

parameters from the caller, search_data_dec() of ccis class, and handles the total path and

the related path to generate four string arrays for subsequent usage.

In the next step, our system program will parse the file name received from caller

function to make our system program to find the correct codeword symbol files. Our system

30

program use the member function split() of JAVA String class to split file name string into

several parts by the dot sign “.”. For example, string 123.456.txt is the executing file name,

and our system split the file name into three parts, which are 123, 456 and txt. To read the

correct file codeword symbol files and encryption key codeword symbol files, our system

should use the file name to generate file codeword symbols name and encryption key

codeword symbol name.

 Our system has a specified naming mechanism to make our system program find the

correct file during file decoding and decryption. Our system program keeps the original

uploading file name when generates file and encryption key codeword symbol files. The rule

of naming file codeword symbol file is attaching “$#_1_𝒯”, where 𝒯 is the index of file

shares, between file name and its extension. Because of the computational limitation, our

system program spits each file by 10MB before encrypting and encoding. For example, if our

system program detects a 55MB file to execute file encryption and encoding, our system

program will split the file into six shares and encrypt and encode each file shares afterward.

To distinguish which codeword symbol file belongs to which file shares, our system add an

index 𝒯 in codeword symbol file name, where 0 ≤ 𝒯 < (file size / 10MB) + 1. On the

other hand, our system program only generates one encryption key codeword for each file,

so there is no need of indexes for encryption key codeword symbol files. Our system program

add “$#_2” between file name and its extension for encryption key codeword symbol files.

31

For example, if our system program detects a 123.mp3, whose size is 15 MB, our system

program generates n 123.$#_1_0.mp3 and, n 123.$#_1_1.mp3 file codeword symbol files

and n 123.$#_2.mp3 encryption key codeword symbol files.

Our system program executes file decoding and decryption with the following steps

1. Collect k encryption key codeword symbols to recover encryption key.

2. Use encryption key and other information to recover file shares.

3. Combine all file shares to generate original file.

Our system program declares a string request_key to store the encryption key codeword

symbol file name of executing file. Combining the sync folder paths and request_key to

generate the absolute paths of symbol files, our system program is going to detect file

according to the absolute paths. So far, our system program already knows the location of

the encryption key codeword symbol files of executing files.

 To decode files successfully, there are at least k sync folders which still contain their own

encryption key codeword symbol file. Therefore, to recover encryption key, our system

should ensure the amount of encryption key codeword symbol files is beyond the threshold k.

If the amount is less than k, our system program will pop up a warning UI and skip all the

following procedures and do the decoding and decryption of next file.

 Among all the existing encryption key symbol files, our system will spend at most 1000

times to find out which combination can generate the submatrix of the generator matrix

32

whose determinant value is not equal to zero. If there is one, our system will keep the

sequence of the k sync folders, whose encryption key codeword symbol file can contribute

the inverse matrix of the submatrix; otherwise, our system program will skip all the

subsequent computation.

 An encryption key codeword symbol file contains two 152-bytes data in 𝔾1 , one

152-bytes data in 𝔾2 and k 23-bytes data in ℤ𝑟, where ℤ𝑟 is the ring of integers modulo r.

Therefore, our system program can fetch each part of file content to obtain all information.

For instance, to read the information of generator matrix entry, our system program reads

data from 456th position to (456 + k ∗ 23)𝑡ℎ position of file byte array for fetching k entries

information of generator matrix.

 Our system program reads different parts of codeword symbol file byte array and use

function setFromByte() to convert byte array to information in either 𝔾1, 𝔾2 or ℤ𝑟. The

following Table 1 shows how we transform byte array in a symbol file to element in different

groups.

33

Position of 𝒋𝒕𝒉 key symbol file byte

array

 Element

byte array[0 to 151] A𝑗 ∈ 𝔾1

byte array [152 to 303] ℎ𝐼𝐷 ∈ 𝔾1

byte array [304 to 455] B𝑗 ∈ 𝔾2

byte array [456 to 456 + 23*k] 𝛼𝑖,𝑗 ∈ ℤ𝑟

Table 1

 Our system program reads k encryption key codeword symbol files and generates k byte

arrays according to the sequence which is determined before. Furthermore, according to

Table 1, our system program generates A𝑗 , ℎ𝐼𝐷 , B𝑗 and 𝛼𝑖,𝑗 by 𝑗𝑡ℎ byte array, where 0 ≤

𝑖, 𝑗 < k . To generate the submatrix of generator matrix, our system program fetches k

23-bytes data started from 456th byte of byte array and converts into k elements in ℤ𝑟.

Afterward, aligning k elements of 𝑗𝑡ℎ byte array to 𝑗𝑡ℎ column and forming a k × k matrix.

Because the determinant value of this matrix will not be zero, and our system program can

use this matrix to compute the inverse matrix.

 To compute the inverse matrix over ℤ𝑟, we implement gauss elimination method of

group_gau_eli class. This class provides the functionality of generating the inverse matrix

over ℤ𝑟 of the input matrix. Therefore, our system program receives the return value of the

34

method inv() to obtain the inverse matrix.

 By now, our system program collects all data and starts to decrypt and decode all the

data to recover encryption key. First of all, our system program computes

𝑤𝑗 = 𝐵𝑗/𝑒̃(𝐴𝑗,ℎ𝑖𝑑𝑥) 0 ≤ 𝑗 < k (1)

, where 𝑥 is user’s private key generated by the arbitrary string user inserted in the

beginning. Each 𝑤𝑗 means the combination of plaintexts which stored in 𝑗𝑡ℎ sync folder,

and 𝑤𝑗 also means 𝑤𝑗 = 𝑝0
𝛼0,𝑗𝑝1

𝛼1,𝑗𝑝2
𝛼2,𝑗 … 𝑝𝑘−1

𝛼𝑘−1,𝑗 0 ≤ 𝑗 < k , where 𝑝𝑗 is one part

of encryption key. Then, our system program computes

𝑝𝑗 = ∏ (0≤𝑖<𝑛−1 𝑤𝑖)
γ𝑖,𝑗 0 ≤ 𝑖, 𝑗 < k (2)

, where γ𝑖,𝑗 is the entry of inverse matrix.

 Finally, we transform all 𝑝𝑗 into strings and concatenate together to generate

encryption key.

 encryption key = 𝑝0 || 𝑝1 || … ||𝑝𝑘−1 (3)

After finishing generating encryption key, our system program will use this encryption

key to decrypt each encrypted file shares. Then, our system program is going to decode

codeword of each file shares and decrypt with the same encryption key.

As mentioned before, a file with large size may have many file codeword, therefore, our

system program decodes and decrypts codeword according to the file shares index 𝒯,

where 0 ≤ 𝒯 < (file size / 10MB) + 1. Then, our system program will use FileChannel to

35

combine all file shares into a large file, which is the original file. In the following paragraphs,

we will introduce how we system decodes and decrypts codeword one encrypted file share.

For decoding and decrypting a file codeword, our system program executes the

following steps,

1. Choose the proper sequence of k sync folders.

2. Read files from k sync folders determined by previous step and generate the submatrix

of generator matrix.

3. Convert all the entries of the submatrix to BigInteger and compute the inverse matrix

4. Convert k byte arrays into BigInteger and align into a BigInteger array.

5. Decoding by matrix multiplication

6. Convert the result to byte arrays

7. Base64 decode and combine together

8. AES decryption with the encryption key.

First, to decode file codeword, our system program will ensure that there are at least k

sync folders which contain both file codeword symbol and encryption key codeword symbol,

furthermore, the k encryption key codeword symbols can contribute a k × k matrix whose

determinant value is not zero. If yes, our system program will keep the indexes of k sync

folders; otherwise, our system program cannot decode the codeword so that one of file

shares cannot recover, hence, our system program will skip all the following decoding and

36

decryption steps and execute next file on file list.

According to the k indexes sequence, our system program will read k file codeword

symbols and k encryption key codeword symbol files from sync folders by using

FileInputStream class. Our system generates a k × k matrix encryption key codeword

symbols and converts every entries of this matrix to BigInteger. Then, our system program

reads k file codeword symbols and stores in byte arrays. Our system program use the

function toBigInteger() to cover each byte array to a BigInteger number and aligns them into

a 1 × k BigInteger matrix.

Subsequently, our system program executes matrix multiplication between the 1 × k

matrix and k × k BigInteger inverse matrix of submatrix of generator matrix. Then, our

system program converts all the entries of the 1 × k result matrix to byte array and

executes each byte array with Base64 decoding. Finally, our system program combines all

byte arrays together and decrypts it with the encryption key and the output is the original

file share.

Our system program will repeat all step above until all file shares of the original file are

done. Finally, our system program will combine all file shares together to generate the

original file in the system folder.

After finishing the all files and folders recovery, our system program will start to scan

system folder and sync folders with infinite loop. In other words, our system only executes

37

file decoding and decryption once, so our system does not support real-time file

synchronizing mechanism.

3.5 Infinite scanning and detection

 After finishing decoding and decryption, our system program will scan system folder and

sync folders with infinite loop to detect whether events happened. There are three events to

trigger our system program to encrypt and encode,

1. New file is added in system folder.

2. File in system folder is modified.

3. The codeword symbol file in sync folders is lost when our system program is executing.

In this section, we will discuss how we implemented the scanning and detection functionality

of our system program.

 We implement infinite scanning and detection in Dec_upload_thread class. Our system

program continuous scans system folder and sync folders, and more, our system program

scans every files and folders iteratively.

 To check the consistency between system folder and sync folders, our system program

uses log files to record the information of current files in system folder. After finishing all files

38

decoding and decryption, our system program will edit log files first time. The method of

editing log files is,

1. Each folder in system folder has its own log file, and the log file is named by the related

path of the folder.

2. Each log file records information of contents in corresponding folder

Figure 14

As shown in Figure 14, the log file contains the file names and attached by a long type value,

which is the last modified value. The last modified value is generate by lastModifed() of File

class. Our system program uses the return value as a timestamp to check whether this file is

modified or not. All log files are stored in LOG folder as the same directory as system

39

program is.

 Our system program continuously scans each files and folders in system folder while

execution. When our system program is reading a folder, our system program will read all the

information of contents inside and compare them with the corresponding log file. Therefore,

if the amount of contents is larger than records in the corresponding log file, our system

program will encrypt and encode the new files or make a new folder at related path of n sync

folders. Besides, our system program also check whether each last modified value of each

content in system folder is equal to the timestamp in the log file. If not, it means that the file

in system folder is modified, and our system program will encrypt and encode the file again,

and make corresponding codeword be updated. After encryption and encoding, our system

program will edit the log file again.

 The other event is that the codeword symbol file is lost when our system program is

executing. To detect this situation, our system program should scan every file in system folder,

and compute its valid codeword symbol files number. When the amount of codeword symbol

files is less than the valid number, our system program determines this as codeword symbol

file is lost. Therefore, our system program will encrypt and encode the corresponding file

again to make its codeword intact.

 Our system program also detect whether the amount of current files in each folder of

system folder is less than the records in its corresponding log file. Therefore, our system will

40

figure out which file in system folder is deleted and remove its all corresponding codeword.

 3.6. Encryption and Encoding

Generally speaking, our system program encrypts and encodes files in system folder and

writes codeword symbol files into each user-assigned sync folders. The encryption and

encoding flow is show in Figure 15.

Figure 15

 As mentioned before, our system program will figure out which file is going to be

encrypted and encoded. Then, our system program will generate an encryption key to

encrypt this file by AES-128, and encrypt the information of encryption key by

[1].Furthermore, our system program will encode the two ciphertexts independently and

41

write codeword symbol files in each sync folders.

 In the rest of this section, we will discuss how we implement the encryption and

encoding functionality of our system program. After determining which file should be

executed, our system program will execute the following procedures,

1. Split file by 10MB.

2. Generate an encryption key and encrypt file by AES.

3. Base64 encode.

4. Encrypt information of encryption key.

5. Encode two ciphertexts.

6. Write codeword symbols into sync folders.

To measure the size of executing file, our system program use available() of

FileInputStream class to obtain the byte length of read file. Afterward, our system program

divides the byte array by 10MB and the quotient plus one is the number of file shares. The

next step is that our system program splits the original file into several .tmp files by using

FileChannel class, and then, our system program will encrypt and encode each .tmp file with

the same encryption key and generator matrix. All .tmp file will be deleted after encryption

and encoding complete.

Then, our system program will generate an encryption key to encrypt all .tmp files. The

encryption key is made of elements in 𝔾2, and our system program calls the member

42

function, generate_encryption_key(), to obtain k random elements in 𝔾2 . Our system

converts the k elements to strings and concatenates together, and the big string will be the

key of AES encryption. Our system program adopts AES with key length 128, however, the

encryption key is much longer than 128. Therefore, our system uses init() of KeyGenerator

class to adopt encryption key as parameter to generate a random 128-bits string. In fact, our

system program does not use encryption key to encrypt file directly, but uses encryption key

to generate another 128-bits string. In other words, if the decipher owns the same

encryption key, he can also use this encryption key to generate the same 128-bits string to

decrypt files which encrypted through the same encryption key. Besides, our AES adopts CBC

and PKCS5Padding.

To encode encrypted file, our system program will compute file and BigInteger number.

However, for some unknown reasons, we cannot convert byte array of ciphertext to

BigInteger directly. Fortunately, we found out that the byte array can be converted to

BigInteger after it had been encoded by Base64. The tradeoff is that the ratio of file

expansion is about 125% by using Base64 encoder.

In the next, our system program will encrypt the information of encryption key, which

are the k elements in 𝔾2, through [1] protocols. According to [1], the ciphertext contain

three elements

𝐶𝑖 = (𝛼𝑖, 𝛽, 𝛾𝑖) = (𝑔𝑟𝑖 , ℎ𝐼𝐷 , 𝑝𝑖𝑒̃(𝑔𝑥, ℎ𝐼𝐷
𝑟𝑖)) 0 ≤ 𝑖 < 𝑘 (4)

43

To compute 𝐶𝑖, our system program will randomly generate an element 𝑟𝑖 in ℤ𝑟. For example,

an element in ℤ𝑟 is a quiet large number, such as 174172879714182359067

0580703308133950434124779067146267. Our system program computes 𝑔 to the power of

𝑟𝑖to obtain 𝛼𝑖. Our system program makes a difference about the computation of ℎ𝐼𝐷 with

[1] because of the architecture difference. In [1], ℎ𝐼𝐷 is computed by

ℎ𝐼𝐷 = H(𝑀1||𝑀2|| … ||𝑀𝑘) and H ∶ *0,1+∗ → 𝔾1, where 𝑀𝑖 is the plaintext. In our system

program architecture, however, ℎ𝐼𝐷 is computed by 𝑔(𝐻(𝑓𝑖𝑙𝑒 𝑛𝑎𝑚𝑒))𝑚𝑜𝑑100 . The third

element 𝛾𝑖 is generated by computing 𝑝𝑖 , which is the information of encryption key,

multiplied by the paired number 𝑒̃(𝑔𝑥, ℎ𝐼𝐷
𝑟𝑖), where 𝑔𝑥 is the user’s public key.

 After encrypting the file and the information of encryption key, our system program will

generate a k × n generator matrix to encode the two ciphertexts. The method of

generating the generator matrix is that, for each row, our system program randomly chooses

several positions to set random element in ℤ𝑟, and the rest of this row is set zero. And then,

our system program declares another k × n BigInteger matrix, whose all entries are

generated by converting the entries in the matrix over ℤ𝑟 to BigInteger. Therefore, to encode

the ciphertexts of encryption key and file, our system program should prepare two generator

matrixes, one is over ℤ𝑟 and the other is over infinite field.

 This paragraph will introduce how our system program encodes the ciphertext of

encryption key. Our system program encodes the ciphertext by [1],

44

KeySymbol𝑗 = (𝐴𝑗 , ℎ𝑖𝑑, 𝐵𝑗 , (𝛼0,𝑗, … , 𝛼𝑘−1,𝑗)) 1 ≤ 𝑗 ≤ 𝑛 (5)

, where 𝐴𝑗 = ∏ (𝑔𝑟𝑖)𝛼𝑖,𝑗
0≤𝑖<𝑛−1 and 𝐵𝑗 = ∏ (𝑀𝑖𝑒̃(𝑔𝑥, ℎ𝑖𝑑𝑟𝑖))𝛼𝑖,𝑗

0≤𝑖<𝑛−1 . The computation

of ℎ𝑖𝑑 adopts the modification version and 𝛼𝑖,𝑗 is the entry of the matrix whose entries are

elements over ℤ𝑟. After computation, our system program will convert all elements to byte

arrays, as shown in Table 1, and the length of byte array converted from elements

in 𝔾1 and 𝔾2 is 152 and elements in ℤ𝑟 is 23. Therefore, the size of an encryption key

codeword symbol file is 456+23*k. The 𝑗𝑡ℎ symbol file will be named by “file

name.$#_2.extension” and stored in 𝑗𝑡ℎ sync folder.

 In this paragraph, we will discuss the technique about encoding the ciphertext of file

shares. As mentioned before, a large file will be split into several small file shares and all file

shares will be encrypted by AES-128 with the same encryption key. Because the encoding

procedures of all ciphertexts of file shares are the same, we will discuss this only once. After

one byte array of file share is encrypted by AES and split into k byte arrays, which are

followed by Base64 decoder. Afterward, our system program will convert each byte array to a

BigInteger value and align into a 1 × k BigInteger array. In other words, our system program

converts a file to a BigInteger array for computing, and our system program can recover file if

our system program can retrieve the BigInteger array back. Then, our system program

computes the matrix multiplication between 1 × k BigInteger array converted from file and

the k × n BigInteger generator matrix. The output is a 1 × n BigInteger array and each entry

45

is the BigInteger of codeword symbol. And then, our system program convers 𝑗𝑡ℎ entry to

byte array and write in 𝑗𝑡ℎ sync folder, where 0 ≤ j < n. The codeword symbol file is named

by “file name.$#_1_𝒯.extension”, where 𝒯 is the index of current executing file share

and 0 ≤ 𝒯 < (file size / 10MB) + 1.

46

Chapter 4

Performance analysis

 In this chapter, we will talk about our system performance and analysis the outcome.

The total time consumption of using our system is the sum of our system program

computational time and the total time sync folders synchronize files with the storage cloud,

hence, in the chapter, we only discuss our system program execution overhead.

 Table 2 is our experimental environment.

CPU Inter Core(TM) i7 Q720 @1.60 GHz

RAM 4GB

OS Windows 7 64 bits

Development tool Eclipse

JAVA Runtime Version 1.6

External Library jPBC

Table 2

In the first testing model, our system program will execute five different sizes of rar files

to calculate the time consumption of encryption and encoding process. And then, our system

47

program will calculate the time consumption of decoding and decryption processes of five

difference files.

Figure 16

In Figure 16, we present that our system program executed five files (in x axis), whose sizes

are different, encryption and encoding, and the corresponding time consumption (in y axis).

The three different lines represent that our system program executed five files with different

parameters, n=2, n=4 and n=8. Each corresponding k is n-1. As shown in Figure 16, it is

obviously that the larger file size is, the more time consumption our system program costs.

The time consumption grew as file size increase smoothly, however, when our system

48

program executed the 50MB file, the computational cost increased sharply. But unfortunately,

this is hard to explain why so far. The other noticeable result is that, the higher n is, the more

time consumption our system program should cost. The reason might be because the higher

n means more sync folders to write codeword symbol files, and the file IO is always a

bottleneck for many file system. But, the system with higher n provides much more erasure

correcting ability; hence, it is a tradeoff users should choose.

Figure 17

 Figure 17 shows the time consumption of the decoding and decryption of five files.

An interesting discovery is that three lines are almost overlapped, and only the line, which

49

represented n=8, is higher than the other two lines. The explanation is still that more file IO

will affect the computational overhead. According to Figure 17, we can easily know that the

affection of the different number of sync folders our system adopts is small.

 To compare with file encryption and encoding, file decryption and decoding cause less

time consumption. Because there are more computations in file decryption and decoding

than in file encryption and encoding, it is strange that decryption and decoding costs less

time than file encryption and encoding. The reason why file encryption and encoding

consume more time is that, our system program only can read file contents in system folder

only after whole file is completed copied into system folder, otherwise, our system program

has no permission to read bytes from the target file. Therefore, once if user adds a new file

into system folder and expects our system program to execute file encryption and encoding

right away, however, our system program must wait until the file is copied completely into

system folder, and then start to execute file encryption and encoding. In summary, the

encryption and encoding overhead should plus the time of file transfer.

 In the next, we will discuss the two pie charts below. The first is the time consumption

of each part in file encryption and encoding, and the other is the time consumption analysis

of functionalities in file decryption and decoding. The test file is an mp3 file with 10MB.

50

Figure 18

 As shown in Figure 18, we counted five statistics about parameter setting (Ini, 0%),

encryption of encryption key (Encr_key, 9%), encoding of ciphertext of encryption key

(Enco_key, 5%), encryption of a file share (Encry_file, 26%) and encoding of the ciphertext of

file share (Enco_file, 60%). It is not hard to observe that, the time consumption of encryption

and encoding of file is the major problem. Because our system program adopts AES-128 to

be our symmetric encryption tool, unless our system program change another faster

symmetric encryption algorithm, our system program almost has nothing to do to improve

the performance of this part. On the other hand, the encoding of the ciphertext of file share

is a matrix multiplication. Although our system program can use BigInteger to compute file

Ini, 0% Encr_key,
9%

Enco_key,
5%

Encr_file,
26%

Enco_file,
60%

51

correctly, the result value is extremely large. Therefore, the performance drops down

according to the computation of large numbers. Unfortunately, we still have no better

methods to improve the drawback of our system program.

Figure 19

 The Figure 19 shows the time consumption statistics of functionalities in file decryption

and decoding, and our system program counted seven statistics to analysis, including the

parameters setting (ini, 0%), the computation of inverse matrix over ℤ𝑟 (Group_inv, 0%), the

computation of inverse matrix over infinite field (Big_inv, 0%), the decryption of encryption

key (Decr_key, 3%), the decoding of encryption key (Deco_key, 4%), the decryption of

encrypted file share (Decr_file, 29%) and the decoding of file (Deco_file, 64%). The time cost

ini, 0%

Group_inv, 0% Big_inv, 0%

Decr_key, 3%

Deco_key, 4%

Deco_file,
 64%

Decr_file,
29%

52

of the either parameter setting or computation of inverse matrix over ℤ𝑟 or the computation

of inverse matrix over infinite field is less than 1ms, so the percentage is 0 in this graph. Then,

we still talk about the bottleneck in decryption and decoding process, the file decryption

(29%) and decoding (64%). Our system program adopts AES-128 decryption and is hard to

improve the performance, too. However, the decoding of encrypted file is also the matrix

multiplication of large numbers, so the execution time is quite large. In summary, the

encoding and decoding of encrypted file share is the major problem to our system program.

 Besides, because our system infinite loop to do continuous scanning and detection, we

will provide the CPU and memory extra costs to execute our system program.

Figure 20

53

Figure 21

 The CPU and memory utility before executing our system program is shown in Figure 20,

and Figure 21 shows the CPU and memory utility when the experimental device extra

executing our system program. Actually, to perform infinite loop, the CPU utility increase

sharply, however, the memory utility increase slightly.

54

Chapter 5

Future work

 To improve our system program, we list four possible schemes below.

1. The usage of extra libraries

2. The web interface of our system

3. New encoding and decoding algorithm of encrypted file

4. Error correcting ability

First, our system program use infinite loop to detect whether user added new file into

system folder or user modified files in system folder, however, our system costs unnecessary

CPU resource when our system program continuously scans system folder but user does not

modify anything. Therefore, we wonder if there is another method to detect files changed in

any operating system to reduce the CPU cost.

 Second, our system synchronizes files with the cloud through sync folders. Therefore,

the portability of our system is limited because our system program can run successfully if

and only if the devices should own pre-installed synchronizing folder software and JRE. We

can solve the problem above by implementing the web interface. User can upload, modified,

download or delete file through website without any pre-install procedures.

55

 Third, as illustrated in performance analysis section, the major bottleneck of our system

is the performance of encoding and decoding of file, hence, we can emphasize that choose

another algorithms of encoding and decoding. The possible resolution is that we can map

the BigInteger number into a large enough group to reduce the computation cost.

 Forth, our system adopts [1] erasure code to protect file privacy and robustness.

However, once if the attacker modified the contents of codeword symbol files, our system

program cannot recover file even if no symbol file lost. Our system program is lack of error

correcting ability; furthermore, our system also stores codeword symbol files in local sync

folder, which can be fetched by everyone. The error correcting ability is a very important

issue if want to improve our system functionality.

56

Chapter 6

Conclusion

 We implemented a software program together with current public network storage

service system, such as Dropbox [11], LiveMesh [12] and so on, to provide users a new kind

of network storage system, which is never published before. Users can use our system with

simple operating interface and improve the privacy and robustness of files which are

synchronized with the cloud. Our system program support any file formats, such as image,

text audio, or video, and any size of file.

 Our system program will generate a system folder while executing, users can add new

files or folders into the system folder or modify the files in system folder. To synchronize

contents in system folder with the cloud, our system program will encrypt and encode the

corresponding files in system folder and write the codeword symbol files into the

user-assigned sync folders and the codeword symbol files will be uploaded to the cloud

automatically. Besides, when our system is launched, our system program will decode and

decrypt all codeword in sync folders directly and write the original files into the system

folder.

 To improve file privacy, our system encrypt file by AES-128 with an encryption key,

57

which is encrypted by an asymmetric encryption algorithm [1]. Our system can guarantee

that all the network storage servers are compromised, and the attacker cannot obtain any

information about the original file.

 To improve file robustness, our system provides a flexible environment to let users

select the desirable erasure correcting ability our system supports. If the amount of lost

codeword symbol files is below the threshold, our system program still can decode and

recover the original file.

58

Bibliography

〔1〕Hsiao-Ying Lin, Wen-Guey Tzeng. “A Secure Decentralized Erasure Code

for Distributed Networked Storage”. IEEE Transactions on PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 21, NO. 11, NOVEMBER 2010

〔2〕Mario Blaum, Jim Brady, Jehoshua Bruck, Jai Menon. “EVENODD: an efficient scheme

for tolerating double disk failures in RAID architectures”. IEEE Transactions on

COMPPUTERS. VOL. 44, FEBRUARY 1995.

〔3〕Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong,

and Sunitha Sankar. “Row-Diagonal Parity for Double Disk Failure Correction”.

Proceedings of the Third USENIX Conference on File and Storage Technologies. March

31–April 2, 2004

〔4〕Xu Lihao, V. Bohossian, J. Bruck, D.G. Wagner. “Low-density MDS codes and factors of

complete graphs”. IEEE Transactions on Information Theory. Vol 45, SEPTEMBER 1999.

〔5〕Cheng Huang ,Lihao Xu, “STAR : An Efficient Coding Scheme for Correcting Triple Storage

Node Failures”. IEEE Transaction on Computers . Vol 57, JULY 2008

〔6〕Angelo De Caro. ”Java Pairing Based Cryptography Library”.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Cheng%20Huang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Lihao%20Xu
http://www.dia.unisa.it/dottorandi/decaro/

59

http://gas.dia.unisa.it/projects/jpbc/contact.html

〔7〕”Eclipse”. http://www.eclipse.org/

〔8〕”JWorld@TW”. http://www.javaworld.com.tw/jute/

〔9〕Douglas R. Stinson. Cryptography : theory and practice third edition,

Chapman & Hall/CRC, Boca Raton, 2006

〔10〕D. R. Hankerson, D, G,Hoffman, D.A. Leonard, C. C, Lindner, K. T. Phelps,

C. A. Rodger, J. R. Wall. Coding Theory and Cryptography : the essentials

second edition. New York, 2000

〔11〕”Dropbox”. https://www.dropbox.com/

〔12〕”LiveMesh”. http://explore.live.com/windows-live-essentials?os=other

〔13〕”Syncplicity”. http://www.syncplicity.com/

〔14〕”Asus Webstorage”. http://www.asuswebstorage.com/navigate/

http://gas.dia.unisa.it/projects/jpbc/contact.html
http://www.eclipse.org/
http://www.javaworld.com.tw/jute/
https://www.dropbox.com/
http://explore.live.com/windows-live-essentials?os=other

