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摘 要       

和同質多核心處理器比較起來，異質多核心處理器已經被

提出作為一個比較好的折衷方案在於效能與能源消耗方面。在

此同時也浮現了新的挑戰；那就是執行緒與核心之間的配對問

題。 本論文提出一個基於模糊控制的排程器；在我們的研究

中，我們架構了一個相同指令集架構但是不同核心有不同的頻

率的異質多核心平台。我們所提出的模糊控制排程器週期性地

收集執行緒的程式特性，並且根據這些特性來決定該執行緒應

該被分配到哪一個核心上。實驗結果顯示，我們的模糊控制排

程器對於記憶體存取密集的程式可以節省相當多能源以及得

到顯著的能源使用效率而效能並未犧牲很多。 
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ABSTRACT 

Asymmetric multicore processors have been proposed 

as a better trade-off between performance and power 

consumption over symmetric multicore processors. They 

also reveal challenges in mapping threads to cores. We 

propose a new scheduler based on fuzzy control theory. 

In this work, we configure an asymmetric multicore 

system in which cores share the same ISA but run at 

different frequencies. Our fuzzy scheduler decides 

thread-to-core assignment based on periodical run-time 

performance characteristics. Evaluation results 

demonstrate that our fuzzy scheduler saves significant 

energy and achieves better energy-delay product for 

memory-intensive programs while sacrificing 

performance slightly. 
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Chapter 1

Introduction

1.1 Asymmetric Multicore Systems

Asymmetric multicore processors (AMPs) have been proposed as an alterna-

tive to provide a better trade-off between performance, power consumption

and die-area over symmetric multicore processors (SMPs) [11,16,21]. There

is a large diversity for designing AMPs, ranging from performance asym-

metry to functional asymmetry [24]. Performance AMPs consist of several

cores which differ in clock speeds, cache sizes, and microarchitectures [18,21],

etc. Alternatively, functional AMPs allow cores to have different functional-

ities by employing different instruction set architectures (ISA). For example,

AMPs may consist of CPU and GPU cores. Furthermore, cores may have

overlapping ISAs, that is, some cores share a common ISA but have the

special-purpose features [19, 20, 24]. We modelled the AMPs in which all

1



Figure 1.1: big.LITTLE Processing

cores support the same ISA but differ from different clock frequencies. Using

the same ISA on all cores implies that the same object code may run all

cores.

In October 2011, ARM announced a new chip architecture - big.LITTLE

processing [12]. The goal of this approach to minimize power draw in order

to extend the battery life of devices like smartphone and tablet. As shown

in figure 1.1, big.LITTLE connects the performance of the ARM Cortex-A15

MPCoreTM processor with the energy efficiency of the Cortex-A7 processor,

and enables the same application software to be seamlessly switched between

them. By selecting the optimum processor for each task big.LITTLE can
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extend battery life by up to 70%. The big.LITTLE provides the opportunity

to raise performance and extend battery life in the next generation of mobile

platforms.

1.2 Toward Better Utilization of AMPs

AMPs reveal new software challenges. The main challenge is to utilize asym-

metric multicores efficiently with a scheduler in the underlying operating sys-

tem. For better utilization of asymmetric multicores, threads in a program

should be assigned to cores such that the resource needs of each thread match

the resource available at the assigned core. Many studies [6,15,17,21,25,26]

have proposed techniques to assign the threads to cores in order to achieve

better compromise between performance and energy efficiency.

This paper presents a new mechanism based on fuzzy control [9, 31] to

choose a particular core that matches the resource requirements of an appli-

cation thread to maximize power efficiency within AMPs. Our mechanism

is implemented in JVM. This JVM, which is called asymmetry-aware JVM,

is aware of the asymmetric hardware properties of the system and assigns

threads to cores based on thread characteristics. The thread characteristics

of each thread are obtained from hardware performance counters periodically

and are used as input to the fuzzy-control scheduler.

The intuition behind our fuzzy control scheduler is as follows. Faster and

more powerful cores are good for running CPU-intensive programs which are

3



able to exploit the advanced features of processors. On the other side, slower

and simpler cores save energy for memory-intensive programs, which spend

most of the execution time on fetching data from memory and stalling CPU

pipelines [10]. In the fuzzy-control scheduler, we profile each executing thread

in JVM by hardware performance counters and classify it as CPU-intensive

or memory-intensive depending on the performance metrics. An appropriate

core is selected for each Java thread.

Choosing appropriate performance metrics for the fuzzy-control scheduler

is an important issue. In our previous work [27], we chose the instructions

per cycle (IPC) of the executing thread because IPC strongly correlates to

throughput and utilization of processors. Unfortunately, IPC alone is not

sufficient to make a right core decision because not all programs with lower

IPC were memory-intensive. There are other reasons for lower IPC [7]. Thus,

other performance metrics become more important, such as cache behavior,

branch predictor behavior, and utilization of resources. In this work, we

select several additional performance metrics to make more accurate core

decision. We will describe the selected metrics in Chapter 3.

4



Chapter 2

Related work

Many studies address the scheduling problems for asymmetric multicore sys-

tems. Some of these studies are static scheduling algorithms and others are

dynamic.

In [25], Shelepov et al. proposed an asymmetry-aware scheduler by us-

ing offline-generated architectural signatures for assigning threads to cores

in AMPs. The static way does not consider the runtime characteristics of

application; the resource requirement of application may vary across while

executing. Thus, the dynamic approach takes the runtime characteristics

into account.

In [15, 17], Kumar et al. proposed a sampling-based dynamic scheduler.

The scheduler consisted of two phases, a sampling phase and a steady-state

phase. In the sampling phase, the scheduler chose a proper core based on

profiling statistics of the application, which was gathered by hardware per-
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formance counters. The scheduler switched the application to the selected

core. Their work showed that asymmetric multicore systems can reduce sig-

nificant energy consumption with little sacrifice in performance. Our work

adopts the dynamic-sampling approach with fuzzy control to choose a core

for each thread.

In [6], Becchi and Crowley proposed work similar to that of Kumar. They

defined new dynamic assignment policies, including round-robin and IPC-

driven. In particular, the IPC-driven assignment depended on the ratio be-

tween two different core types to make core decision.

Some of schedulers are phase-based [22, 26, 29, 30]. One of phased-based

schedulers is proposed by Sondag and Rajan. Their approach [26] is com-

posed by two subsections, phase detection and core assignment. In the phase

detection, a static detection algorithm was used to identify phase-transition

point. The static analysis divided a complete program into several sections

and classified them into several groups, in which all the sections are likely

to exhibit similar runtime characteristics. In the core assignment subsection,

the dynamic analysis collected the runtime behaviors of a section of each

phase type. The runtime characteristics are representative to each phase

type. These characteristics are used to choose a suitable core that matched

the resource requirement for each phase type. This kind of scheduler is more

complicated than sampling based schedulers because the designer needs to

implement both static and dynamic analysis.

Fuzzy control [9, 31] is famous in control theory. Previous study [23]

6



showed the DVFS decisions made by fuzzy control depended on variation of

workloads. Their work inspired us to design the core assignment by fuzzy

control theory. In our prior work [27], we proposed two sampling-based fuzzy

schedulers to achieve the performance and energy efficiency on AMPs: IPC

fuzzy scheduler and LLC-misses fuzzy scheduler. In the IPC fuzzy scheduler,

we use the IPC value and the IPC difference as input to the fuzzy logic block.

The reason of using IPC is that IPC strongly correlates to the throughput

and utilization of processors. In considering the factors causing performance

getting worse, the last-level-cache (LLC) miss is the main factor. Thus, we

proposed the LLC-misses fuzzy scheduler, in which we use the number of

LLC-load-misses and the LLC miss difference as input to the fuzzy logic

block. The result showed that these fuzzy schedulers could make a right

decision for memory-intensive programs, but may make a wrong decision

for some non-memory-intensive programs. In our work, we consider other

performance metrics as input to the fuzzy logic to make a right decision.

We evaluate the performance and energy efficiency of our new fuzzy-control

schedulers.

7



Chapter 3

Implementation

3.1 JVM and JVM Tool Interface

Java Virtual Machine is a good environment to profile program behaviors

of Java applications, because the VM has JVMTI [2], a convenient tool was

introduced in J2SE 5.0 and completely independent of specific JVM imple-

mentation. JVMTI provides an interface to inspect the execution of Java

applications. In our work, we implemented an agent by JVMTI to track

each Java thread in JVM on the fly. Note that in Hotspot JVM, the map-

ping between Java threads and Linux threads is implemented by Pthreads

library which creates a kernel thread for each user thread, and is known as

one-to-one mapping. That means we can monitor each Java thread by Linux

Performance Counter Subsystem [3], which uses to count the number of cer-

tain types of hardware events for processes or threads. It provides a system

8



call sys perf event open for hardware performance counter. The system call

returns a file descriptor for each hardware performance counter event we

monitored. We can read those files to get the number of counters.

3.2 Interesting Performance Metrics

IPC alone is not an accurate indicator of performance [7]. When IPC value is

lower, other performance metrics become more important. There are several

reasons causing lower IPC value. By examining several programs, we found

out that cache misses and data dependency are the main reasons, so we

made core decision by considering cache misses and resource stall cycles in

our work. We choose the following performance metrics as inputs of fuzzy

scheduler:

• Resource stalls ratio (RSR) which represents several kinds of po-

tential performance stalls including frequent cache misses, long execu-

tion paths, and memory order buffer (MOB) stalls.

• L2 and LLC cache miss rate which are used to know how heavy

the cache misses effect the performance of application. The L2 cache

miss rate and LLC miss rate are measured as misses per 1000 instruc-

tions in our design, then we named the L2 MPI and LLC MPI which

representing for L2 and LLC misses per a thousand instructions [13].

We obtained the following performance events in Intel i7 processor [14] to

calculate the RSR, L2 and LLC MPI:

9



• RESOURCE STALLS.ANY: This event counts the number of cycles while

resource-related stalls occur, including the number of instructions in

the pipeline waiting for execution and there is an instruction in the

pipeline that can be executed only when all previous stores complete

and their data is committed in the caches or memory.

• CPU CLK UNHALTED.THREAD P: This event counts the number of thread

cycle while the thread is not in halt state.

• INST RETIRED.ANY P: This event counts the number of instructions

that retired from execution.

• L2 RQSTS.MISS: This event counts all L2 misses for both code and data.

• LLC MISSES: This is an architectural performance event which counts

the number of last level cache misses.

3.3 Thread Assignment Policy

The heuristic of thread assignment policy in our scheduler is as following.

We do not need to make core decision for those threads with higher IPC

value(ipc ≥ 1.5) to reduce the overhead of fuzzy control calculation, because

this situation is definitely scheduled to the fastest cores by our scheduling.

Choosing 1.5 as a threshold of doing fuzzy scheduling depends on benchmark

evaluation. The main goal of our scheduler is making proper core decision

for those threads with lower IPC value by considering the cache behaviors

and resource stall rates during runtime. This heuristic was implemented with

10



Figure 3.1: Architecutre of the fuzzy scheduler using JVMTI

fuzzy control, and we designed a fuzzy scheduler, which did twice fuzzification

processing.

In the first fuzzification, we considered the RSR and L2 cache miss rate.

The purpose of the first fuzzification is to recognize whether data dependency

is the main cause of higher stall rate or not. If so, it means that this thread

is not memory-intensive and should be scheduled to faster cores. Otherwise,

higher cache miss rate are the main cause of higher stall rate.

In the second fuzzification, we considered the LLC miss rate to examine

how heavy the cache behaviors affect the performance. If LLC miss rate are

higher, this thread is memory-intensive and should be scheduled to slower

cores.

3.4 Fuzzy Scheduler

The fuzzy scheduler which is implemented for our asymmetry-aware JVM is

a closed loop which takes profiling statistic as input and makes core decision

11



Figure 3.2: Membership functions for RSR

as output periodically. Figure 3.1 presents our scheduler. As it is showed in

figure 3.1, the fuzzy scheduler consists of three blocks: a fuzzification block,

inference engine block and defuzzification block. The fuzzification block con-

verts a quantitative value into a qualitative value. In this block, membership

functions should be considered for each control state. Membership function

is a function that specifies the degree for each input which belongs to a fuzzy

set, and its value is limited between 0 and 1. The second block is inference

engine which is using If-Then fuzzy rules to infer the input fuzzy set to the

output fuzzy set. The third part is defuzzifiation block which converts the

output fuzzy set to a crisp number that can be used as a control signal.

In the fuzzification part of our scheduler, there are several linguistic vari-

ables; each of them stands for a concept and is associated with one or more

membership functions. We declared two linguistic variables in the first fuzzi-

fication: RSR and L2 MPI which are as mentioned previously. We also

defined five membership functions for RSR and four for L2 MPI as showing

in figure 3.2 and figure 3.3. Although there are many possible shapes of each

12



Figure 3.3: Membership functions for L2 MPI

Figure 3.4: Membership functions for LLC MPI

Figure 3.5: Membership functions for destination core in asymA

13



Figure 3.6: Membership functions for destination core in asymB

membership function, the shape does not affect the output significantly [23].

For this reason and to minimize computational complexity, we choose trian-

gular membership function in our case. The overlap between two membership

functions is 50%. That means each RSR input or L2 MPI input will hit at

most two membership functions and at most four rules to do the inference.

For example, we have a set of performance statistics, which RSR value is

0.67 and L2 MPI is 12. RSR will hit high and highest membership functions

in figure 3.2, and L2 MPI will hit low and lowest in figure 3.3. In the first

fuzzification inference engine, some of rules will get into the second fuzzfica-

tion and then return the output value to first fuzzification to do the rest of

processing. For example, if RSR is highest and L2 MPI is low, this rule will

get into the second fuzzfication. In the second fuzzification, we considered

the cache behavior. We had L2 MPI and LLC MPI as linguistic variables

and defined three new membership functions for LLC MPI as showing in

figure 3.4. The shape of membership functions is similar with those in the

first fuzzification.
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RULES lowest low medium high highest

lowest 2 2 3 3 3

low F2 F2 F2 F2 F2

medium F2 F2 F2 F2 F2

high F2 F2 F2 F2 F2
0

0.5

1

20 40 60 80

L2 MPI

lowest medium highlow

0

0.5

1

0.3 0.4 0.5 0.6 0.7

low mediumlowest

RSR

high highest

First fuzzification:

Figure 3.7: Inference rules for RSR and L2 MPI

The design of the output membership functions highly depends on the

target AMPs. Figure 3.5 shows the membership functions for the output

variable destination core.There are four cores with different frequencies in

our first asymmetric configuration, so we defined four membership functions

for each core. Besides, we also configured AsymB, the other asymmetric con-

figuration with two kinds of cores, so we designed two membership functions

as shown in figure 3.6.

The inference engine consists of several rules, and these rules are defined

based on our background knowledge and observation. Since we have five

membership functions for RSR variable and four for L2 MPI variable in the

first fuzzification, there should be 20 rules. Similarly, four for L2 MPI variable

15



RULES low medium high

low 2 1 0

medium 1 1 0

high 1 0 0

0

0.5

1

10 30 50

medium highlow

LLC MPI

Core 0 Core 1 Core2 Core 3

0

0.5

1

0 1 2 3 4

0

0.5

1

20 40 60 80

L2 MPI

lowest medium highlow

Second fuzzification:

Figure 3.8: Inference rules for L2 MPI and LLC MPI

and three for LLC MPI variable, so there should be 12 rules in the second

fuzzification. Figure 3.7 and figure 3.8 showed the rules in two fuzzification

steps. The inference will produce implied membership functions which will

be used to calculate a crisp value in defuzzification block.

The defuzzification part converts the implied fuzzy set to a crisp value as

a control signal. There are several defuzzification methods such as center of

gravity, center of area, mean of maximum, and first of maximum. We choose

center of area as our defuzzification method. Then crisp value will be a core

decision which the scheduling thread assigns the running thread to selected

core.
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Chapter 4

Experiment Setup

4.1 System Configuration

We use an Intel core i7-920 processor as our hardware platform which consists

of an AMP with four cores and the detailed system specification is shown

in table1. Note that both Intel Turbo Boost Technology and Intel Hyper-

Threading Technology are disabled to eliminate their effect on performance

and power consumption. It is worth to mention that the L3(LLC) cache in

our experiment platform is shared. According to previous research [28], the

overhead of thread migration is negligible. So our work would not suffer from

significant performance loss as running on our platform.

We use an unmodified Linux 2.6.39 kernel. One of Linux kernel modules

acpi-cpufreq is used to scale the CPU speed up or down to save power. We

use this module to configure our asymmetric environment. Table2 shows the

17



Table 4.1: intel i7-920 specification

Platform Intel i7-920

# of cores 4

Max. & Min. speed 2.66GHz & 1.6GHz

L1 Cache 32KB L1 data, 32KB L1 instruction per core

L2 Cache 256KB per core, inclusive

L3 Cache 8 MB shared cache

Memory 8GB

OS Debian-amd64 (kernel 2.6.39-2)

Java version 1.6.0 18

OpenJDK IcedTea6 1.8.7

Table 4.2: Available performance choice (GHz)

1.60 1.73 1.86 2.00 2.13 2.26 2.39 2.53 2.66

four configurations in our experiments. The symmetric configuration sym2.66

consists of four cores with highest frequency 2.66GHz and is used to be as

the baseline. The other symmetric configuration sym2.26 is used to show

the worst case. The asymmetric configuration AsymA consists of four cores

with fastest four frequencies. The other asymmetric configuration AsymB

consists of two kinds of core, fast and slow. AsymB is with less diversity but

more asymmetry than AsymA, and this is used to compare the performance

and power consumption between different asymmetric configurations.

18



Table 4.3: 4 configurations in our experiment

CPU 0 CPU 1 CPU 2 CPU 3

Sym2.66 2.66GHz 2.66GHz 2.66GHz 2.66GHz

Sym2.26 2.26GHz 2.26GHz 2.26GHz 2.26GHz

Asym A 2.26GHz 2.39GHz 2.53GHz 2.66GHz

Asym B 2.00GHz 2.00GHz 2.66GHz 2.66GHz

4.2 Benchmark Configuration

There are two suits of benchmark in our experiments: Scimark and Java

Grande Forum (JGF) benchmarks [8]. The reason why we choose these

benchmark applications is that they demand on a lot of memory or computing

resources. The Scimark applications are from SPECjvm2008 [5], and we

configured them with lagom which is a option to fix the amount of operations.

An exception is scimark.monte carlo application. Because its lagom is with

900 operations, we reduced them to 100 operations for execution efficiency.

The Scimark workloads are run with both small and large data sizes. The

large is 32MB and the small is 512KB. In the JGF benchmarks, there are

three sections. We chose section II and section III for large scale computation.

Unlike Scimark, the data sizes of JGF benchmark applications are not same

as each other. There are three kinds of data sizes for sectionII and two for

sectionIII. We chose the largest data size in our experiments. Note that the

number of threads of each application was set to one to meet the constraints

of our power meter.
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Figure 4.1: Power Measurement Setup

4.3 Power and Energy Measurement

The power of Intel i7 processor is provided by 12V2 rails, which is according

to ESP12V power supply design guide [1]. We made an instrument between

power supply and power meter. The diagram of the power measurement

setup can be seen in figure 4.1. We use NI PXI-4065 digital multimeter

to measure the power dissipation. The current trace was interpretered by

the LabVIEW software and used to compute power consumption. Project

SIKULI [4] is used to automate the process of measurement.
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Chapter 5

Evaluation

5.1 Benchmark Characteristics

To obtain the baseline of our experiments, we first performed a series of

measurements to characterize the individual benchmark applications. We

ran each benchmark application at the fastest cores with frequency 2.66GHz

as baseline, which completes the application in the least amount of time, but

gains no energy saving. We also ran benchmark applications on other lower

frequencies ranging from 1.60GHz to 2.52GHz. To measure and compare the

power efficiency, we choose the energy delay product (EDP) as the power

efficiency matric. The EDP value for each benchmark was normalized to the

value at 2.66GHz and showed in figure 5.1 and figure 5.2.

The fft benchmark in scimark.*.large and JGF suite, experiences more

EDP benefit while running at lower frequencies. In contrast, all other bench-
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Figure 5.1: Relative EDP of scimark programs in SPECjvm2008

Figure 5.2: Relative EDP of JGF programs
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Figure 5.3: Execution time ratio for Fuzzy scheduler and IPC scheduler in

asymA

marks suffer more performance loss than energy saving, so they could not get

any EDP benefit. The fft program is obviously less CPU-intensive than oth-

ers and spends more time waiting for memory access. Thus, scheduling this

kind of programs to slower cores affects its execution time less than execution

time of other programs, but can get more energy saving than others.

5.2 Experiment Results

In the first part of our experiments, we compare the results of our fuzzy

scheduler to the results of IPC scheduler in asymmetric configuration A. Note

that all the results are normalized to the results at 2.6Ghz. Figure 5.3 gives

the execution time ratio for our fuzzy scheduler and IPC scheduler. We also
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Figure 5.4: Relative EDP for Fuzzy scheduler and IPC scheduler in asymA

provide the execution ratio in symmetric configuration sym2.26, as 2.26GHz

is the lowest frequency in asymA. This gives a comparison to the worst time

increasing in our case. Figure 5.3 shows that the fuzzy scheduler is able to

make right decision for each benchmark program, especially for scimark.sor.*,

SOR and MonteCarlo. These programs are CPU-intensive and should be

scheduled to the fastest core. Unfortunately, the IPC scheduler made wrong

core decision for them so that it resulted in the worst time increasing. All

benchmark programs slightly suffer from 2% performance loss.

The execution time ratio in sym2.26 indicates that scheduling scimark.fft.large,

scimark.lu.large and FFT to the slowest core did not cause significant per-

formance loss, especially for scimark.fft.large and FFT which are memory-

intensive. Thus, these programs could gain more EDP benefit than others

potentially.
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Figure 5.5: Relative EDP for Fuzzy scheduler and IPC scheduler in asymA

Figure 5.4 shows relative EDP for the fuzzy scheduler and IPC scheduler

in asymmetric configuration A. Even though the fuzzy scheduler made right

core decision for all the programs, they still suffered from EDP increase

slightly. In figure 5.4, scimark.fft.large and FFT got 13% EDP benefit in

average, because the two programs are known as memory-intensive. The

relative EDP of scimark.sor.* and SOR for two schedulers shows that the

compromise between performance and power saving is almost same to each

other. That means even if we made right decision for sor series programs, we

did not gain any EDP benefit. But if we choose ED2P as the power efficiency

matric which emphasizes performance more than power dissipation, we can

get ED2P benefit as shown in Figure 5.5.

Figure 5.6 gives the core decision for the fuzzy scheduler in asymA. For

most of benchmark programs were scheduled to the fastest core besides
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Figure 5.6: Core decision for Fuzzy scheduler in asymA

memory-intensive programs. Thus, we configured another asymmetric con-

figuration which is less diversity but more asymmetry than asymA to get

more power saving and EDP benefit.

In the second part of our experiments, we compare the performance and

power consumption between different asymmetric configurations. As shown

in table 4.3, asymB consists of two kinds of cores, fast cores with frequency

2.66GHz and slow cores with frequency 2.00GHz. In the following para-

graphs, we will compare the execution time, power consumption, and EDP

between asymmetric configuration A and B.

Figure 5.7 shows that execution time of most of programs are almost same

as time execution time in asymA, because these programs were scheduled to

the fastest cores with 2.66GHz as same as the fastest frequency in asymA. For

memory-intensive programs such as scimark.fft.large and FFT, the execution
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Figure 5.7: Execution time ratio for Fuzzy scheduler in asymA and asymB

Figure 5.8: Power consumption ratio for Fuzzy scheduler in asymA and

asymB
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Figure 5.9: Relative EDP for Fuzzy scheduler in asymA in asymB

time is increasing slightly at 4%, but save 25% power in average as shown in

figure 5.8. It means it can make a better compromise between perofrmance

and power efficiency compared to asymA. Figure 5.9 shows that we got 20%

EDP benefit and 7% more than it in asymA.

Figure 5.10 gives the core decision for the fuzzy scheduler in asymB.

Only the memory-intensive programs were scheduled to the slow cores. One

of advantages in asymB is that it reduced thread migration times. For some

of CPU-intensive programs, there is no thread migration at all.
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Figure 5.10: Core decision for Fuzzy scheduler in asymB
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Chapter 6

Conclusions and Future works

6.1 Conclusions

Asymmetric multicores processors have been recently proposed a good com-

promise between performance and power efficiency. However, they also face

new challenges such as scheduling problems and resource utilization prob-

lems. Many studies devised new technique to utilize AMPs efficiently. [6,15,

18, 26]. This thesis presents a fuzzy scheduler based on fuzzy control theory

for JVM to migrate Java threads to the proper cores for energy saving on

AMPs. In our previous work, the IPC scheduler could not make a right core

decision for some of CPU-intensive programs because it did not consider data

dependency and that would cause execution time to increase heavily. Our

fuzzy scheduler takes RSR and cache miss rate into account such that the

fuzzy scheduler could make the right core decision for all benchmark pro-
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grams. Our experiments show 25% energy saving and 20% EDP benefit for

memory-intensive applications compared to the results at the fastest core. In

our experiments, we could not get any benefit for CPU-intensive programs,

because they could not execute at a lower frequency efficiently.

6.2 Future works

In the future work, we would like to consider more about OS scheduling

issues, such as load balance and asymmetry-aware OS thread assignment.

We would also like to eliminate the constraint of thread number to make

more efficient utilization. One of other future directions is to use a wider

diversity of asymmetric multicore systems in different cache sizes, or having

different number of execution units, or supporting in-order or out-of-order

execution and so on.
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