SREE PO L N RS B - 2
B 9 B ST dn TR

Dynamic Thread Assignment with Fuzzy Control for Java
Virtual Machine on Asymmetric Multicore Systems

G ERE L L)

—_—

TR R E S

hERE 52— £ A A



SEF S Pie 2 BRI ERY - BHORLHE AR E g4 T
!
Dynamic Thread Assignment with Fuzzy Control for Java Virtual
Machine on Asymmetric Multicore Systems

Moy o4 iR Student : Hsiao-Hui Chiu
hERR R Advisor : Wuu Yang

ORI BT T
A Agm

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

PEAR-FE- £



S S R TNEINY $-3 % TSR S = U R
%ﬁiﬁﬂ

RS e SR

|

B i 4 8 R 2T 5 AR L FL

# £

fole 7 5 Pos rdT B Ak 0 RS Po T B e AR
FBNEL - BrRGFaT R R RN E R AL G o ?
PR PES R ATENPRE Nﬁ BT e 2 e R
e rmv - BARIORE ERE S AN PR
PORPEET - BRI S RS FPu G 7 R
FehB F 5o T Lo sV I e ROR I AR B AR P
Je b T e B T R et FE AT TS
AL FR IR BRI o F BRSSO 0 AP aisR IR
AARH R EEREORNAT S EY PR E
TIBE ¥ e e * 2 @ s I ARG o

ii



Dynamic Thread Assignment with Fuzzy Control for Java Virtual
Machine on Asymmetric Multicore Systems

Student : Hsiao-Hui Chiu Advisor : Dr. Wuu Yang

Institute of Network Engineering
National Chiao Tung University

ABSTRACT

Asymmetric multicore processors have been proposed
as a better trade-off between performance and power
consumption over symmetric multicore processors. They
also reveal challenges in mapping threads to cores. We
propose a new scheduler based on fuzzy control theory.
In this work, we configure an asymmetric multicore
system in which cores share the same ISA but run at
different frequencies. Our fuzzy scheduler decides
thread-to-core assignment based on periodical run-time
performance characteristics. Evaluation  results
demonstrate that our fuzzy scheduler saves significant
energy and achieves better energy-delay product for
memory-intensive programs while sacrificing
performance slightly.

il



st Eel

TEEAE S T

v AR RO E A chip R R

S pFcnmt o i e s A o AT PREFLS

2 EZEE o XEF R A Y MR BT EHFE S

PR A FER o
BHESNF IRz FEF S o F 530
Bed Ao gt 4 A b o g

Ey

AN

v 3;
st

pat

= & A ER

1N B

RHpEFEETAE

L, n‘ﬁj?g I ‘{:,5\‘.311:

AE PR P (R

Pk B L HF A B BRI PR o B
FAORE I FR- B A )3/3‘1' ;g/\“ 7R

5 e

% mfﬁ llf

gl pigEEY

EFRUGML D 11 E A e AR bk F

R R E R A AR L A b o

The work reported in this. paper is partially supported by National

Science Council, Taiwan; ‘Republic of China, under grants NSC

100-2218-E-009-010-MY 3 and NSC 100-2218-E-009-009-MY 3.

iv



Contents

W%

Abstract

List of Figures
List of Tables

1 Introduction
1.1  Asymmetric Multicore Systems . . . . . . ... ... ... ..

1.2 Toward Better Utilization of AMPs . . . . . . ... ... ...
2 Related work

3 Implementation
3.1 JVM and JVM Tool Interface . . . .. .. ... ... ... ..
3.2 Interesting Performance Metrics . . . . . . . .. .. ... ...

3.3 Thread Assignment Policy . . . ... ... ... .. ......

ii

iii

iv

vil

ix



3.4 Fuzzy Scheduler . . . . . .. ... oo

4 Experiment Setup
4.1 System Configuration . . . . . . . .. ... ... ... ..
4.2 Benchmark Configuration . . . . ... ... ... ... ....

4.3 Power and Energy Measurement . . . . . .. .. .. ... ...

5 Evaluation
5.1 Benchmark Characteristics . . . . . . . . . . . . . . . ... ..

5.2 Experiment Results . . . . .. ... .. ... ... .......

6 Conclusions and Future works
6.1 Conclusions . = e v v oot L

6.2 Future works .. Ll L e

Bibliography

vi

17

17

19

20

21

21

23

30

30

31

32



List of Figures

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

5.1

5.2

2.3

0.4

big. LITTLE Processing . . . . . . . . . . ... .. ... .... 2
Architecutre of the fuzzy scheduler using JVMTT . . . .. .. 11
Membership functions for RSR . o . . . . .. .. ... ... 12
Membership functions for L2 MPT ...~ . . . . .. .. .. .. 13
Membership funetions for LLCMPT ... . . .. .. ... ... 13
Membership functions for destination core in asymA . . . . . . 13
Membership functions for-destination core in asymB . . . . . . 14
Inference rules for RSR and L2 MPT . . . . .. ... .. ... 15
Inference rules for L2 MPI and LLC MPT . . . . . . . ... .. 16
Power Measurement Setup . . . . . . . . ... ... ... ... 20
Relative EDP of scimark programs in SPECjvm2008 . . . . . 22
Relative EDP of JGF programs . . . . . . ... .. ... ... 22

Execution time ratio for Fuzzy scheduler and IPC scheduler
inasymA ... 23

Relative EDP for Fuzzy scheduler and IPC scheduler in asymA 24

vil



5.5 Relative EDP for Fuzzy scheduler and IPC scheduler in asymA 25
5.6 Core decision for Fuzzy scheduler in asymA . . . ... .. .. 26
5.7 Execution time ratio for Fuzzy scheduler in asymA and asymB 27
5.8 Power consumption ratio for Fuzzy scheduler in asymA and
asymB ..o 27
5.9 Relative EDP for Fuzzy scheduler in asymA in asymB . . . . . 28
5.10 Core decision for Fuzzy scheduler in asymB . . . . . . . . .. 29

viii



List of Tables

4.1 intel i7-920 specification . . . . .

4.2 Available performance choice (GHz) . . . . . . ... ... ...

4.3 4 configurations in our experiment

1X



Chapter 1

Introduction

1.1 Asymmetric Multicore Systems

Asymmetric multicore processors (AMPs) have been proposed as an alterna-
tive to provide a better trade-off between performance, power consumption
and die-area over symmetric multicore processors (SMPs) [11,16,21]. There
is a large diversity for designing AMPs, ranging from performance asym-
metry to functional asymmetry [24]. Performance AMPs consist of several
cores which differ in clock speeds, cache sizes, and microarchitectures [18,21],
etc. Alternatively, functional AMPs allow cores to have different functional-
ities by employing different instruction set architectures (ISA). For example,
AMPs may consist of CPU and GPU cores. Furthermore, cores may have
overlapping ISAs, that is, some cores share a common ISA but have the

special-purpose features [19,20,24]. We modelled the AMPs in which all



the same ISA on all cores implies that the same object code may run all

cores.

In October 2011, ARM announced a new chip architecture - big. LITTLE
processing [12]. The goal of this approach to minimize power draw in order
to extend the battery life of devices like smartphone and tablet. As shown
in figure 1.1, big. LITTLE connects the performance of the ARM Cortex-A15
MPCoreTM processor with the energy efficiency of the Cortex-A7 processor,
and enables the same application software to be seamlessly switched between

them. By selecting the optimum processor for each task big. LITTLE can



extend battery life by up to 70%. The big. LITTLE provides the opportunity
to raise performance and extend battery life in the next generation of mobile

platforms.

1.2 Toward Better Utilization of AMPs

AMPs reveal new software challenges. The main challenge is to utilize asym-
metric multicores efficiently with a scheduler in the underlying operating sys-
tem. For better utilization of asymmetric multicores, threads in a program
should be assigned to cores such that-the resource needs of each thread match
the resource available at the assigned core. Many studies [6,15,17,21,25, 26]
have proposed techniques to assign the threads to cores in order to achieve
better compromise between performance and energy efficiency.

This paper presents a new mechanism-based on fuzzy control [9,31] to
choose a particular core that matches the resource requirements of an appli-
cation thread to maximize power efficiency within AMPs. Our mechanism
is implemented in JVM. This JVM, which is called asymmetry-aware JVM,
is aware of the asymmetric hardware properties of the system and assigns
threads to cores based on thread characteristics. The thread characteristics
of each thread are obtained from hardware performance counters periodically
and are used as input to the fuzzy-control scheduler.

The intuition behind our fuzzy control scheduler is as follows. Faster and

more powerful cores are good for running CPU-intensive programs which are



able to exploit the advanced features of processors. On the other side, slower
and simpler cores save energy for memory-intensive programs, which spend
most of the execution time on fetching data from memory and stalling CPU
pipelines [10]. In the fuzzy-control scheduler, we profile each executing thread
in JVM by hardware performance counters and classify it as CPU-intensive
or memory-intensive depending on the performance metrics. An appropriate
core is selected for each Java thread.

Choosing appropriate performance metrics for the fuzzy-control scheduler
is an important issue. In our previous work [27], we chose the instructions
per cycle (IPC) of the executing thread because IPC strongly correlates to
throughput and utilization of processors. Unfortunately, IPC alone is not
sufficient to make a right.core decision because not all programs with lower
IPC were memory-intensive. There are other reasons for lower IPC [7]. Thus,
other performance metrics become more important, such as cache behavior,
branch predictor behavior, and utilization of resources. In this work, we
select several additional performance metrics to make more accurate core

decision. We will describe the selected metrics in Chapter 3.



Chapter 2

Related work

Many studies address the seheduling problems for asymmetric multicore sys-
tems. Some of these studies.are static scheduling algorithms and others are
dynamic.

In [25], Shelepov et al.” proposed an asymmetry-aware scheduler by us-
ing offline-generated architectural ‘signatures for assigning threads to cores
in AMPs. The static way does not consider the runtime characteristics of
application; the resource requirement of application may vary across while
executing. Thus, the dynamic approach takes the runtime characteristics
into account.

In [15,17], Kumar et al. proposed a sampling-based dynamic scheduler.
The scheduler consisted of two phases, a sampling phase and a steady-state
phase. In the sampling phase, the scheduler chose a proper core based on

profiling statistics of the application, which was gathered by hardware per-



formance counters. The scheduler switched the application to the selected
core. Their work showed that asymmetric multicore systems can reduce sig-
nificant energy consumption with little sacrifice in performance. Our work
adopts the dynamic-sampling approach with fuzzy control to choose a core
for each thread.

In [6], Becchi and Crowley proposed work similar to that of Kumar. They
defined new dynamic assignment policies, including round-robin and IPC-
driven. In particular, the IPC-driven assignment depended on the ratio be-
tween two different core types to make core decision.

Some of schedulers are phase-based [22,26;29,30]. One of phased-based
schedulers is proposed by Sondag and Rajan. Their approach [26] is com-
posed by two subsections, phase detection and ‘core assignment. In the phase
detection, a static detection algorithm was used to identify phase-transition
point. The static analysis divided a complete program into several sections
and classified them into several groups, in which all the sections are likely
to exhibit similar runtime characteristics. In the core assignment subsection,
the dynamic analysis collected the runtime behaviors of a section of each
phase type. The runtime characteristics are representative to each phase
type. These characteristics are used to choose a suitable core that matched
the resource requirement for each phase type. This kind of scheduler is more
complicated than sampling based schedulers because the designer needs to
implement both static and dynamic analysis.

Fuzzy control [9,31] is famous in control theory. Previous study [23]



showed the DVFS decisions made by fuzzy control depended on variation of
workloads. Their work inspired us to design the core assignment by fuzzy
control theory. In our prior work [27], we proposed two sampling-based fuzzy
schedulers to achieve the performance and energy efficiency on AMPs: IPC
fuzzy scheduler and LLC-misses fuzzy scheduler. In the IPC fuzzy scheduler,
we use the IPC value and the IPC difference as input to the fuzzy logic block.
The reason of using IPC is that IPC strongly correlates to the throughput
and utilization of processors. In considering the factors causing performance
getting worse, the last-level-cache (LLC) miss is the main factor. Thus, we
proposed the LLC-misses fuzzy scheduler;-in"which we use the number of
LLC-load-misses and the LLC miss-difference as input to the fuzzy logic
block. The result showed that these fuzzy schedulers could make a right
decision for memory-intensive! programs, but may make a wrong decision
for some non-memory-intensive programs.. In our work, we consider other
performance metrics as input to the fuzzy logic to make a right decision.
We evaluate the performance and energy efficiency of our new fuzzy-control

schedulers.



Chapter 3

Implementation

3.1 JVM and JVM Tool Interface

Java Virtual Machine is-a good environment to profile program behaviors
of Java applications, because the VM has JVMTT [2], a convenient tool was
introduced in J2SE 5.0 and completely independent of specific JVM imple-
mentation. JVMTI provides an interface to inspect the execution of Java
applications. In our work, we implemented an agent by JVMTI to track
each Java thread in JVM on the fly. Note that in Hotspot JVM, the map-
ping between Java threads and Linux threads is implemented by Pthreads
library which creates a kernel thread for each user thread, and is known as
one-to-one mapping. That means we can monitor each Java thread by Linux
Performance Counter Subsystem [3], which uses to count the number of cer-

tain types of hardware events for processes or threads. It provides a system



call sys_perf_event_open for hardware performance counter. The system call
returns a file descriptor for each hardware performance counter event we

monitored. We can read those files to get the number of counters.

3.2 Interesting Performance Metrics

IPC alone is not an accurate indicator of performance [7]. When IPC value is
lower, other performance metrics become more important. There are several
reasons causing lower IPC value. By examining several programs, we found
out that cache misses and data dependency are the main reasons, so we
made core decision by considering’ cache misses and resource stall cycles in
our work. We choose the following performance metrics as inputs of fuzzy

scheduler:

e Resource stalls ratio. (RSR) which represents several kinds of po-
tential performance stalls including frequent cache misses, long execu-
tion paths, and memory order buffer (MOB) stalls.

e L2 and LLC cache miss rate which are used to know how heavy
the cache misses effect the performance of application. The L2 cache
miss rate and LLC miss rate are measured as misses per 1000 instruc-
tions in our design, then we named the L2 MPI and LLC MPI which

representing for 1.2 and LLC misses per a thousand instructions [13].

We obtained the following performance events in Intel i7 processor [14] to

calculate the RSR, L2 and LLC MPI:



RESOURCE_STALLS.ANY: This event counts the number of cycles while
resource-related stalls occur, including the number of instructions in
the pipeline waiting for execution and there is an instruction in the
pipeline that can be executed only when all previous stores complete
and their data is committed in the caches or memory.
CPU_CLK_UNHALTED. THREAD P: This event counts the number of thread
cycle while the thread is not in halt state.

INST_RETIRED.ANY_P: This event counts the number of instructions
that retired from execution.

L2_RQSTS.MISS: This event counts all'lL2'misses for both code and data.
LLC MISSES: This is an architectural performance event which counts

the number of last.level cache misses.

3.3 Thread Assignment Policy

The heuristic of thread assignment policy in our scheduler is as following.

We do not need to make core decision for those threads with higher IPC

value(ipc > 1.5) to reduce the overhead of fuzzy control calculation, because

this situation is definitely scheduled to the fastest cores by our scheduling.

Choosing 1.5 as a threshold of doing fuzzy scheduling depends on benchmark

evaluation. The main goal of our scheduler is making proper core decision

for those threads with lower IPC value by considering the cache behaviors

and resource stall rates during runtime. This heuristic was implemented with

10



Java
application

VM

Class Loader
Bytecodes

Execution engine

§840

Figure 3.1: Architecutre of the fuzzy scheduler using JVMTI

fuzzy control, and we designed a fuzzy scheduler, which did twice fuzzification
processing.

In the first fuzzification, we considered the RSR and L2 cache miss rate.
The purpose of the first fuzzification is to recognize whether data dependency
is the main cause of higher stall rate or not. If so, it means that this thread
is not memory-intensive and should be scheduled to faster cores. Otherwise,
higher cache miss rate are the main-cause of higher stall rate.

In the second fuzzification, we considered the LLC miss rate to examine
how heavy the cache behaviors affect the performance. If LLC miss rate are
higher, this thread is memory-intensive and should be scheduled to slower

cores.

3.4 Fuzzy Scheduler

The fuzzy scheduler which is implemented for our asymmetry-aware JVM is

a closed loop which takes profiling statistic as input and makes core decision

11



1 lowest low high highest
) ><\\//><

0 T

03 04 05 06 07
RSR

Figure 3.2: Membership functions for RSR

as output periodically. Figure 3.1 presents our scheduler. As it is showed in
figure 3.1, the fuzzy scheduler consists of three blocks: a fuzzification block,
inference engine block and defuzzification block. The fuzzification block con-
verts a quantitative value into a-qualitative value. In this block, membership
functions should be considered for each control state. Membership function
is a function that specifies the degree for each input which belongs to a fuzzy
set, and its value is limited‘between 0 and 1.”The second block is inference
engine which is using If-Then fuzzy rules to infer the input fuzzy set to the
output fuzzy set. The third part is defuzzifiation block which converts the
output fuzzy set to a crisp number that can be used as a control signal.

In the fuzzification part of our scheduler, there are several linguistic vari-
ables; each of them stands for a concept and is associated with one or more
membership functions. We declared two linguistic variables in the first fuzzi-
fication: RSR and L2 MPI which are as mentioned previously. We also
defined five membership functions for RSR and four for .2 MPI as showing

in figure 3.2 and figure 3.3. Although there are many possible shapes of each

12



lowest low medium high
1

20 40 60 &0
L2 MPI

Figure 3.3: Membership functions for L2 MPI

lowsAimedivgy  high
1 \/\/
0.5

10....30 50
LLC MPI

Figure 3.4: Membership functions for LLC MPI

Core0 Corel Core2 Core3

RVAANAA
/NN

Destination core

Figure 3.5: Membership functions for destination core in asymA

13



MEANYA
/S N/ N\

0 1 2

Core decision

Figure 3.6: Membership functions for destination core in asymB

membership function, the shape does not affect the output significantly [23].
For this reason and to minimize computational complexity, we choose trian-
gular membership function in.our case. The overlap between two membership
functions is 50%. That means each RSR input ot L2 MPI input will hit at
most two membership functions and at-most four rules to do the inference.
For example, we have a set. of performance statistics, which RSR value is
0.67 and L2 MPI is 12. RSR will hit-high and highest membership functions
in figure 3.2, and L2 MPI will hit low and lowest in figure 3.3. In the first
fuzzification inference engine, some of rules will get into the second fuzzfica-
tion and then return the output value to first fuzzification to do the rest of
processing. For example, if RSR is highest and L2 MPI is low, this rule will
get into the second fuzzfication. In the second fuzzification, we considered
the cache behavior. We had L2 MPI and LLC MPI as linguistic variables
and defined three new membership functions for LLC MPI as showing in
figure 3.4. The shape of membership functions is similar with those in the

first fuzzification.

14



lowest low medium high highest

First fuzzification: ' \/\
ERVAVAVAYA

03 04 05 06 0.7
RSR

lowest low medium high
RULES lowest low medium  high  highest

1

; }\ / lowest |2 2 3 3 3
05 low F2 F2 F2 F2 F2
medium | F2 F2 F2 F2 F2
high F2 F2 F2 F2 F2

0 T 1

20 40 60 80
L2 MPI

Figure 3.7 Inference rules for RSR and L2 MPI

The design of the output, membership functions highly depends on the
target AMPs. Figure 3.5 shows the membership functions for the output
variable destination core.There are four cores with different frequencies in
our first asymmetric configuration, so we defined four membership functions
for each core. Besides, we also configured AsymB, the other asymmetric con-
figuration with two kinds of cores, so we designed two membership functions
as shown in figure 3.6.

The inference engine consists of several rules, and these rules are defined
based on our background knowledge and observation. Since we have five
membership functions for RSR variable and four for L2 MPI variable in the

first fuzzification, there should be 20 rules. Similarly, four for L2 MPI variable

15



0.5

Second fuzzification:

lowest low medium high

20 40 60 80
L2 MPI

low medium high

0.5 \
0 T T T
10 30 50
LLC MPI
RULES low medium high
low 2 1 0
medium 1 1 0

high

1

0

0

Core0 Corel

Core2 Core3

0.5

ANA

VAR

AN
/\

Figure 3.8: Inference rules for L2 MPILand LL.C MPI

and three for LLC MPI variable; so there should be 12 rules in the second
fuzzification. Figure 3.7 and figure 3.8 showed the rules in two fuzzification

steps. The inference will produce implied membership functions which will

be used to calculate a crisp value in defuzzification block.

The defuzzification part converts the implied fuzzy set to a crisp value as
a control signal. There are several defuzzification methods such as center of
gravity, center of area, mean of maximum, and first of maximum. We choose
center of area as our defuzzification method. Then crisp value will be a core

decision which the scheduling thread assigns the running thread to selected

core.

16




Chapter 4

Experiment Setup

4.1 System Configuration

We use an Intel core i7-920 processor.as our-hardware platform which consists
of an AMP with four cores and the detailed system specification is shown
in tablel. Note that both Intel Turbo Boost Technology and Intel Hyper-
Threading Technology are disabled to eliminate their effect on performance
and power consumption. It is worth to mention that the L3(LLC) cache in
our experiment platform is shared. According to previous research [28], the
overhead of thread migration is negligible. So our work would not suffer from
significant performance loss as running on our platform.

We use an unmodified Linux 2.6.39 kernel. One of Linux kernel modules
acpi-cpufreq is used to scale the CPU speed up or down to save power. We

use this module to configure our asymmetric environment. Table2 shows the

17



Table 4.1: intel i7-920 specification

Platform Intel 17-920

# of cores 4

Max. & Min. speed | 2.66GHz & 1.6GHz

L1 Cache 32KB L1 data, 32KB L1 instruction per core
L2 Cache 256KB per core, inclusive

L3 Cache 8 MB shared cache

Memory 8GB

OS Debian-amd64 (kernel 2.6.39-2)

Java version 1:6.0-18

OpenJDK IcedTeab 1.8.7

Table 4.2: ‘Available performance choice (GHz)

1.60 1.73 1.867.2.00 2.13 226 2.39 253 2.66

four configurations in our experiments. The symmetric configuration sym2.66
consists of four cores with highest frequency 2.66GHz and is used to be as
the baseline. The other symmetric configuration sym2.26 is used to show
the worst case. The asymmetric configuration AsymA consists of four cores
with fastest four frequencies. The other asymmetric configuration AsymB
consists of two kinds of core, fast and slow. AsymB is with less diversity but
more asymmetry than AsymA, and this is used to compare the performance

and power consumption between different asymmetric configurations.

18



Table 4.3: 4 configurations in our experiment

cpUO CPU1 CPU2 CPUS3

Sym2.66 | 2.66GHz 2.66GHz 2.66GHz 2.66GHz
Sym2.26 | 2.26GHz 2.26GHz 2.26GHz 2.26GHz
Asym A | 2.26GHz 2.39GHz 2.53GHz 2.66GHz

Asym B | 2.00GHz 2.00GHz 2.66GHz 2.66GHz

4.2 Benchmark Configuration

There are two suits of benchmark in our experiments: Scimark and Java
Grande Forum (JGF) benchmarks [8]. The reason why we choose these
benchmark applications isthat they demand on a lot of memory or computing
resources. The Scimark-applications are from SPECjvm2008 [5], and we
configured them with lagom which is a option to fix the amount of operations.
An exception is scimark.monte_carlo-application. Because its lagom is with
900 operations, we reduced them to 100 operations for execution efficiency.
The Scimark workloads are run with both small and large data sizes. The
large is 32MB and the small is 512KB. In the JGF benchmarks, there are
three sections. We chose section I and section III for large scale computation.
Unlike Scimark, the data sizes of JGF benchmark applications are not same
as each other. There are three kinds of data sizes for sectionll and two for
sectionlIl. We chose the largest data size in our experiments. Note that the
number of threads of each application was set to one to meet the constraints

of our power meter.

19



Intel i7-920 processor Measurement

Computer

NI
PXI1-4065

g

Power
Supply

Experiment System

Figure 4.1: Power Measurement Setup

4.3 Power and Energy Measurement

The power of Intel i7 processortis provided by 12V2 rails, which is according
to ESP12V power supply design guide [1]. We made an instrument between
power supply and power meter. The diagram of the power measurement
setup can be seen in figure 4.1. -We use NI PXI1-4065 digital multimeter
to measure the power dissipation. The current trace was interpretered by
the LabVIEW software and used to compute power consumption. Project

SIKULI [4] is used to automate the process of measurement.

20



Chapter 5

Evaluation

5.1 Benchmark Characteristics

To obtain the baseline of our.experiments, we first performed a series of
measurements to characterize.the individual benchmark applications. We
ran each benchmark application at' the fastest cores with frequency 2.66GHz
as baseline, which completes the application in the least amount of time, but
gains no energy saving. We also ran benchmark applications on other lower
frequencies ranging from 1.60GHz to 2.52GHz. To measure and compare the
power efficiency, we choose the energy delay product (EDP) as the power
efficiency matric. The EDP value for each benchmark was normalized to the
value at 2.66GHz and showed in figure 5.1 and figure 5.2.

The fft benchmark in scimark.*.large and JGF suite, experiences more

EDP benefit while running at lower frequencies. In contrast, all other bench-

21



=g=scimark.fft.large
=fi=scimark.lu.large

=de=scimark.sor.large

imark.sparse.large

1.60GHz 1.73GHz 1.86GHz 2.00GHz 2.13GHz 2.26GHz 2.39GHz 2.52GHz 2.66GHz

=je=scimark.monte_carlo
=@=scimark.fft.small
w=t==scimark.lu.small
===scimark.sor.small

===scimark.sparse.small

Figure 5.1: Relative EDP of scimark programs in SPECjvm2008

2.6
2.4 |

0.8

1.60GHz 1.73GHz 1.86GHz 2.00GHz 2.13GHz 2.26GHz 2.39GHz 2.52GHz 2.66GHz

Figure 5.2: Relative EDP of JGF programs

22

=4=Crypt
=l=FFT
=fr=HeapSort
== UFact
=#=SOR
=@=SparseMatMult
===Euler
=Moo |Dyn
==MonteCarlo
=¢=RayTrace
=M=Search



VU UV UV UV O == = = ¥ |} £ ¥ x un £ = c 0 = cC
mmmwtmmmmgmago_gzg>t88
T & 6 &8 8 E E E E T+ L L S O ©
© © © © o £ a2 S ©
S 2 - - 94 e a a0 o D b B8 o G E 0
= = S 3 = &
E 2056 3 g& =25 ¢ 1] s s e >
S22t g8 og £ > S 3
- )

;mf%OEE-EQ. 4 =
E EC 2 EZE G 9 @
= G E ¥ ¥ £ 5 E ¥ =3
O 5 5 © = ©o 8 = (%)
a ggmmmgg

£ E

c = ]

wg a

HAsymA ®IPC msym2.26

Figure 5.3: Execution time ratio for Fuzzy scheduler and IPC scheduler in

asymA

marks suffer more performance loss than energy saving, so they could not get
any EDP benefit. The fft program is obviously less CPU-intensive than oth-
ers and spends more time waiting for-memory access. Thus, scheduling this
kind of programs to slower cores affects its execution time less than execution

time of other programs, but can get more energy saving than others.

5.2 Experiment Results

In the first part of our experiments, we compare the results of our fuzzy
scheduler to the results of IPC scheduler in asymmetric configuration A. Note
that all the results are normalized to the results at 2.6Ghz. Figure 5.3 gives

the execution time ratio for our fuzzy scheduler and IPC scheduler. We also

23



11
1.05

0.95
0.9
0.85
0.8
= === ¥ Eull =1 [ —
b o B BT ETETEoEERSLSEE2 8T
© N L un = =} ©
fes8853535a6 857353835888
= ] = 5 = Q) ® (] (%3]
EZg e gE 3¢ o s 2 £ 3
¥ X & c ¢ X v = I
re © x =< © [] O
Rmf%gamfﬁ- 4 =
@ c «
.g.ggxig.ggi 3
O 8§ 5 & = © 9 = = (v2)
] b T »n v O ©
E E ” E
S5 £ =
wg 8
HAsymA m IPC

Figure 5.4: Relative EDP for Fuzzy scheduler and IPC scheduler in asymA

provide the execution ratio in symmetric configuration sym2.26, as 2.26GHz
is the lowest frequency intasymA. This gives a comparison to the worst time
increasing in our case. Figure 5.3 shows that the fuzzy scheduler is able to
make right decision for each bénchinark program, especially for scimark.sor.*,
SOR and MonteCarlo. These programs are CPU-intensive and should be
scheduled to the fastest core. Unfortunately, the IPC scheduler made wrong
core decision for them so that it resulted in the worst time increasing. All
benchmark programs slightly suffer from 2% performance loss.

The execution time ratio in sym2.26 indicates that scheduling scimark.fft.large,
scimark.lu.large and FFT to the slowest core did not cause significant per-
formance loss, especially for scimark.fft.large and FFT which are memory-
intensive. Thus, these programs could gain more EDP benefit than others

potentially.

24



1.25
1.2
1.15
11
1.05

0.95
0.9 -
0.85 -
0.8 -

scimark.fft.large
scimark.lu.large
scimark.sor.large
scimark.sparse.large
scimark.monte_carlo
scimark.fft.small
scimark.lu.small
scimark.sor.small
scimark.sparse.small
Crypt

FFT

HeapSort

LUFact

SOR

Series
SparseMatmult
Euler

MolDyn

MonteCarlo
RayTracer

Search

HAsymA m IPC

Figure 5.5: Relative EDP for Fuzzy scheduler and IPC scheduler in asymA

Figure 5.4 shows relative EDP-for the fuzzy scheduler and IPC scheduler
in asymmetric configuration A. Even though the fuzzy scheduler made right
core decision for all the “programs, they still suffered from EDP increase
slightly. In figure 5.4, scimark. fit.large-and FFT got 13% EDP benefit in
average, because the two programs are known as memory-intensive. The
relative EDP of scimark.sor.* and SOR for two schedulers shows that the
compromise between performance and power saving is almost same to each
other. That means even if we made right decision for sor series programs, we
did not gain any EDP benefit. But if we choose ED?P as the power efficiency
matric which emphasizes performance more than power dissipation, we can
get ED?P benefit as shown in Figure 5.5.

Figure 5.6 gives the core decision for the fuzzy scheduler in asymA. For

most of benchmark programs were scheduled to the fastest core besides

25



100% g u ]
90%

80%
70%
60%
50%
40%

M core3
30% 1
20% M core2
10% n corel
0% T T T T T Dcoreo
VOV OV OoO====+¥¥FHr {tYHBHaocwxst- c 0 - C
E’&”E"i"tgggggﬁo%oﬂi:ﬂszgg
(e} — =} ©
858383554556 2523E238 L8
i = o =
E2039E=251%Y g — s 22>
¥ ¥ 0 5 c cxXx 25 T 0] o
v = o X = ¥ © )
NNE%ENNL% n >
Eggxgme ©
5o ExT X505 Ex &
» Yo o8 B Q o5 .
® E g » £
b a

Figure 5.6: Core decision for Fuzzy scheduler in asymA

memory-intensive programs. Thus, we configured another asymmetric con-
figuration which is less diversity but more asymmetry than asymA to get
more power saving and EDP, benefit.

In the second part of our experiments, we compare the performance and
power consumption between different asymmetric configurations. As shown
in table 4.3, asymB consists of two kinds of cores, fast cores with frequency
2.66GHz and slow cores with frequency 2.00GHz. In the following para-
graphs, we will compare the execution time, power consumption, and EDP
between asymmetric configuration A and B.

Figure 5.7 shows that execution time of most of programs are almost same
as time execution time in asymA, because these programs were scheduled to
the fastest cores with 2.66GHz as same as the fastest frequency in asymA. For

memory-intensive programs such as scimark.fft.large and FFT, the execution

26



11

1.05
1
0.95
0.9
0.85
0.8

youeas

Jooes | Aey
0|1eD3UOIN

uAglon

J3|n3
1hwieasieds
SEIFEIN

Y40sS

Pedn

posdeaH

144

1dAID

||lews asieds yiewids
[|EWS 40S JBWIDS
TESS I TEVRS
[|EWS 34 S JewIds
0|12 a3uoW NJewWIdS
98.e|'asieds yiewlds
284e|"J0s "y JeWIDS
a8ue|' N ewIdS

28.e|" 1y ewids

W AsymA ® AsymB

Figure 5.7: Execution time ratio for-Fuzzy scheduler in asymA and asymB

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

yoJeas
Jaoeu]Aey
oJJe)ajuoN

uAglon

—
9
S
fiv}

}nwieasieds
LEIPENN

40S

ein
HosdeaH

44
1dAD

—

||lews asJeds yiewids
||lews 40S e wIds
|lews n|"yJewids
||ews 143 4ewids
0lJEed” 9UoW " JBWIdS
98.e|'asieds ylewIds
284e|"10s ) JewIds
adJe'n| > ewids

984e|"}y Y eWIDS

W AsymA ® AsymB

Figure 5.8: Power consumption ratio for Fuzzy scheduler in asymA and

asymB

27



11
1.05

0.95
0.9
0.85
0.8
0.75
0.7

,_.
scimark.fft.large |—
scimark.lu.large ——
scimark.sor.large ——

scimark.sparse.large [——

_ e
scimark.fit.small E——
scimark.Ju.small EE——
SCIMark.sor. small |
scimark.sparse.small [——
Crypt I —
FFT
HeapSort —
LUFact e
SOR —
Series ——
SparseMatmult [ ——
Euler —
MoIDYN
MonteCarlo —
RayTracer
Search —

scimark.monte_carlo

W AsymA H AsymB

Figure 5.9: Relative EDP for Fuzzy scheduler in asymA in asymB

time is increasing slightly“at 4%, but save 25% power in average as shown in
figure 5.8. It means it can make a better compromise between perofrmance
and power efficiency compared. to‘asymA: Figure 5.9 shows that we got 20%
EDP benefit and 7% more than it-in-asymA.

Figure 5.10 gives the core decision for the fuzzy scheduler in asymB.
Only the memory-intensive programs were scheduled to the slow cores. One
of advantages in asymB is that it reduced thread migration times. For some

of CPU-intensive programs, there is no thread migration at all.

28



M fast
u slow

Figure 5.10: Core decision for Fuzzy scheduler in asymB

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%
0%

yaJeas
J0e4] Aey
0[Je)IUON

uAg|o

J9IN3

3 nwaiejpasieds
S91495

40S

.4

1osdeay

144

1dA1D

||ews asieds yaewids
||BWS 10S S4B WIS
|[ews N dewIdS
|[BWS 1) ddewIdS
0]4B2” 9juUoW NIewds
98.e|"asieds yiewWIdS
98Je|"J0s dewIds
98ue|'n|HJeWIdS
98.e|3y4 M JeWIdS

29



Chapter 6

Conclusions and Future works

6.1 Conclusions

Asymmetric multicores processors have been recently proposed a good com-
promise between performance.and power efficiency. However, they also face
new challenges such as scheduling problems and resource utilization prob-
lems. Many studies devised new technique to utilize AMPs efficiently. [6,15,
18,26]. This thesis presents a fuzzy scheduler based on fuzzy control theory
for JVM to migrate Java threads to the proper cores for energy saving on
AMPs. In our previous work, the IPC scheduler could not make a right core
decision for some of CPU-intensive programs because it did not consider data
dependency and that would cause execution time to increase heavily. Our
fuzzy scheduler takes RSR and cache miss rate into account such that the

fuzzy scheduler could make the right core decision for all benchmark pro-

30



grams. Our experiments show 25% energy saving and 20% EDP benefit for
memory-intensive applications compared to the results at the fastest core. In
our experiments, we could not get any benefit for CPU-intensive programs,

because they could not execute at a lower frequency efficiently.

6.2 Future works

In the future work, we would like to consider more about OS scheduling
issues, such as load balance and asymmetry-aware OS thread assignment.
We would also like to eliminate the constraint of thread number to make
more efficient utilization. “One of other future directions is to use a wider
diversity of asymmetric multicore systems in different cache sizes, or having
different number of execution units; or supporting in-order or out-of-order

execution and so on.

31



Bibliography

EPS12V Power Supply Design Guide - A Server System Infrastructure

(SSI) Specification For Entry Chassis Power Supplies, 2.91 edition.

Jvm tool interface.

Performance counters on linux.

Project sikuli.

Specjvm2008.

Michela Becchi and Patrick Crowley. Dynamic thread assignment on
heterogeneous multiprocessor architectures. In Proceedings of the 3rd
conference on Computing frontiers, CF 06, pages 29-40, New York,

NY, USA, 2006. ACM.

W. L. Bircher, Jason Law, Madhavi Valluri, and Lizy K. John. Effective
use of performance monitoring counters for run-time prediction of power.

Technical report, nov. 2004.

32



8]

[10]

[11]

[12]

[13]

[14]

[15]

J. Mark Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A.
Davey. A benchmark suite for high performance java. Concurrency -

Practice and FExperience, pages 375-388, 2000.

Didier Dubois. Fuzzy sets and their applications : Vilem novak, trans-
lated from czechoslovakian. bristol and philadelphia: Adam hilger, 1989,

248 pages. Mathematical Social Sciences, 21(2):193-197, April 1991.

Alexandra Fedorova, Juan Carlos Saez, Daniel Shelepov, and Manuel

Prieto. Maximizing power efficiency with asymmetric multicore systems.

Commun. ACM, 52(12):48-57, December 2009.

Matt Gillespie. Preparing for the second stage of multi-core hardware:

Asymmetric (heterogeneous) cores: Technical report, Intel, 2008.

Peter Greenhalgh. Big:little processing with-arm cortex-alb & cortex-a7.

White paper, ARM, 2011.

John Hennessy, John L. Hennessy, David Goldberg, and David A. Pat-
terson. Computer Architecture: A Quantitative Approach. Morgan Kauf-

mann Publishers, 4rd edition.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3B: System Programming Guide, May 2011. chapter

30 Performance monitoring.

R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen.

Single-isa heterogeneous multi-core architectures: the potential for pro-

33



[17]

[18]

[19]

[20]

cessor power reduction. In Microarchitecture, 2003. MICRO-36. Pro-
ceedings. 36th Annual IEEE/ACM International Symposium on, pages

81 — 92, dec. 2003.

R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heteroge-

neous chip multiprocessors. Computer, 38(11):32 — 38, nov. 2005.

Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Keith I. Farkas. Single-isa heterogeneous multi-core
architectures for multithreaded workload performance. SIGARCH Com-

put. Archit. News, 32(2):64-, March 2004.

Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Ef-
ficient operating system scheduling for performance-asymmetric multi-
core architectures. In ‘Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, SC ’07, pages 53:1-53:11, New York, NY, USA, 2007.

ACM.

Tong Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn.
Operating system support for overlapping-isa heterogeneous multi-core
architectures. In High Performance Computer Architecture (HPCA),

2010 IEEE 16th International Symposium on, pages 1 —12, jan. 2010.

Tong Li, Paul Brett, Barbara Hohlt, Rob Knauerhase, Sean D.
McElderry, and Scott Hahn. Operating system support for shared-

isa asymmetric multi-core architectures. In Proceedings of the Fourth

34



[21]

23]

[24]

Annual Workshop on the Interaction between Operating Systems and

Computer Architecture (WIOSCA °08), pages 19-26, June 2008.

J.C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar.
Using asymmetric single-isa cmps to save energy on operating systems.

Micro, IEEFE, 28(3):26 —41, may-june 2008.

Priya Nagpurkar, Chandra Krintz, Michael Hind, Peter F. Sweeney,
and V. T. Rajan. Online phase detection algorithms. In Proceedings
of the International Symposium on Code Generation and Optimization,
CGO 06, pages 111-123,«Washington, DC, USA, 2006. IEEE Computer

Society.

H.R. Pourshaghaghi-and J.P. de Gyvez. Dynamic voltage scaling based
on supply current tracking using fuzzy logic controller. In FElectron-
ics, Clircuits, and Systems, 2009. 1CECS 2009. 16th IEEFE International

Conference on, pages 779 =782, dec. 2009.

Dheeraj Reddy, David Koufaty, Paul Brett, and Scott Hahn. Bridging
functional heterogeneity in multicore architectures. SIGOPS Oper. Syst.

Rev., 45(1):21-33, February 2011.

Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexan-
dra Fedorova, Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and
Viren Kumar. Hass: A scheduler for heterogeneous multicore systems.

SIGOPS Oper. Syst. Rev., 43:66-75, April 2009.

35



[26]

[27]

28]

[29]

T. Sondag and H. Rajan. Phase-based tuning for better utilization
of performance-asymmetric multicore processors. In Code Generation
and Optimization (CGO), 2011 9th Annual IEEE/ACM International

Symposium on, pages 11 —20, april 2011.

Hsin-Ching Sun, Bor-Yeh Shen, Wuu Yang, and Jeng-Kuen Lee. Migrat-
ing java threads with fuzzy control on asymmetric multicore systems for
better energy delay product. In International Conference on Computing

and Security, Ulaanbaatar, Mongolia, July 2011.

Qiming Teng, P.F. Sweeney, and E. Duesterwald. Understanding the
cost of thread migration for multi-threaded java applications running on

a multicore platform. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on, pages 123 —132,

april 2009.

Viswanath Krishnamurthy Tyler Sondag and Hridesh Rajan. Predictive
thread-to-core assignment on a heterogeneous multi-core processor. In
PLOS °07: ACM SIGOPS 4th Workshop on Programming Languages

and Operating Systems, October 2007.

Frederik Vandeputte, Lieven Eeckhout, and Koen De Bosschere.
Exploiting program phase behavior for energy reduction on multi-

configuration processors. J. Syst. Archit., 53(8):489-500, August 2007.

36



[31] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Com-

mun. ACM, 37(3):77-84, March 1994.

37



