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摘要摘要摘要摘要    

基於省電與成本考量，手持裝置上的硬體元件通常只適合特定的應用，無法

做為一般性的運算使用。但隨著智慧型手持裝置(如手機、平板)的普及，這些裝

置上所運行的軟體愈趨多元，導致裝置上的耗時與耗電大幅提高，帶動了手持裝

置上運算量卸載的研究，而運算量的卸載並非永遠可以省時與省電。我們實作了

一個以環境因子為基礎的卸載決策架構，它以收集而來的環境因子預測在每種運

作環境下的耗時與耗電，再依使用者所傾向的使用模式做出決策。我們選定兩種

評測程式做為卸載決策成果的評估，分別為矩陣相乘與病毒掃描。在矩陣相乘的

運算中，此方法決策錯誤率低於 30%，而且成功的讓裝置在運算過程中節省約

20~300%的運算時間，與 50~130%的電量消耗。在病毒掃描的測試中，採用的是

clamAV 的掃毒程式，此方法決策錯誤率趨近於零。令人意外的是，在測試中發

現當掃描較大容量的檔案時(例：大於 2MB)，將檔案傳送到雲端進行掃描的方案

完全不適用，反而會導致 160~250%左右的效能損耗。 
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Abstract 

The hardware components in handheld devices are usually adapted to specific 

application and are hard to do general computations. However, with the popular of 

smart handheld devices, e.g. smart phone and pads, more kinds of software can run on 

these devices and raising the time and energy consumption. Therefore, some research 

discussed with computation offloading, but offloading does not promise the time and 

energy saving can always be achieved. Thus, we implement an offloading decision 

framework based on environment factors. The framework collects factors for 

estimating time and energy usage in every computing environment, and then makes 

decision according to user's preference. We pick two program, matrix multiplication 

and virus scanning, to evaluate the decision framework. In matrix multiplication 

computation, the false decision rate is below 30%, and can save 20~300% computing 

time and 50~130% energy consumption. In virus scanning, we choose the scanner 

from clamAV, the false decision rate is nearly zero. Surprisingly, we find a large file, 

e.g. larger than 2MB, is not suitable for offloading to cloud for scanning, which will 

suffered 160~250% performance decrease. 

 

Keywords: computation offloading, coprocessors, cloud computing, Android 
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Chapter 1.  Introduction 

Nearly 300 million smart phones were sold in 2010, and its number is expected 

to increase 80% in 2011 [1]. In order to satisfy the needs of billions of users, smart 

phones feature versatile mobile applications. Examples of the latest functions include 

multimedia, real-time games, GPS navigation and communication. Most of these 

mobile applications are user-interactive and data-processing intensive, both of which 

require quick response and long battery life. However, most commercial off-the-shelf 

smart phones, compared to desktops, are generally equipped with low speed 

processors and limited capacity batteries. Running sophisticated software on smart 

phones can result in poor performance and shorten battery lifetime. Therefore, it 

becomes a crucial issue in designing smart phones to deliver adequate performance 

and prolong battery life. 

A lot of advanced hardware technology, such as instruction level parallelism, 

leakage power control and dynamic voltage scaling, have been proposed to improve 

processor speed and reduce energy consumption. Although the advanced technology 

can deliver better performance, adopting high-end processors is not always 

appropriate for budget-limited projects. Recently, cloud computing becomes another 

possible solution to enhance computing capability of smart phones. The cloud 

computing vendors provide computing cycles for the registered users to reduce 

computation and energy consumption of smart phones. Examples include Amazon 

Elastic Compute Cloud (EC2), Amazon Virtual Private Cloud (VPC) and PacHosting. 

However, it takes both time and energy to upload programs to the cloud and retrieve 

the results from the cloud. The computation capacity of the cloud can also affect the 

response time of the offloaded programs. In order to save both time and energy 

consumption, there is a clear need for the development of a decision making 

mechanism before offloading.  
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There have been many research efforts dedicated to offload computation 

intensive programs from a resource-poor mobile device [2-5]. X. Gu et al. [2], Z. Li 

[3] and G. Chen et al. [5] partitioned source codes into client/server parts, and then 

saved energy consumption by running the server parts at remote servers. All these 

methods perform well for small size applications, but may induce significant overhead 

when partitioning large size applications. K. Kumar [6] proposed a simplified energy 

model to quickly estimate the energy saved from cloud services. However, several 

key power-related parameters were not considered, which may lead to an incorrect 

offloading decision. In addition, all above works ignored the impact of offloading on 

execution time, which may result in performance degradation. On the other hand, S. 

Ou et al. [4] developed an offloading middleware, which provides runtime offloading 

services to improve the response time of mobile devices. Wolski [7] used bandwidth 

data to estimate the performance improvement through offloading. Both works did not 

investigate the energy consumption of uploading and retrieving data, and may shorten 

battery life time. Also, important timing-related factors were not considered, which 

can result in an incorrect offloading decision. Because it is response time and energy 

consumption that determine user satisfaction, we address a multi-objective opmization 

problem that simultaneously optimizes these two key performance indexes of smart 

phones.  

In this work, we develop an offloading framework which aims to shorten 

response time and reduce energy consumption at the same time. Unlike previous 

works, our targets of execution include on-board CPU, on-board GPU and cloud, all 

of which provide a more flexible execution environment for mobile applications. 

Since response time and energy consumption may be two conflicting objectives, we 

first design a customizable cost function, which allows users to adjust the weight of 

response time and energy consumption. We then develop a lightweight profiling 
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method to estimate the performance improvement and energy consumption from 

offloading. In order to make correct decisions, several key system factors are 

considered when constructing cost functions. Finally, an offloading decision is made 

based on the user-defined cost function, estimated response time and energy 

consumption. 

The rest of this paper is organized as follows. Chapter 2 introduces related works 

with computation offloading, and some concepts for Android development and GPU 

programming. Chapter 3 gives the problem statements and terminologies for the later 

chapters. Chapter 4 proposes the methodologies of offloading decisions, and then 

Chapter 5 details the implementation. Chapter 6 shows the experiment result and 

evaluation. Chapter 7 concludes this work and offers directions for future work. 
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Chapter 2.  Background 

In this chapter, we first give a comprehensive comparison between our work and 

related works. We then introduce Android platform and OpenGL|ES, which are used 

in our experiments.  

2.1 Related Works 

There have been many research efforts dedicated to offload computation 

intensive programs from a resource-poor mobile device [2, 3, 5-18]. Some of them 

focused on energy saving [3, 5, 6, 8-13] while others targeted at performance 

improvement. Only few of them considered both energy saving and performance 

improvement [19, 20]. For ease of reference, all these works are summarized in Table 

1, which are classified into three categories: on energy saving, on time saving and on 

energy and time saving. For each work, we further characterize it by four attributes: 

adaptability, portability, accuracy and offload target.  

The adaptability indicates the capability of the proposed method to adapt itself 

efficiently to dynamic workload, resulting from the variance of data input at run-time. 

If the proposed method can only handle deterministic workload, this shows its 

adaptability is poor. The portability represents the ability of the proposed method to 

be ported from one execution environment to another, such as Linux to Windows. The 

term Language/Framework/Kernel represents the way we port the method to another 

platform. For example, this work is Language level of portability and need to do 

modifications in programming language when moving to another platform. Methods 

with Language portability are desirable because most of the existing codes can be 

reused. The accuracy is the approximation error of energy model or execution time 

model of offloading. The higher accuracy indicates the fewer incorrect offloading 

decisions. For this attribute, the works that did not develop any execution model or 

energy model are labeled as “n/a”. The offload target is the targets, which can execute 
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offloaded programs. The more targets we have, the more flexible the execution 

environment will become. According to Table 1, our work is the only one that aims at 

saving both time and energy while maintaining high adaptability, high portability, 

high accuracy and multiple offload targets. In the following, we compare our work 

with each of related works in detail. 

Table 1. Comparison of current offloading works 

 Paper Works [Reference #] Adaptability  Portability Accuracy 
Offload 

Target 

O
n 

E
ne

rg
y 

Sa
vi

ng
  

Partition Scheme [3] No Framework Low Cloud 

Study Energy Tradeoffs [5] No Framework n/a Cloud 

Component Migration & 

Replication [9] 
No Framework Medium Cloud 

Cooperative Dynamic Power 

Management [11] 
No Framework n/a Cloud 

Offload H.264 Encoder [13] No Framework n/a Cloud 

Content-Based Image Retrieval 

[10] 
Yes Language Medium Cloud 

MAUI Code Offload [8] No Framework n/a Cloud 

Can Offload Save Energy[6] Yes Language Medium Cloud 

Face-Recognize with GPU [12] No Language n/a GPU 

O
n 

T
im

e 
Sa

vi
ng

 

Adaptive Offloading [2] No Framework Low Cloud 

Effective Offload Service [17] No Framework n/a Cloud 

Calling the Cloud [14] No Framework n/a Cloud 

eyeDentify Cyber Foraging [15] No Framework n/a Cloud 

Heterogeneous Auto-Offload 

Framework [18] 
No Framework n/a Cloud 

Using Bandwidth to Make 

Offloading Decision [7] 
Yes Language Medium Cloud 

VPN Gateway over Network 

Processors [16] 
No Kernel n/a 

Network 

Processor 

 O
n 

E
ne

rg
y 

an
d 

T
im

e 
Sa

vi
ng

 Computation Offload Scheme [20] No Framework Medium Cloud 

Energy Efficiency of Mobile [19] Yes Language n/a Cloud 

Our Work Yes Language High GPU, Cloud 
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Works On Energy Saving 

Maximizing battery life time is one of the most crucial design objectives of smart 

phones because they are usually equipped with limited battery capacity. Z. Li [3], S. 

Han [9], B. Seshasayee [11], and E. Cuervo et al. [8] adopted profiling-partitioning 

technology to identify offloaded parts of an application for energy saving. They first 

profiled the energy consumption of each function of the application. According to the 

profiling result, they then generated a cost graph, in which each node represents a 

function to be performed and each edge indicates the data to be transmitted. The 

maximum-flow/minimum-cut algorithm was then used to partition the cost graph to 

obtain client parts and server parts. Finally, the server parts were executed at remote 

servers for reducing energy consumption of mobile device. G. Chen et al. [5] 

designed a similar method to determine whether Java methods and bytecode-to-native 

code compilation should be executed at remote servers for energy saving. In addition, 

they assumed that the workload was deterministic, which means that the workload 

will not vary at run-time. As a result, their methods cannot be applied to dynamic 

workload, resulting from the variance of data input at run-time. On the contrary, in 

order to reduce profiling overhead, we only profile the energy consumption and 

execution time of frequently-used modules, such as FFT, IFFT, convolution, matrix 

multiplication and so on. In addition, we take into account the impact of data size on 

execution time and energy consumption in order to handle dynamic workload at 

run-time.   

X. Zhao [13], Y. J. Hong [10], and K. Kumar [6] built energy models to 

approximate the energy consumption of offloading. The energy models can be used to 

construct the above-mentioned cost graph or make offloading decisions. However, 

several key parameters, such as workload dynamics, bandwidth variability, and idle 

mode energy consumption, are not included in their models, which may lead to 
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inappropriate partitions or incorrect offloading decisions. According to our 

experiment results, our energy model ensures a higher accuracy than previous works 

by considering these key parameters. Y. C. Wang [12] demonstrated the possibility of 

utilizing GPU for offloading. They first identified bottlenecks of programs, and then 

used OpenGL|ES to rewrite and remove the bottlenecks. However, CPU and GPU are 

usually integrated on the same chip and cannot be switched off individually. Without 

considering the idle energy consumption of the chip, offloading programs to GPU 

may increase the total energy consumption. Our work, on the other hand, achieves a 

higher accuracy by modeling the idle energy consumption. We also provide the ability 

of offloading programs to GPU or Cloud.  

Works On Time Saving 

Responsiveness of mobile applications is important because the mobile 

applications are usually real-time and user-interactive. Many research efforts have 

been devoted to offload part of a program to remote servers in order to reduce 

execution time [2, 7, 14, 17]. Most of them adopted above-mentioned similar 

profiling-partitioning technology to identify the offloaded parts of an application. Gu 

et al. [2] designed an offloading engine that dynamically partitions an application 

when the required resources, such as memory and CPU, approach the maximum 

capacity of the mobile devices. Yang [17] developed an offloading service that 

dynamically partitions Java applications and transforms offloaded Java classes into a  

form that can be executed at remote servers. Giurgiu et al. [14] developed an 

exhaustive search algorithm, called ALL, to examine all possible partitions in order to 

find an optimal partition. They also proposed a heuristic algorithm to partition a 

program in reasonable time. All these methods perform well on small-size 

applications, but may induce significant overhead when partitioning large-size 

applications. On the contrary, we only profile the energy consumption and execution 
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time of frequently-used modules in order to reduce the overhead of profiling and 

partition. Unlike [2, 14, 17], R. Wolski dynamically predicted offloading cost at 

run-time according to the feedback of a resource monitor [7]. However, some 

important parameters, such as workload dynamics and bandwidth variability, are not 

included, which may lead to inappropriate predictions and incorrect offloading 

decisions. Our work, on the other hand, achieves a higher accuracy by modeling these 

important parameters. According to our experiment results, fewer incorrect offloading 

decisions are made.  

Several works developed offloading mechanisms by integrating exiting software 

packages rather than started from scratch [15, 16, 18]. R. Kemp et al. [15] used Ibis 

middleware to offload computational intensive Java programs to remote servers. Y. 

Zhang [18] adopted Firefox plug-in framework to transparently offload computations 

to remote servers. Since these works are closely coupled with specific software 

packages, it becomes difficult to extend their methods to other execution 

environments. Y. N. Lin [16] explored the possibility of offloading programs to 

network processors in order to reduce execution time. They first profiled the IPSec 

module to identify bottlenecks, and then rewrote IPSec-related kernel and driver code. 

Although the performance improvement of network throughput can reach as much as 

350%, the energy consumption of network processors may significantly increase. In 

addition, a modification of OS kernel and drivers is required, which reduces the 

portability of the proposed method. In this work, we realize our idea of offloading by 

developing a Linux program at user space in order to increase the portability. We do 

not rely on any specific software packages. In addition, we do not require any 

modifications of OS or drivers. Our method can be easily ported to other execution 

environments, such as Windows Embedded Compact 7. 
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Works on Energy and Time Saving 

Both energy and time saving are crucial design objectives of smart phones. 

However, few research efforts have been devoted to optimize the two objectives 

simultaneously [19, 20]. C. Wang [20] used similar profiling-partitioning technology 

to identify offloaded parts and consider energy and time saving at the same time. A 

similar method was developed by A. P. Miettinen [19] to offload the most power 

hungry parts in order to reduce energy consumption. However, both of them use 

execution time of a program to approximate its energy consumption. The estimated 

energy consumption, without considering the parameters of CPUs, may be incorrect. 

In this work, we provide a higher accuracy energy and execution model by 

considering important parameters of CPU and offloading targets. Our experiment 

results indicate that the proposed method can achieve better performance in saving 

energy and time.   

2.2 Overview of Android Architecture 

Android is a software stack for a mobile device that includes an operating system, 

middleware and mobile applications. After being acquired by Google, Android has 

attracted thousands of developers’ attention for its open license and flexible 

architecture. Android OS is released under Apache 2.0 software license, so that 

anyone can download, modify, and even redistribute the source code. Because of its 

characteristic of freedom, Android becomes a superb platform adopted by both 

academe and industry. In addition, Android also has already been ported to numerous 

hardware platforms. Figure 1 shows the overview of Android multi-layer structure, 

which includes five layers: Applications, Framework, Libraries, Runtime 

Environment, and Linux Kernel. 



 

10 

 

 

Figure 1. Android Architecture 

Android, using a modified Linux kernel, differs in drivers and memory 

management, but it still keeps the original advantages of robustness and efficiency. 

Besides kernel, Android adopts Dalvik VM and Bionic C library in order to adapt to 

resource-limited devices.  

As Figure 1 shows, Dalvik VM is a light-weight Java virtual machine, which 

runs applications at the top level and application framework at the second level. There 

are three differences between Dalvik VM and traditional J2ME VM. First of all, 

unlike J2ME VM, each application running on Dalvik VM is associated with one VM. 

Second, Dalvik VM is register-based rather stack-based. Third, Dalvik VM only 

accepts Dalvik executable format. Similarly, Bionic Libc is a modified version of 

GNU Libc with some performance optimization, but it still remains the original 

characteristics of variety and multifunction.  

However, although Dalvik VM is a light-weight VM, running programs on a 

virtual machine can induce performance degradation. As a result, our computation 

modules are implemented at Linux user space (the dotted block) in order to avoid the 
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interference caused by the virtual machine. 

2.3 OpenGL|ES 

OpenGL|ES, a Khronos-developed graphics standard of embedded system, is 

derived from OpenGL. Nowadays, almost every smart phone supports OpenGL|ES as 

a rendering engine. However, some of them only support OpenGL|ES 1.x, which can 

only perform fixed pipeline function. Fortunately, many new GPU chipsets now can 

support OpenGL|ES 2.0, shown in Figure 2. Since the functionalities of OpenGL|ES 

2.0 are more powerful than the OpenGL|ES 1.x, we focus on OpenGL|ES 2.0 in this 

work. 

 

Figure 2. OpenGL|ES 2.0 programmable pipeline 

Figure 2 gives an overview of graphics processing flow in GPU. The vertex 

shader provides a programmable method to operate vertex, usually for projection or 

lighting. To operate vertex, developers need to write shading program [21], similar to 

C, and compile the program as vertex shader. Then, each time we feed vertex shader 

with vertices, the shader will calculate the result and then transmit it to primitive 

assembly blocks. The fragment shader is to operate fragments, which is produced by 

previous vertices, usually used for painting. Because of the flexibility of shader 

program, some works [12] offloaded general-purpose computation onto GPU. In this 

work, we implement a matrix multiplication module by OpenGL|ES 2.0 shading 

language. 
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Chapter 3.  Problem Statement 

We design an offloading framework for smart phones to determine an execution 

unit, such as CPU, coprocessor, or cloud, for frequently-used modules. In the 

following, Section 3.1 first describes each model of mobile application, CPU, 

coprocessor and cloud. Then, Section 3.2 gives the problem statement.  

basicP

nicP

cldµ
memµ

outputN

inputN

cpucpu P,µ copcop P,µ

B

compt

 

Figure 3. Factors in System 

3.1 System Model 

Mobile applications usually adopt frequently-used modules, such as FFT, 

convolution, and matrix multiplication, to process data. As Figure 3 shows, the 

application first involves a module to process data with input size of inputN , which is 

stored in the memory. The data is then processed by CPU, coprocessor or cloud. After 

data processing, the output data, with size of outputN , is stored in the memory. The 

bandwidth of memory access is memµ , at which the data is read from or written into 

the memory by CPU, coprocessor or network interface. If the data processing is 
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offloaded to the cloud, the transmission speed is B. We use cpuµ  to denote the speed 

of CPU, copµ  to denote that of coprocessor and cldµ  to denote that of cloud. In 

addition, the power consumption of CPU is cpuP , of coprocessor is copP  and of 

network interface is nicP . When the system is idle, its power consumption is basicP .  

Table 2. Notation Table 

Cost Function Definition 
target Major unit for computation, e.g. CPU/Coprocessor/Cloud 

ettT arg  Measured execution time when offload to target 

ettT arg
ˆ  Estimated execution time when offload to target 

ettE arg  Measured energy consumption when offload to target 

ettE arg
ˆ  Estimated energy consumption when offload to target 

ettF arg = { ettT arg
ˆ , ettE arg

ˆ } Set of time and energy equations on target 

αf  Decision function with weight α  

Decision Factor Unit Variable Definition 

B  Kbps O Transmission bandwidth 

compt  Second O Module execution time on mobile CPU 

inputN  KB O Amount of processing data into processing unit 

outputN  KB O Amount of resulting data from processing unit 

cpuµ  MHz X Mobile CPU speed 

copµ  MHz X Mobile Coprocessor speed 

cldµ  MHz O Cloud speed 

memµ  Mbps O Memory access bandwidth 

basicP  Watt X Basic power when idle 

cpuP  Watt X Mobile CPU running power 

copP  Watt X Mobile Coprocessor running power 

nicP  Watt X Network Interface power consumption 

From these decision factors, the cost functions can be calculated. Both time and 

energy functions have estimation value ( ettT arg
ˆ , ettE arg

ˆ ) and measurement value 

( ettT arg , ettE arg ) for evaluating the accuracy. Finally, the decision function αf  

decide where to offload with user's preference α . Table 2 lists all cost functions, 
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decision factors, and their definitions.  

 

3.2 Problem Description 

 

Problem statement: 

Given decision factors B , compt , inputN , outputN , cpuµ , copµ , cldµ , memµ , 

basicP , cpuP , copP , and nicP , design a decision function αf , where α  is user's 

preference, to choose the best one from three offloading cases: cpuF , copF , or cldF , 

to execute module, aims to improve performance of module while conserving energy. 

Assume no queues, i.e., single tasking. 
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Chapter 4.  Time-and-Energy Aware Ternary Decisions 

In this chapter, we first give an overview of our offloading framework, which is 

called time-and-energy aware ternary decision (abbreviated as TETD), and then 

present factor measurement and ternary decision making respectively. 

4.1 Overview of the TETD Flow 

Factors table.xml

 

Figure 4 Design Flowchart of TETD 

Our offloading framework includes two parts: factor measurement and ternary 

decision making. As Figure 4 shows, when a module is invoked, TETD first check the 

associated factor table of the module, which stores necessary parameters to estimate 

energy consumption and execution time. If the factor table does not exist, TETD 

execute the module on CPU directly and create a corresponding factor table for future 

need. On the other hand, if the associated factor table is found, TETD extract 

necessary factors from the table and pass the information to the cost functions. Based 

on the result of cost functions, the decision maker then determines whether the 

module should be offloaded or not. After the module is finished, TETD write run-time 
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collected information back to the associated factor table for future use. 

4.2 Create and Update Factor Table 

In order to correctly estimate the energy consumption and execution time of a 

module on different execution units, we dynamically create and update a factor table 

for the module at runtime. A factor table is created when the module is involved at the 

first time, and is updated when the module is finished. If the same module is invoked 

again, we refer to its associated factor table to estimate the cost of offloading. The 

factor table stores both static and dynamic decision factors. The static decision factors 

include cpuµ , copµ , and power parameters, which are deterministic and module 

independent. The dynamic decision factors include B , inputN , outputN , cldµ , , 

and compt , which are uncertain or module dependent. For dynamic decision factors, 

we develop a monitor to collect the information at run-time and update the associated 

factor table when the module is completed.   

4.3 Ternary Decision 

In this subsection, we first discuss the execution time and energy consumption of 

a module when it is executed on three difference execution environments: local CPU, 

local GPU and cloud. We then introduce the algorithm used for making decision.  

Cost Functions: Execution Time and Energy Consumption 

First of all, we consider the execution time of a module, which is executed on a 

local CPU. We divide the execution time into two parts. The first part is transmission 

time ttrans, which is used for fetching data from and writing them back to memory. 

Since ttrans depends on the amount of processed data, we have  

������ = �	�
�� + �
��
������  .    
The second part is pure computation time tcomp, which is used by the CPU to execute 

memµ
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codes. Therefore, the execution time is  

���
� = ������ + ��
�
 .                                                         (1) 

In our experiments, ���� is set by run-time measuring. In addition, tcomp is obtained 

by ���
� − ������. Based on Eq.(1), the energy consumption of the local CPU is 

calculated by  

���
� = �����	� + ��
�� × ���
� .                                           (2) 

Similarly, when the module is executed on a local GPU, the execution time ���

 is  

���

 = ������ + ��
�
 × ��
���

  .                                             (3) 

Also, the energy consumption ���

 is  

���

 = �����	� + ��

� × ���

 .                                             (4) 

After considering the above two cases, we now discuss the execution time and 

energy consumption in the case of offloading to the cloud. We defined ���#$  as the 

execution time of the module when it is offloaded to the cloud. In order to 

calculate ���#$ , we first determine the amount of data to be transmitted by 

σ = %�	�
�� + �
��
��&�' ( × ()*�* �+,-.� /01.),           (5) 

in which MTU stands for the maximum transmission unit. Also, the ACK packets 

used during the transmission is determined by 

σ567 = %�	�
�� + �
��
��&�' ( × (*89 �+,-.� /01.).        (6) 

Then, ���#$  is calculated by  

���#$ = σ + σ567
���� + σ + σ567

; + ��
�
 × ��
���#$  .                 (7) 

In Eq.(7), the first term on the right hand side is the time spent for fetching data from 

and writing them back to memory. The second term is network transmission time. The 

third term is the time spent on the cloud. The energy consumption is then determined 

by 
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���#$ = (��	� + ����	�) × =σ + σ567
���� + σ + σ567

; > +����	� × ?��
�
 × ��
���#$ @ ,   (8) 

in which, ��	� is the power consumption of network interface.  

Decision Making 

At run-time, we dynamically measure the value of  ��
�
,  �	�
��, �
��
�� and 

; . According to the collected information, we then use the above-mentioned 

equations to predict the execution time and energy consumption of the module when 

it is executed in different execution environments. A compound objective function is 

developed for user to adjust the importance of time and energy. As Figure 5 shows, 

we calculate the value of the objective function in different cases (line 3, 4 and 5) and 

take the minimum as the offloading decision.  

 

Procedure Decision_Maker (
αf ) 

Input:  (1) cpuT̂ , copT̂ , cldT̂   (2) cpuÊ , copÊ , cldT̂  (3) 10 ≤≤ α  

Output: execution unit 

Procedure: 

(1) Initialize MIN_VALUE to zero 

Initialize TARGET to CPU 

(2) While there is offloading target P do 

Calculate 

cpu

cpuPP
T

T

TT

ˆ

ˆˆ −
=ε

 
and 

cpu

cpuPP
E

E

EE

ˆ

ˆˆ −
=ε  

If MIN_VALUE < 
P
E

P
T εαεα ⋅−+⋅ )1(  

Set MIN_VALUE to 
P
E

P
T εαεα ⋅−+⋅ )1(  

Set TARGET to P 

End If 

End While 

(3) Return TARGET 

Figure 5 Pseudo Code of Decision Maker 
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Chapter 5.  Implementations 

In this chapter, we first introduce the device under test (DUT). We then describe 

the methods used to measure bandwidth, component speed, computation time and 

power consumption respectively.   

5.1 Device Under Test  

We adopt HTC Nexus One, a popular and powerful smart phone, as our DUT. 

The Nexus One quips with a Qualcomm QSD8250™ 1GHz processor, a 512 MB 

Flash ROM, a 512 MB RAM and a Wi-Fi IEEE 802.11 b/g interface. The operating 

system used in the Nexus One is Android 2.2. We implement our offloading 

framework in C language on user space so that it can operate without any 

privilege-restrictions and becomes more efficient. Our user-level implementation can 

be easily ported to other operating systems, such as Windows Embedded Compact 7.  

5.2 Factor Measurement 

Wireless Bandwidth: B 

As mentioned in the previous chapter, the wireless bandwidth B is a crucial 

decision factor in our offloading framework. In order to adapt to environment changes, 

we dynamically measure the transmission bandwidth at run-time. Many tools have 

been developed to measure the transmission bandwidth. Some of them are platform 

dependent, such as Iperf and ttcp, while others are platform independent. To make our 

method easily applicable to all Android smart phones, we use the popular utility ping, 

located at the folder /system/bin, to measure the network bandwidth. For each 

measurement, the ping utility first sends the packets of ICMP-Request from the Nexus 

One to the cloud and then receives the packets sent back by the cloud. In our 

experiment, we use the command "ping -c 10 -s 6000 -i 0.1 cloud" to issue 10 ICMP 

requests, in which the amount of data to be sent is 6000 bytes and the wait interval 

between sending each packet is 0.1 sec. As Figure 6 shows, the measurement starts at 
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time t1 and stops at t2. For each ICMP request, it needs four IP packets and one ICMP 

packet because the maximal size of the data in the Ethernet-frame is 1500 bytes. 

Similarly, four IP packets and one ICMP packet are required to send an ICMP reply 

back to the Nexus One. If t2－t1 is 100ms, the network bandwidth is approximated by  

; = (B×CDCBEC×CFF)×F×CG×H
�IJ�K  =  9894 9MNO. 

 

 

Figure 6. ICMP Request & Reply with Payload Size 6000 bytes 

Component Speed: µcpu , µcop , µcld , µmem  

In our experiments, we obtain the local CPU speed µcpu and the local GPU speed µcop 

by referring to datasheet. On the other hand, we measure the cloud speed µcld and 

memory bandwidth µmem at run-time. In order to estimate µcld, we ask the cloud to 

measure the time tcld spent in executing the offloaded program. Then, we calculate µcld 

by µcld = (tcomp / tcld )µcpu. The memory bandwidth is estimated by measuring the time of 

accessing a large amount of data stored in the memory. For example, if it takes 20ms 

to read 1,000,000 16-bit integers from the memory, the memory bandwidth µmem is 
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estimated by  

C,GGG,GGG×CP (QRST)
FG (UT) =  800Mbps. 

Computation time: tcomp 

As mentioned in Chapter 4, tcomp represents the pure computation time used by 

the CPU to execute codes. We calculate tcomp by  

��
�
 = ��
� − ������,  
in which ��
� is the total execution time and ������ is the memory transmission 

time. In order to obtain ��
�, we insert the Android-supported function clock_gettime() 

at the beginning and the end of the program, and then calculate the difference. The 

value of  ������ is obtained by 

������ = �	�
�� + �
��
������  .    
The definition of tcomp is similar to "worst case execution time" and only those 

regular computations are worthy to be offloaded. 

Power: Pbasic , Pcpu, Pcop, Pnic 

Due to the hardware limitation, we are not able to measure the energy 

consumption of each component directly. Instead, we design four different scenarios: 

1) idle system, 2) execute CPU-bound workload, 3) execute GPU-bound workload, 4) 

send a large amount of data to the cloud, and use an Android daemon-maintained 

battery log, located at /sys/kernel/debug/battery_log, to obtain power information. As 

Figure 7(a)(b) shows, the Andriod daemon updates voltage, current and power 

information every 50 sec. Compared to other profiling methods, our method has two 

advantages. First, it is available on all Android smart phones. Second, no extra 

hardware equipment is required, such as data acquisition (DAQ) card. 
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Figure 7. (a) Energy Measurement in Android  (b) Example of Measured Value 

In scenario 1, we close all unnecessary user programs and keep the system idle 

for a while. Figure 7(b) illustrates a battery log of system idle. Based on the log, the 

energy consumption of the system in [400s, 450s] is  

[\]P×\PPBGGJ[\]D×\P[[GG
CGGG×CGGG =  12.53 mWh (= 45.1 joule). 

Therefore, we have ����	� 

����	� = BD.C f
�#��
DG ���
�$� = 902 gh. 

A similar approach is used in other scenarios. In scenario 2, we execute a 

CPU-bound program to make the CPU busy. In scenario 3, we execute an 

OpenGL|ES 2.0 program on the GPU and keep the CPU idle. In scenario 4, we send 

data to the cloud for a long period. The measurement results are listed in Table 3.  

Table 3. Power Values in Nexus One 

 Pbasic Pcpu Pcop Pnic 

power (W) 0.886 1.539 1.056 2.262 
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Chapter 6.  Experiment and Evaluation 

In this chapter, we first introduce the experiment environment. Next, Section 6.2 

measures the overhead of the proposed decision framework. Finally, Section 6.3 and 

6.4 adopt two case studies, matrix multiplication and virus scanning, to evaluate the 

proposed method.  

 

Figure 8. Experiment Environment 

6.1 Testbed 

Figure 8 illustrates the experiment environment, which includes a Nexus One 

smart phone and a cloud. In order to eliminate uncertainty and unpredictability, we set 

backlight always on and close unnecessary processes. We implement our decision 

framework on the Nexus One and install virus scanning and matrix multiplication 

applications for experiment. Each application has one or more functions, which can be 

offloaded to the cloud. A PC with 2.4-GHz Intel processor and 4-GB RAM is used to 

simulate the execution environment of cloud, and the operating system of the cloud is 

Linux 2.6.35.  

6.2 Evaluation of Decision Framework 

In order to understand the overhead of our decision framework, we measure the 

execution time and energy consumption of each function respectively. As Table 4 



 

shows, creating factor table

factor table does not exist. For example, the function 

43.03% of total execution 

hand, if the factor table is 

are spent in the Collect Factor

executed once, the function 

framework. We further breakdown the 

Factor. As figure 9 shows, collecting the information of bandwidth consumes most of 

time and energy. This overhead is induced by the 

which can be further optimized in the future. 

Table 4. Proportions of Time and Energy in Decision Framework

 

Create Factor Table 

Collect Factors 

Build Cost Functions 

Make Decision 

Update Factor Table 

Total 

 

Figure 9. Proportions
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shows, creating factor table and collecting factors consume significant energy if the 

table does not exist. For example, the function Create Factor Table

 time and 33.79% of total energy consumption. On the other 

factor table is already created, most of time (98.54%) and energy (98.99%) 

Collect Factor. Since the function Create Factor Table

the function Collect Factor dominates the overhead of our decision 

framework. We further breakdown the energy consumption of the function 

9 shows, collecting the information of bandwidth consumes most of 

. This overhead is induced by the ping program and Wi

which can be further optimized in the future.  

Proportions of Time and Energy in Decision Framework

No Yes 

Time Energy Time 

 43.03% 33.79%  

56.14% 65.53% 98.54% 

Build Cost Functions  0.32% 0.25% 0.55% 

0.20% 0.16% 0.34% 

 0.32% 0.27% 0.56% 

1641 ms 3135 mJ 935 ms 2075 mJ

Proportions of Time and Energy in Collect Factors

Factor Table Exist? 

and collecting factors consume significant energy if the 

Create Factor Table consumes 

time and 33.79% of total energy consumption. On the other 

created, most of time (98.54%) and energy (98.99%) 

Create Factor Table is only 

dominates the overhead of our decision 

consumption of the function Collect 

9 shows, collecting the information of bandwidth consumes most of 

program and Wi-Fi driver, 

Proportions of Time and Energy in Decision Framework 

 

Energy 

98.99% 

0.38% 

0.24% 

0.39% 

2075 mJ 

 

Collect Factors 
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6.3 Case Study: Matrix Multiplication 

Matrix multiplication is a CPU-intensive module, which has been widely used in 

the applications of encoding, decoding, image compression and rotation. In order to 

evaluate the energy consumption, we implement three versions of the matrix 

multiplication for different execution environments. One is for the execution of local 

CPU, another two are for local GPU and Cloud. In the version of local CPU, it 

includes three steps: reading data, processing the multiplication and storing the results. 

As mentioned in Section 2.3, we implement two programs in the version of GPU. One 

is vertex shader and another is fragment shader. Whenever the function 

offload_to_gpu() is invoked, this function first communicates with the GPU driver 

and compiles shader codes in to the executable format of GPU. The data are then feed 

to GPU and written back to the buffer pBuffer after they are processed. The function 

offload_to_gpu() finally terminates the communication.  

In order to offload computation to the cloud, on the smart phone, we implement 

a function, named offload_to_cloud(), to send offloaded data to the cloud. On the site 

of cloud, another service is deployed to receive the offloaded module and forward 

them to a proper function. As shown in figure 8, for the matrix multiplication, the 

module is first forwarded to the function matrix_mult(). Then, the results are sent 

back to the smart phone.  

Estimation Accuracy 

This subsection evaluates the accuracy of our method in approximating the 

execution time of an offloaded module in difference execution environments. We first 

measure the execution time of the offload module by varying the matrix size. We then 

compare our estimated execution time with measurement data.  

In this work, the network system for experiment is Wi-Fi instead of 3G network. 

This can be explained from figure 10 that the speed of 3G network is too slow, and 
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cannot express the power of cloud computing. Then, we choose Wi-Fi as network 

media. 

 

Figure 10. Matrix Multiplication via 3G network 

Figure 11(a) shows the measurement results of execution time, in which the 

x-axis is the size of matrix and the y-axis is the execution time. For example, in the 

case of 320x320, the speedup can achieve 1.27 and 3.89 when the computation is 

offloaded to local GPU and the cloud. Figure 11(b), similarly, shows the measurement 

results of execution energy, in which the x-axis is the size of matrix and the y-axis is 

the energy value. 

 

Figure 11. Matrix Multiplication (a) Time (b) Energy Cost 

We define the error rate of execution time as 

ijj(�+kl.�) = m�����n�� − ����n������n�� m , �+kl.� ∈ p8�', q�', 8rstuv, 
in which �����n��  is the estimated execution time, which is obtained by the 
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equations mentioned in Chapter 4. As figure 12(a) shows, the error rate becomes 

larger when the size of matrix is smaller. This is because the overhead of OS context 

switch cannot be ignored when the execution time of matrix multiplication is short. 

The same method can be used in energy evaluation and the result is shown in figure 

12(b). According to our experiment results, when the size of matrix is larger then 80, 

the error rate is less than 20%. 

 

 

Figure 12. Matrix Multiplication (a) Time (b) Energy Estimation Error Rate 

Decision Accuracy 

Since the error rate can result in an incorrect offloading decision, we define the 

false decision rate as 

w+rO. u.,0O0sx k+�. = 1 − # sw ,skk.,� u.,0O0sxO
# sw u.,0O0sxO  

In our experiment, we vary the value of alpha in 0.0 to 1.0 and fix the matrix size in 

100, 200, and 300. As figure 13 shows, when the matrix size is 100, false decision 

rate is nearly 40% when alpha is 0.8. This is induced by closed estimation values of 

processing units. In other words, when matrix size becomes larger, the false decision 

0%

20%

40%

60%

40 80 120 160 200 240 280 320 360

E
rr

or
 R

at
e 

Size of Matrix

Time Estimation Error Rate  err(CPU)
err(Cloud)
err(GPU)

0%

20%

40%

60%

40 80 120 160 200 240 280 320 360

E
rr

or
 R

at
e 

Size of Matrix

Energy Estimation Error Rate err(CPU)

err(Cloud)

err(GPU)



 

28 

 

rate is smaller. For example, when alpha is 0.6, the false decision rate of size-300 

matrix and size-200 matrix are smaller than that of size-100 matrix. Although our 

decision function cannot always deliver the optimal decision, it ensures the execution 

time and energy consumption can be reduced after offloading modules.  

 

Figure 13. Matrix Multiplication False Decision Rate 

Compared with other works, our decision method also delivers the best 

performance among all works. For instance, in the case of size-300 matrix, the 

previous works focusing on saving execution time will always offload the 

computation to the cloud. In addition, the previous works focusing on reducing energy 

consumption will always offload the computation to the GPU. All these methods 

cannot satisfy user's expectation, and can result in high false decision rate because of 

selecting the worst module. 

 

Figure 14. False Decision Penalty of (a) size-100 (b) size-200 (c) size-300 

The penalty bring from false decision are shown in figure 14, in which the x-axis 

is the alpha value and y-axis is the penalty, i.e. the sum of time error rate and energy 

error rate, from wrong decision. The term "hybrid" is TETD and works very well in 
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different sizes with low penalty. The other two methods, i.e. time-only and 

energy-only, are usually suffered from high penalty since they only considered the 

partial of user's preference. 

Evaluate Decision Overhead 

We have analyzed the overhead of our decision framework in Section 6.2. Now 

we are going to evaluate the impact of the overhead on energy and time reduction. 

According to our experiment results, when matrix size is 100, the execution time is 

197ms if the module is executed on the local CPU. On the other hand, the execution 

time becomes 118ms if it is uploaded to the cloud. Since it takes extra 953ms to 

complete the execution of the proposed method, the total execution time becomes 

1053 when the module is offloaded to the cloud. In this case, performing local 

computation is much better than offloading the computation to the cloud. According 

to our experiment results, in order to save energy and time by offloading, the size of 

matrix size should be larger than 250.  

6.4 Case Study: Virus Scanning 

Virus scanning becomes more and more important for mobile phone. A typical 

virus scanning process on the mobile device includes three steps. First, the anti-virus 

program loads a signature database from flash ROM or remote server. Second, it 

reads the scanned file. Third, it compares the content of the scanned file and the 

signature. Unlike the matrix multiplication, scanning two files with the same size may 

consume different time and energy because of the file contents are not the same.  

In our experiment, we ported the well-known anti-virus program ClamAV to 

Android, and install the same version of ClamAV in the cloud. Similar to the previous 

case study, we implement one native module clamscan() and one offloading module 

offload_to_cloud() on the mobile phone. The service name is vs (virus scanning). Also, 

cloud provides a service clamscan() to receive the file and return the result.  
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Estimation & Decision Accuracy 

To validate the availability of our decision framework on virus scanning, we use 

three files for testing. One is mediaserver, which is an 5KB-size executable file in 

Android system. Others are two linkable libraries libffmpegsumo.so and libpdf.so, 

which are used by Google Chrome browser. Table 5 lists the experiment results, 

including the execution time and estimation error rates for each program. According 

to our experiment result, our decision framework performs well, even in the case of 

two targets only (CPU and cloud). Therefore, the proposed method is flexible and can 

be applied to multiple offloading targets. 

Table 5. Virus Scanning Execution Time and Error Rate 

File Size z{|} (~�) z{��  (~�) err(CPU) err(Cloud) 

/system/bin/mediaserver 5 KB 400 90 0.17% 10.31% 

libffmpegsumo.so 2 MB 1,274 3,320 0.07% 9.66% 

libpdf.so 15MB 6,029 22,035 0.02% 11.58% 

In particular, the estimated execution time in local CPU is highly accurate since 

the error rate is less than 1%. In addition, the error rate in estimating cloud execution 

time is low, which is 10% in average. These lower errors rates deliver lower false 

decision rates, which are almost 0% among different alpha values. 

Benefits from Offloading 

As table 5 shows, virus scanning can benefit from offloading only if the file size 

is small. In the case of offloading a large file, such as libpdf.so is 15MB, both the 

execution time and energy consumption are increased. This is because file 

transmission consumes significant time and energy consumption. The situation 

becomes worse in a low speed 3G network. Refer to Table 4, the TETD overhead of 

mediaserver is 935 ms, which is not worthy to offload. Hence, for mobile devices, 

computation offloading may not be always suitable for virus scanning applications. 
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Chapter 7.  Conclusions and Future Work 

In this work, we design and implement a decision framework for computation 

offloading. The decision is based on estimated execution time and energy values. We 

aim to save both execution time and energy consumption at the same time. Unlike 

previous works, which consider only binary decisions, our ternary decision is suitable 

for multiple offloading targets.  

In our experiment, we present two case studies to validate the applicability of 

different situations. Based on our decision framework, the matrix multiplication 

module tends to be offloaded to more powerful processors, such as local GPU or 

cloud. By offloading modules, we can achieve about 20~300% saving in execution 

time and 50~130% in battery usage. For the case of virus scanning, offloading either 

small or large files cannot reduce energy and time. As a result, the virus scanning 

program should not be offloaded to cloud. Our results also demonstrate high accuracy 

and false decision rates of the proposed decision framework. Generally speaking, the 

error rate is less than 20%, and false decision rate is less than 30% in most cases. 

In the future, we plan to implement a light-weight ping function in order to 

reduce the overhead in collecting bandwidth. Moreover, we will adopt more wireless 

technologies, such as LTE or WiMAX, and more applications to evaluate the 

proposed offloading decision. Since our method assumes there is single tasking in 

handheld devices, if there are more tasks running on devices simultaneously, our 

method might be invalid. 
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