

國 立 交 通 大 學

網路工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

手持式裝置上考慮耗時與耗電的運算量卸載至

協同處理器與雲端處理

Time-and-Energy Aware Computation Offloading in Handheld

Devices to Coprocessors and Clouds

研 究 生：黃霆鈞

指導教授：林盈達 教授

中中中中 華華華華 民民民民 國國國國 一百一百一百一百 年年年年 六六六六 月月月月

手持式裝置上考慮耗時與耗電的運算量卸載至

協同處理器與雲端處理

Time-and-Energy Aware Computation Offloading in Handheld Devices
to Coprocessors and Clouds

研 究 生：黃霆鈞 Student：Ting-Jun Huang

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan

中華民國一百年六月

I

手持式裝置上考慮耗時與耗電的運算量卸載手持式裝置上考慮耗時與耗電的運算量卸載手持式裝置上考慮耗時與耗電的運算量卸載手持式裝置上考慮耗時與耗電的運算量卸載

至協同處理器與雲端處理至協同處理器與雲端處理至協同處理器與雲端處理至協同處理器與雲端處理

學生學生學生學生:::: 黃霆鈞黃霆鈞黃霆鈞黃霆鈞 指導教授指導教授指導教授指導教授:::: 林盈達林盈達林盈達林盈達

國立交通大學國立交通大學國立交通大學國立交通大學網路網路網路網路工程研究所工程研究所工程研究所工程研究所

摘要摘要摘要摘要

基於省電與成本考量，手持裝置上的硬體元件通常只適合特定的應用，無法

做為一般性的運算使用。但隨著智慧型手持裝置(如手機、平板)的普及，這些裝

置上所運行的軟體愈趨多元，導致裝置上的耗時與耗電大幅提高，帶動了手持裝

置上運算量卸載的研究，而運算量的卸載並非永遠可以省時與省電。我們實作了

一個以環境因子為基礎的卸載決策架構，它以收集而來的環境因子預測在每種運

作環境下的耗時與耗電，再依使用者所傾向的使用模式做出決策。我們選定兩種

評測程式做為卸載決策成果的評估，分別為矩陣相乘與病毒掃描。在矩陣相乘的

運算中，此方法決策錯誤率低於 30%，而且成功的讓裝置在運算過程中節省約

20~300%的運算時間，與 50~130%的電量消耗。在病毒掃描的測試中，採用的是

clamAV 的掃毒程式，此方法決策錯誤率趨近於零。令人意外的是，在測試中發

現當掃描較大容量的檔案時(例：大於 2MB)，將檔案傳送到雲端進行掃描的方案

完全不適用，反而會導致 160~250%左右的效能損耗。

關鍵字關鍵字關鍵字關鍵字:::: 運算量卸載，協同處理器，雲端運算，Android

II

Time-and-Energy Aware Computation Offloading in Handheld

Devices to Coprocessors and Clouds

Student: Ting-Jun Huang Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

The hardware components in handheld devices are usually adapted to specific

application and are hard to do general computations. However, with the popular of

smart handheld devices, e.g. smart phone and pads, more kinds of software can run on

these devices and raising the time and energy consumption. Therefore, some research

discussed with computation offloading, but offloading does not promise the time and

energy saving can always be achieved. Thus, we implement an offloading decision

framework based on environment factors. The framework collects factors for

estimating time and energy usage in every computing environment, and then makes

decision according to user's preference. We pick two program, matrix multiplication

and virus scanning, to evaluate the decision framework. In matrix multiplication

computation, the false decision rate is below 30%, and can save 20~300% computing

time and 50~130% energy consumption. In virus scanning, we choose the scanner

from clamAV, the false decision rate is nearly zero. Surprisingly, we find a large file,

e.g. larger than 2MB, is not suitable for offloading to cloud for scanning, which will

suffered 160~250% performance decrease.

Keywords: computation offloading, coprocessors, cloud computing, Android

III

Content

Abstract ... II

List of Figures ... IV

List of Tables ... V

Chapter 1. Introduction ... 1

Chapter 2. Background .. 4

2.1 Related Works .. 4

2.2 Overview of Android Architecture ... 9

2.3 OpenGL|ES ... 11

Chapter 3. Problem Statement ... 12

3.1 System Model ... 12

3.2 Problem Description ... 14

Chapter 4. Time-and-Energy Aware Ternary Decisions ... 15

4.1 Overview of the TETD Flow .. 15

4.2 Create and Update Factor Table ... 16

4.3 Ternary Decision .. 16

Chapter 5. Implementations .. 19

5.1 Device Under Test .. 19

5.2 Factor Measurement ... 19

Chapter 6. Experiment and Evaluation.. 23

6.1 Testbed .. 23

6.2 Evaluation of Decision Framework .. 23

6.3 Case Study: Matrix Multiplication ... 25

6.4 Case Study: Virus Scanning ... 29

Chapter 7. Conclusions and Future Work ... 31

References ... 32

IV

List of Figures

Figure 1. Android Architecture ... 10

Figure 2. OpenGL|ES 2.0 programmable pipeline .. 11

Figure 3. Factors in System ... 12

Figure 4 Design Flowchart of TETD ... 15

Figure 5 Pseudo Code of Decision Maker ... 18

Figure 6. ICMP Request & Reply with Payload Size 6000 bytes ... 20

Figure 7. (a) Energy Measurement in Android (b) Example of Measured Value 22

Figure 8. Experiment Environment ... 23

Figure 9. Proportions of Time and Energy in Collect Factors .. 24

Figure 10. Matrix Multiplication via 3G network ... 26

Figure 11. Matrix Multiplication (a) Time (b) Energy Cost .. 26

Figure 12. Matrix Multiplication (a) Time (b) Energy Estimation Error Rate 27

Figure 13. Matrix Multiplication False Decision Rate .. 28

Figure 14. False Decision Penalty of (a) size-100 (b) size-200 (c) size-300 28

V

List of Tables

Table 1. Comparison of current offloading works .. 5

Table 2. Notation Table ... 13

Table 3. Power Values in Nexus One .. 22

Table 4. Proportions of Time and Energy in Decision Framework ... 24

Table 5. Virus Scanning Execution Time and Error Rate ... 30

1

Chapter 1. Introduction

Nearly 300 million smart phones were sold in 2010, and its number is expected

to increase 80% in 2011 [1]. In order to satisfy the needs of billions of users, smart

phones feature versatile mobile applications. Examples of the latest functions include

multimedia, real-time games, GPS navigation and communication. Most of these

mobile applications are user-interactive and data-processing intensive, both of which

require quick response and long battery life. However, most commercial off-the-shelf

smart phones, compared to desktops, are generally equipped with low speed

processors and limited capacity batteries. Running sophisticated software on smart

phones can result in poor performance and shorten battery lifetime. Therefore, it

becomes a crucial issue in designing smart phones to deliver adequate performance

and prolong battery life.

A lot of advanced hardware technology, such as instruction level parallelism,

leakage power control and dynamic voltage scaling, have been proposed to improve

processor speed and reduce energy consumption. Although the advanced technology

can deliver better performance, adopting high-end processors is not always

appropriate for budget-limited projects. Recently, cloud computing becomes another

possible solution to enhance computing capability of smart phones. The cloud

computing vendors provide computing cycles for the registered users to reduce

computation and energy consumption of smart phones. Examples include Amazon

Elastic Compute Cloud (EC2), Amazon Virtual Private Cloud (VPC) and PacHosting.

However, it takes both time and energy to upload programs to the cloud and retrieve

the results from the cloud. The computation capacity of the cloud can also affect the

response time of the offloaded programs. In order to save both time and energy

consumption, there is a clear need for the development of a decision making

mechanism before offloading.

2

There have been many research efforts dedicated to offload computation

intensive programs from a resource-poor mobile device [2-5]. X. Gu et al. [2], Z. Li

[3] and G. Chen et al. [5] partitioned source codes into client/server parts, and then

saved energy consumption by running the server parts at remote servers. All these

methods perform well for small size applications, but may induce significant overhead

when partitioning large size applications. K. Kumar [6] proposed a simplified energy

model to quickly estimate the energy saved from cloud services. However, several

key power-related parameters were not considered, which may lead to an incorrect

offloading decision. In addition, all above works ignored the impact of offloading on

execution time, which may result in performance degradation. On the other hand, S.

Ou et al. [4] developed an offloading middleware, which provides runtime offloading

services to improve the response time of mobile devices. Wolski [7] used bandwidth

data to estimate the performance improvement through offloading. Both works did not

investigate the energy consumption of uploading and retrieving data, and may shorten

battery life time. Also, important timing-related factors were not considered, which

can result in an incorrect offloading decision. Because it is response time and energy

consumption that determine user satisfaction, we address a multi-objective opmization

problem that simultaneously optimizes these two key performance indexes of smart

phones.

In this work, we develop an offloading framework which aims to shorten

response time and reduce energy consumption at the same time. Unlike previous

works, our targets of execution include on-board CPU, on-board GPU and cloud, all

of which provide a more flexible execution environment for mobile applications.

Since response time and energy consumption may be two conflicting objectives, we

first design a customizable cost function, which allows users to adjust the weight of

response time and energy consumption. We then develop a lightweight profiling

3

method to estimate the performance improvement and energy consumption from

offloading. In order to make correct decisions, several key system factors are

considered when constructing cost functions. Finally, an offloading decision is made

based on the user-defined cost function, estimated response time and energy

consumption.

The rest of this paper is organized as follows. Chapter 2 introduces related works

with computation offloading, and some concepts for Android development and GPU

programming. Chapter 3 gives the problem statements and terminologies for the later

chapters. Chapter 4 proposes the methodologies of offloading decisions, and then

Chapter 5 details the implementation. Chapter 6 shows the experiment result and

evaluation. Chapter 7 concludes this work and offers directions for future work.

4

Chapter 2. Background

In this chapter, we first give a comprehensive comparison between our work and

related works. We then introduce Android platform and OpenGL|ES, which are used

in our experiments.

2.1 Related Works

There have been many research efforts dedicated to offload computation

intensive programs from a resource-poor mobile device [2, 3, 5-18]. Some of them

focused on energy saving [3, 5, 6, 8-13] while others targeted at performance

improvement. Only few of them considered both energy saving and performance

improvement [19, 20]. For ease of reference, all these works are summarized in Table

1, which are classified into three categories: on energy saving, on time saving and on

energy and time saving. For each work, we further characterize it by four attributes:

adaptability, portability, accuracy and offload target.

The adaptability indicates the capability of the proposed method to adapt itself

efficiently to dynamic workload, resulting from the variance of data input at run-time.

If the proposed method can only handle deterministic workload, this shows its

adaptability is poor. The portability represents the ability of the proposed method to

be ported from one execution environment to another, such as Linux to Windows. The

term Language/Framework/Kernel represents the way we port the method to another

platform. For example, this work is Language level of portability and need to do

modifications in programming language when moving to another platform. Methods

with Language portability are desirable because most of the existing codes can be

reused. The accuracy is the approximation error of energy model or execution time

model of offloading. The higher accuracy indicates the fewer incorrect offloading

decisions. For this attribute, the works that did not develop any execution model or

energy model are labeled as “n/a”. The offload target is the targets, which can execute

5

offloaded programs. The more targets we have, the more flexible the execution

environment will become. According to Table 1, our work is the only one that aims at

saving both time and energy while maintaining high adaptability, high portability,

high accuracy and multiple offload targets. In the following, we compare our work

with each of related works in detail.

Table 1. Comparison of current offloading works

 Paper Works [Reference #] Adaptability Portability Accuracy
Offload

Target

O
n

E
ne

rg
y

Sa
vi

ng

Partition Scheme [3] No Framework Low Cloud

Study Energy Tradeoffs [5] No Framework n/a Cloud

Component Migration &

Replication [9]
No Framework Medium Cloud

Cooperative Dynamic Power

Management [11]
No Framework n/a Cloud

Offload H.264 Encoder [13] No Framework n/a Cloud

Content-Based Image Retrieval

[10]
Yes Language Medium Cloud

MAUI Code Offload [8] No Framework n/a Cloud

Can Offload Save Energy[6] Yes Language Medium Cloud

Face-Recognize with GPU [12] No Language n/a GPU

O
n

T
im

e
Sa

vi
ng

Adaptive Offloading [2] No Framework Low Cloud

Effective Offload Service [17] No Framework n/a Cloud

Calling the Cloud [14] No Framework n/a Cloud

eyeDentify Cyber Foraging [15] No Framework n/a Cloud

Heterogeneous Auto-Offload

Framework [18]
No Framework n/a Cloud

Using Bandwidth to Make

Offloading Decision [7]
Yes Language Medium Cloud

VPN Gateway over Network

Processors [16]
No Kernel n/a

Network

Processor

 O
n

E
ne

rg
y

an
d

T
im

e
Sa

vi
ng

 Computation Offload Scheme [20] No Framework Medium Cloud

Energy Efficiency of Mobile [19] Yes Language n/a Cloud

Our Work Yes Language High GPU, Cloud

6

Works On Energy Saving

Maximizing battery life time is one of the most crucial design objectives of smart

phones because they are usually equipped with limited battery capacity. Z. Li [3], S.

Han [9], B. Seshasayee [11], and E. Cuervo et al. [8] adopted profiling-partitioning

technology to identify offloaded parts of an application for energy saving. They first

profiled the energy consumption of each function of the application. According to the

profiling result, they then generated a cost graph, in which each node represents a

function to be performed and each edge indicates the data to be transmitted. The

maximum-flow/minimum-cut algorithm was then used to partition the cost graph to

obtain client parts and server parts. Finally, the server parts were executed at remote

servers for reducing energy consumption of mobile device. G. Chen et al. [5]

designed a similar method to determine whether Java methods and bytecode-to-native

code compilation should be executed at remote servers for energy saving. In addition,

they assumed that the workload was deterministic, which means that the workload

will not vary at run-time. As a result, their methods cannot be applied to dynamic

workload, resulting from the variance of data input at run-time. On the contrary, in

order to reduce profiling overhead, we only profile the energy consumption and

execution time of frequently-used modules, such as FFT, IFFT, convolution, matrix

multiplication and so on. In addition, we take into account the impact of data size on

execution time and energy consumption in order to handle dynamic workload at

run-time.

X. Zhao [13], Y. J. Hong [10], and K. Kumar [6] built energy models to

approximate the energy consumption of offloading. The energy models can be used to

construct the above-mentioned cost graph or make offloading decisions. However,

several key parameters, such as workload dynamics, bandwidth variability, and idle

mode energy consumption, are not included in their models, which may lead to

7

inappropriate partitions or incorrect offloading decisions. According to our

experiment results, our energy model ensures a higher accuracy than previous works

by considering these key parameters. Y. C. Wang [12] demonstrated the possibility of

utilizing GPU for offloading. They first identified bottlenecks of programs, and then

used OpenGL|ES to rewrite and remove the bottlenecks. However, CPU and GPU are

usually integrated on the same chip and cannot be switched off individually. Without

considering the idle energy consumption of the chip, offloading programs to GPU

may increase the total energy consumption. Our work, on the other hand, achieves a

higher accuracy by modeling the idle energy consumption. We also provide the ability

of offloading programs to GPU or Cloud.

Works On Time Saving

Responsiveness of mobile applications is important because the mobile

applications are usually real-time and user-interactive. Many research efforts have

been devoted to offload part of a program to remote servers in order to reduce

execution time [2, 7, 14, 17]. Most of them adopted above-mentioned similar

profiling-partitioning technology to identify the offloaded parts of an application. Gu

et al. [2] designed an offloading engine that dynamically partitions an application

when the required resources, such as memory and CPU, approach the maximum

capacity of the mobile devices. Yang [17] developed an offloading service that

dynamically partitions Java applications and transforms offloaded Java classes into a

form that can be executed at remote servers. Giurgiu et al. [14] developed an

exhaustive search algorithm, called ALL, to examine all possible partitions in order to

find an optimal partition. They also proposed a heuristic algorithm to partition a

program in reasonable time. All these methods perform well on small-size

applications, but may induce significant overhead when partitioning large-size

applications. On the contrary, we only profile the energy consumption and execution

8

time of frequently-used modules in order to reduce the overhead of profiling and

partition. Unlike [2, 14, 17], R. Wolski dynamically predicted offloading cost at

run-time according to the feedback of a resource monitor [7]. However, some

important parameters, such as workload dynamics and bandwidth variability, are not

included, which may lead to inappropriate predictions and incorrect offloading

decisions. Our work, on the other hand, achieves a higher accuracy by modeling these

important parameters. According to our experiment results, fewer incorrect offloading

decisions are made.

Several works developed offloading mechanisms by integrating exiting software

packages rather than started from scratch [15, 16, 18]. R. Kemp et al. [15] used Ibis

middleware to offload computational intensive Java programs to remote servers. Y.

Zhang [18] adopted Firefox plug-in framework to transparently offload computations

to remote servers. Since these works are closely coupled with specific software

packages, it becomes difficult to extend their methods to other execution

environments. Y. N. Lin [16] explored the possibility of offloading programs to

network processors in order to reduce execution time. They first profiled the IPSec

module to identify bottlenecks, and then rewrote IPSec-related kernel and driver code.

Although the performance improvement of network throughput can reach as much as

350%, the energy consumption of network processors may significantly increase. In

addition, a modification of OS kernel and drivers is required, which reduces the

portability of the proposed method. In this work, we realize our idea of offloading by

developing a Linux program at user space in order to increase the portability. We do

not rely on any specific software packages. In addition, we do not require any

modifications of OS or drivers. Our method can be easily ported to other execution

environments, such as Windows Embedded Compact 7.

9

Works on Energy and Time Saving

Both energy and time saving are crucial design objectives of smart phones.

However, few research efforts have been devoted to optimize the two objectives

simultaneously [19, 20]. C. Wang [20] used similar profiling-partitioning technology

to identify offloaded parts and consider energy and time saving at the same time. A

similar method was developed by A. P. Miettinen [19] to offload the most power

hungry parts in order to reduce energy consumption. However, both of them use

execution time of a program to approximate its energy consumption. The estimated

energy consumption, without considering the parameters of CPUs, may be incorrect.

In this work, we provide a higher accuracy energy and execution model by

considering important parameters of CPU and offloading targets. Our experiment

results indicate that the proposed method can achieve better performance in saving

energy and time.

2.2 Overview of Android Architecture

Android is a software stack for a mobile device that includes an operating system,

middleware and mobile applications. After being acquired by Google, Android has

attracted thousands of developers’ attention for its open license and flexible

architecture. Android OS is released under Apache 2.0 software license, so that

anyone can download, modify, and even redistribute the source code. Because of its

characteristic of freedom, Android becomes a superb platform adopted by both

academe and industry. In addition, Android also has already been ported to numerous

hardware platforms. Figure 1 shows the overview of Android multi-layer structure,

which includes five layers: Applications, Framework, Libraries, Runtime

Environment, and Linux Kernel.

10

Figure 1. Android Architecture

Android, using a modified Linux kernel, differs in drivers and memory

management, but it still keeps the original advantages of robustness and efficiency.

Besides kernel, Android adopts Dalvik VM and Bionic C library in order to adapt to

resource-limited devices.

As Figure 1 shows, Dalvik VM is a light-weight Java virtual machine, which

runs applications at the top level and application framework at the second level. There

are three differences between Dalvik VM and traditional J2ME VM. First of all,

unlike J2ME VM, each application running on Dalvik VM is associated with one VM.

Second, Dalvik VM is register-based rather stack-based. Third, Dalvik VM only

accepts Dalvik executable format. Similarly, Bionic Libc is a modified version of

GNU Libc with some performance optimization, but it still remains the original

characteristics of variety and multifunction.

However, although Dalvik VM is a light-weight VM, running programs on a

virtual machine can induce performance degradation. As a result, our computation

modules are implemented at Linux user space (the dotted block) in order to avoid the

11

interference caused by the virtual machine.

2.3 OpenGL|ES

OpenGL|ES, a Khronos-developed graphics standard of embedded system, is

derived from OpenGL. Nowadays, almost every smart phone supports OpenGL|ES as

a rendering engine. However, some of them only support OpenGL|ES 1.x, which can

only perform fixed pipeline function. Fortunately, many new GPU chipsets now can

support OpenGL|ES 2.0, shown in Figure 2. Since the functionalities of OpenGL|ES

2.0 are more powerful than the OpenGL|ES 1.x, we focus on OpenGL|ES 2.0 in this

work.

Figure 2. OpenGL|ES 2.0 programmable pipeline

Figure 2 gives an overview of graphics processing flow in GPU. The vertex

shader provides a programmable method to operate vertex, usually for projection or

lighting. To operate vertex, developers need to write shading program [21], similar to

C, and compile the program as vertex shader. Then, each time we feed vertex shader

with vertices, the shader will calculate the result and then transmit it to primitive

assembly blocks. The fragment shader is to operate fragments, which is produced by

previous vertices, usually used for painting. Because of the flexibility of shader

program, some works [12] offloaded general-purpose computation onto GPU. In this

work, we implement a matrix multiplication module by OpenGL|ES 2.0 shading

language.

12

Chapter 3. Problem Statement

We design an offloading framework for smart phones to determine an execution

unit, such as CPU, coprocessor, or cloud, for frequently-used modules. In the

following, Section 3.1 first describes each model of mobile application, CPU,

coprocessor and cloud. Then, Section 3.2 gives the problem statement.

basicP

nicP

cldµ
memµ

outputN

inputN

cpucpu P,µ copcop P,µ

B

compt

Figure 3. Factors in System

3.1 System Model

Mobile applications usually adopt frequently-used modules, such as FFT,

convolution, and matrix multiplication, to process data. As Figure 3 shows, the

application first involves a module to process data with input size of inputN , which is

stored in the memory. The data is then processed by CPU, coprocessor or cloud. After

data processing, the output data, with size of outputN , is stored in the memory. The

bandwidth of memory access is memµ , at which the data is read from or written into

the memory by CPU, coprocessor or network interface. If the data processing is

13

offloaded to the cloud, the transmission speed is B. We use cpuµ to denote the speed

of CPU, copµ to denote that of coprocessor and cldµ to denote that of cloud. In

addition, the power consumption of CPU is cpuP , of coprocessor is copP and of

network interface is nicP . When the system is idle, its power consumption is basicP .

Table 2. Notation Table

Cost Function Definition
target Major unit for computation, e.g. CPU/Coprocessor/Cloud

ettT arg Measured execution time when offload to target

ettT arg
ˆ Estimated execution time when offload to target

ettE arg Measured energy consumption when offload to target

ettE arg
ˆ Estimated energy consumption when offload to target

ettF arg = { ettT arg
ˆ , ettE arg

ˆ } Set of time and energy equations on target

αf Decision function with weight α

Decision Factor Unit Variable Definition

B Kbps O Transmission bandwidth

compt Second O Module execution time on mobile CPU

inputN KB O Amount of processing data into processing unit

outputN KB O Amount of resulting data from processing unit

cpuµ MHz X Mobile CPU speed

copµ MHz X Mobile Coprocessor speed

cldµ MHz O Cloud speed

memµ Mbps O Memory access bandwidth

basicP Watt X Basic power when idle

cpuP Watt X Mobile CPU running power

copP Watt X Mobile Coprocessor running power

nicP Watt X Network Interface power consumption

From these decision factors, the cost functions can be calculated. Both time and

energy functions have estimation value (ettT arg
ˆ , ettE arg

ˆ) and measurement value

(ettT arg , ettE arg) for evaluating the accuracy. Finally, the decision function αf

decide where to offload with user's preference α . Table 2 lists all cost functions,

14

decision factors, and their definitions.

3.2 Problem Description

Problem statement:

Given decision factors B , compt , inputN , outputN , cpuµ , copµ , cldµ , memµ ,

basicP , cpuP , copP , and nicP , design a decision function αf , where α is user's

preference, to choose the best one from three offloading cases: cpuF , copF , or cldF ,

to execute module, aims to improve performance of module while conserving energy.

Assume no queues, i.e., single tasking.

15

Chapter 4. Time-and-Energy Aware Ternary Decisions

In this chapter, we first give an overview of our offloading framework, which is

called time-and-energy aware ternary decision (abbreviated as TETD), and then

present factor measurement and ternary decision making respectively.

4.1 Overview of the TETD Flow

Factors table.xml

Figure 4 Design Flowchart of TETD

Our offloading framework includes two parts: factor measurement and ternary

decision making. As Figure 4 shows, when a module is invoked, TETD first check the

associated factor table of the module, which stores necessary parameters to estimate

energy consumption and execution time. If the factor table does not exist, TETD

execute the module on CPU directly and create a corresponding factor table for future

need. On the other hand, if the associated factor table is found, TETD extract

necessary factors from the table and pass the information to the cost functions. Based

on the result of cost functions, the decision maker then determines whether the

module should be offloaded or not. After the module is finished, TETD write run-time

16

collected information back to the associated factor table for future use.

4.2 Create and Update Factor Table

In order to correctly estimate the energy consumption and execution time of a

module on different execution units, we dynamically create and update a factor table

for the module at runtime. A factor table is created when the module is involved at the

first time, and is updated when the module is finished. If the same module is invoked

again, we refer to its associated factor table to estimate the cost of offloading. The

factor table stores both static and dynamic decision factors. The static decision factors

include cpuµ , copµ , and power parameters, which are deterministic and module

independent. The dynamic decision factors include B , inputN , outputN , cldµ , ,

and compt , which are uncertain or module dependent. For dynamic decision factors,

we develop a monitor to collect the information at run-time and update the associated

factor table when the module is completed.

4.3 Ternary Decision

In this subsection, we first discuss the execution time and energy consumption of

a module when it is executed on three difference execution environments: local CPU,

local GPU and cloud. We then introduce the algorithm used for making decision.

Cost Functions: Execution Time and Energy Consumption

First of all, we consider the execution time of a module, which is executed on a

local CPU. We divide the execution time into two parts. The first part is transmission

time ttrans, which is used for fetching data from and writing them back to memory.

Since ttrans depends on the amount of processed data, we have

������ = �	�
�� + �
��
������ .
The second part is pure computation time tcomp, which is used by the CPU to execute

memµ

17

codes. Therefore, the execution time is

���
� = ������ + ��
�
 . (1)

In our experiments, ���� is set by run-time measuring. In addition, tcomp is obtained

by ���
� − ������. Based on Eq.(1), the energy consumption of the local CPU is

calculated by

���
� = �����	� + ��
�� × ���
� . (2)

Similarly, when the module is executed on a local GPU, the execution time ���

 is

���

 = ������ + ��
�
 × ��
���

 . (3)

Also, the energy consumption ���

 is

���

 = �����	� + ��

� × ���

 . (4)

After considering the above two cases, we now discuss the execution time and

energy consumption in the case of offloading to the cloud. We defined ���#$ as the

execution time of the module when it is offloaded to the cloud. In order to

calculate ���#$, we first determine the amount of data to be transmitted by

σ = %�	�
�� + �
��
��&�' (× ()*�* �+,-.� /01.), (5)

in which MTU stands for the maximum transmission unit. Also, the ACK packets

used during the transmission is determined by

σ567 = %�	�
�� + �
��
��&�' (× (*89 �+,-.� /01.). (6)

Then, ���#$ is calculated by

���#$ = σ + σ567
���� + σ + σ567

; + ��
�
 × ��
���#$. (7)

In Eq.(7), the first term on the right hand side is the time spent for fetching data from

and writing them back to memory. The second term is network transmission time. The

third term is the time spent on the cloud. The energy consumption is then determined

by

18

���#$ = (��	� + ����	�) × =σ + σ567
���� + σ + σ567

; > +����	� × ?��
�
 × ��
���#$ @ , (8)

in which, ��	� is the power consumption of network interface.

Decision Making

At run-time, we dynamically measure the value of ��
�
, �	�
��, �
��
�� and

; . According to the collected information, we then use the above-mentioned

equations to predict the execution time and energy consumption of the module when

it is executed in different execution environments. A compound objective function is

developed for user to adjust the importance of time and energy. As Figure 5 shows,

we calculate the value of the objective function in different cases (line 3, 4 and 5) and

take the minimum as the offloading decision.

Procedure Decision_Maker (
αf)

Input: (1) cpuT̂ , copT̂ , cldT̂ (2) cpuÊ , copÊ , cldT̂ (3) 10 ≤≤ α

Output: execution unit

Procedure:

(1) Initialize MIN_VALUE to zero

Initialize TARGET to CPU

(2) While there is offloading target P do

Calculate

cpu

cpuPP
T

T

TT

ˆ

ˆˆ −
=ε

and

cpu

cpuPP
E

E

EE

ˆ

ˆˆ −
=ε

If MIN_VALUE <
P
E

P
T εαεα ⋅−+⋅)1(

Set MIN_VALUE to
P
E

P
T εαεα ⋅−+⋅)1(

Set TARGET to P

End If

End While

(3) Return TARGET

Figure 5 Pseudo Code of Decision Maker

19

Chapter 5. Implementations

In this chapter, we first introduce the device under test (DUT). We then describe

the methods used to measure bandwidth, component speed, computation time and

power consumption respectively.

5.1 Device Under Test

We adopt HTC Nexus One, a popular and powerful smart phone, as our DUT.

The Nexus One quips with a Qualcomm QSD8250™ 1GHz processor, a 512 MB

Flash ROM, a 512 MB RAM and a Wi-Fi IEEE 802.11 b/g interface. The operating

system used in the Nexus One is Android 2.2. We implement our offloading

framework in C language on user space so that it can operate without any

privilege-restrictions and becomes more efficient. Our user-level implementation can

be easily ported to other operating systems, such as Windows Embedded Compact 7.

5.2 Factor Measurement

Wireless Bandwidth: B

As mentioned in the previous chapter, the wireless bandwidth B is a crucial

decision factor in our offloading framework. In order to adapt to environment changes,

we dynamically measure the transmission bandwidth at run-time. Many tools have

been developed to measure the transmission bandwidth. Some of them are platform

dependent, such as Iperf and ttcp, while others are platform independent. To make our

method easily applicable to all Android smart phones, we use the popular utility ping,

located at the folder /system/bin, to measure the network bandwidth. For each

measurement, the ping utility first sends the packets of ICMP-Request from the Nexus

One to the cloud and then receives the packets sent back by the cloud. In our

experiment, we use the command "ping -c 10 -s 6000 -i 0.1 cloud" to issue 10 ICMP

requests, in which the amount of data to be sent is 6000 bytes and the wait interval

between sending each packet is 0.1 sec. As Figure 6 shows, the measurement starts at

20

time t1 and stops at t2. For each ICMP request, it needs four IP packets and one ICMP

packet because the maximal size of the data in the Ethernet-frame is 1500 bytes.

Similarly, four IP packets and one ICMP packet are required to send an ICMP reply

back to the Nexus One. If t2－t1 is 100ms, the network bandwidth is approximated by

; = (B×CDCBEC×CFF)×F×CG×H
�IJ�K = 9894 9MNO.

Figure 6. ICMP Request & Reply with Payload Size 6000 bytes

Component Speed: µcpu , µcop , µcld , µmem

In our experiments, we obtain the local CPU speed µcpu and the local GPU speed µcop

by referring to datasheet. On the other hand, we measure the cloud speed µcld and

memory bandwidth µmem at run-time. In order to estimate µcld, we ask the cloud to

measure the time tcld spent in executing the offloaded program. Then, we calculate µcld

by µcld = (tcomp / tcld)µcpu. The memory bandwidth is estimated by measuring the time of

accessing a large amount of data stored in the memory. For example, if it takes 20ms

to read 1,000,000 16-bit integers from the memory, the memory bandwidth µmem is

21

estimated by

C,GGG,GGG×CP (QRST)
FG (UT) = 800Mbps.

Computation time: tcomp

As mentioned in Chapter 4, tcomp represents the pure computation time used by

the CPU to execute codes. We calculate tcomp by

��
�
 = ��
� − ������,
in which ��
� is the total execution time and ������ is the memory transmission

time. In order to obtain ��
�, we insert the Android-supported function clock_gettime()

at the beginning and the end of the program, and then calculate the difference. The

value of ������ is obtained by

������ = �	�
�� + �
��
������ .
The definition of tcomp is similar to "worst case execution time" and only those

regular computations are worthy to be offloaded.

Power: Pbasic , Pcpu, Pcop, Pnic

Due to the hardware limitation, we are not able to measure the energy

consumption of each component directly. Instead, we design four different scenarios:

1) idle system, 2) execute CPU-bound workload, 3) execute GPU-bound workload, 4)

send a large amount of data to the cloud, and use an Android daemon-maintained

battery log, located at /sys/kernel/debug/battery_log, to obtain power information. As

Figure 7(a)(b) shows, the Andriod daemon updates voltage, current and power

information every 50 sec. Compared to other profiling methods, our method has two

advantages. First, it is available on all Android smart phones. Second, no extra

hardware equipment is required, such as data acquisition (DAQ) card.

22

Figure 7. (a) Energy Measurement in Android (b) Example of Measured Value

In scenario 1, we close all unnecessary user programs and keep the system idle

for a while. Figure 7(b) illustrates a battery log of system idle. Based on the log, the

energy consumption of the system in [400s, 450s] is

[\]P×\PPBGGJ[\]D×\P[[GG
CGGG×CGGG = 12.53 mWh (= 45.1 joule).

Therefore, we have ����	�

����	� = BD.C f
�#��
DG ���
�$� = 902 gh.

A similar approach is used in other scenarios. In scenario 2, we execute a

CPU-bound program to make the CPU busy. In scenario 3, we execute an

OpenGL|ES 2.0 program on the GPU and keep the CPU idle. In scenario 4, we send

data to the cloud for a long period. The measurement results are listed in Table 3.

Table 3. Power Values in Nexus One

 Pbasic Pcpu Pcop Pnic

power (W) 0.886 1.539 1.056 2.262

23

Chapter 6. Experiment and Evaluation

In this chapter, we first introduce the experiment environment. Next, Section 6.2

measures the overhead of the proposed decision framework. Finally, Section 6.3 and

6.4 adopt two case studies, matrix multiplication and virus scanning, to evaluate the

proposed method.

Figure 8. Experiment Environment

6.1 Testbed

Figure 8 illustrates the experiment environment, which includes a Nexus One

smart phone and a cloud. In order to eliminate uncertainty and unpredictability, we set

backlight always on and close unnecessary processes. We implement our decision

framework on the Nexus One and install virus scanning and matrix multiplication

applications for experiment. Each application has one or more functions, which can be

offloaded to the cloud. A PC with 2.4-GHz Intel processor and 4-GB RAM is used to

simulate the execution environment of cloud, and the operating system of the cloud is

Linux 2.6.35.

6.2 Evaluation of Decision Framework

In order to understand the overhead of our decision framework, we measure the

execution time and energy consumption of each function respectively. As Table 4

shows, creating factor table

factor table does not exist. For example, the function

43.03% of total execution

hand, if the factor table is

are spent in the Collect Factor

executed once, the function

framework. We further breakdown the

Factor. As figure 9 shows, collecting the information of bandwidth consumes most of

time and energy. This overhead is induced by the

which can be further optimized in the future.

Table 4. Proportions of Time and Energy in Decision Framework

Create Factor Table

Collect Factors

Build Cost Functions

Make Decision

Update Factor Table

Total

Figure 9. Proportions

Factor Table E

Functions

24

shows, creating factor table and collecting factors consume significant energy if the

table does not exist. For example, the function Create Factor Table

 time and 33.79% of total energy consumption. On the other

factor table is already created, most of time (98.54%) and energy (98.99%)

Collect Factor. Since the function Create Factor Table

the function Collect Factor dominates the overhead of our decision

framework. We further breakdown the energy consumption of the function

9 shows, collecting the information of bandwidth consumes most of

. This overhead is induced by the ping program and Wi

which can be further optimized in the future.

Proportions of Time and Energy in Decision Framework

No Yes

Time Energy Time

 43.03% 33.79%

56.14% 65.53% 98.54%

Build Cost Functions 0.32% 0.25% 0.55%

0.20% 0.16% 0.34%

 0.32% 0.27% 0.56%

1641 ms 3135 mJ 935 ms 2075 mJ

Proportions of Time and Energy in Collect Factors

Factor Table Exist?

and collecting factors consume significant energy if the

Create Factor Table consumes

time and 33.79% of total energy consumption. On the other

created, most of time (98.54%) and energy (98.99%)

Create Factor Table is only

dominates the overhead of our decision

consumption of the function Collect

9 shows, collecting the information of bandwidth consumes most of

program and Wi-Fi driver,

Proportions of Time and Energy in Decision Framework

Energy

98.99%

0.38%

0.24%

0.39%

2075 mJ

Collect Factors

25

6.3 Case Study: Matrix Multiplication

Matrix multiplication is a CPU-intensive module, which has been widely used in

the applications of encoding, decoding, image compression and rotation. In order to

evaluate the energy consumption, we implement three versions of the matrix

multiplication for different execution environments. One is for the execution of local

CPU, another two are for local GPU and Cloud. In the version of local CPU, it

includes three steps: reading data, processing the multiplication and storing the results.

As mentioned in Section 2.3, we implement two programs in the version of GPU. One

is vertex shader and another is fragment shader. Whenever the function

offload_to_gpu() is invoked, this function first communicates with the GPU driver

and compiles shader codes in to the executable format of GPU. The data are then feed

to GPU and written back to the buffer pBuffer after they are processed. The function

offload_to_gpu() finally terminates the communication.

In order to offload computation to the cloud, on the smart phone, we implement

a function, named offload_to_cloud(), to send offloaded data to the cloud. On the site

of cloud, another service is deployed to receive the offloaded module and forward

them to a proper function. As shown in figure 8, for the matrix multiplication, the

module is first forwarded to the function matrix_mult(). Then, the results are sent

back to the smart phone.

Estimation Accuracy

This subsection evaluates the accuracy of our method in approximating the

execution time of an offloaded module in difference execution environments. We first

measure the execution time of the offload module by varying the matrix size. We then

compare our estimated execution time with measurement data.

In this work, the network system for experiment is Wi-Fi instead of 3G network.

This can be explained from figure 10 that the speed of 3G network is too slow, and

26

cannot express the power of cloud computing. Then, we choose Wi-Fi as network

media.

Figure 10. Matrix Multiplication via 3G network

Figure 11(a) shows the measurement results of execution time, in which the

x-axis is the size of matrix and the y-axis is the execution time. For example, in the

case of 320x320, the speedup can achieve 1.27 and 3.89 when the computation is

offloaded to local GPU and the cloud. Figure 11(b), similarly, shows the measurement

results of execution energy, in which the x-axis is the size of matrix and the y-axis is

the energy value.

Figure 11. Matrix Multiplication (a) Time (b) Energy Cost

We define the error rate of execution time as

ijj(�+kl.�) = m�����n�� − ����n������n�� m , �+kl.� ∈ p8�', q�', 8rstuv,
in which �����n�� is the estimated execution time, which is obtained by the

0

5

10

15

20

180 200 220 240 260 280 300 320 340

Time (s)

Size of Matrix

Matrix Computation Time - 3G network

on CPU on GPU on Cloud

0

1

2

3

4

5

6

7

80 120 160 200 240 280 320

Time (s)

Size of Matrix

Matrix Computation Time

on CPU on GPU

0

2

4

6

8

10

80 120 160 200 240 280 320

Energy (J)

Size of Matrix

Matrix Computation Energy

on CPU on GPU on Cloud

27

equations mentioned in Chapter 4. As figure 12(a) shows, the error rate becomes

larger when the size of matrix is smaller. This is because the overhead of OS context

switch cannot be ignored when the execution time of matrix multiplication is short.

The same method can be used in energy evaluation and the result is shown in figure

12(b). According to our experiment results, when the size of matrix is larger then 80,

the error rate is less than 20%.

Figure 12. Matrix Multiplication (a) Time (b) Energy Estimation Error Rate

Decision Accuracy

Since the error rate can result in an incorrect offloading decision, we define the

false decision rate as

w+rO. u.,0O0sx k+�. = 1 − # sw ,skk.,� u.,0O0sxO
sw u.,0O0sxO

In our experiment, we vary the value of alpha in 0.0 to 1.0 and fix the matrix size in

100, 200, and 300. As figure 13 shows, when the matrix size is 100, false decision

rate is nearly 40% when alpha is 0.8. This is induced by closed estimation values of

processing units. In other words, when matrix size becomes larger, the false decision

0%

20%

40%

60%

40 80 120 160 200 240 280 320 360

E
rr

or
 R

at
e

Size of Matrix

Time Estimation Error Rate err(CPU)
err(Cloud)
err(GPU)

0%

20%

40%

60%

40 80 120 160 200 240 280 320 360

E
rr

or
 R

at
e

Size of Matrix

Energy Estimation Error Rate err(CPU)

err(Cloud)

err(GPU)

28

rate is smaller. For example, when alpha is 0.6, the false decision rate of size-300

matrix and size-200 matrix are smaller than that of size-100 matrix. Although our

decision function cannot always deliver the optimal decision, it ensures the execution

time and energy consumption can be reduced after offloading modules.

Figure 13. Matrix Multiplication False Decision Rate

Compared with other works, our decision method also delivers the best

performance among all works. For instance, in the case of size-300 matrix, the

previous works focusing on saving execution time will always offload the

computation to the cloud. In addition, the previous works focusing on reducing energy

consumption will always offload the computation to the GPU. All these methods

cannot satisfy user's expectation, and can result in high false decision rate because of

selecting the worst module.

Figure 14. False Decision Penalty of (a) size-100 (b) size-200 (c) size-300

The penalty bring from false decision are shown in figure 14, in which the x-axis

is the alpha value and y-axis is the penalty, i.e. the sum of time error rate and energy

error rate, from wrong decision. The term "hybrid" is TETD and works very well in

0.00%

10.00%

20.00%

30.00%

40.00%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
al

se
 D

ec
is

io
n

R
at

e

Alpha

Size=100

Size=200

Size=300

0%

200%

400%

600%

800%

0.0 0.2 0.4 0.6 0.8 1.0

P
en

al
ty

Alpha

time-only
hybrid
energy-only

0%

100%

200%

300%

0.0 0.2 0.4 0.6 0.8 1.0

P
en

al
ty

Alpha

time-only
hybrid
energy-only

0%

100%

200%

300%

0.0 0.2 0.4 0.6 0.8 1.0

P
en

al
ty

Alpha

time-only
hybrid
energy-only

29

different sizes with low penalty. The other two methods, i.e. time-only and

energy-only, are usually suffered from high penalty since they only considered the

partial of user's preference.

Evaluate Decision Overhead

We have analyzed the overhead of our decision framework in Section 6.2. Now

we are going to evaluate the impact of the overhead on energy and time reduction.

According to our experiment results, when matrix size is 100, the execution time is

197ms if the module is executed on the local CPU. On the other hand, the execution

time becomes 118ms if it is uploaded to the cloud. Since it takes extra 953ms to

complete the execution of the proposed method, the total execution time becomes

1053 when the module is offloaded to the cloud. In this case, performing local

computation is much better than offloading the computation to the cloud. According

to our experiment results, in order to save energy and time by offloading, the size of

matrix size should be larger than 250.

6.4 Case Study: Virus Scanning

Virus scanning becomes more and more important for mobile phone. A typical

virus scanning process on the mobile device includes three steps. First, the anti-virus

program loads a signature database from flash ROM or remote server. Second, it

reads the scanned file. Third, it compares the content of the scanned file and the

signature. Unlike the matrix multiplication, scanning two files with the same size may

consume different time and energy because of the file contents are not the same.

In our experiment, we ported the well-known anti-virus program ClamAV to

Android, and install the same version of ClamAV in the cloud. Similar to the previous

case study, we implement one native module clamscan() and one offloading module

offload_to_cloud() on the mobile phone. The service name is vs (virus scanning). Also,

cloud provides a service clamscan() to receive the file and return the result.

30

Estimation & Decision Accuracy

To validate the availability of our decision framework on virus scanning, we use

three files for testing. One is mediaserver, which is an 5KB-size executable file in

Android system. Others are two linkable libraries libffmpegsumo.so and libpdf.so,

which are used by Google Chrome browser. Table 5 lists the experiment results,

including the execution time and estimation error rates for each program. According

to our experiment result, our decision framework performs well, even in the case of

two targets only (CPU and cloud). Therefore, the proposed method is flexible and can

be applied to multiple offloading targets.

Table 5. Virus Scanning Execution Time and Error Rate

File Size z{|} (~�) z{�� (~�) err(CPU) err(Cloud)

/system/bin/mediaserver 5 KB 400 90 0.17% 10.31%

libffmpegsumo.so 2 MB 1,274 3,320 0.07% 9.66%

libpdf.so 15MB 6,029 22,035 0.02% 11.58%

In particular, the estimated execution time in local CPU is highly accurate since

the error rate is less than 1%. In addition, the error rate in estimating cloud execution

time is low, which is 10% in average. These lower errors rates deliver lower false

decision rates, which are almost 0% among different alpha values.

Benefits from Offloading

As table 5 shows, virus scanning can benefit from offloading only if the file size

is small. In the case of offloading a large file, such as libpdf.so is 15MB, both the

execution time and energy consumption are increased. This is because file

transmission consumes significant time and energy consumption. The situation

becomes worse in a low speed 3G network. Refer to Table 4, the TETD overhead of

mediaserver is 935 ms, which is not worthy to offload. Hence, for mobile devices,

computation offloading may not be always suitable for virus scanning applications.

31

Chapter 7. Conclusions and Future Work

In this work, we design and implement a decision framework for computation

offloading. The decision is based on estimated execution time and energy values. We

aim to save both execution time and energy consumption at the same time. Unlike

previous works, which consider only binary decisions, our ternary decision is suitable

for multiple offloading targets.

In our experiment, we present two case studies to validate the applicability of

different situations. Based on our decision framework, the matrix multiplication

module tends to be offloaded to more powerful processors, such as local GPU or

cloud. By offloading modules, we can achieve about 20~300% saving in execution

time and 50~130% in battery usage. For the case of virus scanning, offloading either

small or large files cannot reduce energy and time. As a result, the virus scanning

program should not be offloaded to cloud. Our results also demonstrate high accuracy

and false decision rates of the proposed decision framework. Generally speaking, the

error rate is less than 20%, and false decision rate is less than 30% in most cases.

In the future, we plan to implement a light-weight ping function in order to

reduce the overhead in collecting bandwidth. Moreover, we will adopt more wireless

technologies, such as LTE or WiMAX, and more applications to evaluate the

proposed offloading decision. Since our method assumes there is single tasking in

handheld devices, if there are more tasks running on devices simultaneously, our

method might be invalid.

32

References

[1] DRAMeXchange, "Booming Popularity of Smartphone Helps to Increase

NAND Flash Demand," 2011.

[2] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, "Adaptive

Offloading for Pervasive Computing," IEEE Pervasive Computing, vol. 3, pp.

66-73, September 2004.

[3] Z. Li, C. Wang, and R. Xu, "Computation Offloading to Save Energy on

Handheld Devices: A Partition Scheme," in International Conference on

Compilers, Architecture and Synthesis for Embedded System, pp. 238-246,

November 2001.

[4] S. Ou, K. Yang, and J. Zhang, "An effective offloading middleware for

pervasive services on mobile devices," Pervasive and Mobile Computing, vol.

3, pp. 362-385, August 2007.

[5] G. Chen, B. T. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, et al.,

"Studying Energy Trade Offs in Offloading Computation/Compilation in

Java-Enabled Mobile Devices," IEEE Transactions on Parallel and

Distributed Systems, vol. 15, pp. 795-809, September 2004.

[6] K. Kumar and Y. H. Lu, "Cloud Computing for Mobile Users: Can Offloading

Computation Save Energy?," Computer, vol. 43, pp. 51-56, April 2010.

[7] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, "Using Bandwidth Data to

Make Computation Offloading Decisions," in the 22nd IEEE International

Parallel and Distributed Processing Symposium, pp. 1-8, April 2008.

[8] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, et al., "MAUI:

Making Smartphones Last Longer with Code Offload," in the 8th

International Conference on Mobile Systems, Applications, and Services, pp.

49-62, June 2010.

[9] S. Han, S. Zhang, and Y. Zhang, "Energy Saving of Mobile Devices Based on

Component Migration and Replication in Pervasive Computing," Ubiquitous

Intelligence and Computing, vol. 4159, pp. 637-647, August 2006.

[10] Y. J. Hong, K. Kumar, and Y. H. Lu, "Energy Efficient Content-Based Image

Retrieval for Mobile Systems," in International Symposium on Circuits and

Systems, pp. 1673-1676, May 2009.

[11] B. Seshasayee, R. Nathuji, and K. Schwan, "Energy-Aware Mobile Service

Overlays: Cooperative Dynamic Power Management in Distributed Mobile

Systems," in the 4th International Conference on Autonomic Computing, pp.

6-6, June 2007.

[12] Y. C. Wang, B. Donyanavard, and K. T. Cheng, "Energy-Aware Real-Time

33

Face Recognition System on Mobile CPU-GPU Platform," in the 11th

European Conference on Computer Vision, September 2010.

[13] X. Zhao, P. Tao, S. Yang, and F. Kong, "Computation Offloading for H.264

Video Encoder on Mobile Devices," in Computational Engineering in Systems

Applications, pp. 1426-1430, October 2007.

[14] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, "Calling the Cloud:

Enabling Mobile Phones as Interfaces to Cloud Applications," in the 10th

ACM/IFIP/USENIX International Conference on Middleware, pp. 1-20,

December 2009.

[15] R. Kemp, N. Palmer, T. Kielmann, F. Seinstra, N. Drost, et al., "eyeDentify:

Multimedia Cyber Foraging from a Smartphone," in the 11th IEEE

International Symposium on Multimedia, pp. 392-399, December 2009.

[16] Y. N. Lin, C. H. Lin, Y. D. Lin, and Y. C. Lai, "VPN Gateways over Network

Processors: Implementation and Evaluation," Journal of Internet Technology,

vol. 11, pp. 457-463, 2010.

[17] K. Yang, S. Ou, and H. H. Chen, "On Effective Offloading Services for

Resource-Constrained Mobile Devices Running Heavier Mobile Internet

Applications," IEEE Communications Magazine, vol. 46, pp. 56-63, January

2008.

[18] Y. Zhang, X. Guan, T. Huang, and X. Cheng, "A Heterogeneous

Auto-Offloading Framework Based on Web Browser for

Resource-Constrained devices," in the 4th International Conference on

Internet and Web Applications and Services, pp. 193-199, May 2009.

[19] A. P. Miettinen and J. K. Nurminen, "Energy efficiency of mobile clients in

cloud computing," in the 2nd USENIX Conference on Hot topics in Cloud

Computing, pp. 4-4, June 2010.

[20] C. Wang and Z. Li, "A Computation Offloading Scheme on Handheld

Devices," Journal of Parallel and Distributed Computing, vol. 64, pp. 740-746,

February 2004.

[21] A. Munshi, D. Ginsburg, and D. Shreiner, "OpenGL® ES 2.0 programming

guide," Addison-Wesley, 2008.

