

I

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

應用線上排程於複合平行工作流程之研究

A study to Online Scheduling for Mixed-Parallel Workflow

研 究 生：王乙融

指導教授：王豐堅 教授

中 華 民 國 一 百 年 九 月

II

應用線上排程於複合平行工作流程之研究

A study to Online Scheduling for Mixed-Parallel Workflow

研 究 生：王乙融 Student：Yi-Rong Wang

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

September 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年九月

III

應用線上排程於複合平行工作流程之研究

研究生: 王乙融 指導教授: 王豐堅 博士

國立交通大學

網路工程研究所

新竹市大學路 1001 號

碩士論文

摘要

在平行系統中對工作流程應用程式排程是一個已知的 NP-Complete 問題。

當在異質執行速度的多群集環境中排程複合平行工作流程時，問題變得更有挑戰

性。現今已有許多演算法被提出，但大多不適合複合平行工作流程與多群集環

境，因此他們不能有效地處理排程問題。本文中，我們提出了一個 MOWS 排

程框架可以有效的排程複合平行工作流程。MOWS 框架將排程程序分為四個步

驟：task prioritizing，waiting queue scheduling，task rearrangement，task allocation。

我們並提出了四個新方法套用在 MOWS 框架下：shortest-workflow-first，

priority-based backfilling，preemptive task execution，All-EFT task allocation。我

們建立了一連串的模擬實驗來評估 MOWS 的效能，實驗數據表示，我們所提

出的四個新方法都較先前的方法要傑出。而最後的 MOWS 框架和先前的方法

相比效能要進步 16%。

關鍵字：工作流程排程、複合平行應用程式、異質多群集環境。

IV

A study to Online Scheduling for Mixed-Parallel

Workflow

Student: Yi-Rong Wang Advisor: Feng-Jian Wang

Institute of Network Engineering

National Chiao Tung University

1001 University Road, Hsinchu, Taiwan 300, ROC

Abstract

Workflow scheduling on parallel systems has long been known to be a

NP-complete problem. The issues become even more challenging when scheduling

mixed-parallel workflows in an online manner in a speed-heterogeneous multi-cluster

environment, which is indispensable for modern grid and cloud computing

applications. However, most existing algorithms were not developed for

mixed-parallel workflows and multi-cluster environments, therefore they can‟t handle

the scheduling issues efficiently. In this thesis, we propose a scheduling framework,

named Mixed-Parallel Online Workflow Scheduling (MOWS), which divides the

entire scheduling process into four phases: task prioritizing, waiting queue scheduling,

task rearrangement, and task allocation. We developed four new methods:

shortest-workflow-first, priority-based backfilling, preemptive task execution and

All-EFT task allocation, for scheduling online mixed-parallel workflows under the

MOWS framework. To evaluate the performance of MOWS, we conducted a series of

simulation studies and compared it with a previously proposed approach in the

literature called OWM. The experimental results indicate that each of the four

V

proposed methods outperforms existing approaches significantly. In average, MOWS

can achieve around 16% performance improvement over OWM in terms of average

makespan and SLR.

Keywords: workflow scheduling, mixed-parallel applications, heterogeneous

multi-cluster environments

VI

致謝

本篇論文得以完成，最主要感謝我的指導教授王豐堅教授。在交通大學的兩

年期間讓我在軟體工程、工作流程領域中能夠深入了解，並且獲得許多寶貴的知

識及經驗。另外，也十分感謝我的口試委員吳毅成博士、黃慶育博士以及黃國展

博士的寶貴意見，得以補足論文中的不足之處。

 其次要感謝實驗室的學長姐、同學及學弟兩年間的指導、照顧與砥礪。在進

入交大這個新環境的時候，得到實驗室王靜慧學姊、許懷中學長以及黃培書學長

許多課業及研究方面的指導。在研究過程中，黃國展學長提供了許多寶貴的意見

與經驗，讓我在研究生活中遇到瓶頸的時候能順利克服，不管是專業的知識、研

究技巧以及文章寫作都讓我受益良多，因為有學長不厭其煩的指導，本篇論文才

得以順利完成。

最後要感謝我的家人，能讓我在無後顧之憂的狀況下全力完成學業，謝謝你

們。

VII

Table of Contents

應用線上排程於複合平行工作流程之研究... III

摘要... III

A study to Online Scheduling for Mixed-Parallel WorkflowIV

Abstract ...IV

致謝...VI

Table of Contents ...VII

List of Figures ... IX

Chapter 1 Introduction .. 1

Chapter 2 Background .. 4

2-1 Application Model ... 4

2-2 Computing Platform Model and Workflow Scheduling 5

2-3 Static Workflow Scheduling .. 6

2-4 Scheduling Multiple Workflows .. 9

Chapter 3 Mixed-Parallel Online Workflow Scheduling .. 12

3-1 Shortest-Workflow-First Strategy .. 13

3-2 Priority-Based Backfilling ... 19

3-3 Preemptive Task Execution .. 24

3-4 All-EFT Task Allocation .. 28

Chapter 4 Software Simulator .. 32

4-1 Major Components in the Workflow Scheduling Process 32

4-2 Classes in the simulator ... 33

4-2-1. DAG ... 33

4-2-2. EventQueue .. 36

4-2-3. Scheduler.. 37

4-2-4. DecisionMaker ... 40

4-2-5. Cluster .. 41

4-3 Simulation Process ... 43

4-3-1. Simulation skeleton .. 43

4-3-2. Workflow Processing ... 46

Chapter 5 Performance Evaluation and Discussion ... 48

5-1 Experimental Setup and Performance Metrics .. 48

5-1-1. Algorithms under Evaluation ... 48

5-1-2. Simulation Setup .. 49

5-1-3. Metrics ... 50

5-2 Experimental Results ... 51

VIII

5-2-1. Shortest-Workflow-First Strategy .. 51

5-2-2. Priority-based Backfilling .. 54

5-2-3. Preemptive Task Execution .. 58

5-2-4. All-EFT Task Allocation .. 61

5-2-5. Overall Improvement Made by MOWS 63

5-2-6. Influence of Inaccurate Execution Time Estimate 66

Chapter 6 Conclusion and Future Work ... 69

Reference ... 71

IX

List of Figures

Figure 2-1 A taxonomy of heuristics-based workflow scheduling algorithms.................................. 7

Figure 2-2 An example of HEFT .. 8

Figure 2-3 Online Workflow Management (OWM) ... 11

Figure 3-1 Four phases in MOWS .. 12

Figure 3-2 Algorithm for calculating estimated remaining execution time in SWF 15

Figure 3-3 The task prioritizing algorithm of SWF ... 16

Figure 3-4 Two example workflows .. 18

Figure 3-5 An example illustrating the advantage of SWF .. 18

Figure 3-6 A scenario of OWM’s backfilling .. 20

Figure 3-7 Profiling algorithm for backfilling .. 21

Figure 3-8 Two example workflows .. 23

Figure 3-9 An example illustrating the advantage of priority-based backfilling 23

Figure 3-10 Algorithm of preemptive task execution ... 26

Figure 3-11 An example of workflow .. 27

Figure 3-12 A comparison of SWS, CPWS, and preemptive task execution 28

Figure 3-13 All-EFT algorithm ... 29

Figure 3-14 An example of workflow ... 30

Figure 3-15 A comparison of AA and All-EFT ... 31

Figure 4-1 Class DAG ... 34

Figure 4-2 The EventQueue class and Event class ... 36

Figure 4-3 Class Scheduler ... 38

Figure 4-4 Class DecisionMaker ... 40

Figure 4-5 Class Cluster ... 42

Figure 4-6 Pseudo code of EventQueue::process() ... 46

Figure 4-7 Flow chart of workflow processing ... 47

Figure 5-1 Makespan performance of SWF with different mean arrival intervals 53

Figure 5-2 SLR performance of SWF with different mean arrival intervals 53

Figure 5-3 Makespan performance of SWF with different computation intensities...................... 54

Figure 5-4 SLR performance of SWF with different computation intensities 54

Figure 5-5 Makespan performance of backfilling with different mean arrival intervals 56

Figure 5-6 SLR performance of backfilling with different mean arrival intervals 56

Figure 5-7 number of backfilling happened v.s. mean arrival intervals .. 57

Figure 5-8 Makespan performance of backfilling with different computation intensities 57

Figure 5-9 SLR performance of backfilling with different computation intensities 58

Figure 5-10 Makespan performance of preemptive task execution with different mean arrival

X

intervals ... 59

Figure 5-11 SLR performance of preemptive task execution with different mean arrival intervals

 ... 59

Figure 5-12 Number of preemption happened v.s. Arrival intervals ... 60

Figure 5-13 Makespan performance of preemptive task execution with different computation

intensities ... 60

Figure 5-14 SLR performance of preemptive task execution with different computation

intensities ... 61

Figure 5-15 Makespan performance of All-EFT with different mean arrival intervals 62

Figure 5-16 SLR performance of All-EFT with different mean arrival intervals.......................... 62

Figure 5-17 Makespan performance of All-EFT with different computation intensities............... 63

Figure 5-18 SLR performance of All-EFT with different computation intensities 63

Figure 5-19 Makespan performance of MOWS with different mean arrival intervals 64

Figure 5-20 SLR performance of MOWS with different mean arrival intervals 65

Figure 5-21 Makespan performance of MOWS with different computation intensities 65

Figure 5-22 SLR performance of MOWS with different computation intensities 66

Figure 5-23 Results of inaccurate execution estimates for average makespan 67

Figure 5-24 Results of inaccurate execution estimates for average SLR 68

1

Chapter 1 Introduction

In the domain of High Performance Computing (HPC), many large-scale

scientific and engineering applications are usually constructed as workflows of

computation executed by different programs. Most workflows can be modeled as

directed acyclic graphs (DAGs) and their performance are usually measured by

makespan, the time between workflow submission and workflow completion.

Workflow scheduling on parallel computers has long been a well-known

NP-Complete problem [1]. Therefore, many heuristic methods have been proposed

[2][3][4][5][6][7]. Most of the previous methods were designed for dealing with

single workflow scheduling.

As the high performance computing platform evolves into grid and cloud

environments, workflow scheduling is confronted with more challenging issues in the

following two aspects. First, grid and cloud are shared computing platforms; therefore

multiple workflows may run on the platform concurrently. Moreover, these workflows

may come in at different time. Online workflow scheduling thus becomes an

important issue. Second, grid and cloud differ from traditional parallel computers in

that they are usually composed of several computing clusters located at different

places. This heterogeneous multi-cluster architecture makes workflow scheduling

even more challenging.

Scheduling online workflows in a speed-heterogeneous multi-cluster environment

is a key issue. Zhao and Sakellariou [8] presented various approaches to schedule

multiple workflows arriving at the same time. However, their approaches might not

work in practical grid and cloud environments where workflows submitted by

different users might come in at different time. Yu and Shi [9] proposed a

planner-guided dynamic scheduling approach for dealing with the online workflow

2

scheduling problem, multiple workflows coming at different time. The approach in [9]

assumes that each task in the workflow is a sequential program requiring only one

single processor for execution. However, in practice there are mixed-parallel

workflows where each task itself may be a SPMD (Single-Program-Multiple-Data)

[10] parallel program requiring multiple processors for execution. Scheduling

mixed-parallel workflow is even more challenging because it has to deal with the

resource fragmentation issue [11] incurred by parallel task allocation. To deal with

online mixed-parallel workflow scheduling, Hsu, Huang, and Wang [12] proposed an

Online Workflow Management (OWM) approach.

OWM in [12] divides the multiple-workflow scheduling process into four phases:

task prioritizing, waiting queue scheduling, task rearrangement, and task allocation.

The task prioritizing phase manages the task interdependence within a single

workflow and decides when a task can be put into waiting queue. Waiting queue

scheduling prioritizes tasks in the waiting queue which may come from different

workflows. The task rearrangement phase allows some low priority tasks to bypass

high priority tasks in order to increase resource utilization. The task allocation phase

allocates an appropriate set of resources to a task. OWM proposed and evaluated

several approaches corresponding to these four phases.

In this thesis, we adopt the Simple Workflow Scheduling (SWS) [9][12] in the task

prioritizing phase and develop four new approaches for the remaining three phases,

which can further improve the performance made by OWM. These four approaches

are shortest-workflow-first waiting queue scheduling, preemptive task execution,

priority-based backfilling, and All-EFT task allocation. The shortest-job-first policy

cooperates with preemptive task execution in the waiting queue scheduling phase.

Priority-based backfilling and All-EFT task allocation are used in the task

rearrangement and task allocation phases, respectively. The shortest-workflow-first

3

waiting queue scheduling approach attempts to minimize the average waiting time by

executing smaller workflows first. Preemptive task execution takes advantages of the

virtualization and VM migration technologies in cloud computing to preserve the

computation of preempted tasks. Priority-based backfilling allows some low priority

tasks to be allocated before high priority tasks based on the conservative backfilling

strategy [13]. All-EFT task allocation considers all candidate clusters and allocates a

task to the cluster which can lead to the earliest finish time of that task.

To evaluate the effectiveness of our approaches, we developed a simulator to

conduct a series of experiments based on the discrete-event simulation methodology

[14]. Experimental results show that our approaches achieve better performance than

OWM in each scheduling phase. The overall performance improvement, in terms of

makespan, can be up to 10% in average.

The rest of this thesis is structured as follows: Chapter 2 discusses the

background knowledge and related work of workflow scheduling. Chapter 3 presents

our online workflow scheduling approaches. Chapter 4 describes the software

simulator for the experiments of performance evaluation. Chapter 5 presents the

experimental results and discussions. Chapter 6 concludes the thesis.

4

Chapter 2 Background

In this chapter, we describe the application model and computing platform, and

survey related workflow scheduling algorithms. Section 2-1 and section 2-2 describes

the application model and computing platform. Section 2-3 reviews static workflow

scheduling algorithms. Section 2-4 surveys concurrent workflow and online workflow

scheduling algorithms.

2-1 Application Model

A scientific workflow application can be modeled as a Directed Acyclic Graph

(DAG) to represent the tasks and their order. A DAG is usually defined as a pair (V, E),

where V and E are finite sets. V={ti|i=1,…,n} denotes the set of n individual rigid tasks

[15], of which each uses a fixed number of resources. E denotes the set of edges {ei,j|1≤

i, j≤ n} where ei,j, an arc from ti to tj, represents that ti is assigned as a pre-task of tj, i.e.,

ti is the parent of tj. Each node (task) has a weight representing the amount of work to

be done. A task may take different computation costs to finish its work on different

processors, depending on the processor‟s architecture and speed. Each edge, ei,j is

weighted with the size of data sent from task ti to tj. A task can be executed only when it

receives all the data from its parents. The data transfer between two tasks incurs a

communication cost that depends on network capabilities. It is assumed that data

transfer between two tasks assigned to the same processor incurs no communication. In

a workflow application, a task without ancestor is called as an entry task and a task

without any descendant is an exit task. It is assumed that there is only one entry and one

exit task in a workflow application.

5

2-2 Computing Platform Model and Workflow Scheduling

A High Performance Computing Cloud (HPC Cloud) can be implemented with a

multi-cluster platform [16], which consists of k heterogeneous clusters Ci, i=1,…,k that

can be geographically distributed and vary on both performance and architecture. Each

cluster Ci contains Pi processors of same type and speed (homogeneous), while

different clusters may differ in the amount of processors. All of the clusters are fully

connected through heterogeneous network links with different bandwidths and

latencies.

In general, scheduling parallel and distributed applications is a known

NP-Complete problem. There are many scientific efforts paid for optimizing workflow

scheduling problem by minimizing the overall execution time, or makespan, of the

workflow application in the past years. Therefore, many scheduling methods have

been proposed and can be classified into three categories [17]: full-ahead planning,

just-in-time and hybrid.

A full-ahead planning scheduling algorithm (static planning) assumes that a

scheduler has enough knowledge of workflows and resources in the very beginning. A

static planning makes task assignments according to the knowledge and machine status

before workflow application starts to execute. HEFT (Heterogeneous Earliest Finish

Time) [2] is one of the most popular static heuristic and proven that it performs better

than other heuristics. A static planning is not suitable for some situations, e.g.,

individual resource fails, and not easy to accurately estimate the costs of tasks.

On the contrary, a just-in-time scheduling algorithm (dynamic planning) makes a

task allocation with available tasks and free resources when an application is running. A

6

dynamic planning is usually applied when it is difficult to estimate the costs of tasks, or

when the workflow applications are submitted at different times (which is also called

online scheduling). For example, RANK_HYBD, a planner-guided scheduling strategy

presented in [9], is designed to deal with the multiple online workflow scheduling

problem.

A hybrid (adaptive) approach presumes enough information is known in the

beginning, and a task assignment decision is made before execution of workflow

applications. However, it also makes reassignments when the following circumstances

happen: (1) inaccuracy prediction, (2) change of resource status, or (3) another

workflow application is submitted, at runtime. For example, Z. Yu et al. [5] proposed a

HEFT-based adaptive rescheduling algorithm, AHEFT. An adaptive approach seems to

take full advantages of static and dynamic ones. However it might introduce new efforts

due to the consideration from both information.

2-3 Static Workflow Scheduling

 The taxonomy proposed in [18] classified workflow scheduling algorithms into

two groups: heuristics-based and meta-heuristics-based.

7

Figure 2-1 A taxonomy of heuristics-based workflow scheduling algorithms

Heuristics-based scheduling algorithms fall into several categories, including (1)

immediate task scheduling, (2) list-based scheduling, (3) cluster-based scheduling, and

(4) duplication-based scheduling as shown in Figure 2-1. The immediate task

scheduling is the simplest heuristic for workflow applications; it makes schedule

decisions based on the availability of tasks only. The Myopic algorithm [19] has been

implemented in some Grid systems such as Condor DAGMan [20].

A list-based scheduling algorithm comprises two phases: the task prioritizing

phase and the resource selection phase. The task prioritizing phase sets the priority of

each task and generates a scheduling list by sorting the tasks according to their

priorities. The resource selection phase selects tasks in order and maps each task to its

optimal resource. List-based heuristics, which are generally accepted as the best

overall approach, can be further divided into three subclasses according to the task

parallelism [2][4][21].

HEFT [2] is a well-known list-based algorithm in heterogeneous environments.

8

HEFT first traverses the DAG from bottom to top in order to calculate an upward rank

value for each task. The tasks are then sorted in non-ascending order of their ranks.

According to the order, each task is assigned to the resource that minimizes the

Earliest Finish Time (EFT) of the task. Many heuristics have been applied based on

HEFT [3][5][6]. Figure 2-2 shows an example of HEFT.

Figure 2-2 An example of HEFT

Both cluster-based heuristics and duplication-based heuristics are designed to

reduce the communication costs between data interdependent tasks [22][23][24][25].

In cluster-based heuristics, the tasks in the same group (cluster) are assigned into the

same resource, while the duplicated-based heuristics assign the idling time of a

resource to some parent tasks, which have been scheduled on other resources.

The meta-heuristics-based scheduling algorithm provides both a general structure

and strategy guidelines for developing a heuristic to fit a particular kind of problem. A

meta-heuristics-based algorithm, which is generally applied to a large and

complicated problem, provides an efficient way of moving quickly toward a very

9

good solution. There are three meta-heuristics-based algorithms, namely Greedy

randomized adaptive search procedure (GRASP) [26], Genetic Algorithm [27] and

Simulated Annealing [28]. However, the scheduling time in meta-heuristics-based

algorithms is significantly higher than heuristics-based algorithms.

There are comparisons [18][29] between the heuristics-based approaches and

meta-heuristics-based approaches. The result shows that the meta-heuristics-based

one usually performs better than the heuristics-based one, since a

meta-heuristics-based approach can produce an optimized solution based on the

performance of the entire workflow. However, the time complexity of the

meta-heuristics based algorithm grows more rapidly than that of the heuristics-based

algorithm if the workflow has more tasks.

2-4 Scheduling Multiple Workflows

The scheduling algorithms aforementioned usually consider a single workflow

only. In recent years, few methods have been proposed for dealing multiple

workflows. Zhao and Sakellariou [8] presented three different approaches to schedule

multiple workflows at the same time.

(1) Scheduling the workflows one after the other with any single-workflow

scheduling algorithm

(2) Scheduling the workflows in sequence with backfilling

(3) Merging multiple workflows into a single workflow.

Furthermore, approaches mentioned above are infeasible when multiple

workflows come at different time. Thus, RANK_HYBD [9] has been proposed to

support online workflow scheduling. The task scheduling approach of RANK_HYBD

10

re-prioritizes the tasks in the waiting queue repeatedly by the following rules:

(1) If all the tasks in waiting queue come from single workflow, then it prioritizes

tasks in a non-ascending order of task ranking value, which is described in

HEFT [2].

(2) Otherwise, it prioritizes tasks in the opposite order.

Moreover, RANK_HYBD does not consider the mixed-parallel workflows where

an application has more than one task that can execute concurrently and a task can run

with more than one resource simultaneously. Online Workflow Management (OWM)

[12] has been proposed for the online mixed-parallel workflows.

In OWM, there are four processes: Critical Path Workflow Scheduling (CPWS),

Task Scheduling, Task Rearrangement and Adaptive Allocation (AA). Figure 2-3

shows the structure of OWM. CPWS manages the task interdependence and submits

tasks into waiting queue according to the critical path in workflows. The task

scheduling process in OWM sorts waiting queue like RANK_HYBD. In the

task-parallel task scheduling, there may have some slacks among the tasks when the

free processes are not enough for the first task in the waiting queue. The

multi-processor task rearrangement process works for minimizing the slacks with

latter tasks in the queue to improve utilization. When there are free resources, AA

takes the highest priority task in the waiting queue, and selects the required resources

to execute the task.

11

Figure 2-3 Online Workflow Management (OWM)

12

Chapter 3 Mixed-Parallel Online Workflow

Scheduling

In this chapter, we propose a Mixed-parallel Online Workflow Scheduling

(MOWS) approach. According to OWM [12], we also divides the mixed-parallel

online workflow scheduling problem into four phases: task prioritizing, waiting queue

scheduling, task rearrangement, and task allocation, as shown in Figure 3-1. MOWS

adopts SWS [9][12] in the task prioritizing phase and develops four new strategies for

the other three phases: (1) shortest-workflow-first scheduling, (2) priority-based

backfilling, (3) preemptive task execution, and (4) all-EFT task allocation.

Figure 3-1 Four phases in MOWS

13

3-1 Shortest-Workflow-First Strategy

The waiting queue scheduling phase in OWM adopts RANK_HYBD [9].

RANK_HYBD calculates the rank value of each task according to the definition in

HEFT [2]. If all of the tasks in the waiting queue come from the same workflow, the

scheduler sorts the tasks in non-ascending order by the rank value. On the other hand,

if there are multiple workflows in the queue, the tasks are sorted in non-descending

order according to their rank values. In an extreme case where all workflows are

actually single jobs, the RANK_HYBD approach is equivalent to the Shortest Job

First (SJF) policy [30]. However, for general workflows with more than one job, the

SJF policy can‟t always be guaranteed in RANK_HYBD since a task with a lower

rank value may come from a larger workflow and the tasks from different workflow

may be interleaved with each other.

In this thesis we propose a Shortest-Workflow-First (SWF) strategy which

enforces the SJF policy in the waiting queue scheduling phase in order to reduce the

average makespan of all workflows. SJF is a well-known scheduling policy which is

especially appropriate for batch tasks [30]. In SWF, the scheduler calculates the

estimated remaining execution time of each workflow whenever a new workflow is

submitted to it. After that, tasks in the waiting queue are first sorted in non-descending

order by the estimated remaining execution time of the workflows they belong to.

Then, tasks coming from the same workflow are sorted in non-ascending order

according to their rank values. Each time a task becomes ready, it is simply put into

the appropriate position among the tasks of the same workflow in the waiting queue

according to its rank value. Figure 3-2 describes the algorithm for calculating the

estimated remaining execution time of each workflow. First, lines 5 to10 finds the

14

ready tasks for the workflow. Lines 11 to 24 runs in a loop to select the ready task

with the highest rank value, map it to the resource that produces the minimal

estimated finish time of that task, and check if any descendants of the task become

ready until all of the tasks have been mapped.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

W: workflow

C: profile of clusters

Calc_ERET(W, C)

begin

AT = Ø ;

UT = Ø ;

ERET = 0;

for each uncompleted task ti ϵ W do

if all of the ancestors of ti are completed then

AT = AT + {ti};

else

UT = UT + {ti};

end for

while (AT≠Ø) do

select ti ϵ AT where ti has the highest rank value;

MapToBestResource(ti, C); // map ti to the resource with best

performance and update profile.

update estimated information of ti;

if estimated finish time of ti > ERET then

15

Figure 3-2 Algorithm for calculating estimated remaining execution time in SWF

Figure 3-3 shows the task prioritizing algorithm of SWF. Line 2 sorts the waiting

queue using quicksort with a customized comparison function CMP described in lines

4 to 16. The comparison function first checks if the input tasks come from the same

workflow. If so, tasks are compared by their rank values and the task with higher rank

value has higher priority. Otherwise, tasks are compared by the estimated remaining

execution time of the workflows they belong to and the task coming from a workflow

with shorter remaining time will get a higher priority.

16

17

18

19

20

21

22

23

24

25

26

27

ERET = estimated finish time of ti

end if

for each descendant tj of ti do

if tj is available then

UT = UT – {tj};

AT = AT + {tj};

end if

end for

AT = AT – {ti};

end while

return ERET;

end

Q: waiting queue

SWF_Prioritizing(Q)

16

Figure 3-3 The task prioritizing algorithm of SWF

In the following, we use two example DAGs and a resource set, shown in Figure

3-4, to compare how RANK_HYBD and SWF work. The computation time of each

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

begin

QuickSort(Q, CMP);

end

ti: a task in the waiting queue

tj: a task in the waiting queue

CMP(ti, tj)

begin

wi = the workflow ti belongs to;

wj = the workflow tj belongs to;

di = estimated remaining execution time of wi;

dj = estimated remaining execution time of wj;

ri = rank of ti;

rj = rank of tj;

if wi = wj then

return (ri > rj);

else

return (di < dj);

end if

end

17

task on different clusters is given in the tables below the DAGs. The number in the

parentheses next to the task name indicates the number of resources required by the

task. The rank of each task calculated according to the definition in [2] is:

 DAG A: A1 (75); A3 (45); A2 (40); A4 (20)

 DAG B: B1 (80); B3 (60); B2 (55); B4 (25); B5 (25); B6 (5)

The scheduling results according to RANK_HYBD and SWF are shown in the

two subfigures of Figure 3-5, respectively, where the width of each block represents

the number of processors used and the length stands for the required execution time.

In the case of RANK_HYBD, task B4 becomes ready when task B1 finishes at time

10. Then, task B4 is allocated at time 15, when task A1 finishes, since it has the

smallest rank value among tasks in the waiting queue. The allocation of B4 would

delay the execution of task A2 and task A3 and result in a makespan of 45 time units

for DAG A as shown in the Figure 3-5. On the other hand, SWF makes sure that tasks

from DAG A will have higher priority than tasks from DAG B since DAG A is

smaller than DAG B. The enforcement of the SJF policy in SWF allows tasks A2 and

A3 to be allocated before B4, leading to a shorter makespan for DAG A while the

makespan of DAG B remains the same as shown in Figure 3-5. This would reduce the

average makespan of all DAGs and improve the overall system performance.

18

Figure 3-4 Two example workflows

Figure 3-5 An example illustrating the advantage of SWF

19

3-2 Priority-Based Backfilling

After waiting queue scheduling, the scheduler tries to allocate each task in

sequence. If the number of free resources is not enough for the first task, the resources

are left idle and become a schedule hole, resulting in degraded resource utilization. To

resolve the problem, the task rearrangement phase is introduced to allow out-of-order

execution to improve resource utilization and thus the overall system performance.

Backfilling strategies are extensively used by many SPMD based parallel job

schedulers to reduce resource fragmentation by permitting tasks to run out of order as

long as they do not delay certain tasks. Backfilling is traditionally used with a

First-Come-First-Serve (FCFS) scheduler. Users are expected to provide estimates of

task execution time. The scheduler rearranges the waiting queue according to these

estimates to improve resource utilization and system performance while maintaining a

certain degree of fairness. Various versions of backfilling have been proposed [31],

e.g. EASY backfilling and conservative backfilling.

EASY backfilling allows a task to backfill provided that the task does not delay

the first task in the waiting queue. On the other hand, conservative backfilling allows

a task to backfill as long as any previous task in the waiting queue will not be delayed.

In [12], OWM introduced both EASY and conservative backfilling into the task

rearrangement phase. However, experiments showed that such rearrangement did not

necessarily lead to performance improvement. This is because the backfilling in

OWM creates an individual profile of resource usage at future times for each cluster

instead of a single profile for the entire multi-cluster environment. Backfilling is

traditionally used in a single cluster or parallel computer system. OWM applies the

20

concept of backfilling directly to a multi-cluster environment. Therefore, each cluster

is treated individually with its own profile. The backfilling in OWM works as follows.

Each task in the waiting queue is repeatedly scheduled into the profiles of all clusters

to find out the best possible Earliest Start Time (EST). The tasks in the waiting queue

are then allocated with the AA technique in OWM in the non-descending order of EST.

However, this approach incurs some problem. Consider a scenario for OWM‟s

backfilling shown in Figure 3-6, where the length of each block represents the number

of processors used and the width stands for the required execution time. Notice that

the width of a task may be different on different resources since the task requires

different execution times on different resources in a heterogeneous environment.

OWM maintains individual profiles for three resources. In this scenario, OWM will

allocate task C before task B since task B would not be delayed by the backfilling

according to the profile of R3, which has more processors than R1 and R2. However,

since task A is given trial allocations on all three profiles, it may not actually be

allocated on R3. In that case, the allocation of task C before task B might result in the

delay of task B and thus deteriorate the makespan of the entire workflow. To

overcome the drawback of OWM‟s backfilling, we propose a priority-based

backfilling approach in the following.

Figure 3-6 A scenario of OWM‟s backfilling

21

We propose a modification to the original conservative backfilling strategy,

which makes it amenable to priority-based waiting queues. The modified backfilling

strategy is described below:

1. Each task in the waiting queue holds three attributes: Estimated Start Time

(EST), Estimated Finish Time (EFT), and Estimated Allocated Cluster

(EAC).

2. The scheduler creates a profile for the entire multi-cluster environment based

on the conservative backfilling strategy, recording the estimated information

of each task. The profiling algorithm is described in Figure 3-7.

3. Each time a new task is submitted into the waiting queue, the scheduler will

re-create the profile and update the estimated information of tasks.

4. Then scheduler allocates tasks in the non-descending order by their estimated

start time instead of their priority.

Figure 3-7 Profiling algorithm for backfilling

To illustrate the advantage of our backfilling approach, consider the simple

DAGs shown in Figure 3-8. The computation time of each task on two different

clusters and the number of resources required by each task are given in the tables

for all tasks in their order in waiting queue do

1. Find the first point where enough resources are available on some cluster.

2. Update EST, EFT, and EAC for that task.

3. Mark the resources occupied for the duration of the task's estimated execution

time.

end for

22

below the DAGs. The task ranking result of each DAG is:

 DAG A: A1 (230); A4 (170); A3 (160); A6 (125); A2 (105); A5 (75); A7

(60)

 DAG B: B1 (235); B3 (195); B2 (140); B6 (110); B4 (75); B5 (75); B7 (55);

B8 (30)

The two subfigures in Figure 3-9 show the scheduling results of pure

RANK_HYBD and RANK_HYBD accompanied with our priority-based backfilling,

respectively. We also show the content of waiting queue at different time points in the

two subfigures in order to illustrate the allocation sequence and backfilling activities.

The blue colored tasks are allocated at that time point according to the RANK_HYBD

mechanism and the red colored tasks are backfilled at the time point by our

priority-based backfilling approach. The numbers of processors in R1 and R2 are 14

and 12, respectively. In the case of RANK_HYBD, task A2 is delayed since task A3

cannot be allocated at time 15, leading to a larger makespan of the overall workflow.

On the contrary, with priority-based backfilling, task A2 is backfilled at time 15 since

the backfilling will not delay the execution of task A3. Later, task A3 and task B3 are

also backfilled at time 25. Finally, the priority-based backfilling approach achieves

approximately 20% performance improvement, in terms of average makespan of the

two workflows, compared to the pure RANK_HYBD approach.

23

Figure 3-8 Two example workflows

Figure 3-9 An example illustrating the advantage of priority-based backfilling

24

3-3 Preemptive Task Execution

In SWS [9], if a task with a lower rank value becomes ready and enters the

waiting queue earlier than a task coming from the same workflow and having a higher

rank value, the lowerly ranked task might be allocated first and hence delay the

allocation of the higherly ranked task, degrading the makespan of the entire workflow.

To resolve the above issue, CPWS in OWM [12] enforces that tasks of the same

workflow will be put into the waiting queue in the non-ascending order of their rank

values. This policy achieves performance improvement in terms of average makespan,

compared to SWS, as shown in [12]. However, we found that CPWS may

unnecessarily reduce the resource utilization and thus deteriorate the overall system

performance since some lowerly ranked tasks are prevented from execution even

though the higherly ranked tasks are not yet ready and there are enough resources for

the lowerly ranked tasks. To take the advantages of both SWS and CPWS, we propose

a preemptive task execution approach for the task allocation phase to cooperate with

SWS used in the task prioritizing phase.

Our approach allows a lowerly ranked task to be allocated and executed before

higherly ranked tasks if they are not yet ready. However, later when a higherly ranked

task becomes ready, the system will suspend the lowerly ranked task to release

resources for the higherly ranked task‟s immediate execution. The suspended task is

put back to the waiting queue for scheduling and will be resumed later to finish its

remaining computation on some available resources. This suspend-and-resume

approach is achieved through the help of the virtualization technology in cloud

computing environments, where virtual machines can be migrated smoothly between

different machines.

25

Figure 3-10 shows the algorithm of preemptive task execution. Line 2 first finds

a resource which produces the minimal estimated finish time for the current task.

Through lines 4 to 13, the scheduler travels the running queue to check each running

task which comes from the same workflow and has a lower rank value than the

current task. If the estimated finish time of the current task can be further reduced by

preempting any such a running task, the scheduler then suspends that running task,

first found, and moves it back to the waiting queue. Finally, the scheduler allocates

the current task by the All-EFT task allocation method, which will be described in the

next section.

1

2

3

4

5

6

ti: the task to allocate

Q: a set of tasks in the waiting queue

R: a set of running tasks

C: a set of clusters

PreemptiveTaskExecution(ti, Q, R, C)

begin

ck = MapToBestResource(ti, C); // map ti to the resource with the best

performance.

minEFT = EFT(ti, ck)

for each task tr ϵ R and tr belongs to the same workflow as ti do

if ti has higher rank than tr and can finish before minEFT by preempting tr

then

Suspend tr;

26

Figure 3-10 Algorithm of preemptive task execution

Figure 3-11 and Figure 3-12 present an example to illustrate the differences

between SWS, CPWS, and our SWS+preemptive task execution. Figure 3-11 is the

information of the workflow used in the example. Figure 3-12 shows three different

resultant schedules produced by the three different approaches. In this example, the

order of all tasks in workflow A, from high to low rank values, is A1, A2, A4, A3, A5.

In the case of SWS, A3 is allowed to be allocated before A4 although it has a smaller

rank value, resulting in a makespan of 90 time units. In the case of CPWS, the

allocation sequence is enforced to conform to the rank order. Therefore, A4 is

allocated before A3. This arrangement leads to a shorter makespan, 70 time units, than

in the case of SWS. Notice that unlike traditional parallel job allocation, the execution

starting sequence may be different from the allocation sequence for workflow

scheduling since tasks might have data dependency between each other. That is why

in Figure 3-12 (B) it appears that A3 begin its execution before A4 although actually

A4 gets its allocation before A3, because A4 has to wait for input data from A2 to start

its execution. In the case of our SWS + preemptive task execution, A3 is allocated

before A4 since it becomes ready earlier than A4. However, when A4 becomes ready,

7

8

9

10

11

12

13

Q = Q + {tr};

R = R – {tr};

break;

end if

end for

allocate ti; //using the All-EFT approach to be described in the next section

end

27

A3 is suspended at time 35 to release resources for A4. A3 is resumed later on another

resource at time 40. Since the SWS + preemptive task execution approach guarantees

the priority of A4 without sacrificing resource utilization, it achieves the best

makespan, 65 time units, among the three approaches.

Figure 3-11 An example of workflow

28

Figure 3-12 A comparison of SWS, CPWS, and preemptive task execution

3-4 All-EFT Task Allocation

In the task allocation method of OWM, which is called AA, when there are more

than one cluster being able to accommodate a task, the scheduler allocates the task to

the cluster among them which can lead to the earliest estimated finish time. If there is

only one cluster that can accommodate the task, the scheduler will calculate the

earliest estimated finish time of the task on each cluster in the system and allocate the

task to the cluster with the earliest estimated finish time.

In this thesis, we adopt an All-EFT approach, which always considers each

cluster in the system and allocates the task to the cluster leading to the earliest

29

estimated finish time. Figure 3-13 describes the All-EFT approach in an algorithmic

style.

Figure 3-13 All-EFT algorithm

Considering a simple workflow given in Figure 3-14, the ranking list of tasks is

{A1, A3, A2, A4, A5, A6, A7}. Figure 3-15 shows the scheduling results obtained

from AA and All-EFT task allocation, respectively. According to the ranking list, at

time zero A1 is allocated first. At time 15, three tasks, A3, A2, and A4, become ready

and A3 is allocated first according to their rankings. When trying to allocate A2, in the

case of AA, it is allocated to resource R2, since more than one cluster, R2 and R3, has

ti: the task to allocate

Q: a set of tasks in the waiting queue

R: a set of running tasks

C: a set of clusters

All_EFT(ti, Q, R, C)

begin

for each cluster ci ϵ C do

Calculate EFT(ti, ci);

end for

Assign task ti to the cluster leading to the earliest estimated finish time for ti;

Q = Q – {ti};

R = R + {ti};

end

30

enough processors at time 15 and AA picks up the best one among them. Notice that

although the allocation decision is made at time 15, A2 starts its execution at time 20

on R2 because of data communication cost. On the other hand, All-EFT allocates A2

to resource R1, starting execution at time 20, despite it is occupied at time 15 when

making the allocation decision. Such allocation of A2 allows A2, A5, and A7 to finish

their execution earlier, leading to a shorter makespan of the overall workflow. In

Figure 3-15, the makespan produced by All-EFT task allocation is 15% less than that

produced by AA.

Figure 3-14 An example of workflow

31

Figure 3-15 A comparison of AA and All-EFT

32

Chapter 4 Software Simulator

This chapter presents the software simulator that we developed for simulating the

workflow scheduling process in a multi-cluster platform. The simulator will be used

to conduct various simulation experiments for evaluating the proposed workflow

scheduling algorithms in the next chapter. Section 4-1 depicts major components in

the simulation process. Section 4-2 describes the classes used to implement the

components in the simulator, and Section 4-3 presents the simulation process.

4-1 Major Components in the Workflow Scheduling Process

Input Workload

A workflow application is represented by a DAG G = (V, E), where V is a set of

nodes, each representing a task, and E is a set of edges, each defining the computation

precedence order between two tasks.

Global Clock

In a discrete-event based simulation, the simulator maintains a global clock, and

the operation of a system is represented as a chronological sequence of events. The

simulator runs in a loop to remove the smallest time-stamped event from the event

queue and process it. Each round the simulator processes the event; it sets the global

clock to the time-stamp of the event.

Scheduler

The scheduler maintains the task interdependence in each workflow and calls the

chosen algorithm to schedule the workflows. It is instrumented with some protection

mechanisms for detecting the possible implementation errors of the scheduling and

33

allocation algorithms. If the allocation made by the chosen algorithm is unreasonable,

e.g. a task starts its execution before receiving all the data from its parents, the

scheduler throws an error message and stops the simulation.

Multi-cluster Environment

A multi-cluster platform consists of several clusters, in which each cluster may be

composed of different amount of homogeneous processors. All of the clusters are fully

connected through heterogeneous network links with different bandwidths and

latencies.

4-2 Classes in the simulator

In this section, the classes used in the simulator are described, including DAG,

EventQueue, Scheduler, DecisionMaker, and Cluster classes.

4-2-1. DAG

DAG provides methods to generate input workloads and stores the generated

workflows including tasks and edges. Figure 4-1 shows an UML diagram of class

DAG.

34

DAG

+node: long

+shape: double

+outDegree: long

+CCR: double

+bRange: double

+wDag: long

+job: Job[]

+connRelation: long[][]

+CommuniCost: long[][]

+submitTime: long

+finishTime: long

<<create>>-DAG()

+initial(node: long, shape: double, outdegree: long, ccr: double, brange: double, wdag: long, maxnp: long): void

+ShapeGenerator(): void

+RelationGenerator(): void

+CostGenerator(): void

Figure 4-1 Class DAG

The attributes and operations in class DAG are described as following:

Attributes

1. node: the number of tasks in the DAG.

2. shape: a number controlling the shape of the DAG. If shape > 1, it generates a

shorter graph with a high parallelism degree. Otherwise, it generates a longer

graph with a low parallelism degree.

3. outDegree: the maximum number of immediate descendants of a task.

4. CCR: communication cost to computation cost ratio.

5. bRange (): distribution range of computation costs of tasks on clusters. It is the

heterogeneous factor for cluster speeds. A large range indicates significant

differences in task‟s computation costs on different clusters.

6. wDAG: the average computation cost of the DAG.

7. Job: tasks and their estimated computation costs in the DAG.

8. connRelation: computation precedence order between tasks.

9. CommuniCost: estimated sizes of data transfers between tasks.

10. submitTime: the submission time of the DAG.

35

11. finishTime: the finish time of the DAG.

Operations

1. initial(): an operation that randomly generates a DAG according to the input

parameters mentioned above. It receives all the parameters needed for

generating a DAG and invokes ShapeGenerator(), RelationGenerator() and

CostGenerator() with input parameters.

2. ShapeGenerator(): an operation that generates the shape of a DAG using the two

parameters, node and shape. The height (depth) of a DAG is randomly

generated from a uniform distribution with mean value equal to . The

width for each level is randomly generated from a uniform distribution with

mean value equal to . If Shape > 1, it generates a shorter

graph with a high parallelism degree. Otherwise, it generates a longer graph

with a low parallelism degree.

3. RelationGenerator(): an operation that generates the computation precedence

order of a DAG according to the input parameters: node and outDegree. The

number of immediate descendants of each task is randomly generated from a

uniform distribution with the range [1, outDegree] .

4. CostGenerator(): an operation that generates the computation costs and the

communication costs of a DAG. The average estimated computation cost of

each task , i.e. , is randomly generated from a uniform distribution

ranging between [1, 2 * wDag]. The estimated computation cost of each task

 on each cluster , i.e. , is randomly generated from a uniform

distribution with the range:

36

4-2-2. EventQueue

EventQueue maintains a global system clock and processes the Event instances

generated during the simulation process, of which each contains 4 attributes <type,

time, dagIndex, jobIndex>. Each time an event occurs, EventQueue invokes the

scheduler to simulate the scheduling process. The structures of the EventQueue class

and Event class are shown in Figure 4-2.

Event

+type: eventType

+time: long

+dagIndex: long

+jobIndex: long

<<create>>-Event()

<<create>>-Event(e: eventType, t: long, j: long, d: long)

EventQueue

+time: long

-queue: std::list<Event>

<<create>>-EventQueue()

+enQueue(e: Event): void

+deQueue(): Event

+remove(e: Event): void

+size(): unsigned

+process(dag: DAG, dagNo: long, sched: Scheduler): void

Figure 4-2 The EventQueue class and Event class

Attributes

1. time: the global system clock.

2. queue: a priority queue storing a set of Event instances. The event with the

smallest time-stamp has the highest priority.

Operations

1. enQueue(E): an operation that inserts a new event E into the queue.

2. deQueue():an operation that removes and returns the event with the smallest

time-stamp.

3. remove(E): an operation that removes the event E from the queue.

4. size():an operation that returns the size of the queue.

5. process():a loop that continuously removes the smallest time-stamped event from

37

the event queue and processes it.

4-2-3. Scheduler

The Scheduler maintains the task interdependence in a workflow and manages

the waiting queue and running queue. When a task becomes ready, the Scheduler puts

it into the waiting queue. Later, when a task begins its execution, the Scheduler moves

it into the running queue. When an exit node of a workflow finishes, the Scheduler

will calculate the makespan of the workflow. The Scheduler does not make a

scheduling decision by itself; instead it invokes DecisionMaker to make a scheduling

decision. Moreover, the scheduler is instrumented with some protection mechanisms

for detecting the possible implementation errors of the scheduling and allocation

algorithms. If the allocation made by DecisionMaker is unreasonable, e.g. a task starts

its execution before it becomes ready, the Scheduler throws an error message and

stops the simulation. Figure 4-3 shows Scheduler class.

38

Scheduler

+dagNo: long

+clusterNo: long

+dag: DAG[]

+cluster: Cluster *

+eventQueue: EventQueue *

+decisionMaker: DecisionMaker *

+waitq: std::list<queueNode>

+runq: std::list<queueNode>

<<create>>-Scheduler(cluster: Cluster, clusterNo: long, eventQueue: EventQueue, decisionMaker: DecisionMaker)

+enQueue(Job): void

+remove(Job): void

+size(): unsigned

+front(): Job

+calc_ccCost(t: long, dagIndex: long, jobIndex: long, cluster: Cluster, clusterNo: long, realtime: bool): long

+jobMapping(): void

+dagSubmit(t: long, dag: DAG): void

#jobSubmit(t: long, dagIndex: long, jobIndex: long): void

+reschedule(t: long): void

#jobSelect(t: long): queueNode

+jobAllocate(t: long, dagIndex: long, jobIndex: long): bool

#jobCancel(t: long, dagIndex: long, jobIndex: long): void

+jobFinish(t: long, dagIndex: long, jobIndex: long): void

Figure 4-3 Class Scheduler

Attributes

1. dagNo: the total number of workflows.

2. clusterNo: the total number of clusters.

3. eventQueue: a pointer pointing to the EventQueue instance.

4. decisionMaker: a pointer pointing to the DecisionMaker instance.

5. waitq: a set of ready tasks.

6. runq: a set of running tasks.

Operations

1. enQueue(T): an operation that adds a ready task T into the waiting queue and

invokes the prioritizing operation supported by DecisionMaker.

2. remove(T): an operation that removes a task T from the waiting queue and

invokes the prioritizing operation supported by DecisionMaker.

3. size(): an operation that returns the size of the waiting queue.

4. front(): an operation that returns the first task in the waiting queue.

39

5. calc_ccCost(t, dagIndex, jobIndex, Cluster, i, realtime): an operation that

calculates the Earliest Start Time of task <dagIndex, jobIndex> on the i
th

cluster Ci. If the input parameter realtime is true, the Scheduler assumes that

data transfer starts at time t. Otherwise, the Scheduler assumes that the data

transfer starts right after the parents of the task finish.

6. jobMapping(): an operation that maps all of the submitted workflows to the

clusters before execution. This operation is called by EventQueue before

processing all of the Event instances and only for static scheduling algorithms.

7. dagSubmit(t, W): an operation that submits a workflow W to the Scheduler at

time t. This operation invokes DecisionMaker::_dagSubmit() and jobSubmit()

to put the entry task into the waiting queue.

8. jobSubmit(t, T): an operation that puts a ready task T into the waiting queue at

time t and invokes DecisionMaker::_jobSubmit().

9. reschedule(): an operation that runs in a loop to find if there are any tasks to be

allocated at current time point. Every time before the global system clock is

increased, EventQueue will call this operation automatically.

10. jobSelect(): an operation that invokes DecisionMaker::_jobSelect() to select

tasks from the waiting queue for allocation. This operation is continuously

called by reschedule() until no more tasks can be allocated at current time

point.

11. jobAllocate(t, T): an operation that invokes DecisionMaker::_jobAllocate() to

allocate task T and moves task T from the waiting queue to the running queue

at time t. This operation is called by reschedule() after selecting a task from

the waiting queue.

12. jobFinish(t, T): an operation that removes task T from the running queue and

checks if any of its immediate descendants is ready. It will invoke jobSubmit()

40

if any task becomes ready.

4-2-4. DecisionMaker

The DecisionMaker class supplies a set of interfaces to Scheduler for making a

scheduling decision. Algorithms like HEFT, RANK_HYBD, and OWM can be

realized by implementing some or all of the operations defined in the DecisionMaker

class. The structure of the DecisionMaker class is shown in Figure 4-4.

DecisionMaker

+name: std::string

+sched: Scheduler *

<<create>>-DecisionMaker()

+_jobMapping(): void

+_dagSubmit(t: long, dagIndex: long): void

+_jobSubmit(t: long, dagIndex: long, jobIndex: long): void

+_jobSelect(t: long): queueNode

+_jobAllocate(t: long, dagIndex: long, jobIndex: long): void

+_afterAllocate(node: queueNode): void

+_jobFinish(t: long, dagIndex: long, jobIndex: long): void

Figure 4-4 Class DecisionMaker

Attributes

1. name: the name of the implemented scheduling algorithm.

2. sched: a pointer pointing to the Scheduler instance.

Operations

1. _jobMapping(): an operation that maps all of the submitted workflows to the

clusters before execution. This operation is only used for the static scheduling

algorithms.

2. _dagSubmit(W): an operation that is called when a new workflow W is

submitted to the Scheduler. Our SWF approach implements this operation to

41

calculate the estimated remaining time of uncompleted workflows.

3. _jobSubmit(T): an operation that is called when a new task T becomes ready.

CPWS is realized in this operation.

4. _jobSelect(): an operation that selects a task from the waiting queue for

allocation. Priority-based backfilling is achieved in this operation.

5. _jobAllocate(T): an operation that selects a cluster to accommodate task T. This

operation usually invokes Scheduler::calc_ccCost() repeatedly to find the best

cluster for task T.

6. _afterAllocate(T): an operation that is called after a task T has been allocated.

CPWS implements this operation to remove tasks from the self-maintaining

waiting queue.

7. _jobFinish(T): an operation that is called when a task T has completed its

execution.

4-2-5. Cluster

The Cluster class records the resources usage and calculates the Earliest Start

Time (EST) of a task according to current resource allocation profile. Figure 4-5

shows the Cluster class.

42

Cluster

+np: long

+CommuniRate: long[]

-profile: std::list<profileNP>

-jobs: std::list<profileJob>

<<create>>-Cluster()

+initial(): void

+submitJob(dagIndex: long, jobIndex: long, start: long, end: long, np: long): bool

+cancelJob(dagIndex: long, jobIndex: long): bool

+est(start: long, duration: long, np: long): long

+availableNP(t: long): long

-profileInsert(start: long, end: long, np: long): bool

-profileRemove(start: long, end: long, np: long): bool

Figure 4-5 Class Cluster

Attributes

1. np: the total number of resources of the cluster.

2. CommuniRate: bandwidths of different network links connected to other clusters.

3. profile: a resource allocation profile.

4. jobs: a set of tasks running on this cluster.

Operations

1. submitJob(T, tstart, tend): an operation that tries to allocate a task T to the cluster.

The execution of task T starts at time tstart, and finishes at time tend. This

operation returns false if the number of available resources is not enough for

task T during the time period between tstart and tend.

2. cancelJob(T, t): an operation that cancels a task T and releases the resources used

by task T at time t.

3. est(t, duration, np): an operation that calculates the Earliest Start Time (EST) of a

task since time t.

4. availbleNP(t): an operation that returns the number of available resources at time

t.

5. profileInsert(): an operation that inserts a resources allocation record into the

43

profile.

6. profileRemove(): an operation that removes a resources allocation record from

the profile.

4-3 Simulation Process

This section describes the simulation process. The simulation process involves

several aforementioned classes. The EventQueue class maintains the global system

clock and processes events by invoking the Scheduler class and DecisionMaker class.

The following describes the details.

4-3-1. Simulation skeleton

First, the simulator constructs a multi-cluster environment and generates a

sequence of input workflows using the DAG class. Then, it initiates the corresponding

Scheduler instance and DecisionMaker instance for the scheduling algorithm to be

simulated. Finally, it initiates an EventQueue instance to handle the events generated

during the simulation. Figure 4-6 shows the pseudo code of the discrete-event

handling process (EventQueue::process()). In the process, EventQueue first checks

the submission time of each workflow in line 2 to line 10. If the submission time of a

workflow is 0, the workflow is submitted to the Scheduler right away. Otherwise,

EventQueue creates an event indicating the submission of the workflow at the

specified time point. Line 11 invokes the Scheduler::jobMapping() operation to

support static algorithms before any event handling process. Then EventQueue sets

the global system clock to 0 in line 12 and starts to handle events in line 13.

Each time the EventQueue handles an event, it checks if the time stamp of the

event is larger than the global system clock. If it is, the EventQueue will invoke the

44

Scheduler::reschedule() operation to check if there are any ready tasks to be allocated

at current time point. Scheduler::reschedule() runs in a loop to select a task for

allocation each time until the resources are not enough. Then the EventQueue sets the

global system clock to the time stamp of the event in line 20. Line 22 to 26 shows that

if the event is a „submit‟ event, EventQueue invokes the Scheduler::dagSubmit()

operation to submit the workflow to the Scheduler; if the event is an „end‟ event,

EventQueue invokes the Scheduler::jobFinish() operation to check if there are tasks

becoming ready for submission. The pseudo code only shows the generation of

workflow submission events explicitly in line 7. The task submission and ending

events are generated inside the operations of SCHED. The discrete-event handling

process continues until all of the events have been handled.

45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

W: input workflows

SCHED: the scheduler

EventQueue::Process(W, SCHED)

begin

for each workflow wi ϵ W do

t0 = submission time of wi;

if t0 = 0 then

submit wi to SCHED

else

insert an event, which submits wi to SCHED at time t0, into this->queue;

end if

end for

SCHED->jobMapping();

this->time = 0;

while event queue ≠ Ø do

ej = this->deQueue();

wj = workflow of ej;

jj = task of ej;

tj = time of ej;

if tj > this->time then

SCHED->reschedule();

this->time = tj;

end if

if type of ej = SUBMIT then

46

22

23

24

25

26

27

28

SCHED->dagSubmit(tj, wj);

else if type of ej = END then

SCHED->jobFinish(tj, wj, jj);

end if

end while

end

Figure 4-6 Pseudo code of EventQueue::process()

4-3-2. Workflow Processing

In the simulator, the task interdependence in the workflows is maintained by the

Scheduler class. When a new workflow is submitted by calling

Scheduler::dagSubmit(), the scheduler finds the entry task of the workflow and puts it

into the waiting queue by Scheduler::jobSubmit(). Scheduler::jobSelect() and

Scheduler::jobAllocate() are used in the Schduler::reschedule() to allocate ready tasks

to the clusters and move the allocated tasks from the waiting queue to the running

queue in the event handling process. When a task finishes its execution,

Scheduler::jobFinish() is invoked to check if any descendants become ready and

invoke Scheduler::jobSubmit() to put the ready descendants into the waiting queue.

Figure 4-7 shows the flow chart of the workflow processing procedure in the

simulator.

47

Figure 4-7 Flow chart of workflow processing

48

Chapter 5 Performance Evaluation and

Discussion

This chapter evaluates the proposed methods in our MOWS and compares them

with the approaches used in OWM [12]. Section 5-1 introduces the setup for the

following experiments and the metrics used in the performance analysis. Section 5-2

presents the experimental results of the proposed methods in MOWS.

5-1 Experimental Setup and Performance Metrics

5-1-1. Algorithms under Evaluation

In addition to the overall effects of MOWS, we also evaluated the effectiveness

of each proposed method in it separately in the following experiments. Therefore, we

implemented various online workflow scheduling approaches which differ with each

other in the methods used in the four scheduling phases. The following describes the

implemented approaches and the corresponding methods used in the four scheduling

phases. :

 OWM: adopting CPWS, RANK_HYBD, FCFS, and AA in the four

scheduling phases, respectively.

 OWM(SWF): replacing RANK_HYBD with SWF in the phase of waiting

queue scheduling, used to evaluate the effectiveness of the SWF strategy

through comparing it with OWM.

 OWM(backfilling): replacing FCFS with priority-based backfilling in the

phase of task rearrangement, used to evaluate the effectiveness of the

priority-based backfilling strategy through comparing it with OWM.

 OWM(preemptive): replacing CPWS with SWS in the phase of task

49

prioritizing and adding preemptive task execution into the phase of task

allocation, used to evaluate the effectiveness of the preemptive task

execution strategy through comparing it with OWM.

 OWM(All-EFT): replacing AA with All-EFT in the phase of task allocation,

used to evaluate the effectiveness of the All-EFT strategy through

comparing it with OWM.

 MOWS: adopting SWS, SWF, priority-based backfilling, preemptive task

execution, and All-EFT in the four scheduling phases, respectively, used to

evaluate the overall effect of MOWS.

5-1-2. Simulation Setup

In a real HPC environment, the workload may consist of workflows with various

characteristics. To generate realistic workloads for the simulation experiments, we use

the following parameters to generate different types of workflows. Chapter 4 has

described how these parameters were used to generate DAGs. The following presents

the ranges of values assigned to the parameters for DAG generation in the simulation

experiments.

 Node: the number of nodes in a DAG. It is randomly chosen from the set

{20, 40, 60, 80, 100}.

 Shape: a number controlling the shape of a DAG. A higher shape value

results in a shorter DAG with a high parallelism degree. Otherwise, a longer

DAG with a low parallelism degree is generated. Shape is randomly

selected from the set {0.5, 1.0, 2.0}.

 OutDegree: the maximum number of immediate descendants of a task.

OutDegree is randomly selected from the set {1, 2, 3, 4, 5}.

 CCR: the Communication-to-Computation Ratio of a DAG. CCR of a

50

workflow is defined as its average communication cost divided by its

average computation cost among all tasks on all resources. A data-intensive

application has a higher CCR, while a compute-intensive one has a lower

CCR. For general workflows, CCR is randomly chosen from the set {0.1,

0.5, 1.0, 1.5, 2.0}. For data-intensive workflows, CCR is selected from the

set {1.5, 2.0}, and for compute-intensive workflows, CCR is selected from

the set (0.1, 0.5).

 BRange: distribution range of computation costs of tasks on different

clusters. It is the heterogeneous factor for cluster speeds. A large range

indicates significant differences in task‟s computation costs on different

clusters. BRange is randomly selected from the set {0.1, 0.25, 0.5, 0.75,

1.0}.

 WDAG: the average computation cost of a DAG. WDAG is randomly

chosen from the range [100, 1000]. The average computation cost of each

task on all clusters is randomly generated from a uniform distribution within

the range [1, 2 * WDAG].

The submission interval between two consecutive workflows is assumed to

conform to the Poisson distribution. Each experiment invokes 20 runs, of which each

simulates 100 online workflows on a multi-cluster environment composed of 5

clusters each containing 50 ~ 70 processers respectively.

5-1-3. Metrics

The performance metrics used in the experiments are described below. In each

experiment, the average values of all workflows based on these three metrics are used

to evaluate the proposed methods.

51

 makespan: the total execution time for a workflow application from

workflow submission to workflow completion, including waiting time and

execution time. It is used to measure the performance of a scheduling

algorithm from the perspective of workflow applications. However,

makespan usually varies widely among workflows with different sizes and

other properties.

 Schedule Length Ratio (SLR): the ratio of a workflow‟s makespan over its

best possible schedule length. SLR tries to measure the performance of

scheduling algorithms regardless of the variation in workflows‟ sizes and

is defined by

, where CPL represents the Critical Path Length of a workflow.

5-2 Experimental Results

To evaluate the effectiveness of the proposed methods, we compare them with

the approaches in OWM [12]. We vary the computation intensity and the arrival

interval of workflows to investigate their influence on the performance of the

proposed approaches. In the last section, we experiment with the effects of execution

time estimation.

5-2-1. Shortest-Workflow-First Strategy

Figure 5-1 and Figure 5-2 show the performance results of OWM and

OWM(SWF) under different mean arrival intervals of workflows in terms of average

makespan and average SLR, respectively. It can be easily seen that OWM(SWF) has

better performance than OWM in terms of average makespan. Figure 5-3 and Figure

52

5-4 present the performance of OWM and OWM(SWF) with different levels of

computation intensity. In this experiment, the arrival interval of workflows is set to

conform to the Poisson distribution with the mean value of 100. Under such setting of

arrival interval, several workflows may be simultaneously running in the system. The

results indicate that OWM(SWF) outperforms OWM significantly for both

computation- and communication-intensive workflows in terms of average makespan.

However, in the above experiments, when in terms of SLR the performance of

OWM(SWF) is either quite close to or even worse than that of OWM, as shown in

Figure 5-4 and Figure 5-2, respectively. It is because the definition of SLR divides the

makespan of a workflow by its critical path length. For those workflows with large

parallel degree but short critical path length, our SWF approach treats them as large

workflows, according to the calculation of estimated remaining execution time

described in Figure 3-2, and thus assigns them low priority values. This arrangement

would enlarge the makespans of those workflows and in turn lead to drastic increase

in the SLR values because of their short critical path lengths. Therefore, based on the

concerns of users, makespan or SLR, the scheduling system can choose to use either

OWM‟s CPWS or our SWF approach.

53

Figure 5-1 Makespan performance of SWF with different mean arrival intervals

Figure 5-2 SLR performance of SWF with different mean arrival intervals

54

Figure 5-3 Makespan performance of SWF with different computation intensities

Figure 5-4 SLR performance of SWF with different computation intensities

5-2-2. Priority-based Backfilling

Figure 5-5 and Figure 5-6 investigate the performance of OWM and

OWM(backfilling) under different mean arrival intervals of workflows. Figure 5-8

55

and Figure 5-9 evaluate the performance of OWM and OWM(backfilling) with

workflows of different computation intensities. The experiments show that

OWM(backfilling) outperforms OWM in terms of both average makespan and

average SLR. In terms of average makespan, the performance improvement of

OWM(backfilling) over OWM increases from 7% to 10% as the arrival interval grows.

Figure 5-7 shows the numbers of backfilling occurring in the experiments, which

reflects that backfilling has more chance to occur when the system is more crowded

since under such situation the tasks in queue are more likely to be blocked due to the

insufficiency of available resources. However, comparing Figure 5-5 and Figure 5-7,

more backfilling occurrences does not necessarily lead to more performance

improvement. This is because earlier execution of some tasks in a workflow does not

always reduce its makespan if the start times of the tasks on the critical path remain

unchanged. For computation intensity, OWM(backfilling) outperforms OWM for both

computation- and communication-intensive workflows. The above results indicate

that task rearrangement can effectively improve the scheduling performance for

mixed-parallel online workflows.

56

Figure 5-5 Makespan performance of backfilling with different mean arrival intervals

Figure 5-6 SLR performance of backfilling with different mean arrival intervals

57

Figure 5-7 number of backfilling happened v.s. mean arrival intervals

Figure 5-8 Makespan performance of backfilling with different computation intensities

58

Figure 5-9 SLR performance of backfilling with different computation intensities

5-2-3. Preemptive Task Execution

Figure 5-10 and Figure 5-11 evaluate the performance of preemptive task

execution under different mean arrival intervals of workflows in terms of average

makespan and average SLR, respectively. The average makespan produced by

OWM(preemptive) is about 2% less than that produced by OWM. This is achieved by

the advantage of preemptive task execution, as illustrated in Figure 5-12 which shows

the numbers of preemption occurring in the experiments. Figure 5-12 indicates that

preemption is more likely to occur when the system is less crowded since under such

situation low priority tasks in queue have more chance to start execution first and are

preempted later when high priority tasks come into the queue. The trend of

preemption occurrences also explains the results in Figure 5-10 and Figure 5-11 where

the performance improvement increases noticeably as the arrival interval grows.

Figure 5-13 and Figure 5-14 show the performance for workflows of different

computation intensities. Again, the performance of OWM(preemptive) is better than

59

that of OWM for both computation- and communication-intensive workflows.

Figure 5-10 Makespan performance of preemptive task execution with different mean arrival intervals

Figure 5-11 SLR performance of preemptive task execution with different mean arrival intervals

60

Figure 5-12 Number of preemption happened v.s. Arrival intervals

Figure 5-13 Makespan performance of preemptive task execution with different computation intensities

61

Figure 5-14 SLR performance of preemptive task execution with different computation intensities

5-2-4. All-EFT Task Allocation

Figure 5-15 and Figure 5-16 compare the performance of OWM(All-EFT) and

OWM under different mean arrival intervals of workflows in terms of average

makespan and average SLR, respectively. Figure 5-17 and Figure 5-18 evaluate the

performance of OWM(All-EFT) and OWM for workflows of different computation

intensities. The results indicate that OWM(All-EFT) performs slightly better than

OWM.

62

Figure 5-15 Makespan performance of All-EFT with different mean arrival intervals

Figure 5-16 SLR performance of All-EFT with different mean arrival intervals

63

Figure 5-17 Makespan performance of All-EFT with different computation intensities

Figure 5-18 SLR performance of All-EFT with different computation intensities

5-2-5. Overall Improvement Made by MOWS

This section presents the overall performance improvement made by MOWS,

compared to OWM [12]. The performance results of different mean arrival intervals

64

in terms of average makespan and average SLR are shown in Figure 5-19 and Figure

5-20, respectively. The results indicate that MOWS outperforms OWM significantly.

In average, the performance improvement of MOWS over OWM is approximately

16%. The average makespan of both MOWS and OWM decreases as the mean arrival

interval of workflows grows. Figure 5-21 and Figure 5-22 show the performance at

different levels of computation intensity. MOWS outperforms OWM for both

computation- and communication-intensive workflows.

Figure 5-19 Makespan performance of MOWS with different mean arrival intervals

65

Figure 5-20 SLR performance of MOWS with different mean arrival intervals

Figure 5-21 Makespan performance of MOWS with different computation intensities

66

Figure 5-22 SLR performance of MOWS with different computation intensities

5-2-6. Influence of Inaccurate Execution Time Estimate

The execution time of each task in workflows is necessary information for the

proposed workflow scheduling algorithms. However, for some applications the exact

execution time of a task may be difficult to know before the execution completes.

Therefore, users have to provide execution time estimate for each task when

submitting a workflow. This section presents experiments conducted to evaluate the

effects of inaccurate execution time estimate on the performance of the proposed

workflow scheduling approach. Figure 5-23 and Figure 5-24 show the performance

results under different inaccuracy degrees in terms of average makespan and average

SLR, respectively. In this experiment, arrival interval of workflows is set to 100

seconds. As used in [12], the simulator picks the actual execution time of a task

randomly from the range:

, where et is the estimated execution time of the task. For example, when the

67

uncertainty is 300% and et of a task is 100, the actual execution time of the task is

randomly picked from the range [1, 700]. It can be easily observed that MOWS

outperforms the other approaches for the uncertainty levels from 100% to 500%. In

average, the performance improvement ratio of MOWS over OWM is approximately

13%. The performances of all the experimented algorithms are decreased with the

increase over uncertainty level in the same rate except OWM(SWF). The performance

of OWM(SWF) decreases faster as the uncertainty level grows since OWM(SWF)

heavily depends on the estimate information of tasks to prioritizing workflows in the

scheduling process.

Figure 5-23 Results of inaccurate execution estimates for average makespan

68

Figure 5-24 Results of inaccurate execution estimates for average SLR

69

Chapter 6 Conclusion and Future Work

In the thesis, we propose a scheduling framework for online mixed-parallel

workflows in heterogeneous multi-cluster environments, named Mixed-Parallel

Online Workflow Scheduling (MOWS), which divides the entire scheduling process

into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and

task allocation. Four new methods, shortest-workflow-first, priority-based backfilling,

preemptive task execution and All-EFT task allocation, were developed for

scheduling online mixed-parallel workflows under the MOWS framework.

The shortest-workflow-first strategy enforces the SJF policy [30] in the waiting

queue scheduling phase in order to reduce the average makespan of all workflows.

The priority-based backfilling was introduced to allow out-of-order execution among

tasks to improve resource utilization and thus the overall system performance. The

preemptive task execution was developed for the task allocation phase to cooperate

with SWS [9] used in the task prioritizing phase to take the advantages of both SWS

[9] and CPWS [12]. The All-EFT for the task allocation phase always considers each

cluster in the system and allocates the task to the cluster leading to the earliest

estimated finish time.

We provide detailed examples for illustrating the superiority of the proposed

methods over existing approaches. In addition, we conducted a series of simulation

studies for performance evaluation and compared MOWS with a previously proposed

approach in the literature called OWM. The experimental results indicate that each of

the four proposed methods outperforms existing approaches significantly even under

inaccurate estimation of task execution time. In average, MOWS can achieve around

70

16% performance improvement over OWM in terms of average makespan and SLR.

In the future, under the framework of MOWS there might be several research

directions to further improve the scheduling performance of online mixed-parallel

workflows in heterogeneous multi-cluster environments. For example, the preemptive

task execution method could be extended to consider multiple running tasks for

preemption simultaneously. This would increase the probability for high-priority tasks

to start execution earlier and thus improve the overall system performance. For the

shortest-workflow-first policy, other metrics for prioritizing workflows could be

investigated in addition to the remaining execution time used in this thesis.

71

Reference

[1]. M. L. Pinedo, “Scheduling: Theory, Algorithms, and Systems”, Springer

Publishing Company, 2008.

[2]. H. Topcuoglu, S. Hariri and M. Wu, “Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing”, IEEE Trans. on Parallel and

Distributed Systems, vol. 13, pp. 260-274, 2002.

[3]. L.F. Bittencourt, R. Sakellariou and E.R.M. Madeira, “DAG Scheduling Using a

Lookahead Variant of the Heterogeneous Earliest Finish Time Algorithm”,

Proceedings of the 18th Euromicro Conference on Parallel, Distributed and

Network-Based Processing, pp.27-34, 2010.

[4]. Y. Kwok and I. Ahmad. “Dynamic Critical-Path Scheduling: An Effective

Technique for Allocation Task Graphs to Multi-processors”, IEEE Trans.

Parallel and Distributed Systems, vol. 7, pp. 506-521, 1996.

[5]. Z. Yu and W. Shi, “An Adaptive Rescheduling Strategy for Grid Workflow

Applications”, Parallel and Distributed Processing Symposium, 2007. IEEE

International, pp. 1-8, 2007.

[6]. A.M.A Ghanem, A.I. Saleh and H.A. Ali, “High Performance Adaptive

Framework for Scheduling Grid Workflow Applications”, Computer Engineering

and Systems (ICCES), International Conference on, pp. 52-57, 2010.

[7]. R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG scheduling on

heterogeneous systems”, In Proceedings of 13th Heterogeneous Computing

Workshop (HCW 2004), vol. 2, pp.111b, 2004.

[8]. H. Zhao and R. Sakellariou, “Scheduling multiple DAGs onto heterogeneous

systems”, Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, pp. 14, 2006.

72

[9]. Z. Yu and W. Shi, “A planner-Guided Scheduling Strategy for Multiple Workflow

Applications”, On Parallel Processing Workshops, ICPP-W 08, pp. 8-12, 2008.

[10]. M. J. Quinn, “Parallel Programming in C with Mpi and Openmp”, McGraw-Hill

Education, 2008.

[11]. K. C. Huang, “On Effects of Resource Fragmentation on Job Scheduling

Performance in Computing Grids”, 2009 10th International Symposium on

Pervasive Systems, Algorithms, and Networks, pp.701-705, 2009.

[12]. C.C. Hsu, K.C. Huang and F.J. Wang, “Online scheduling of workflow

applications in grid environments”, Future Generation Computer Systems 27, pp.

860–870, 2011.

[13]. A.W. Mu‟alem and D.G. Feitelson, “Utilization, Predictability, Workloads, and

User Runtime Estimates in Scheduling the IBM SP2 with Backfilling”, IEEE

Trans. on Parallel and Distributed Systems, vol. 12, pp. 529-543, 2001.

[14]. R. M. Fujimoto, “Parallel discrete event simulation”, WSC '89 Proceedings of the

21st conference on Winter simulation, pp. 19-28, 1989.

[15]. U. Lublin and D. G. Feitelson, "The workload on parallel supercomputers:

modeling the characteristics of rigid jobs", Journal of Parallel and Distributed

Computing, vol. 63, pp. 1105-1122, 2003.

[16]. M. Barreto, R. Avila and P. Navaux, “The MultiCluster Model to the Integrated

Use of Multiple Workstation Clusters”, 3rd Workshop on Personal

Computerbased Networks of Workstations, pp. 71–80, 2000.

[17]. M. Wieczorek, A. Hoheisel and R. Prodan, “Towards a general model of the

multi-criteria workflow scheduling on the grid”, Future Generation Computer

Systems 25, pp. 237-256, 2009.

[18]. J. Yu, R. Buyya and K. Ramamohanarao, “Workflow Scheduling Algorithms for

Grid Computing”, Tech. Rep., GRIDS-TR-2007-10, University of Melbourne,

73

2010.

[19]. R. Sakellariou, H. Zhao, E. Tsiakkouri and M. Dikaiakos, “Scheduling

Workflows with Budget Constraints”, In S.Gorlatch, M.Danelutto (Eds.),

Integrated Research in Grid Computing, CoreGrid series, Springer-Verlag, to

appear, 2005.

[20]. T. Tannenbaum, D. Wright, K. Miller and M. Livny, “Condor - A Distributed Job

Scheduler”, Computing with Linux, The MIT Press, MA, 2002.

[21]. M . Wu and D. Gajski, “Hypertool: A Programming Aid for Message Passing

Systems”, IEEE Trans. on Parallel and Distributed Systems, vol. 1, pp. 330-343,

1990.

[22]. T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an Unbounded

Number of Processors”, IEEE Trans. on Parallel and Distributed Systems, vol. 5,

pp. 951-967, 1994.

[23]. S. Darbha and D.P. Agrawal, “Optimal Scheduling Algorithm for Distributed

Memory Machines”, IEEE Trans. On Parallel and Distributed Systems, vol. 9,

pp. 87-95, 1998.

[24]. G. Park, B. Shirazi and J. Marquis, “DFRN: A New Approach for Duplication

Based Scheduling for Distributed Memory Multi-processor Systems”, Proc. Int'l

Conf. Parallel Processing, pp. 157-166, 1997.

[25]. R. Bajaj and D.P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous

Environment”, IEEE Trans. on Parallel and Distributed Systems, vol. 15, pp.

107-118, 2004.

[26]. M. Resende and C. Ribeiro, “Greedy Randomized Adaptive Search Procedures,

State-of-the-art Handbook in MetaHeuristics”, Glover and Kochenberger, eds.,

Kluwer Academic Publishers, 2002.

[27]. H. Singh and A. Youssef, “Mapping and Scheduling Heterogeneous Task Graphs

74

Using Genetic Algorithms”, Proc. Heterogeneous Computing Workshop, pp.

86-97, 1996.

[28]. A. YarKhan and J. Dongarra, “Experiments with Scheduling Using Simulated

Annealing in a Grid Environment”, Workshop on Grid Computing, pp.232-242,

2002.

[29]. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal and K. Kennedy, “Task

Scheduling Strategies for Workflow-based Applications in Grid”, Cluster

Computing and the Grid, IEEE International Symposium, vol. 2, pp. 759-767,

2005.

[30]. A. Silberschatz, J. Peterson, and P. Galvin, "Operating System Concepts", ed:

Addison-Wesley Publishing Company, pp. 155-156, 1991.

[31]. D.G. Feitelson and A.W. Mu‟alem, “Utilization and Predictability in Scheduling

the IBM SP2 with Backfilling”, Proc. 12th Int'l Parallel Processing Symp., pp.

542-546, 1998.

