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應用線上排程於複合平行工作流程之研究 

研究生: 王乙融    指導教授: 王豐堅 博士 

國立交通大學 

網路工程研究所 

新竹市大學路 1001 號 

碩士論文 

 

摘要 

在平行系統中對工作流程應用程式排程是一個已知的 NP-Complete 問題。

當在異質執行速度的多群集環境中排程複合平行工作流程時，問題變得更有挑戰

性。現今已有許多演算法被提出，但大多不適合複合平行工作流程與多群集環

境，因此他們不能有效地處理排程問題。本文中，我們提出了一個 MOWS 排

程框架可以有效的排程複合平行工作流程。MOWS 框架將排程程序分為四個步

驟：task prioritizing，waiting queue scheduling，task rearrangement，task allocation。

我們並提出了四個新方法套用在  MOWS 框架下：shortest-workflow-first，

priority-based backfilling，preemptive task execution，All-EFT task allocation。我

們建立了一連串的模擬實驗來評估 MOWS 的效能，實驗數據表示，我們所提

出的四個新方法都較先前的方法要傑出。而最後的 MOWS 框架和先前的方法

相比效能要進步 16%。 

 

關鍵字：工作流程排程、複合平行應用程式、異質多群集環境。 
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A study to Online Scheduling for Mixed-Parallel 

Workflow 

Student: Yi-Rong Wang   Advisor: Feng-Jian Wang 
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1001 University Road, Hsinchu, Taiwan 300, ROC 

 

Abstract 

Workflow scheduling on parallel systems has long been known to be a 

NP-complete problem. The issues become even more challenging when scheduling 

mixed-parallel workflows in an online manner in a speed-heterogeneous multi-cluster 

environment, which is indispensable for modern grid and cloud computing 

applications. However, most existing algorithms were not developed for 

mixed-parallel workflows and multi-cluster environments, therefore they can‟t handle 

the scheduling issues efficiently. In this thesis, we propose a scheduling framework, 

named Mixed-Parallel Online Workflow Scheduling (MOWS), which divides the 

entire scheduling process into four phases: task prioritizing, waiting queue scheduling, 

task rearrangement, and task allocation. We developed four new methods: 

shortest-workflow-first, priority-based backfilling, preemptive task execution and 

All-EFT task allocation, for scheduling online mixed-parallel workflows under the 

MOWS framework. To evaluate the performance of MOWS, we conducted a series of 

simulation studies and compared it with a previously proposed approach in the 

literature called OWM. The experimental results indicate that each of the four 
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proposed methods outperforms existing approaches significantly. In average, MOWS 

can achieve around 16% performance improvement over OWM in terms of average 

makespan and SLR. 

 

Keywords: workflow scheduling, mixed-parallel applications, heterogeneous 

multi-cluster environments 
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Chapter 1  Introduction 

In the domain of High Performance Computing (HPC), many large-scale 

scientific and engineering applications are usually constructed as workflows of 

computation executed by different programs. Most workflows can be modeled as 

directed acyclic graphs (DAGs) and their performance are usually measured by 

makespan, the time between workflow submission and workflow completion. 

Workflow scheduling on parallel computers has long been a well-known 

NP-Complete problem [1]. Therefore, many heuristic methods have been proposed 

[2][3][4][5][6][7]. Most of the previous methods were designed for dealing with 

single workflow scheduling. 

As the high performance computing platform evolves into grid and cloud 

environments, workflow scheduling is confronted with more challenging issues in the 

following two aspects. First, grid and cloud are shared computing platforms; therefore 

multiple workflows may run on the platform concurrently. Moreover, these workflows 

may come in at different time. Online workflow scheduling thus becomes an 

important issue. Second, grid and cloud differ from traditional parallel computers in 

that they are usually composed of several computing clusters located at different 

places. This heterogeneous multi-cluster architecture makes workflow scheduling 

even more challenging.  

Scheduling online workflows in a speed-heterogeneous multi-cluster environment 

is a key issue. Zhao and Sakellariou [8] presented various approaches to schedule 

multiple workflows arriving at the same time. However, their approaches might not 

work in practical grid and cloud environments where workflows submitted by 

different users might come in at different time. Yu and Shi [9] proposed a 

planner-guided dynamic scheduling approach for dealing with the online workflow 
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scheduling problem, multiple workflows coming at different time. The approach in [9] 

assumes that each task in the workflow is a sequential program requiring only one 

single processor for execution. However, in practice there are mixed-parallel 

workflows where each task itself may be a SPMD (Single-Program-Multiple-Data) 

[10] parallel program requiring multiple processors for execution. Scheduling 

mixed-parallel workflow is even more challenging because it has to deal with the 

resource fragmentation issue [11] incurred by parallel task allocation. To deal with 

online mixed-parallel workflow scheduling, Hsu, Huang, and Wang [12] proposed an 

Online Workflow Management (OWM) approach. 

OWM in [12] divides the multiple-workflow scheduling process into four phases: 

task prioritizing, waiting queue scheduling, task rearrangement, and task allocation. 

The task prioritizing phase manages the task interdependence within a single 

workflow and decides when a task can be put into waiting queue. Waiting queue 

scheduling prioritizes tasks in the waiting queue which may come from different 

workflows. The task rearrangement phase allows some low priority tasks to bypass 

high priority tasks in order to increase resource utilization. The task allocation phase 

allocates an appropriate set of resources to a task. OWM proposed and evaluated 

several approaches corresponding to these four phases. 

In this thesis, we adopt the Simple Workflow Scheduling (SWS) [9][12] in the task 

prioritizing phase and develop four new approaches for the remaining three phases, 

which can further improve the performance made by OWM. These four approaches 

are shortest-workflow-first waiting queue scheduling, preemptive task execution, 

priority-based backfilling, and All-EFT task allocation. The shortest-job-first policy 

cooperates with preemptive task execution in the waiting queue scheduling phase. 

Priority-based backfilling and All-EFT task allocation are used in the task 

rearrangement and task allocation phases, respectively. The shortest-workflow-first 
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waiting queue scheduling approach attempts to minimize the average waiting time by 

executing smaller workflows first. Preemptive task execution takes advantages of the 

virtualization and VM migration technologies in cloud computing to preserve the 

computation of preempted tasks. Priority-based backfilling allows some low priority 

tasks to be allocated before high priority tasks based on the conservative backfilling 

strategy [13]. All-EFT task allocation considers all candidate clusters and allocates a 

task to the cluster which can lead to the earliest finish time of that task. 

To evaluate the effectiveness of our approaches, we developed a simulator to 

conduct a series of experiments based on the discrete-event simulation methodology 

[14]. Experimental results show that our approaches achieve better performance than 

OWM in each scheduling phase. The overall performance improvement, in terms of 

makespan, can be up to 10% in average. 

The rest of this thesis is structured as follows: Chapter 2 discusses the 

background knowledge and related work of workflow scheduling. Chapter 3 presents 

our online workflow scheduling approaches. Chapter 4 describes the software 

simulator for the experiments of performance evaluation. Chapter 5 presents the 

experimental results and discussions. Chapter 6  concludes the thesis. 
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Chapter 2  Background 

In this chapter, we describe the application model and computing platform, and 

survey related workflow scheduling algorithms. Section 2-1 and section 2-2 describes 

the application model and computing platform. Section 2-3 reviews static workflow 

scheduling algorithms. Section 2-4 surveys concurrent workflow and online workflow 

scheduling algorithms. 

 

2-1 Application Model 

A scientific workflow application can be modeled as a Directed Acyclic Graph 

(DAG) to represent the tasks and their order. A DAG is usually defined as a pair (V, E), 

where V and E are finite sets. V={ti|i=1,…,n} denotes the set of n individual rigid tasks 

[15], of which each uses a fixed number of resources. E denotes the set of edges {ei,j|1≤ 

i, j≤ n} where ei,j, an arc from ti to tj, represents that ti is assigned as a pre-task of tj, i.e., 

ti is the parent of tj. Each node (task) has a weight representing the amount of work to 

be done. A task may take different computation costs to finish its work on different 

processors, depending on the processor‟s architecture and speed. Each edge, ei,j is 

weighted with the size of data sent from task ti to tj. A task can be executed only when it 

receives all the data from its parents. The data transfer between two tasks incurs a 

communication cost that depends on network capabilities. It is assumed that data 

transfer between two tasks assigned to the same processor incurs no communication. In 

a workflow application, a task without ancestor is called as an entry task and a task 

without any descendant is an exit task. It is assumed that there is only one entry and one 

exit task in a workflow application. 
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2-2 Computing Platform Model and Workflow Scheduling 

A High Performance Computing Cloud (HPC Cloud) can be implemented with a 

multi-cluster platform [16], which consists of k heterogeneous clusters Ci, i=1,…,k that 

can be geographically distributed and vary on both performance and architecture. Each 

cluster Ci contains Pi processors of same type and speed (homogeneous), while 

different clusters may differ in the amount of processors. All of the clusters are fully 

connected through heterogeneous network links with different bandwidths and 

latencies. 

  

In general, scheduling parallel and distributed applications is a known 

NP-Complete problem. There are many scientific efforts paid for optimizing workflow 

scheduling problem by minimizing the overall execution time, or makespan, of the 

workflow application in the past years. Therefore, many scheduling methods have 

been proposed and can be classified into three categories [17]: full-ahead planning, 

just-in-time and hybrid. 

 

A full-ahead planning scheduling algorithm (static planning) assumes that a 

scheduler has enough knowledge of workflows and resources in the very beginning. A 

static planning makes task assignments according to the knowledge and machine status 

before workflow application starts to execute. HEFT (Heterogeneous Earliest Finish 

Time) [2] is one of the most popular static heuristic and proven that it performs better 

than other heuristics. A static planning is not suitable for some situations, e.g., 

individual resource fails, and not easy to accurately estimate the costs of tasks. 

 

On the contrary, a just-in-time scheduling algorithm (dynamic planning) makes a 

task allocation with available tasks and free resources when an application is running. A 
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dynamic planning is usually applied when it is difficult to estimate the costs of tasks, or 

when the workflow applications are submitted at different times (which is also called 

online scheduling). For example, RANK_HYBD, a planner-guided scheduling strategy 

presented in [9], is designed to deal with the multiple online workflow scheduling 

problem. 

 

A hybrid (adaptive) approach presumes enough information is known in the 

beginning, and a task assignment decision is made before execution of workflow 

applications. However, it also makes reassignments when the following circumstances 

happen: (1) inaccuracy prediction, (2) change of resource status, or (3) another 

workflow application is submitted, at runtime. For example, Z. Yu et al. [5] proposed a 

HEFT-based adaptive rescheduling algorithm, AHEFT. An adaptive approach seems to 

take full advantages of static and dynamic ones. However it might introduce new efforts 

due to the consideration from both information. 

 

2-3 Static Workflow Scheduling  

 The taxonomy proposed in [18] classified workflow scheduling algorithms into 

two groups: heuristics-based and meta-heuristics-based. 
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Figure 2-1 A taxonomy of heuristics-based workflow scheduling algorithms 

 

Heuristics-based scheduling algorithms fall into several categories, including (1) 

immediate task scheduling, (2) list-based scheduling, (3) cluster-based scheduling, and 

(4) duplication-based scheduling as shown in Figure 2-1. The immediate task 

scheduling is the simplest heuristic for workflow applications; it makes schedule 

decisions based on the availability of tasks only. The Myopic algorithm [19] has been 

implemented in some Grid systems such as Condor DAGMan [20]. 

 

A list-based scheduling algorithm comprises two phases: the task prioritizing 

phase and the resource selection phase. The task prioritizing phase sets the priority of 

each task and generates a scheduling list by sorting the tasks according to their 

priorities. The resource selection phase selects tasks in order and maps each task to its 

optimal resource. List-based heuristics, which are generally accepted as the best 

overall approach, can be further divided into three subclasses according to the task 

parallelism [2][4][21]. 

 

HEFT [2] is a well-known list-based algorithm in heterogeneous environments. 
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HEFT first traverses the DAG from bottom to top in order to calculate an upward rank 

value for each task. The tasks are then sorted in non-ascending order of their ranks. 

According to the order, each task is assigned to the resource that minimizes the 

Earliest Finish Time (EFT) of the task. Many heuristics have been applied based on 

HEFT [3][5][6]. Figure 2-2 shows an example of HEFT. 

 

 

Figure 2-2 An example of HEFT 

 

Both cluster-based heuristics and duplication-based heuristics are designed to 

reduce the communication costs between data interdependent tasks [22][23][24][25]. 

In cluster-based heuristics, the tasks in the same group (cluster) are assigned into the 

same resource, while the duplicated-based heuristics assign the idling time of a 

resource to some parent tasks, which have been scheduled on other resources. 

 

The meta-heuristics-based scheduling algorithm provides both a general structure 

and strategy guidelines for developing a heuristic to fit a particular kind of problem. A 

meta-heuristics-based algorithm, which is generally applied to a large and 

complicated problem, provides an efficient way of moving quickly toward a very 
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good solution. There are three meta-heuristics-based algorithms, namely Greedy 

randomized adaptive search procedure (GRASP) [26], Genetic Algorithm [27] and 

Simulated Annealing [28]. However, the scheduling time in meta-heuristics-based 

algorithms is significantly higher than heuristics-based algorithms. 

 

There are comparisons [18][29] between the heuristics-based approaches and 

meta-heuristics-based approaches. The result shows that the meta-heuristics-based 

one usually performs better than the heuristics-based one, since a 

meta-heuristics-based approach can produce an optimized solution based on the 

performance of the entire workflow. However, the time complexity of the 

meta-heuristics based algorithm grows more rapidly than that of the heuristics-based 

algorithm if the workflow has more tasks. 

 

2-4 Scheduling Multiple Workflows 

The scheduling algorithms aforementioned usually consider a single workflow 

only. In recent years, few methods have been proposed for dealing multiple 

workflows. Zhao and Sakellariou [8] presented three different approaches to schedule 

multiple workflows at the same time. 

(1) Scheduling the workflows one after the other with any single-workflow 

scheduling algorithm 

(2) Scheduling the workflows in sequence with backfilling 

(3) Merging multiple workflows into a single workflow. 

 

Furthermore, approaches mentioned above are infeasible when multiple 

workflows come at different time. Thus, RANK_HYBD [9] has been proposed to 

support online workflow scheduling. The task scheduling approach of RANK_HYBD 
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re-prioritizes the tasks in the waiting queue repeatedly by the following rules: 

(1) If all the tasks in waiting queue come from single workflow, then it prioritizes 

tasks in a non-ascending order of task ranking value, which is described in 

HEFT [2]. 

(2) Otherwise, it prioritizes tasks in the opposite order. 

 

Moreover, RANK_HYBD does not consider the mixed-parallel workflows where 

an application has more than one task that can execute concurrently and a task can run 

with more than one resource simultaneously. Online Workflow Management (OWM) 

[12] has been proposed for the online mixed-parallel workflows. 

 

In OWM, there are four processes: Critical Path Workflow Scheduling (CPWS), 

Task Scheduling, Task Rearrangement and Adaptive Allocation (AA). Figure 2-3 

shows the structure of OWM. CPWS manages the task interdependence and submits 

tasks into waiting queue according to the critical path in workflows. The task 

scheduling process in OWM sorts waiting queue like RANK_HYBD. In the 

task-parallel task scheduling, there may have some slacks among the tasks when the 

free processes are not enough for the first task in the waiting queue. The 

multi-processor task rearrangement process works for minimizing the slacks with 

latter tasks in the queue to improve utilization. When there are free resources, AA 

takes the highest priority task in the waiting queue, and selects the required resources 

to execute the task. 
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Figure 2-3 Online Workflow Management (OWM) 
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Chapter 3  Mixed-Parallel Online Workflow 

Scheduling 

In this chapter, we propose a Mixed-parallel Online Workflow Scheduling 

(MOWS) approach. According to OWM [12], we also divides the mixed-parallel 

online workflow scheduling problem into four phases: task prioritizing, waiting queue 

scheduling, task rearrangement, and task allocation, as shown in Figure 3-1. MOWS 

adopts SWS [9][12] in the task prioritizing phase and develops four new strategies for 

the other three phases: (1) shortest-workflow-first scheduling, (2) priority-based 

backfilling, (3) preemptive task execution, and (4) all-EFT task allocation. 

 

 

Figure 3-1 Four phases in MOWS 
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3-1 Shortest-Workflow-First Strategy 

The waiting queue scheduling phase in OWM adopts RANK_HYBD [9]. 

RANK_HYBD calculates the rank value of each task according to the definition in 

HEFT [2]. If all of the tasks in the waiting queue come from the same workflow, the 

scheduler sorts the tasks in non-ascending order by the rank value. On the other hand, 

if there are multiple workflows in the queue, the tasks are sorted in non-descending 

order according to their rank values. In an extreme case where all workflows are 

actually single jobs, the RANK_HYBD approach is equivalent to the Shortest Job 

First (SJF) policy [30]. However, for general workflows with more than one job, the 

SJF policy can‟t always be guaranteed in RANK_HYBD since a task with a lower 

rank value may come from a larger workflow and the tasks from different workflow 

may be interleaved with each other. 

 

In this thesis we propose a Shortest-Workflow-First (SWF) strategy which 

enforces the SJF policy in the waiting queue scheduling phase in order to reduce the 

average makespan of all workflows. SJF is a well-known scheduling policy which is 

especially appropriate for batch tasks [30]. In SWF, the scheduler calculates the 

estimated remaining execution time of each workflow whenever a new workflow is 

submitted to it. After that, tasks in the waiting queue are first sorted in non-descending 

order by the estimated remaining execution time of the workflows they belong to. 

Then, tasks coming from the same workflow are sorted in non-ascending order 

according to their rank values. Each time a task becomes ready, it is simply put into 

the appropriate position among the tasks of the same workflow in the waiting queue 

according to its rank value. Figure 3-2 describes the algorithm for calculating the 

estimated remaining execution time of each workflow. First, lines 5 to10 finds the 
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ready tasks for the workflow. Lines 11 to 24 runs in a loop to select the ready task 

with the highest rank value, map it to the resource that produces the minimal 

estimated finish time of that task, and check if any descendants of the task become 

ready until all of the tasks have been mapped. 
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W: workflow 

C: profile of clusters 

 

Calc_ERET(W, C) 

begin 

AT = Ø ; 

UT = Ø ; 

ERET = 0; 

for each uncompleted task ti ϵ W do 

if all of the ancestors of ti are completed then 

AT = AT + {ti}; 

else 

UT = UT + {ti}; 

end for 

while (AT≠Ø) do 

select ti ϵ AT where ti has the highest rank value; 

MapToBestResource(ti, C);   // map ti to the resource with best 

performance and update profile. 

update estimated information of ti; 

if estimated finish time of ti > ERET then 
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Figure 3-2 Algorithm for calculating estimated remaining execution time in SWF 

 

Figure 3-3 shows the task prioritizing algorithm of SWF. Line 2 sorts the waiting 

queue using quicksort with a customized comparison function CMP described in lines 

4 to 16. The comparison function first checks if the input tasks come from the same 

workflow. If so, tasks are compared by their rank values and the task with higher rank 

value has higher priority. Otherwise, tasks are compared by the estimated remaining 

execution time of the workflows they belong to and the task coming from a workflow 

with shorter remaining time will get a higher priority. 
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ERET = estimated finish time of ti 

end if 

for each descendant tj of ti do 

if tj is available then 

UT = UT – {tj}; 

AT = AT + {tj}; 

end if 

end for 

AT = AT – {ti}; 

end while 

return ERET; 

end 

 

 

 

Q: waiting queue 

 

SWF_Prioritizing(Q) 
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Figure 3-3 The task prioritizing algorithm of SWF 

 

In the following, we use two example DAGs and a resource set, shown in Figure 

3-4, to compare how RANK_HYBD and SWF work. The computation time of each 
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begin 

QuickSort(Q, CMP); 

end 

 

ti: a task in the waiting queue 

tj: a task in the waiting queue 

 

CMP(ti, tj) 

begin 

wi = the workflow ti belongs to; 

wj = the workflow tj belongs to; 

di = estimated remaining execution time of wi; 

dj = estimated remaining execution time of wj; 

ri = rank of ti; 

rj = rank of tj; 

if wi = wj then 

return (ri > rj); 

else 

return (di < dj); 

end if 

end 
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task on different clusters is given in the tables below the DAGs. The number in the 

parentheses next to the task name indicates the number of resources required by the 

task. The rank of each task calculated according to the definition in [2] is: 

 DAG A: A1 (75); A3 (45); A2 (40); A4 (20) 

 DAG B: B1 (80); B3 (60); B2 (55); B4 (25); B5 (25); B6 (5) 

 

The scheduling results according to RANK_HYBD and SWF are shown in the 

two subfigures of Figure 3-5, respectively, where the width of each block represents 

the number of processors used and the length stands for the required execution time. 

In the case of RANK_HYBD, task B4 becomes ready when task B1 finishes at time 

10. Then, task B4 is allocated at time 15, when task A1 finishes, since it has the 

smallest rank value among tasks in the waiting queue. The allocation of B4 would 

delay the execution of task A2 and task A3 and result in a makespan of 45 time units 

for DAG A as shown in the Figure 3-5. On the other hand, SWF makes sure that tasks 

from DAG A will have higher priority than tasks from DAG B since DAG A is 

smaller than DAG B. The enforcement of the SJF policy in SWF allows tasks A2 and 

A3 to be allocated before B4, leading to a shorter makespan for DAG A while the 

makespan of DAG B remains the same as shown in Figure 3-5. This would reduce the 

average makespan of all DAGs and improve the overall system performance.  

 



 

18 
 

 

Figure 3-4 Two example workflows 

 

 

Figure 3-5 An example illustrating the advantage of SWF 
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3-2 Priority-Based Backfilling 

After waiting queue scheduling, the scheduler tries to allocate each task in 

sequence. If the number of free resources is not enough for the first task, the resources 

are left idle and become a schedule hole, resulting in degraded resource utilization. To 

resolve the problem, the task rearrangement phase is introduced to allow out-of-order 

execution to improve resource utilization and thus the overall system performance. 

 

Backfilling strategies are extensively used by many SPMD based parallel job 

schedulers to reduce resource fragmentation by permitting tasks to run out of order as 

long as they do not delay certain tasks. Backfilling is traditionally used with a 

First-Come-First-Serve (FCFS) scheduler. Users are expected to provide estimates of 

task execution time. The scheduler rearranges the waiting queue according to these 

estimates to improve resource utilization and system performance while maintaining a 

certain degree of fairness. Various versions of backfilling have been proposed [31], 

e.g. EASY backfilling and conservative backfilling. 

 

EASY backfilling allows a task to backfill provided that the task does not delay 

the first task in the waiting queue. On the other hand, conservative backfilling allows 

a task to backfill as long as any previous task in the waiting queue will not be delayed. 

In [12], OWM introduced both EASY and conservative backfilling into the task 

rearrangement phase. However, experiments showed that such rearrangement did not 

necessarily lead to performance improvement. This is because the backfilling in 

OWM creates an individual profile of resource usage at future times for each cluster 

instead of a single profile for the entire multi-cluster environment. Backfilling is 

traditionally used in a single cluster or parallel computer system. OWM applies the 
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concept of backfilling directly to a multi-cluster environment. Therefore, each cluster 

is treated individually with its own profile. The backfilling in OWM works as follows. 

Each task in the waiting queue is repeatedly scheduled into the profiles of all clusters 

to find out the best possible Earliest Start Time (EST). The tasks in the waiting queue 

are then allocated with the AA technique in OWM in the non-descending order of EST. 

However, this approach incurs some problem. Consider a scenario for OWM‟s 

backfilling shown in Figure 3-6, where the length of each block represents the number 

of processors used and the width stands for the required execution time. Notice that 

the width of a task may be different on different resources since the task requires 

different execution times on different resources in a heterogeneous environment. 

OWM maintains individual profiles for three resources. In this scenario, OWM will 

allocate task C before task B since task B would not be delayed by the backfilling 

according to the profile of R3, which has more processors than R1 and R2. However, 

since task A is given trial allocations on all three profiles, it may not actually be 

allocated on R3. In that case, the allocation of task C before task B might result in the 

delay of task B and thus deteriorate the makespan of the entire workflow. To 

overcome the drawback of OWM‟s backfilling, we propose a priority-based 

backfilling approach in the following. 

 

 

Figure 3-6 A scenario of OWM‟s backfilling 
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We propose a modification to the original conservative backfilling strategy, 

which makes it amenable to priority-based waiting queues. The modified backfilling 

strategy is described below: 

1. Each task in the waiting queue holds three attributes: Estimated Start Time 

(EST), Estimated Finish Time (EFT), and Estimated Allocated Cluster 

(EAC). 

2. The scheduler creates a profile for the entire multi-cluster environment based 

on the conservative backfilling strategy, recording the estimated information 

of each task. The profiling algorithm is described in Figure 3-7. 

3. Each time a new task is submitted into the waiting queue, the scheduler will 

re-create the profile and update the estimated information of tasks. 

4. Then scheduler allocates tasks in the non-descending order by their estimated 

start time instead of their priority. 

 

Figure 3-7 Profiling algorithm for backfilling 

 

To illustrate the advantage of our backfilling approach, consider the simple 

DAGs shown in Figure 3-8. The computation time of each task on two different 

clusters and the number of resources required by each task are given in the tables 

for all tasks in their order in waiting queue do 

1. Find the first point where enough resources are available on some cluster. 

2. Update EST, EFT, and EAC for that task. 

3. Mark the resources occupied for the duration of the task's estimated execution 

time. 

end for 
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below the DAGs. The task ranking result of each DAG is: 

 DAG A: A1 (230); A4 (170); A3 (160); A6 (125); A2 (105); A5 (75); A7 

(60) 

 DAG B: B1 (235); B3 (195); B2 (140); B6 (110); B4 (75); B5 (75); B7 (55); 

B8 (30) 

 

The two subfigures in Figure 3-9 show the scheduling results of pure 

RANK_HYBD and RANK_HYBD accompanied with our priority-based backfilling, 

respectively. We also show the content of waiting queue at different time points in the 

two subfigures in order to illustrate the allocation sequence and backfilling activities. 

The blue colored tasks are allocated at that time point according to the RANK_HYBD 

mechanism and the red colored tasks are backfilled at the time point by our 

priority-based backfilling approach. The numbers of processors in R1 and R2 are 14 

and 12, respectively. In the case of RANK_HYBD, task A2 is delayed since task A3 

cannot be allocated at time 15, leading to a larger makespan of the overall workflow. 

On the contrary, with priority-based backfilling, task A2 is backfilled at time 15 since 

the backfilling will not delay the execution of task A3. Later, task A3 and task B3 are 

also backfilled at time 25. Finally, the priority-based backfilling approach achieves 

approximately 20% performance improvement, in terms of average makespan of the 

two workflows, compared to the pure RANK_HYBD approach. 
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Figure 3-8 Two example workflows 

 

 

Figure 3-9 An example illustrating the advantage of priority-based backfilling 
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3-3 Preemptive Task Execution 

In SWS [9], if a task with a lower rank value becomes ready and enters the 

waiting queue earlier than a task coming from the same workflow and having a higher 

rank value, the lowerly ranked task might be allocated first and hence delay the 

allocation of the higherly ranked task, degrading the makespan of the entire workflow. 

To resolve the above issue, CPWS in OWM [12] enforces that tasks of the same 

workflow will be put into the waiting queue in the non-ascending order of their rank 

values. This policy achieves performance improvement in terms of average makespan, 

compared to SWS, as shown in [12]. However, we found that CPWS may 

unnecessarily reduce the resource utilization and thus deteriorate the overall system 

performance since some lowerly ranked tasks are prevented from execution even 

though the higherly ranked tasks are not yet ready and there are enough resources for 

the lowerly ranked tasks. To take the advantages of both SWS and CPWS, we propose 

a preemptive task execution approach for the task allocation phase to cooperate with 

SWS used in the task prioritizing phase.  

 

Our approach allows a lowerly ranked task to be allocated and executed before 

higherly ranked tasks if they are not yet ready. However, later when a higherly ranked 

task becomes ready, the system will suspend the lowerly ranked task to release 

resources for the higherly ranked task‟s immediate execution. The suspended task is 

put back to the waiting queue for scheduling and will be resumed later to finish its 

remaining computation on some available resources. This suspend-and-resume 

approach is achieved through the help of the virtualization technology in cloud 

computing environments, where virtual machines can be migrated smoothly between 

different machines.  
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Figure 3-10 shows the algorithm of preemptive task execution. Line 2 first finds 

a resource which produces the minimal estimated finish time for the current task. 

Through lines 4 to 13, the scheduler travels the running queue to check each running 

task which comes from the same workflow and has a lower rank value than the 

current task. If the estimated finish time of the current task can be further reduced by 

preempting any such a running task, the scheduler then suspends that running task, 

first found, and moves it back to the waiting queue. Finally, the scheduler allocates 

the current task by the All-EFT task allocation method, which will be described in the 

next section. 

 

 

 

 

 

 

 

1 

2 

 

3 

4 

5 
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ti: the task to allocate 

Q: a set of tasks in the waiting queue 

R: a set of running tasks 

C: a set of clusters 

 

PreemptiveTaskExecution(ti, Q, R, C) 

begin 

ck = MapToBestResource(ti, C);   // map ti to the resource with the best 

performance. 

minEFT = EFT(ti, ck)  

for each task tr ϵ R and tr belongs to the same workflow as ti do 

if ti has higher rank than tr and can finish before minEFT by preempting tr 

then 

Suspend tr; 
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Figure 3-10 Algorithm of preemptive task execution 

 

Figure 3-11 and Figure 3-12 present an example to illustrate the differences 

between SWS, CPWS, and our SWS+preemptive task execution. Figure 3-11 is the 

information of the workflow used in the example. Figure 3-12 shows three different 

resultant schedules produced by the three different approaches. In this example, the 

order of all tasks in workflow A, from high to low rank values, is A1, A2, A4, A3, A5. 

In the case of SWS, A3 is allowed to be allocated before A4 although it has a smaller 

rank value, resulting in a makespan of 90 time units. In the case of CPWS, the 

allocation sequence is enforced to conform to the rank order. Therefore, A4 is 

allocated before A3. This arrangement leads to a shorter makespan, 70 time units, than 

in the case of SWS. Notice that unlike traditional parallel job allocation, the execution 

starting sequence may be different from the allocation sequence for workflow 

scheduling since tasks might have data dependency between each other. That is why 

in Figure 3-12 (B) it appears that A3 begin its execution before A4 although actually 

A4 gets its allocation before A3, because A4 has to wait for input data from A2 to start 

its execution. In the case of our SWS + preemptive task execution, A3 is allocated 

before A4 since it becomes ready earlier than A4. However, when A4 becomes ready, 

7 

8 

9 

10 

11 

12 

13 

Q = Q + {tr}; 

R = R – {tr}; 

break; 

end if 

end for 

allocate ti; //using the All-EFT approach to be described in the next section 

end 
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A3 is suspended at time 35 to release resources for A4. A3 is resumed later on another 

resource at time 40. Since the SWS + preemptive task execution approach guarantees 

the priority of A4 without sacrificing resource utilization, it achieves the best 

makespan, 65 time units, among the three approaches. 

 

 

Figure 3-11 An example of workflow 
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Figure 3-12 A comparison of SWS, CPWS, and preemptive task execution 

 

3-4 All-EFT Task Allocation 

In the task allocation method of OWM, which is called AA, when there are more 

than one cluster being able to accommodate a task, the scheduler allocates the task to 

the cluster among them which can lead to the earliest estimated finish time. If there is 

only one cluster that can accommodate the task, the scheduler will calculate the 

earliest estimated finish time of the task on each cluster in the system and allocate the 

task to the cluster with the earliest estimated finish time. 

 

In this thesis, we adopt an All-EFT approach, which always considers each 

cluster in the system and allocates the task to the cluster leading to the earliest 
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estimated finish time. Figure 3-13 describes the All-EFT approach in an algorithmic 

style. 

 

Figure 3-13 All-EFT algorithm 

 

Considering a simple workflow given in Figure 3-14, the ranking list of tasks is 

{A1, A3, A2, A4, A5, A6, A7}. Figure 3-15 shows the scheduling results obtained 

from AA and All-EFT task allocation, respectively. According to the ranking list, at 

time zero A1 is allocated first. At time 15, three tasks, A3, A2, and A4, become ready 

and A3 is allocated first according to their rankings. When trying to allocate A2, in the 

case of AA, it is allocated to resource R2, since more than one cluster, R2 and R3, has 

ti: the task to allocate 

Q: a set of tasks in the waiting queue 

R: a set of running tasks 

C: a set of clusters 

 

All_EFT(ti, Q, R, C) 

begin 

for each cluster ci ϵ C do 

Calculate EFT(ti, ci); 

end for 

Assign task ti to the cluster leading to the earliest estimated finish time for ti; 

Q = Q – {ti}; 

R = R + {ti}; 

end 
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enough processors at time 15 and AA picks up the best one among them. Notice that 

although the allocation decision is made at time 15, A2 starts its execution at time 20 

on R2 because of data communication cost. On the other hand, All-EFT allocates A2 

to resource R1, starting execution at time 20, despite it is occupied at time 15 when 

making the allocation decision. Such allocation of A2 allows A2, A5, and A7 to finish 

their execution earlier, leading to a shorter makespan of the overall workflow. In 

Figure 3-15, the makespan produced by All-EFT task allocation is 15% less than that 

produced by AA. 

 

 

Figure 3-14 An example of workflow 
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Figure 3-15 A comparison of AA and All-EFT 
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Chapter 4  Software Simulator 

This chapter presents the software simulator that we developed for simulating the 

workflow scheduling process in a multi-cluster platform. The simulator will be used 

to conduct various simulation experiments for evaluating the proposed workflow 

scheduling algorithms in the next chapter. Section 4-1 depicts major components in 

the simulation process. Section 4-2 describes the classes used to implement the 

components in the simulator, and Section 4-3 presents the simulation process. 

 

4-1 Major Components in the Workflow Scheduling Process 

Input Workload 

A workflow application is represented by a DAG G = (V, E), where V is a set of 

nodes, each representing a task, and E is a set of edges, each defining the computation 

precedence order between two tasks. 

 

Global Clock 

In a discrete-event based simulation, the simulator maintains a global clock, and 

the operation of a system is represented as a chronological sequence of events. The 

simulator runs in a loop to remove the smallest time-stamped event from the event 

queue and process it. Each round the simulator processes the event; it sets the global 

clock to the time-stamp of the event. 

 

Scheduler 

The scheduler maintains the task interdependence in each workflow and calls the 

chosen algorithm to schedule the workflows. It is instrumented with some protection 

mechanisms for detecting the possible implementation errors of the scheduling and 
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allocation algorithms. If the allocation made by the chosen algorithm is unreasonable, 

e.g. a task starts its execution before receiving all the data from its parents, the 

scheduler throws an error message and stops the simulation. 

 

Multi-cluster Environment 

A multi-cluster platform consists of several clusters, in which each cluster may be 

composed of different amount of homogeneous processors. All of the clusters are fully 

connected through heterogeneous network links with different bandwidths and 

latencies. 

 

4-2 Classes in the simulator 

In this section, the classes used in the simulator are described, including DAG, 

EventQueue, Scheduler, DecisionMaker, and Cluster classes. 

 

4-2-1. DAG 

DAG provides methods to generate input workloads and stores the generated 

workflows including tasks and edges. Figure 4-1 shows an UML diagram of class 

DAG. 
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DAG

+node: long

+shape: double

+outDegree: long

+CCR: double

+bRange: double

+wDag: long

+job: Job[]

+connRelation: long[][]

+CommuniCost: long[][]

+submitTime: long

+finishTime: long

<<create>>-DAG()

+initial(node: long, shape: double, outdegree: long, ccr: double, brange: double, wdag: long, maxnp: long): void

+ShapeGenerator(): void

+RelationGenerator(): void

+CostGenerator(): void

 

Figure 4-1 Class DAG 

 

The attributes and operations in class DAG are described as following: 

Attributes 

1. node: the number of tasks in the DAG. 

2. shape: a number controlling the shape of the DAG. If shape > 1, it generates a 

shorter graph with a high parallelism degree. Otherwise, it generates a longer 

graph with a low parallelism degree. 

3. outDegree: the maximum number of immediate descendants of a task. 

4. CCR: communication cost to computation cost ratio. 

5. bRange ( ): distribution range of computation costs of tasks on clusters. It is the 

heterogeneous factor for cluster speeds. A large range indicates significant 

differences in task‟s computation costs on different clusters. 

6. wDAG: the average computation cost of the DAG. 

7. Job: tasks and their estimated computation costs in the DAG. 

8. connRelation: computation precedence order between tasks. 

9. CommuniCost: estimated sizes of data transfers between tasks. 

10. submitTime: the submission time of the DAG. 
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11. finishTime: the finish time of the DAG. 

Operations 

1. initial(): an operation that randomly generates a DAG according to the input 

parameters mentioned above. It receives all the parameters needed for 

generating a DAG and invokes ShapeGenerator(), RelationGenerator() and 

CostGenerator() with input parameters. 

2. ShapeGenerator(): an operation that generates the shape of a DAG using the two 

parameters, node and shape. The height (depth) of a DAG is randomly 

generated from a uniform distribution with mean value equal to . The 

width for each level is randomly generated from a uniform distribution with 

mean value equal to . If Shape > 1, it generates a shorter 

graph with a high parallelism degree. Otherwise, it generates a longer graph 

with a low parallelism degree. 

3. RelationGenerator(): an operation that generates the computation precedence 

order of a DAG according to the input parameters: node and outDegree. The 

number of immediate descendants of each task is randomly generated from a 

uniform distribution with the range [1, outDegree] . 

4. CostGenerator(): an operation that generates the computation costs and the 

communication costs of a DAG. The average estimated computation cost of 

each task , i.e. , is randomly generated from a uniform distribution 

ranging between [1, 2 * wDag]. The estimated computation cost of each task 

 on each cluster , i.e. , is randomly generated from a uniform 

distribution with the range: 
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4-2-2. EventQueue 

EventQueue maintains a global system clock and processes the Event instances 

generated during the simulation process, of which each contains 4 attributes <type, 

time, dagIndex, jobIndex>. Each time an event occurs, EventQueue invokes the 

scheduler to simulate the scheduling process. The structures of the EventQueue class 

and Event class are shown in Figure 4-2. 

 

Event

+type: eventType

+time: long

+dagIndex: long

+jobIndex: long

<<create>>-Event()

<<create>>-Event(e: eventType, t: long, j: long, d: long)

EventQueue

+time: long

-queue: std::list<Event>

<<create>>-EventQueue()

+enQueue(e: Event): void

+deQueue(): Event

+remove(e: Event): void

+size(): unsigned

+process(dag: DAG, dagNo: long, sched: Scheduler): void

 

Figure 4-2 The EventQueue class and Event class 

 

Attributes 

1. time: the global system clock. 

2. queue: a priority queue storing a set of Event instances. The event with the 

smallest time-stamp has the highest priority. 

Operations 

1. enQueue(E): an operation that inserts a new event E into the queue. 

2. deQueue():an operation that removes and returns the event with the smallest 

time-stamp. 

3. remove(E): an operation that removes the event E from the queue. 

4. size():an operation that returns the size of the queue. 

5. process():a loop that continuously removes the smallest time-stamped event from 



 

37 
 

the event queue and processes it. 

 

4-2-3. Scheduler 

The Scheduler maintains the task interdependence in a workflow and manages 

the waiting queue and running queue. When a task becomes ready, the Scheduler puts 

it into the waiting queue. Later, when a task begins its execution, the Scheduler moves 

it into the running queue. When an exit node of a workflow finishes, the Scheduler 

will calculate the makespan of the workflow. The Scheduler does not make a 

scheduling decision by itself; instead it invokes DecisionMaker to make a scheduling 

decision. Moreover, the scheduler is instrumented with some protection mechanisms 

for detecting the possible implementation errors of the scheduling and allocation 

algorithms. If the allocation made by DecisionMaker is unreasonable, e.g. a task starts 

its execution before it becomes ready, the Scheduler throws an error message and 

stops the simulation. Figure 4-3 shows Scheduler class. 
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Scheduler

+dagNo: long

+clusterNo: long

+dag: DAG[]

+cluster: Cluster *

+eventQueue: EventQueue *

+decisionMaker: DecisionMaker *

+waitq: std::list<queueNode>

+runq: std::list<queueNode>

<<create>>-Scheduler(cluster: Cluster, clusterNo: long, eventQueue: EventQueue, decisionMaker: DecisionMaker)

+enQueue(Job): void

+remove(Job): void

+size(): unsigned

+front(): Job

+calc_ccCost(t: long, dagIndex: long, jobIndex: long, cluster: Cluster, clusterNo: long, realtime: bool): long

+jobMapping(): void

+dagSubmit(t: long, dag: DAG): void

#jobSubmit(t: long, dagIndex: long, jobIndex: long): void

+reschedule(t: long): void

#jobSelect(t: long): queueNode

+jobAllocate(t: long, dagIndex: long, jobIndex: long): bool

#jobCancel(t: long, dagIndex: long, jobIndex: long): void

+jobFinish(t: long, dagIndex: long, jobIndex: long): void

 

Figure 4-3 Class Scheduler 

 

Attributes 

1. dagNo: the total number of workflows. 

2. clusterNo: the total number of clusters. 

3. eventQueue: a pointer pointing to the EventQueue instance. 

4. decisionMaker: a pointer pointing to the DecisionMaker instance. 

5. waitq: a set of ready tasks. 

6. runq: a set of running tasks. 

Operations 

1. enQueue(T): an operation that adds a ready task T into the waiting queue and 

invokes the prioritizing operation supported by DecisionMaker. 

2. remove(T): an operation that removes a task T from the waiting queue and 

invokes the prioritizing operation supported by DecisionMaker. 

3. size(): an operation that returns the size of the waiting queue. 

4. front(): an operation that returns the first task in the waiting queue. 
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5. calc_ccCost(t, dagIndex, jobIndex, Cluster, i, realtime): an operation that 

calculates the Earliest Start Time of task <dagIndex, jobIndex> on the i
th

 

cluster Ci. If the input parameter realtime is true, the Scheduler assumes that 

data transfer starts at time t. Otherwise, the Scheduler assumes that the data 

transfer starts right after the parents of the task finish. 

6. jobMapping(): an operation that maps all of the submitted workflows to the 

clusters before execution. This operation is called by EventQueue before 

processing all of the Event instances and only for static scheduling algorithms. 

7. dagSubmit(t, W): an operation that submits a workflow W to the Scheduler at 

time t. This operation invokes DecisionMaker::_dagSubmit() and jobSubmit() 

to put the entry task into the waiting queue. 

8. jobSubmit(t, T): an operation that puts a ready task T into the waiting queue at 

time t and invokes DecisionMaker::_jobSubmit(). 

9. reschedule(): an operation that runs in a loop to find if there are any tasks to be 

allocated at current time point. Every time before the global system clock is 

increased, EventQueue will call this operation automatically. 

10. jobSelect(): an operation that invokes DecisionMaker::_jobSelect() to select 

tasks from the waiting queue for allocation. This operation is continuously 

called by reschedule() until no more tasks can be allocated at current time 

point. 

11. jobAllocate(t, T): an operation that invokes DecisionMaker::_jobAllocate() to 

allocate task T and moves task T from the waiting queue to the running queue 

at time t. This operation is called by reschedule() after selecting a task from 

the waiting queue. 

12. jobFinish(t, T): an operation that removes task T from the running queue and 

checks if any of its immediate descendants is ready. It will invoke jobSubmit() 
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if any task becomes ready. 

 

4-2-4. DecisionMaker 

The DecisionMaker class supplies a set of interfaces to Scheduler for making a 

scheduling decision. Algorithms like HEFT, RANK_HYBD, and OWM can be 

realized by implementing some or all of the operations defined in the DecisionMaker 

class. The structure of the DecisionMaker class is shown in Figure 4-4. 

 

DecisionMaker

+name: std::string

+sched: Scheduler *

<<create>>-DecisionMaker()

+_jobMapping(): void

+_dagSubmit(t: long, dagIndex: long): void

+_jobSubmit(t: long, dagIndex: long, jobIndex: long): void

+_jobSelect(t: long): queueNode

+_jobAllocate(t: long, dagIndex: long, jobIndex: long): void

+_afterAllocate(node: queueNode): void

+_jobFinish(t: long, dagIndex: long, jobIndex: long): void

 

Figure 4-4 Class DecisionMaker 

 

Attributes 

1. name: the name of the implemented scheduling algorithm. 

2. sched: a pointer pointing to the Scheduler instance. 

Operations 

1. _jobMapping(): an operation that maps all of the submitted workflows to the 

clusters before execution. This operation is only used for the static scheduling 

algorithms. 

2. _dagSubmit(W): an operation that is called when a new workflow W is 

submitted to the Scheduler. Our SWF approach implements this operation to 
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calculate the estimated remaining time of uncompleted workflows. 

3. _jobSubmit(T): an operation that is called when a new task T becomes ready. 

CPWS is realized in this operation. 

4. _jobSelect(): an operation that selects a task from the waiting queue for 

allocation. Priority-based backfilling is achieved in this operation. 

5. _jobAllocate(T): an operation that selects a cluster to accommodate task T. This 

operation usually invokes Scheduler::calc_ccCost() repeatedly to find the best 

cluster for task T.  

6. _afterAllocate(T): an operation that is called after a task T has been allocated. 

CPWS implements this operation to remove tasks from the self-maintaining 

waiting queue. 

7. _jobFinish(T): an operation that is called when a task T has completed its 

execution. 

 

4-2-5. Cluster 

The Cluster class records the resources usage and calculates the Earliest Start 

Time (EST) of a task according to current resource allocation profile. Figure 4-5 

shows the Cluster class. 
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Cluster

+np: long

+CommuniRate: long[]

-profile: std::list<profileNP>

-jobs: std::list<profileJob>

<<create>>-Cluster()

+initial(): void

+submitJob(dagIndex: long, jobIndex: long, start: long, end: long, np: long): bool

+cancelJob(dagIndex: long, jobIndex: long): bool

+est(start: long, duration: long, np: long): long

+availableNP(t: long): long

-profileInsert(start: long, end: long, np: long): bool

-profileRemove(start: long, end: long, np: long): bool

 

Figure 4-5 Class Cluster 

 

Attributes 

1. np: the total number of resources of the cluster. 

2. CommuniRate: bandwidths of different network links connected to other clusters. 

3. profile: a resource allocation profile. 

4. jobs: a set of tasks running on this cluster. 

Operations 

1. submitJob(T, tstart, tend): an operation that tries to allocate a task T to the cluster. 

The execution of task T starts at time tstart, and finishes at time tend. This 

operation returns false if the number of available resources is not enough for 

task T during the time period between tstart and tend. 

2. cancelJob(T, t): an operation that cancels a task T and releases the resources used 

by task T at time t. 

3. est(t, duration, np): an operation that calculates the Earliest Start Time (EST) of a 

task since time t. 

4. availbleNP(t): an operation that returns the number of available resources at time 

t. 

5. profileInsert(): an operation that inserts a resources allocation record into the 
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profile. 

6. profileRemove(): an operation that removes a resources allocation record from 

the profile. 

 

4-3 Simulation Process 

This section describes the simulation process. The simulation process involves 

several aforementioned classes. The EventQueue class maintains the global system 

clock and processes events by invoking the Scheduler class and DecisionMaker class. 

The following describes the details. 

 

4-3-1. Simulation skeleton 

First, the simulator constructs a multi-cluster environment and generates a 

sequence of input workflows using the DAG class. Then, it initiates the corresponding 

Scheduler instance and DecisionMaker instance for the scheduling algorithm to be 

simulated. Finally, it initiates an EventQueue instance to handle the events generated 

during the simulation. Figure 4-6 shows the pseudo code of the discrete-event 

handling process (EventQueue::process()). In the process, EventQueue first checks 

the submission time of each workflow in line 2 to line 10. If the submission time of a 

workflow is 0, the workflow is submitted to the Scheduler right away. Otherwise, 

EventQueue creates an event indicating the submission of the workflow at the 

specified time point. Line 11 invokes the Scheduler::jobMapping() operation to 

support static algorithms before any event handling process. Then EventQueue sets 

the global system clock to 0 in line 12 and starts to handle events in line 13. 

 

Each time the EventQueue handles an event, it checks if the time stamp of the 

event is larger than the global system clock. If it is, the EventQueue will invoke the 
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Scheduler::reschedule() operation to check if there are any ready tasks to be allocated 

at current time point. Scheduler::reschedule() runs in a loop to select a task for 

allocation each time until the resources are not enough. Then the EventQueue sets the 

global system clock to the time stamp of the event in line 20. Line 22 to 26 shows that 

if the event is a „submit‟ event, EventQueue invokes the Scheduler::dagSubmit() 

operation to submit the workflow to the Scheduler; if the event is an „end‟ event, 

EventQueue invokes the Scheduler::jobFinish() operation to check if there are tasks 

becoming ready for submission. The pseudo code only shows the generation of 

workflow submission events explicitly in line 7. The task submission and ending 

events are generated inside the operations of SCHED. The discrete-event handling 

process continues until all of the events have been handled. 
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21 

W: input workflows 

SCHED: the scheduler 

 

EventQueue::Process(W, SCHED) 

begin 

for each workflow wi ϵ W do 

t0 = submission time of wi; 

if t0 = 0 then 

submit wi to SCHED 

else 

insert an event, which submits wi to SCHED at time t0, into this->queue; 

end if 

end for 

SCHED->jobMapping(); 

this->time = 0; 

while event queue ≠ Ø do 

ej = this->deQueue(); 

wj = workflow of ej; 

jj = task of ej; 

tj = time of ej; 

if tj > this->time then 

SCHED->reschedule(); 

this->time = tj; 

end if 

if type of ej = SUBMIT then 
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22 

23 

24 

25 

26 

27 

28 

SCHED->dagSubmit(tj, wj); 

else if type of ej = END then 

SCHED->jobFinish(tj, wj, jj); 

end if 

end while 

end 

Figure 4-6 Pseudo code of EventQueue::process() 

 

4-3-2. Workflow Processing  

In the simulator, the task interdependence in the workflows is maintained by the 

Scheduler class. When a new workflow is submitted by calling 

Scheduler::dagSubmit(), the scheduler finds the entry task of the workflow and puts it 

into the waiting queue by Scheduler::jobSubmit(). Scheduler::jobSelect() and 

Scheduler::jobAllocate() are used in the Schduler::reschedule() to allocate ready tasks 

to the clusters and move the allocated tasks from the waiting queue to the running 

queue in the event handling process. When a task finishes its execution, 

Scheduler::jobFinish() is invoked to check if any descendants become ready and 

invoke Scheduler::jobSubmit() to put the ready descendants into the waiting queue. 

Figure 4-7 shows the flow chart of the workflow processing procedure in the 

simulator. 
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Figure 4-7 Flow chart of workflow processing 
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Chapter 5   Performance Evaluation and 

Discussion 

This chapter evaluates the proposed methods in our MOWS and compares them 

with the approaches used in OWM [12]. Section 5-1 introduces the setup for the 

following experiments and the metrics used in the performance analysis. Section 5-2 

presents the experimental results of the proposed methods in MOWS. 

 

5-1 Experimental Setup and Performance Metrics 

5-1-1. Algorithms under Evaluation 

In addition to the overall effects of MOWS, we also evaluated the effectiveness 

of each proposed method in it separately in the following experiments. Therefore, we 

implemented various online workflow scheduling approaches which differ with each 

other in the methods used in the four scheduling phases. The following describes the 

implemented approaches and the corresponding methods used in the four scheduling 

phases. : 

 OWM: adopting CPWS, RANK_HYBD, FCFS, and AA in the four 

scheduling phases, respectively. 

 OWM(SWF): replacing RANK_HYBD with SWF in the phase of waiting 

queue scheduling, used to evaluate the effectiveness of the SWF strategy 

through comparing it with OWM. 

 OWM(backfilling): replacing FCFS with priority-based backfilling in the 

phase of task rearrangement, used to evaluate the effectiveness of the 

priority-based backfilling strategy through comparing it with OWM. 

 OWM(preemptive): replacing CPWS with SWS in the phase of task 



 

49 
 

prioritizing and adding preemptive task execution into the phase of task 

allocation, used to evaluate the effectiveness of the preemptive task 

execution strategy through comparing it with OWM. 

 OWM(All-EFT): replacing AA with All-EFT in the phase of task allocation, 

used to evaluate the effectiveness of the All-EFT strategy through 

comparing it with OWM.  

 MOWS: adopting SWS, SWF, priority-based backfilling, preemptive task 

execution, and All-EFT in the four scheduling phases, respectively, used to 

evaluate the overall effect of MOWS. 

 

5-1-2. Simulation Setup 

In a real HPC environment, the workload may consist of workflows with various 

characteristics. To generate realistic workloads for the simulation experiments, we use 

the following parameters to generate different types of workflows. Chapter 4 has 

described how these parameters were used to generate DAGs. The following presents 

the ranges of values assigned to the parameters for DAG generation in the simulation 

experiments.  

 Node: the number of nodes in a DAG. It is randomly chosen from the set 

{20, 40, 60, 80, 100}. 

 Shape: a number controlling the shape of a DAG. A higher shape value 

results in a shorter DAG with a high parallelism degree. Otherwise, a longer 

DAG with a low parallelism degree is generated. Shape is randomly 

selected from the set {0.5, 1.0, 2.0}. 

 OutDegree: the maximum number of immediate descendants of a task. 

OutDegree is randomly selected from the set {1, 2, 3, 4, 5}. 

 CCR: the Communication-to-Computation Ratio of a DAG. CCR of a 
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workflow is defined as its average communication cost divided by its 

average computation cost among all tasks on all resources. A data-intensive 

application has a higher CCR, while a compute-intensive one has a lower 

CCR. For general workflows, CCR is randomly chosen from the set {0.1, 

0.5, 1.0, 1.5, 2.0}. For data-intensive workflows, CCR is selected from the 

set {1.5, 2.0}, and for compute-intensive workflows, CCR is selected from 

the set (0.1, 0.5). 

 BRange: distribution range of computation costs of tasks on different 

clusters. It is the heterogeneous factor for cluster speeds. A large range 

indicates significant differences in task‟s computation costs on different 

clusters. BRange is randomly selected from the set {0.1, 0.25, 0.5, 0.75, 

1.0}. 

 WDAG: the average computation cost of a DAG. WDAG is randomly 

chosen from the range [100, 1000]. The average computation cost of each 

task on all clusters is randomly generated from a uniform distribution within 

the range [1, 2 * WDAG]. 

 

The submission interval between two consecutive workflows is assumed to 

conform to the Poisson distribution. Each experiment invokes 20 runs, of which each 

simulates 100 online workflows on a multi-cluster environment composed of 5 

clusters each containing 50 ~ 70 processers respectively. 

 

5-1-3. Metrics 

The performance metrics used in the experiments are described below. In each 

experiment, the average values of all workflows based on these three metrics are used 

to evaluate the proposed methods. 
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 makespan: the total execution time for a workflow application from 

workflow submission to workflow completion, including waiting time and 

execution time. It is used to measure the performance of a scheduling 

algorithm from the perspective of workflow applications. However, 

makespan usually varies widely among workflows with different sizes and 

other properties. 

 Schedule Length Ratio (SLR): the ratio of a workflow‟s makespan over its 

best possible schedule length. SLR tries to measure the performance of 

scheduling algorithms regardless of the variation in workflows‟ sizes and  

is defined by 

 

, where CPL represents the Critical Path Length of a workflow. 

 

5-2 Experimental Results 

To evaluate the effectiveness of the proposed methods, we compare them with 

the approaches in OWM [12]. We vary the computation intensity and the arrival 

interval of workflows to investigate their influence on the performance of the 

proposed approaches. In the last section, we experiment with the effects of execution 

time estimation. 

 

5-2-1. Shortest-Workflow-First Strategy 

Figure 5-1 and Figure 5-2 show the performance results of OWM and 

OWM(SWF) under different mean arrival intervals of workflows in terms of average 

makespan and average SLR, respectively. It can be easily seen that OWM(SWF) has 

better performance than OWM in terms of average makespan. Figure 5-3 and Figure 
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5-4 present the performance of OWM and OWM(SWF) with different levels of 

computation intensity. In this experiment, the arrival interval of workflows is set to 

conform to the Poisson distribution with the mean value of 100. Under such setting of 

arrival interval, several workflows may be simultaneously running in the system. The 

results indicate that OWM(SWF) outperforms OWM significantly for both 

computation- and communication-intensive workflows in terms of average makespan. 

However, in the above experiments, when in terms of SLR the performance of 

OWM(SWF) is either quite close to or even worse than that of OWM, as shown in 

Figure 5-4 and Figure 5-2, respectively. It is because the definition of SLR divides the 

makespan of a workflow by its critical path length. For those workflows with large 

parallel degree but short critical path length, our SWF approach treats them as large 

workflows, according to the calculation of estimated remaining execution time 

described in Figure 3-2, and thus assigns them low priority values. This arrangement 

would enlarge the makespans of those workflows and in turn lead to drastic increase 

in the SLR values because of their short critical path lengths. Therefore, based on the 

concerns of users, makespan or SLR, the scheduling system can choose to use either 

OWM‟s CPWS or our SWF approach. 
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Figure 5-1 Makespan performance of SWF with different mean arrival intervals 

 

 

Figure 5-2 SLR performance of SWF with different mean arrival intervals 
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Figure 5-3 Makespan performance of SWF with different computation intensities 

 

 

Figure 5-4 SLR performance of SWF with different computation intensities 

 

5-2-2. Priority-based Backfilling 

Figure 5-5 and Figure 5-6 investigate the performance of OWM and 

OWM(backfilling) under different mean arrival intervals of workflows. Figure 5-8 
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and Figure 5-9 evaluate the performance of OWM and OWM(backfilling) with 

workflows of different computation intensities. The experiments show that 

OWM(backfilling) outperforms OWM in terms of both average makespan and 

average SLR. In terms of average makespan, the performance improvement of 

OWM(backfilling) over OWM increases from 7% to 10% as the arrival interval grows. 

Figure 5-7 shows the numbers of backfilling occurring in the experiments, which 

reflects that backfilling has more chance to occur when the system is more crowded 

since under such situation the tasks in queue are more likely to be blocked due to the 

insufficiency of available resources. However, comparing Figure 5-5 and Figure 5-7, 

more backfilling occurrences does not necessarily lead to more performance 

improvement. This is because earlier execution of some tasks in a workflow does not 

always reduce its makespan if the start times of the tasks on the critical path remain 

unchanged. For computation intensity, OWM(backfilling) outperforms OWM for both 

computation- and communication-intensive workflows. The above results indicate 

that task rearrangement can effectively improve the scheduling performance for 

mixed-parallel online workflows. 
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Figure 5-5 Makespan performance of backfilling with different mean arrival intervals 

 

 

Figure 5-6 SLR performance of backfilling with different mean arrival intervals 
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Figure 5-7 number of backfilling happened v.s. mean arrival intervals 

 

 

Figure 5-8 Makespan performance of backfilling with different computation intensities 
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Figure 5-9 SLR performance of backfilling with different computation intensities 

 

5-2-3. Preemptive Task Execution 

Figure 5-10 and Figure 5-11 evaluate the performance of preemptive task 

execution under different mean arrival intervals of workflows in terms of average 

makespan and average SLR, respectively. The average makespan produced by 

OWM(preemptive) is about 2% less than that produced by OWM. This is achieved by 

the advantage of preemptive task execution, as illustrated in Figure 5-12 which shows 

the numbers of preemption occurring in the experiments. Figure 5-12 indicates that 

preemption is more likely to occur when the system is less crowded since under such 

situation low priority tasks in queue have more chance to start execution first and are 

preempted later when high priority tasks come into the queue. The trend of 

preemption occurrences also explains the results in Figure 5-10 and Figure 5-11 where 

the performance improvement increases noticeably as the arrival interval grows. 

Figure 5-13 and Figure 5-14 show the performance for workflows of different 

computation intensities. Again, the performance of OWM(preemptive) is better than 
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that of OWM for both computation- and communication-intensive workflows. 

 

 

Figure 5-10 Makespan performance of preemptive task execution with different mean arrival intervals 

 

 

Figure 5-11 SLR performance of preemptive task execution with different mean arrival intervals 
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Figure 5-12 Number of preemption happened v.s. Arrival intervals 

 

 

Figure 5-13 Makespan performance of preemptive task execution with different computation intensities 

 



 

61 
 

 

Figure 5-14 SLR performance of preemptive task execution with different computation intensities 

 

5-2-4. All-EFT Task Allocation 

Figure 5-15 and Figure 5-16 compare the performance of OWM(All-EFT) and 

OWM under different mean arrival intervals of workflows in terms of average 

makespan and average SLR, respectively. Figure 5-17 and Figure 5-18 evaluate the 

performance of OWM(All-EFT) and OWM for workflows of different computation 

intensities. The results indicate that OWM(All-EFT) performs slightly better than 

OWM. 
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Figure 5-15 Makespan performance of All-EFT with different mean arrival intervals 

 

 

Figure 5-16 SLR performance of All-EFT with different mean arrival intervals 
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Figure 5-17 Makespan performance of All-EFT with different computation intensities 

 

 

Figure 5-18 SLR performance of All-EFT with different computation intensities 

 

5-2-5. Overall Improvement Made by MOWS 

This section presents the overall performance improvement made by MOWS, 

compared to OWM [12]. The performance results of different mean arrival intervals 
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in terms of average makespan and average SLR are shown in Figure 5-19 and Figure 

5-20, respectively. The results indicate that MOWS outperforms OWM significantly. 

In average, the performance improvement of MOWS over OWM is approximately 

16%. The average makespan of both MOWS and OWM decreases as the mean arrival 

interval of workflows grows. Figure 5-21 and Figure 5-22 show the performance at 

different levels of computation intensity. MOWS outperforms OWM for both 

computation- and communication-intensive workflows. 

 

 

Figure 5-19 Makespan performance of MOWS with different mean arrival intervals 
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Figure 5-20 SLR performance of MOWS with different mean arrival intervals 

 

 

Figure 5-21 Makespan performance of MOWS with different computation intensities 
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Figure 5-22 SLR performance of MOWS with different computation intensities 

 

5-2-6. Influence of Inaccurate Execution Time Estimate 

The execution time of each task in workflows is necessary information for the 

proposed workflow scheduling algorithms. However, for some applications the exact 

execution time of a task may be difficult to know before the execution completes. 

Therefore, users have to provide execution time estimate for each task when 

submitting a workflow. This section presents experiments conducted to evaluate the 

effects of inaccurate execution time estimate on the performance of the proposed 

workflow scheduling approach. Figure 5-23 and Figure 5-24 show the performance 

results under different inaccuracy degrees in terms of average makespan and average 

SLR, respectively. In this experiment, arrival interval of workflows is set to 100 

seconds. As used in [12], the simulator picks the actual execution time of a task 

randomly from the range: 

 

, where et is the estimated execution time of the task. For example, when the 
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uncertainty is 300% and et of a task is 100, the actual execution time of the task is 

randomly picked from the range [1, 700]. It can be easily observed that MOWS 

outperforms the other approaches for the uncertainty levels from 100% to 500%. In 

average, the performance improvement ratio of MOWS over OWM is approximately 

13%. The performances of all the experimented algorithms are decreased with the 

increase over uncertainty level in the same rate except OWM(SWF). The performance 

of OWM(SWF) decreases faster as the uncertainty level grows since OWM(SWF) 

heavily depends on the estimate information of tasks to prioritizing workflows in the 

scheduling process. 

 

 

Figure 5-23 Results of inaccurate execution estimates for average makespan 
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Figure 5-24 Results of inaccurate execution estimates for average SLR 
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Chapter 6  Conclusion and Future Work 

In the thesis, we propose a scheduling framework for online mixed-parallel 

workflows in heterogeneous multi-cluster environments, named Mixed-Parallel 

Online Workflow Scheduling (MOWS), which divides the entire scheduling process 

into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and 

task allocation. Four new methods, shortest-workflow-first, priority-based backfilling, 

preemptive task execution and All-EFT task allocation, were developed for 

scheduling online mixed-parallel workflows under the MOWS framework. 

 

The shortest-workflow-first strategy enforces the SJF policy [30] in the waiting 

queue scheduling phase in order to reduce the average makespan of all workflows. 

The priority-based backfilling was introduced to allow out-of-order execution among 

tasks to improve resource utilization and thus the overall system performance. The 

preemptive task execution was developed for the task allocation phase to cooperate 

with SWS [9] used in the task prioritizing phase to take the advantages of both SWS 

[9] and CPWS [12]. The All-EFT for the task allocation phase always considers each 

cluster in the system and allocates the task to the cluster leading to the earliest 

estimated finish time. 

 

We provide detailed examples for illustrating the superiority of the proposed 

methods over existing approaches. In addition, we conducted a series of simulation 

studies for performance evaluation and compared MOWS with a previously proposed 

approach in the literature called OWM. The experimental results indicate that each of 

the four proposed methods outperforms existing approaches significantly even under 

inaccurate estimation of task execution time. In average, MOWS can achieve around 
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16% performance improvement over OWM in terms of average makespan and SLR. 

 

In the future, under the framework of MOWS there might be several research 

directions to further improve the scheduling performance of online mixed-parallel 

workflows in heterogeneous multi-cluster environments. For example, the preemptive 

task execution method could be extended to consider multiple running tasks for 

preemption simultaneously. This would increase the probability for high-priority tasks 

to start execution earlier and thus improve the overall system performance. For the 

shortest-workflow-first policy, other metrics for prioritizing workflows could be 

investigated in addition to the remaining execution time used in this thesis. 
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