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Time-and-Energy Aware Computation Offloading in Handheld

Devicesto Coprocessors and Clouds

Student: Ting-Jun Huang Advisor: Bing-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

The hardware components in handheld devices aralysadapted to specific
application and are hard to do general computatiblosvever, with the popular of
smart handheld devices, e.g. smart phone and pams, kinds of software can run on
these devices and raising thetime and. energy ogptian. Therefore, some research
discussed with computation offleading; but offlaaglidoes not promise the time and
energy saving can always be achieved. Thus, weeimght an offloading decision
framework based on environment factors:< Thev framkwoollects factors for
estimating time and energy usage in-every compwgmgronment, and then makes
decision according to user's preference. We piek wvogram, matrix multiplication
and virus scanning, to evaluate the decision frapnkewln matrix multiplication
computation, the false decision rate is below 38#@ can save 20~300% computing
time and 50~130% energy consumption. In virus soaprwe choose the scanner
from clamAYV, the false decision rate is nearly z&arprisingly, we find a large file,
e.g. larger than 2MB, is not suitable for offloaglito cloud for scanning, which will

suffered 160~250% performance decrease.

Keywords. computation offloading, coprocessors, cloud conmgtAndroid
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Chapter 1. Introduction

Nearly 300 million smart phones were sold in 20418 its number is expected
to increase 80% in 2011 [1]. In order to satisfg tteeds of billions of users, smart
phones feature versatile mobile applications. Exampf the latest functions include
multimedia, real-time games, GPS navigation and noanication. Most of these
mobile applications are user-interactive and dategssing intensive, both of which
require quick response and long battery life. Hosvemost commercial off-the-shelf
smart phones, compared to desktops, are genergllypped with low speed
processors and limited capacity batteries. Runsimghisticated software on smart
phones can result in poor performance and shor&terly lifetime. Therefore, it
becomes a crucial issue in designing 'smart, phameeliver adequate performance
and prolong battery life.

A lot of advanced hardware-technology, such.asuogon level parallelism,
leakage power control and' dynamic voltage scalmye been proposed to improve
processor speed and reduce\energy consumptiorougjiththe advanced technology
can deliver better performance; - adopting “high-endcgssors is not always
appropriate for budget-limited projects. Recentipud computing becomes another
possible solution to enhance computing capabilitysmart phones. The cloud
computing vendors provide computing cycles for tlegistered users to reduce
computation and energy consumption of smart phoBgamples include Amazon
Elastic Compute Cloud (EC2), Amazon Virtual Priv&leud (VPC) and PacHosting.
However, it takes both time and energy to uploamyams to the cloud and retrieve
the results from the cloud. The computation capawfitthe cloud can also affect the
response time of the offloaded programs. In ordesdve both time and energy
consumption, there is a clear need for the devedmpnof a decision making

mechanism before offloading.



There have been many research efforts dedicatedfffoad computation
intensive programs from a resource-poor mobile ae|2-5]. X. Guet al. [2], Z. Li
[3] and G. Cheret al. [5] partitioned source codes into client/servartg, and then
saved energy consumption by running the serves drremote servers. All these
methods perform well for small size applicationst imay induce significant overhead
when partitioning large size applications. K. Kunf@jrproposed a simplified energy
model to quickly estimate the energy saved fronualservices. However, several
key power-related parameters were not considerbéshwmay lead to an incorrect
offloading decision. In addition, all above workmored the impact of offloading on
execution time, which may result in performancerddgtion. On the other hand, S.
Ouet al. [4] developed an offloading-middleware, which\pdes runtime offloading
services to improve the response-time of mobilacaesv Wolski [7] used bandwidth
data to estimate the perfermance improvement thradigoading. Both works did not
investigate the energy consumption of uploading rafiieving data, and may shorten
battery life time. Also, important timing-relateectors were not considered, which
can result in an incorrect offloading decision. 8&se it is response time and energy
consumption that determine user satisfaction, vaeesd a multi-objective opmization
problem that simultaneously optimizes these two fesformance indexes of smart
phones.

In this work, we develop an offloading framework igfh aims to shorten
response time and reduce energy consumption asdahee time. Unlike previous
works, our targets of execution include on-boardJCén-board GPU and cloud, all
of which provide a more flexible execution enviragmh for mobile applications.
Since response time and energy consumption mawdednflicting objectives, we
first design a customizable cost function, whiclowas users to adjust the weight of

response time and energy consumption. We then aevel lightweight profiling
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method to estimate the performance improvement emelgy consumption from
offloading. In order to make correct decisions, esal key system factors are
considered when constructing cost functions. Fmalh offloading decision is made
based on the user-defined cost function, estimatsponse time and energy
consumption.

The rest of this paper is organized as follows.g@#¥a2 introduces related works
with computation offloading, and some conceptsAndroid development and GPU
programming. Chapter 3 gives the problem statememdsterminologies for the later
chapters. Chapter 4 proposes the methodologiedflohding decisions, and then
Chapter 5 details the implementation. Chapter 6wnshthe experiment result and

evaluation. Chapter 7 concludes this-work-and sfttarections for future work.



Chapter 2. Background

In this chapter, we first give a comprehensive canson between our work and
related works. We then introduce Android platfornd @®penGL|ES, which are used
in our experiments.

2.1 Related Works

There have been many research efforts dedicatedfffoad computation
intensive programs from a resource-poor mobile @ey2, 3, 5-18]. Some of them
focused on energy saving [3, 5, 6, 8-13] while thtargeted at performance
improvement. Only few of them considered both epesgving and performance
improvement [19, 20]. For ease of reference, @&séhworks are summarized in Table
1, which are classified into three categor@senergy saving, on time saving andon
energy and time saving. For each work;.we. further.characterize it by fattributes:
adaptability, portability, accuracy andoffload target.

The adaptability indicates the capability of the proposed methoddapt itself
efficiently to dynamic workload, resulting-from‘thartance of data input at run-time.
If the proposed method can® only handle determmistorkload, this shows its
adaptability is poor. Theortability represents the ability of the proposed method to
be ported from one execution environment to anptherh as Linux to Windows. The
term Language/Framework/Kernel represents the waypavt the method to another
platform. For example, this work is Language lew€lportability and need to do
modifications in programming language when movioghother platform. Methods
with Language portability are desirable becausetmbshe existing codes can be
reused. Theaccuracy is the approximation error of energy model or executime
model of offloading. The higher accuracy indicatee fewer incorrect offloading
decisions. For this attribute, the works that dad develop any execution model or

energy model are labeled as “n/a”. Tdftboad target is the targets, which can execute
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offloaded programs. The more targets we have, tobeenflexible the execution
environment will become. According to Table 1, aurk is the only one that aims at
saving both time and energy while maintaining hagtaptability, high portability,

high accuracy and multiple offload targets. In tbbowing, we compare our work
with each of related works in detail.

Table 1. Comparison of current offloading works

Offload
Paper Works [Reference #] Adaptability Portability Accuracy
Target
Partition Scheme [3] No Framework Low Cloud
Study Energy Tradeoffs [5] No Framework n/a Cloud
Component Migration & )
No Framework | Medium Cloud
Replication [9]
g’ Cooperative Dynamic Power
(9>; No Framework n/a Cloud
> Management [11]
o) Offload H.264 Encodér [13] No Framework n/a Cloud
i
o) Content-Based Image Retrieval _
Yes Language Mediun  Cloud
[10]
MAUI Code Offload [8] No Framework n/a Cloud
Can Offload Save Energy[6] Yes llanguage Medium  Cloud
Face-Recognize with GPU T12] No Language n/a GPU
Adaptive Offloading [2] No Framework Low Cloud
Effective Offload Service [17] No Framework n/a Cloud
Calling the Cloud [14] No Framework n/a Cloud
2 eyeDentify Cyber Foraging [15] No Framework n/a Cloud
=
3 Heterogeneous Auto-Offload
g No Framework n/a Cloud
iz Framework [18]
5 Using Bandwidth to Make _
Yes Language Mediun  Cloud
Offloading Decision [7]
VPN Gateway over Network Network
No Kernel n/a
Processors [16] Processor
'(% o | Computation Offload Scheme [20] No Framework | Medium Cloud
> S
(@)
L% ﬁ Energy Efficiency of Mobile [19] Yes Language n/a Cloud
S
- =
O " | ourwork Yes Language High | GPU, Cloud




Works On Energy Saving

Maximizing battery life time is one of the most cial design objectives of smart
phones because they are usually equipped withelthbiattery capacity. Z. Li [3], S.
Han [9], B. Seshasayee [11], and E. Cueswval. [8] adopted profiling-partitioning
technology to identify offloaded parts of an apgtion for energy saving. They first
profiled the energy consumption of each functionhef application. According to the
profiling result, they then generated a cost graphyhich each node represents a
function to be performed and each edge indicatesdtita to be transmitted. The
maximum-flow/minimum-cut algorithm was then usedptrtition the cost graph to
obtain client parts and server parts. Finally, shever parts were executed at remote
servers for reducing energy .consumption’ of, mobigwiak. G. Chenet al. [5]
designed a similar method‘to/determine whethergethods and bytecode-to-native
code compilation should.be executed at remote sefuee energy saving. In addition,
they assumed that the workload was deterministlichvmeans that the workload
will not vary at run-time. As a.result, their metisocannot be applied to dynamic
workload, resulting from the variance of data inpttrun-time. On the contrary, in
order to reduce profiling overhead, we only profitee energy consumption and
execution time of frequently-used modules, suclriES, IFFT, convolution, matrix
multiplication and so on. In addition, we take immcount the impact of data size on
execution time and energy consumption in order aadke dynamic workload at
run-time.

X. Zhao [13], Y. J. Hong [10], and K. Kumar [6] ltuienergy models to
approximate the energy consumption of offloadinge €nergy models can be used to
construct the above-mentioned cost graph or makeading decisions. However,
several key parameters, such as workload dynaia&sjwidth variability, and idle

mode energy consumption, are not included in theddels, which may lead to
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inappropriate partitions or incorrect offloading ca#ons. According to our
experiment results, our energy model ensures ahigtcuracy than previous works
by considering these key parameters. Y. C. Wanpdéthonstrated the possibility of
utilizing GPU for offloading. They first identifietottlenecks of programs, and then
used OpenGLJES to rewrite and remove the bottlend¢&wever, CPU and GPU are
usually integrated on the same chip and cannottelsed off individually. Without
considering the idle energy consumption of the chifloading programs to GPU
may increase the total energy consumption. Our wamkthe other hand, achieves a
higher accuracy by modeling the idle energy congionpWe also provide the ability
of offloading programs to GPU or Cloud.
WorksOn Time Saving

Responsiveness of mobile—applications ‘is+importaetause the mobile
applications are usually-real-time and user-<inti&racMany research efforts have
been devoted to offload_part of @ program to renssevers in order to reduce
execution time [2, 7, 14,°17]. Most of them“adoptdove-mentioned similar
profiling-partitioning technology to‘identify thefmaded parts of an application. Gu
et al. [2] designed an offloading engine that dynamicadfrtitions an application
when the required resources, such as memory and, @pafoach the maximum
capacity of the mobile devices. Yang [17] develomed offloading service that
dynamically partitions Java applications and tranmst offloaded Java classes into a
form that can be executed at remote servers. Giuegial. [14] developed an
exhaustive search algorithm, called ALL, to exanaheossible partitions in order to
find an optimal partition. They also proposed arlstie algorithm to partition a
program in reasonable time. All these methods perfovell on small-size
applications, but may induce significant overheallemv partitioning large-size

applications. On the contrary, we only profile #rmeergy consumption and execution
7



time of frequently-used modules in order to redtloe overhead of profiling and
partition. Unlike [2, 14, 17], R. Wolski dynamicgllpredicted offloading cost at
run-time according to the feedback of a resourcenitoo [7]. However, some
important parameters, such as workload dynamicsbandwidth variability, are not
included, which may lead to inappropriate preditsioand incorrect offloading
decisions. Our work, on the other hand, achieveiglaer accuracy by modeling these
important parameters. According to our experimestlts, fewer incorrect offloading
decisions are made.

Several works developed offloading mechanisms bggmating exiting software
packages rather than started from scratch [15186,R. Kempet al. [15] used Ibis
middleware to offload computational-intensive,Javagrams to remote servers. Y.
Zhang [18] adopted Firefox, plug=in-framework tonsparently offload computations
to remote servers. Since these works are’ closalypled with specific software
packages, it becomes "_difficult «to“extend their. radth to other execution
environments. Y. N. Lin [16] explored the passtyiliof offloading programs to
network processors in order to reduce executior.tiifhey first profiled the IPSec
module to identify bottlenecks, and then rewrot8de-related kernel and driver code.
Although the performance improvement of networlotighput can reach as much as
350%, the energy consumption of network processw@g significantly increase. In
addition, a modification of OS kernel and drivessrequired, which reduces the
portability of the proposed method. In this worle vealize our idea of offloading by
developing a Linux program at user space in ordendrease the portability. We do
not rely on any specific software packages. In taoldi we do not require any
modifications of OS or drivers. Our method can bsilg ported to other execution

environments, such as Windows Embedded Compact 7.



Workson Energy and Time Saving

Both energy and time saving are crucial design ativjes of smart phones.
However, few research efforts have been devotedptonize the two objectives
simultaneously [19, 20]. C. Wang [20] used simpaofiling-partitioning technology
to identify offloaded parts and consider energy ane saving at the same time. A
similar method was developed by A. P. Miettinen][i® offload the most power
hungry parts in order to reduce energy consumptitmwever, both of them use
execution time of a program to approximate its gmeronsumption. The estimated
energy consumption, without considering the paramedf CPUs, may be incorrect.
In this work, we provide a higher accuracy energyd s&execution model by
considering important parameters of-CPU<and offlogdargets. Our experiment
results indicate that the proposed-method can aelietter performance in saving
energy and time.
2.2 Overview of Android Architecture

Android is a software stack.for a mobile devica thaludes an operating system,
middleware and mobile applications.. After being wacefd by Google, Android has
attracted thousands of developers’ attention far open license and flexible
architecture. Android OS is released under Apaclie sbftware license, so that
anyone can download, modify, and even redistriléesource code. Because of its
characteristic of freedom, Android becomes a supadiform adopted by both
academe and industry. In addition, Android alsodlesady been ported to numerous
hardware platforms. Figure 1 shows the overviewAonflroid multi-layer structure,
which includes five layers: Applications, FrameworK.ibraries, Runtime

Environment, and Linux Kernel.



Applications

HD Movie Image
K 5 \ < Player > <Transfer> / J

Application Framework

Activity Window g f
Manager > ( Manager > QIQW 0 J
Libraries Android Runtime

Bionic Libc Core Libraries

Dalvik Virtual
OpenGLIES Medkiiie
@ Linux User Space < s >

Linux Kernel C/C++
Drivers T File System
Managemen Y

Figure 1.-Android Architecture

Android, using a maodified—Ltinux kernel," differs idrivers and memory
management, but it still keeps the original advgesaof robustness and efficiency.
Besides kernel, Android adopts:Dalvik VM and Biofldibrary in order to adapt to
resource-limited devices.

As Figure 1 shows, Dalvik VM is a light-weight Javatual machine, which
runs applications at the top level and applicatramework at the second level. There
are three differences between Dalvik VM and tradiil J2ME VM. First of all,
unlike J2ME VM, each application running on DalMk is associated with one VM.
Second, Dalvik VM is register-based rather stackelda Third, Dalvik VM only
accepts Dalvik executable format. Similarly, Bioibc is a modified version of
GNU Libc with some performance optimization, butstill remains the original
characteristics of variety and multifunction.

However, although Dalvik VM is a light-weight VMumning programs on a
virtual machine can induce performance degradat#tma result, our computation

modules are implemented at Linux user space (tttedalblock) in order to avoid the
10



interference caused by the virtual machine.
2.3 0penGLIES

OpenGLJ|ES, a Khronos-developed graphics standardmifedded system, is
derived from OpenGL. Nowadays, almost every smiaonp supports OpenGLJ|ES as
a rendering engine. However, some of them only sugppenGL|ES 1.x, which can
only perform fixed pipeline function. Fortunatelpjany new GPU chipsets now can
support OpenGL|ES 2.0, shown in Figure 2. Sincefuhetionalities of OpenGL|ES

2.0 are more powerful than the OpenGL|ES 1.x, veedaon OpenGL|ES 2.0 in this

work.
Vertex Buffer
Objects
' Prlmltlyc Vertex Shader Primitive Rasterizer
Processing Assembly
API

Fragment o Colour Buffer R e

‘ Shader H Depth Stecil —% Blend Dlther Frame Buffer

N

Figure 2. OpenGL|ES 2.0-programmable pipeline

Figure 2 gives an overview of graphics processiog fin GPU. The vertex
shader provides a programmable method to operatexyaisually for projection or
lighting. To operate vertex, developers need tdenshading program [21], similar to
C, and compile the program as vertex shader. Témeh time we feed vertex shader
with vertices, the shader will calculate the resand then transmit it to primitive
assembly blocks. The fragment shader is to opé&ragenents, which is produced by
previous vertices, usually used for painting. Beseawof the flexibility of shader
program, some works [12] offloaded general-purpas®putation onto GPU. In this
work, we implement a matrix multiplication modulg ®WpenGL|ES 2.0 shading

language.
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Chapter 3. Problem Statement
We design an offloading framework for smart phottedetermine an execution

unit, such as CPU, coprocessor, or cloud, for feetjy-used modules. In the
following, Section 3.1 first describes each modél neobile application, CPU,

coprocessor and cloud. Then, Section 3.2 giveprblglem statement.

Application

call module()

Software

A 4 \ 4 v
N
B |

Network |
CPU Coprocessor Interface Card - — —Netwlork

/uu 2 PU P

|
Hardware 1 1 f :

]
AAA yﬂ Cloud
( Memory J

Mobile System

Figure 3. Factors in System

3.1 System Modél
Mobile applications usually adopt frequently-useddumes, such as FFT,

convolution, and matrix multiplication, to procedata. As Figure 3 shows, the

application first involves a module to process daitha input size of N, which is

stored in the memory. The data is then processédHly, coprocessor or cloud. After
data processing, the output data, with sizeNyf,,, , is stored in the memory. The
bandwidth of memory access i8,,,,, at which the data is read from or written into

the memory by CPU, coprocessor or network interfdtehe data processing is

12



offloaded to the cloud, the transmission sped8l /e use 4, to denote the speed
of CPU, 4, to denote that of coprocessor apg, to denote that of cloud. In

addition, the power consumption of CPU BK,,, of coprocessor isF,,, and of

cop
network interface isP,.. When the system is idle, its power consumptiorPjs;. -

Table 2. Notation Table

Cost Function Definition

target Major unit for computation, e.g. CPU/Coprocessarl@
Ttarga Measured execution time when offload to target

'|:t arget Estimated execution time when offload to target
Etarga Measured energy consumption when offload to target
é[ arget Estimated energy consumption when offload to target
Frarge = {-I:target , Ié[arga} Set of time and energy equations on target

fe Decision function withrweighta

Decision Factor | Unit Variable |-Definition

B Kbps (0] Transmission bandwidth

teomp Second o} Module‘execution time.on mobile CPU

Ninput KB O Amount of processing data into processing unit
NOutput KB o Amount of resulting data from processing unit

Hepu MHz X Mobile CPU 'speed

Heop MHz X Mobile Coprocessor speed

Hag MHz o Cloud speed

Moo Mbps o] Memory access bandwidth

P sc Watt X Basic power when idle

PCpu Wait X Mobile CPU running power

PCop Watt X Mobile Coprocessor running power

F’nic Watt X Network Interface power consumption

From these decision factors, the cost functionsbEanalculated. Both time and

energy functions have estimation valug (., E.,.) and measurement value

(Tiage » Erage ) fOr evaluating the accuracy. Finally, the dedgisifunction f*

decide where to offload with user's preferenze Table 2 lists all cost functions,

13



decision factors, and their definitions.

3.2 Problem Description

Problem statement:

Given decision factorsB, t,o, Niow: Nowwr Mo Heopr Hads Hivemo
Pesc: Popus Pop. and By, design a decision functiorf “, where a is user's
preference, to choose the best one from threeanfihg cases:F Fopr OF Fuq,

cpu ! cop !

to execute module, aims to improve performance adute while conserving energy.

Assume no queues, i.e., single,tasking:

14



Chapter 4. Time-and-Energy Aware Ternary Decisions

In this chapter, we first give an overview of odfl@ading framework, which is
called time-and-energy aware ternary decision @bated as TETD), and then
present factor measurement and ternary decisiomgna&spectively.

4.1 Overview of the TETD Flow

|
( ) Create Factors table.xW

Start
Import Update
\ yes
actz?r fable Collect Factors
exists ?
Factor
Measurement no

| Create Factor Table
| (fill in static factors)

Build Cost Functions

Execute Module A on CPU Make Decision

I

Decide to
offload ?
Ternary Decision

Making v yes

Get computation result < Offload Module A Execution

———> Flow
Signal

O End
el  Data

Figure 4 Design Flowchart of TETD

Our offloading framework includes two parts: factoeasurement and ternary
decision making. As Figure 4 shows, when a moduiavoked, TETD first check the
associated factor table of the module, which stoexsessary parameters to estimate
energy consumption and execution time. If the fatédle does not exist, TETD
execute the module on CPU directly and create i@sponding factor table for future
need. On the other hand, if the associated fa@bletis found, TETD extract
necessary factors from the table and pass thenmafiton to the cost functions. Based
on the result of cost functions, the decision matkem determines whether the

module should be offloaded or not. After the modslgnished, TETD write run-time
15



collected information back to the associated fatzble for future use.
4.2 Create and Update Factor Table

In order to correctly estimate the energy consuomptind execution time of a
module on different execution units, we dynamicallgate and update a factor table
for the module at runtime. A factor table is crelatéhen the module is involved at the
first time, and is updated when the module is Fiat If the same module is invoked
again, we refer to its associated factor tablestomate the cost of offloading. The

factor table stores both static and dynamic decifactors. The static decision factors

include f,,, Mo, and power parameters, which are deterministic amudiule
independent. The dynamic decision factors inclu8ie N, Nowuw: Hoar Mg s

and t which are uncertain”or modulerdependent. For aiynalecision factors,

comp »
we develop a monitor to collect the informatiomai-time and update the associated
factor table when the module is completed.
4.3 Ternary Decision

In this subsection, we first discussithe executiime and energy consumption of
a module when it is executed on three differen@eeton environments: local CPU,
local GPU and cloud. We then introduce the algaritised for making decision.
Cost Functions: Execution Time and Energy Consumption

First of all, we consider the execution time of adule, which is executed on a
local CPU. We divide the execution time into twatpaThe first part is transmission
time tyans, Which is used for fetching data from and writitggm back to memory.

Sincetyans depends on the amount of processed data, we have

ttrans -

Ninput + Noutput

ﬂmem

The second part is pure computation tit@g, which is used by the CPU to execute
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codes. Therefore, the execution time is

Tepu = terans * teomp - (D
In our experimentsy,,., is set by run-time measuring. In additidya is obtained
by T‘Cpu — tirans- Based on Eq.(1), the energy consumption of tloall€CPU is
calculated by

Ecpu = (Poasic * Pepu) X Tepu - (2)

Similarly, when the module is executed on a locBlUGthe execution tim@cop 5

~ tecomp X Uepu
Tcop =trans T———— . (3)
Heop

Also, the energy consumptioﬁwp is
Ecop = (Poasic,t Peop) X Teop - 4)
After considering the above‘two cases,we"now @sdthe execution time and
energy consumption in the case-of offloading\to.¢fwid. We definedl,,, as the
execution time of the madule” when it<is offloadenl the cloud. In order to

calculateT,,, , we first detérmine the'amount|of data-to be trtied by

o= [Ninput + Noutput

\ .
7T ] (DATA Packet Size), (5

in which MTU stands for the maximum transmission unit. Als@ A&CK packets

used during the transmission is determined by

Gack _ [Ninput + Noutput

MTU ] X (ACK Packet Size). (6)

Then, T4 is calculated by

ack ack
N o+o oc+o +tcomp><ycpu

Toq = +
cld ﬂmem B

7
HUcia )
In Eq.(7), the first term on the right hand sidehie time spent for fetching data from
and writing them back to memory. The second ternetsvork transmission time. The
third term is the time spent on the cloud. The gp&onsumption is then determined

by
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). ®

o+ O.ack o+ 0.ack t X U
+ +Pyouie X (M

Ecld = (Pnic + Pbasic) X ( oo B

HUcia
in which, P,;. is the power consumption of network interface.
Decision Making
At run-time, we dynamically measure the value @f,,,, Ninput» Nouepue and

B. According to the collected information, we theseuthe above-mentioned
equations to predict the execution time and eneampsumption of the module when
it is executed in different execution environmertscompound objective function is
developed for user to adjust the importance of tand energy. As Figure 5 shows,

we calculate the value of the objective functiomliffierent cases (line 3, 4 and 5) and

take the minimum as the offloading decision.

Procedure Deci si on‘Naker 1)

~

Input: (1) -|: Tcop, '|:

cpu dl

Id (2) Ecpuv écop' TAcId (3) O<ac<l

Qut put: execution unist

Procedure:

(1) Initialize MN VALUE to zero
Initialize TARGET to CPU

(2) Wiile there is offloading target P do

i, -7 -
p_"'P cpu p_ —P cpu
Cal culate & =—= and &g =——=——

cpu cpu

If MNVALUE < a & +(1-a) &

Set MN_VALUE to a & +(l-a)l&

Set TARGET to P
End |f
End Wile
(3) Return TARCGET

Figure 5 Pseudo Code of Decision Maker
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Chapter 5. Implementations
In this chapter, we first introduce the device undst (DUT). We then describe

the methods used to measure bandwidth, componeetd sgomputation time and
power consumption respectively.
5.1 Device Under Test

We adopt HTC Nexus One, a popular and powerful sptaone, as our DUT.
The Nexus One quips with a Qualcomm QSD8250™ 1Gtdrgssor, a 512 MB
Flash ROM, a 512 MB RAM and a Wi-Fi IEEE 802.11 biterface. The operating
system used in the Nexus One is Android 2.2. Weldmpnt our offloading
framework in C language on user space so that it operate without any
privilege-restrictions and becomesymore effici€r user-level implementation can
be easily ported to other operating systems;ssdNiadows Embedded Compact 7.
5.2 Factor M easurement
Wireless Bandwidth: B

As mentioned in the «previous chapter; the ‘wireleasdwidthB is a crucial
decision factor in our offloading framework.In‘erdo adapt to environment changes,
we dynamically measure the transmission bandwidttu@atime. Many tools have
been developed to measure the transmission bardv8dime of them are platform
dependent, such &gerf andttcp, while others are platform independent. To make ou
method easily applicable to all Android smart prgrvee use the popular utiliyng,
located at the folder /system/bin, to measure thevaork bandwidth. For each
measurement, th@ng utility first sends the packets of ICMP-Requesthirthe Nexus
One to the cloud and then receives the packets ls@mrk by the cloud. In our
experiment, we use the command "ping -c 10 -s 600 cloud" to issue 10 ICMP
requests, in which the amount of data to be se60@ bytes and the wait interval

between sending each packet is 0.1 sec. As Figah®ws, the measurement starts at
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timet; and stops ab. For each ICMP request, it needs four IP packetsame ICMP

packet because the maximal size of the data inEthernet-frame is 1500 bytes.
Similarly, four IP packets and one ICMP packet r@guired to send an ICMP reply
back to the Nexus One.tl-t; is 100ms, the network bandwidth is approximated by

B = (4x1514+1x122)X2x10%8 = 9894 Kbps.

tr2—t1
11— 6000 bytes Fragmentation
ICMP requeg y
bytes ar
back
4 bytes ( <t

\
1P e
| 15144 backet)
— Vees (Ip acket)\b
Vs g \
e \

Z

Z
= e
=2 & g 0
o =) a g
7} @ = e
5 d E d
5] b &
= L)

@) acke!

2 1514 bytes 0P Kef)

=5 «— T 14 bytes (1P pac

1 5 pac\(Cﬂ

/ /\5 14 bytes ap keﬂ/

/ 4/ 1514 bytes (1P pa¢ kcﬂ/
"

6000 byteS — /

1, j4—CcMP reply Reassemble

Figure 6. ICMP Request & Reply with Payload Siz6@®0ytes

Component Speed: pcpu , fcop » Held » Bmem

In our experiments, we obtain the local CPU spegdand the local GPU speeg,,
by referring to datasheet. On the other hand, wasome the cloud speed,s and
memory bandwidthirem at run-time. In order to estimatgq4, we ask the cloud to
measure the timgy spent in executing the offloaded program. Thencaleulateuqgq
bY taid = (teomp/ tad )uucpu- The memory bandwidth is estimated by measuriedithe of
accessing a large amount of data stored in the merfor example, if it takes 20ms

to read 1,000,000 16-bit integers from the memtrg, memory bandwidtmem is
20



estimated by

1,000,000x16 (bits) _ 800Mbps.
20 (ms)

Computation time: teomp
As mentioned in Chapter 4., represents the pure computation time used by
the CPU to execute codes. We calcutgig by
tcomp = Tcpu — tirans
in which T,,, is the total execution time ang,,,; is the memory transmission
time. In order to obtaiffi.,,,, we insert the Android-supported functidiock_gettime()
at the beginning and the end of the program, aed talculate the difference. The

value of t;4ns IS Obtained by

Ninput + Noutput

ttrans -

HUmem

The definition ofteonp.IS’ simitar-to-"werst case, execution time" and otiigse
regular computations are"worthy to be’ offloaded.
Power: Phasic s Pepu, Peops Pric

Due to the hardware limitation;=we “are not able n@asure the energy
consumption of each component directly. Insteaddestgn four different scenarios:
1) idle system, 2) execute CPU-bound workload x@cate GPU-bound workload, 4)
send a large amount of data to the cloud, and osAnaroid daemon-maintained
battery log, located at /sys/kernel/debug/batteny, to obtain power information. As
Figure 7(a)(b) shows, the Andriod daemon updatesag®e, current and power
information every 50 sec. Compared to other praiimethods, our method has two
advantages. First, it is available on all Androidast phones. Second, no extra

hardware equipment is required, such as data atgni€DAQ) card.
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Time (sec.) Energy log (Joule)

4 Ji
Time mV uAh mWh
Start

t+50 iA 300 3796 772800 2933.55
350 3796 769600 2921.40
400 3796 766400 2909.25
(4100 s 450 3795 763300 | 2902.80
500 3795 761600 2890.27
550 3795 758400 2878.12
(+150 7, 600 3795 755200 | 2865.98

1200 7. battery log

o

Figure 7. (a) Energy Measurement in Android (baiaple of Measured Value
In scenario 1, we close all unnecessary user pmgyiend keep the system idle
for a while. Figure 7(b) illustrates a battery loigsystem idle. Based on the log, the

energy consumption of the system in [400s, 450s] is

3796X766400—-3795X%X763300
1000Xx1000

=+12.53 mWh«(= 45.1 joule).

Therefore, we have?, ;.

__45.1 joules

Ppsic = =902 mWw.

50 seconds

A similar approach is used in other ‘scenarios. danario 2, we execute a
CPU-bound program to make the CPU busy. In scendriowe execute an
OpenGL|ES 2.0 program on the GPU and keep the @RUInh scenario 4, we send
data to the cloud for a long period. The measurémesults are listed in Table 3.

Table 3. Power Values in Nexus One

Pbasi [« I:)cpu I:)cop I:)ni c
power (W) 0.886 1.539 1.056 2.262
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Chapter 6. Experiment and Evaluation

In this chapter, we first introduce the experimemtironment. Next, Section 6.2
measures the overhead of the proposed decisiorewvark. Finally, Section 6.3 and
6.4 adopt two case studies, matrix multiplicatior &airus scanning, to evaluate the

proposed method.

:} offload_to_cloud(vs, file) ‘ lood 9
. T r Signature Database
» clamscan(file) i L ®
L I ‘ matrix_mult(data)‘ ‘ clamscan(file)
S
. . ] .
Signature Database Virus Lscannmg e T
App. Select Service

:} offload_to_cloud(mm, data) user space !

- matrix_mult(data)

» offload_to_gpu(data)

\

[BieeLiopes | 3IOMBWEIS UOISI99Q

kernel space ‘
So{:ket
Cloud \

[
|
|
|
|

|
\
|
\
|
|
Matrix Mt‘/{tiplication \
|
| |
| H 1 — Function call
kernel space A . ‘

’ GPU driver ‘ 1V\ﬁ—Fi Driver L:’:::::::: _ ) —-—> Datapath
Nexus One

user space

Figure 8. Experiment Environment

6.1 Testbed

Figure 8 illustrates the experiment-environmentjchincludes a Nexus One
smart phone and a cloud. In order to eliminate tac#y and unpredictability, we set
backlight always on and close unnecessary proce¥gesimplement our decision
framework on the Nexus One and install virus saagrand matrix multiplication
applications for experiment. Each application has or more functions, which can be
offloaded to the cloud. A PC with 2.4-GHz Intel pegsor and 4-GB RAM is used to
simulate the execution environment of cloud, areldperating system of the cloud is
Linux 2.6.35.
6.2 Evaluation of Decision Framework

In order to understand the overhead of our decisemework, we measure the

execution time and energy consumption of each fomatespectively. As Table 4
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shows, creating factor tal and collecting factors consume significant enefghe

factortable does not exist. For example, the funcCreate Factor Table consumes
43.03% of total executiotime and 33.79% of total energy consumption. Onotther

hand, if thefactor table isalreadycreated, most of time (98.54%) and energy (98.€
are spent in theCollect Factor. Since the functiorCreate Factor Table is only

executed ongethe functionCollect Factor dominates the overhead of our decis
framework. We further breakdown tlenergyconsumption of the functioCollect

Factor. As figure9 shows, collecting the information of bandwidtinsomes most ¢
time and energyThis overhead is induced by tping program and W-Fi driver,

which can be further optimized in the futul

Table 4.Proportions of Time-and'Energy in Decision Framek

Factor Table Exist? No Yes
Functions : .
uncti Time Energy Time Energy
Create Factor Table 43.03% 33.79%
Collect Factors 56.14% 65.53% 98.54% | 98.99%
Build Cost Functions 0.32% 0:25% 0.55% 0.38%
Make Decision 0.20% 0.16% 0.34% 0.24%
Update Factor Table 0.32% 0.27% 0.56% 0.39%
Total 1641 ms 3135 mJ 935 ms 2075 m.
Collect Factors - Time Proportion Collect Factors - Energy Proportion
Initialize Factor Structure Initialize Factor Structure
0.74% 0.29%
Collect Bandwidth /\ 104% Collect Bandwidth = 0.41%

98.22% 99.29% Import Factor Table

\ Import Factor Table

Figure 9.Proportion of Time and Energy iQollect Factors
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6.3 Case Study: Matrix Multiplication

Matrix multiplication is a CPU-intensive module, iwh has been widely used in
the applications of encoding, decoding, image c@sgon and rotation. In order to
evaluate the energy consumption, we implement threesions of the matrix
multiplication for different execution environmen@ne is for the execution of local
CPU, another two are for local GPU and Cloud. la tersion of local CPU, it
includes three steps: reading data, processinmthiplication and storing the results.
As mentioned in Section 2.3, we implement two paogs in the version of GPU. One
is vertex shader and another is fragment shaderenéiter the function
offload _to_gpu() is invoked, this function first communicates wite GPU driver
and compiles shader codes in t0 the-executableatooimGPU. The data are then feed
to GPU and written back to, thegbufigBuffer after they are processebthe function
offload _to_gpu() finally terminates the communication:

In order to offload computation to the cloud, op #mart phone, we implement
a function, namedffload to Cloud(), to send offloaded data to the cloud. On the site
of cloud, another service is deployed to receive dffloaded module and forward
them to a proper function. As shown in figure &; flle matrix multiplication, the
module is first forwarded to the functianatrix_mult(). Then, the results are sent
back to the smart phone.
Estimation Accuracy

This subsection evaluates the accuracy of our rdethoapproximating the
execution time of an offloaded module in differeesecution environments. We first
measure the execution time of the offload moduledrying the matrix size. We then
compare our estimated execution time with measunenega.

In this work, the network system for experimenWisFi instead of 3G network.

This can be explained from figure 10 that the spafe8G network is too slow, and
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cannot express the power of cloud computing. Thexn,choose Wi-Fi as network

media.

Time (s) Matrix Computation Time - 3G network
20

®on CPU mon GPU Don Cloud
15

10 ] —|

I
T ol ] ]l e

180 200 220 240 260 280 300 320 340

Sizeof Matrix

Figure 10. Matrix Multiplication via 3G network

Figure 11(a) shows the measurement results of &wectime, in which the

x-axis is the size of matrix and the y-axis is éx@cution time. For example, in the

case of 320x320, the speedup can achieve.1.27 83dwhen the computation is

offloaded to local GPU andithe cloud. Figure 11igiojpilarly, shows the measurement

results of execution energy, in ' which the x-axithis size of matrix and the y-axis is

the energy value.

Time (s) Matrix Computation Time Energy (3) Matrix Computation Energy
7 10
6 EonCPU ®on GPU mon CPU mon GPU Bon Cloud
8
5
2 6
3 4
2
2 =
1
0 0 - T
80 120 160 200 240 280 32 80 120 160 200 240 280 32
Size of Matrix Size of Matrix T

Figure 11. Matrix Multiplication (a) Time (b) Energost

We define therror rate of execution time as

Ttarget - Ttarget

err(target) = ,target € {CPU,GPU, Cloud},

Ttarget

in which T, is the estimated execution time, which is obtairgd the
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equations mentioned in Chapter 4. As figure 12(@ws, the error rate becomes
larger when the size of matrix is smaller. Thibésause the overhead of OS context
switch cannot be ignored when the execution timenafrix multiplication is short.
The same method can be used in energy evaluatmhanresult is shown in figure
12(b). According to our experiment results, whea size of matrix is larger then 80,

the error rate is less than 20%.
60%

—— err(Cloud)

4 Time Estimation Error Rate —&—err(CPU)
\ err(GPU)

Error Rate

40%
20% T\M /w\-/,l\kl

0% +—— 0

40 80 120 160 200 240 280 320 360
Size of Matrix
60% —&— err(CPU)
Energy Estimation Error Rate err(Cloud)
o 40% err(GPU)
ISl
@
§ /.\.\./.\.
O 20% /./.\{ \./.L'
0% I:‘Ok Y T T 1
40 80 120 160 200 240 280 320 360

Size of Matrix

Figure 12. Matrix Multiplication (a) Time (b) Enerdestimation Error Rate

Decision Accuracy

Since the error rate can result in an incorredbatfing decision, we define the

false decision rate as

# of correct decisions

alse decisionrate = 1 — —
/ # of decisions

In our experiment, we vary the value of alpha i @. 1.0 and fix the matrix size in
100, 200, and 300. As figure 13 shows, when theaixaize is 100, false decision
rate is nearly 40% when alpha is 0.8. This is imeduby closed estimation values of

processing units. In other words, when matrix sigeomes larger, the false decision
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rate is smaller. For example, when alpha is 0.6,f#ise decision rate of size-300
matrix and size-200 matrix are smaller than thasiaé-100 matrix. Although our
decision function cannot always deliver the optihatision, it ensures the execution

time and energy consumption can be reduced aftieading modules.

40.00%
—#— Size=100

. —&— Size=200
30.00% Size=300

20.00%
10.00% _./7‘ \J/‘/‘\‘\\.L
=

False Decision Rate

0.00% -
Alpha
1.0

0.6 0.7 0.8 0.9

Figure 13. Matrix Multiplication False Decision Rat
Compared with other .works, our deecision method atdivers the best
performance among all works.—For instance,. in theecof size-300 matrix, the
previous works focusing ' on ‘saving ‘execution 'timell vdlways offload the
computation to the cloud. In addition, the-previewsks, focusing on reducing energy
consumption will always offload~the computation tte GPU. All these methods
cannot satisfy user's expectation, and can rasuligh false decision rate because of

selecting the worst module.

800% +==time-only 300% 300%
—=&— hybrid —— time-only
— energy-onl #— hybrid
600% gy-ony energy-only
200% 200%
> \ =070 > —— time-only
B 400% oot s © —=— hybrid
o 5 5
o a energy-onl|
\ 0.100% 100% gy-only
200% \ —s
0% it 0% +B-rB-rBri-rt 0% o=t

Alpha 00 02 04 06 08 1. Alpha 0.0 0.2 l) Alpha 00 02 04 06 08 1o

Figure 14. False Decision Penalty of (a) size-1)&ize-200 (c) size-300
The penalty bring from false decision are showfigare 14, in which the x-axis
is the alpha value and y-axis is the penalty,the.sum of time error rate and energy

error rate, from wrong decision. The term "hybng'TETD and works very well in
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different sizes with low penalty. The other two huas, i.e. time-only and
energy-only, are usually suffered from high penaityce they only considered the
partial of user's preference.

Evaluate Decision Over head

We have analyzed the overhead of our decision frariein Section 6.2. Now
we are going to evaluate the impact of the overtwaenergy and time reduction.
According to our experiment results, when matrzesis 100, the execution time is
197ms if the module is executed on the local CP i@ other hand, the execution
time becomes 118ms if it is uploaded to the clobihce it takes extra 953ms to
complete the execution of the proposed methodtdted execution time becomes
1053 when the module is offloaded-to-the/cloud.tHis case, performing local
computation is much better. than-offloading the corapon to the cloud. According
to our experiment results; in ‘order to save enamy time by offloading, the size of
matrix size should be larger than 250:

6.4 Case Study: Virus Scanning

Virus scanning becomes more‘and maore importanimibile phone. A typical
virus scanning process on the mobile device indutiese steps. First, the anti-virus
program loads a signature database from flash R@ONemote server. Second, it
reads the scanned file. Third, it compares the esundf the scanned file and the
signature. Unlike the matrix multiplication, scamgitwo files with the same size may
consume different time and energy because of laedntents are not the same.

In our experiment, we ported the well-known antisgi program ClamAV to
Android, and install the same version of ClamAMhe cloud. Similar to the previous
case study, we implement one native modilgenscan() and one offloading module
offload_to_cloud() on the mobile phone. The service namesifvsirus scanning). Also,

cloud provides a serviatamscan() to receive the file and return the result.
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Estimation & Decision Accuracy

To validate the availability of our decision fram@w on virus scanning, we use
three files for testing. One sediaserver, which is an 5KB-size executable file in
Android system. Others are two linkable libraridsffmpegsumo.so and libpdf.so,
which are used by Google Chrome browser. Tablests lihe experiment results,
including the execution time and estimation erates for each program. According
to our experiment result, our decision frameworkfgrens well, even in the case of
two targets only (CPU and cloud). Therefore, th@ppsed method is flexible and can
be applied to multiple offloading targets.

Table 5. Virus Scanning Execution Time and ErroteRa

File Size Tepu (MS)—} T4 (ms) | err(CPU) | err(Cloud)
/system/bin/mediaserver 5KB---400 90 0.17% 10.31%
libffmpegsumo.so 2 MH 1,274 3,320 0.07% 9.66%
libpdf.so 15MB 6,029 22,035 0.02% 11.58%

In particular, the estimated execution'time in‘laCRU is highly accurate since
the error rate is less than 1%. In addition; thereate in estimating cloud execution
time is low, which is 10% in average. These loweors rates deliver lower false
decision rates, which are almost 0% among diffeaggtia values.

Benefits from Offloading

As table 5 shows, virus scanning can benefit fréthoading only if the file size
is small. In the case of offloading a large filecls as libpdf.so is 15MB, both the
execution time and energy consumption are increadéds is because file
transmission consumes significant time and energgsumption. The situation
becomes worse in a low speed 3G network. Refeatwel4, the TETD overhead of
mediaserver is 935 ms, which is not worthy to offload. Henéer, mobile devices,

computation offloading may not be always suitablevirus scanning applications.
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Chapter 7. Conclusionsand Future Work

In this work, we design and implement a decisiamiework for computation
offloading. The decision is based on estimated @&t time and energy values. We
aim to save both execution time and energy condomgit the same time. Unlike
previous works, which consider only binary decisioour ternary decision is suitable
for multiple offloading targets.

In our experiment, we present two case studiesatmate the applicability of
different situations. Based on our decision framywadhe matrix multiplication
module tends to be offloaded to more powerful pseoes, such as local GPU or
cloud. By offloading modules, we can achieve ali#t300% saving in execution
time and 50~130% in battery usage: 'For the cas#rug scanning, offloading either
small or large files cannot«educe energy.and. tidea result, the virus scanning
program should not be offloaded-to cloud: Our rssallso demonstrate high accuracy
and false decision rates of the proposed decisamdwork. Generally speaking, the
error rate is less than 20%yand'false decisianisdess than 30% in most cases.

In the future, we plan to" implement-a‘light-weighihg function in order to
reduce the overhead in collecting bandwidth. Moegpwe will adopt more wireless
technologies, such as LTE or WIMAX, and more amilans to evaluate the
proposed offloading decision. Since our method ragsuthere is single tasking in
handheld devices, if there are more tasks runnimgl@vices simultaneously, our

method might be invalid.
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