AN >, == Y)
E R SR G S ¥

R TR TIRE

An Efficient Hybrid P2P MMOG Cloud Architecture for

Dynamic Load Management

SR R W ¥

hERE IR HEL

PEREB B F KA

i 4

AR ER R ERLRERHEZ
HE

An Efficient Hybrid P2P MMOG Cloud Architecture for

RS 2 R

Dynamic Load Management

Student : Ginhung Wang

Advisor : Kuochen Wang

|
|4
&k
(=
/s
g

A Thesis

Submitted to Institutes of Network Engineering

Department of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master

in Computer Sciencmae

June 2011
Hsinchu, Taiwan, Republic of China

PEAR- &S

BENSARMIPSRNFRBEPERLRERFNIRER

g4 11448 hErE 2R B

Bz i A& R ARAT G AT

&

T Kl A A S LR R OGS i S B 0 1Az B R e R R
R R AR o § A M P SN F RBRGEN kG HIRB DR > Flp AP
F1* 2B R EMOGRAE L - A2 SEREEY > AP RRIBE
RB- ik Y MR FIRE o J PSR MMOGS S &k SLEHE 5 FIREBEH
ARG R G B ARB SRR A BN TR - B BF M

BRI R f F e

¥

FARFEF SR FRNBEHE R o KA o s

RERHT > £T15 4 ST SRR L REAE ARSI 5SS

1‘.\

BPIRE S Tfre i ? oo AP AMOGS? @ * b N 2B A
o RMMOGs t2 3+ B PR B T T RORLOFTRAIT o b B2 AR

- BRERVERS CFAALFTRG U2 AL PREFTRE T

|23
k)
g
.t,
~('
¢
>_.
S
q
-
)
=
34
o
ﬁ’

BRI S F T L
AR ARG VR IR AR S S RIRE G ehak e

R - BEF TS AWM SRR E R RN DR ER > A £

B BERPIRERN L PP EPAISRPIRELF O
Pdl o AR DS F PIREE AR R B 2300 E) o PER
RS S RURB T IRIF10. 31N 7 o b AV F

fALRE St IR S AR 2T, G B 1L 5

Mt @ 233 H ~ R E I RS AR Bk TRRE -

An Efficient Hybrid P2P MMOG Cloud
Architecture for Dynamic Load
Management

Student: Ginhung Wang Advisor: Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

In recent years, massively multiplayerronline games (MMOGs) become more and more
popular. Many researchers, both. in academia and industry, are very interested in MMOGs.
MMOG environments require ‘a-high degree-of flexibility to respond to environmental
changes, including load change. We' combine cloud computing with MMOGs to increase
flexibility of resource allocation. In.an MMOG cloud. environment, we use virtual machines
(VMs), instead of traditional physical ‘game servers. A game world is divided into several
game regions. Each game region is serviced by at least one VM. However, in the multi-server
architecture, loads of regional servers may be unbalanced because there may be some regions
that attract more players. Peer-to-peer (P2P) cloud computing is a new approach that
combines high computation power, scalability, reliability and efficient information sharing of
servers. This paper proposes a hybrid P2P cloud architecture for MMOGs which includes
two-level load management, multi-threshold load management for each game server and load
management among game servers. It is suitable for players to interact with P2P cloud servers
and it avoids bottlenecks of the current multi-server MMOG architecture. Simulation results
show that the proposed architecture can support 10.31% more players under no deadline (300
ms) miss compared to the multi-server architecture. The proposed hybrid P2P cloud

architecture can reduce the average response time by 20.6% compared to the multi-server
architecture under medium to high load through flexible allocation of resources (virtual
machines). The proposed architecture also has 27.9% smaller deadline miss ratio than the

multi-server architecture under medium to high load.

Keywords: cloud computing, load management, massively multiplayer online game,

peer-to-peer, resource allocation.

Acknowledgements

Many people have helped me with this thesis. | am in debt of gratitude to my thesis
advisor, Dr. Kuochen Wang, for his intensive advice and guidance. | would also like to
express my appreciation for all the classmates in the Mobile Computing and Broadband
Networking Laboratory for their invaluable assistance and inspirations. The support by the
National Science Council under Grant NSC99-2221-E-009-081-MY3 is also gratefully
acknowledged. Finally, I thank my father, my mother and my friends for their endless love

and support.

Contents

ADStract (in CHiNESE)...cuiieieiniiniieiieiiiniieriererinteasessesontossonsssssssnsssssssnsonsnmmemmen I
AADSTFACT ...t h et bt h b bbb b E e bbb h e R R R bR R bbb bbbt b e r et r e iii
LO00] 0] 110 TSR TP PSPPSR Vi
LLEST OF FIQUIES ..ttt bbbk b bbb bbb bbb bbbt b e bbbt viii
(O T o1 (=l A | a1 oo [Tox £ o) o I SS OSSR 1
1.1 Motivation for a Nnew MMOG arChItECLUIE...........cciiiiiiiieiree e 1
1.2 L0 MANAGEIMENTcviitiieiiite ettt ettt et b etk b e bbb e e bt b ne et e b b e bt e b e b e bt e bt e bt ebe b et b e be b 1
1.3 THESHS OFQANIZATION......eviiiie e b ettt P bbbttt b et b ettt b bbb bbbttt sbe e ettt e b b 2
Chapter 2 BaCKGIOUNGc.eive s ieimeise s 0 st s bt ohiamfieeseesesesesseseesesbeeesesbe s esesbessesesbensesesbessesensens 3
2.1 Load distribution tEChNIGUES ... et et i e ettt sneesre e 3
2.2 Load management iN MIMOGS .4, ot e e e ass¥onts taetneeseesssesseesteesseesseassesssesssessaessaessesssessenssssssessseenses 4
(O T o T gRC I LT P cTo IRV o USROS PRPR 5
3.1 Client-server MMOG arChITECIUNE.coveuiiirieieiteriee sttt b et sb e eb e 5
3.2 Multi-server MIMOG arChItECLUIE.oiuiiiiiieeiicterieese ettt st et et b ere e 6
3.3 P2P MIMOG AICRITECIUIE ...ttt ettt ettt bbb s b sttt sb et et nbe b e 7
3.4 P2P cloud cOMPULING GrCNITECIUIEiiveiiitiieeiecte ettt sttt sb b ere e 8
Chapter 4 Proposed Hybrid P2P MMOG Cloud ArChiteCtUIEcccovvieie e 9
4.1 Prop0oSsed ClOU @rCRITECIUNE. ..ottt bbb b ne e 9
4.2 GAME SEIVEIS ClOUT ...ttt bbbt bbbt bbbt e e bt nn e eb e nr e ene e 10

Vi

4.3 Multi-threshold 10ad MANAGEMENTccuiiiiiiiiei i b e eb et er e ene e 11

Chapter 5 Performance EVAIUATIONcooiiiiiiiiiiee bbb 17
5.1 Simulation setup and evaluation MELIICSccciiiiieiieieiese st sa e e sresresreeneas 17
5.1.1 AVEIage FeSPONSE TIMIB......iiitiiiiieiteiteiiete ettt ettt et b bbbttt nb bbbt e sb e ereanes 17

5.1.2 Average deadling MISS FALIOccoeiiiiiiiii et 18

5.2 Comparison between multi-server architecture and proposed hybrid P2P cloud architecture................. 19

(O T T (=T gl oI @0 o o1 11 [o 1S 22
6.1 CONCIUAING FEMAIKS. ...ttt bbb bbbt b e bbbttt b ettt e b nrens 22

6.2 FULUIE WOTK ..ociiieieiiie et B b fe s msmennsss fead e ettt b et b bbb bbbt b e e bt bt ettt ne et 22

=] o] IToTo =T])Y oo A e P o B N o ST R TR UPUROPRTO 23

Vil

List of Figures

Figure 1: Load distribution teChniqQues [27].ccoveoveeiieceee e 3
Figure 2: Load management CYCIE [29]. ..o 4
Figure 3: Client-server MMOG architeCture [34]. ...ccvooveiveieiieceeie e 5
Figure 4: Torque MMOG multi-server architecture [19].ccocooviiiiiininieeeec e 7
Figure 5: P2P MMOG architeCture [20]........coeiieiiee et 8
Figure 6: Cloud computing architecture based on P2P [26]..........ccccooviinininieienenc e 8
Figure 7: Hybrid P2P MMOG cloud architeCture.cccoovveiiiiie i 10
Figure 8: Multi-threshold load ManagemMent. & i e 12
Figure 9: Multi-threshold load management algorithm (1/2). ... 13
Figure 10: Multi-threshold local load management algorithm (2/2). ..o 14
Figure 11: Virtual machine creating ProCeAUIE . uumme ve s i itereereeiesteesie e st e e eeesreesre s e sree e 15
Figure 12: Game server load management ProCRAUIE.ccuerververererireeieeeie e 16

Figure 13: Average response time between multi-server and proposed hybrid p2p cloud
AFCNITECTUNE. .ot b bttt ettt b ettt b e 20
Figure 14: Deadline miss ratio between multi-server and proposed hybrid p2p cloud
AICNITECTUNE. ..ot b bttt et e et bbbt enes 20

Figure 15: Average response time under different thresholds of load.c.cccoeviiiiennnn 21

viii

file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563150
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563151
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563152
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563153
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563154
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563155
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563156
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563157
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563158
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563159
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563160
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563161
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563162
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563162
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563163
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563163
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563164

Chapter 1

Introduction

1.1 Motivation for a new MMOG architecture

MMOGs have emerged in the past decade as a new type of large-scale distributed
applications. An MMOG is a real-time virtual world with many players across the real world.
Traditionally, MMOGs operate as multi-server architecture which is composed of many game
servers. Game servers simulate a virtual game world. They receive and process commands
from clients (players), and inter-operate with a-billing and accounting system [3]. To support
ever more and more players, MMOG-environments require a new architecture with a high
degree of flexibility to respond to environmental changes; including load change. Therefore,
in this paper, we propose a hybrid P2P.cloud architecture for MMOGs to provide flexible

resource usages to deal with load‘Change.

1.2 Load management

The game providers need to install and operate a large infrastructure, with hundreds to
thousands of computers for each game [27]. For example, the operating infrastructure of an
MMOG, World of Warcraft, has over 10,000 computers [5]. The traditional solutions to
decrease server loads are deploying more servers to the heavy-loaded areas [27]. This solution
is simple but has limitation of scalability. The other solution is using the multi-server
architecture, where game servers can be added to heavy-loaded areas on demand. In this paper,
we propose a hybrid P2P cloud architecture for MMOGs which includes two-level load
management: multi-threshold load management for each game server and load management

among game servers to resolve current architecture drawbacks.

1.3 Thesis organization

The rest of this paper is organized as follows. In Chapter 2, we introduce an existing load
management procedure. In Chapter 3, we review existing MMOG architectures. We present
the proposed hybrid P2P MMOG architecture and a two-level load management scheme in
detail in Chapter 4. In Chapter 5, we discuss simulation results and compare the proposed
architecture with the multi-server architecture in terms of response time and deadline miss

ratio. In Chapter 6, we give concluding remarks and outline future work.

Chapter 2

Background

2.1 Load distribution techniques

Today’s MMOG?’s used three main techniques, zoning, replication, and instancing, to serve
hundreds to thousands of player, as shown in Figure 1. Through zoning, the virtual world was
divided into smaller blocks which are handled by different servers. Replication takes place
when the load of a zone is heavy because a huge number of players center on the zone. The
players still can see each other. Finally, instancing is a simplification of replication, which
distributes the session load by starting-multiple parallel instances of the highly populated
zones. The instances are completely independent of each other, meaning that two players from

different instances will not see-each other, even if they are located at nearby coordinates [15].

g

Replication

Figure 1: Load distribution techniques [27].

2.2 Load management in MMOGSs

In [29], the authors proposed a new predictive resource provisioning method based on a
stack of five services depicted in Figure 2. Firstly, a monitoring service collects online metrics
related to the performance of an MMOG session which could be of two kinds: (1) game
session-related, such as the number of entities and their positions in the game world, and (2)
resource-related, such as the CPU, memory, storage, and network load. Secondly, a load
prediction service is used to anticipating the future game world entity distribution from
historical traces. A capacity planning service includes generic analytical models to map an
entity distribution into a resource’s load, such as processor, memory, storage or network load.
In this service, it focuses on foreseeing potential hotspots in the game servers which make the
game environment fragmented and unplayable. A resource allocation service is provisioning
of a right amount of resources required for a proper execution that guarantees a good
experience to all players. Finally, a load balancing service is balancing the active servers’

load.

MMOG Session
(€]

Load Balancing

© Monitoring (2)

Resource Load Prediction
Allocation (5) (€]

Capacity Planning
@

Figure 2: Load management cycle [29].

Chapter 3
Related Work

3.1 Client-server MMOG architecture

Client-server MMOG architecture has players (clients) that send requests to a single
server. It is simple and easy to implement, but it is less scalable. As shown in Figure 3,
commands from players must go through a single server, and the single server handles
commands and returns state updates to players. The single server must be in the presence of
insufficient bandwidth and copious waiting time for players. To resolve the problems, there
are several approaches [28] to-distribute traffic among-multiple servers, such as a mirrored

server [29], generic proxy [30]; or booster box [31].

——————— Request
— > State Update

Figure 3: Client-server MMOG architecture [34].

3.2 Multi-server MMOG architecture

Multi-server MMOG architecture [19] has various kinds of servers which provide
different functionalities as shown in Figure 4. The various servers are described as follows
[19]:
® Master Server - This server handles access of players and communicates with operated

servers. It assists players logging in a zone server and transfers data of players to the

corresponding zone server from the character server.

® Character Server - This is mainly stored the data of players. It assists players in using the
same characters on any zone servers.

® World Daemon - This server transfers players from a zone server to another zone server
that players expected. It also monitors eachload of zone servers.

® Zone Cluster Server — It is.composed of zone servers and mainly serves players. A zone
server is assigned to serve a specific zone.

® Client - A client moves between zone servers. A client sends a request to an interested
zone server.

In this MMOG multi-server architecture, the players in the same zone connect to the
specific zone server. Some zone servers will suffer heavy load if many players move into the
same zone. Hence, load balancing is needed to prevent the downgrade of service. In [29], it
creates a management server that monitors zone servers and decides a load balancing strategy.

In this case, the management server would become the bottleneck of the system [20].

World Daemon World Daemon

Zone (Clustex Serve Zone ClisterServer Zone,Cluster Server

Figure 4: Torque MMOG multi-server architecture [19].

3.3 P2P MMOG architecture

In P2P MMOGs, they advance to. multi-server architecture by lowering the cost of
centralized infrastructures and by distributing the processing load [20]. But the security is
their drawback. They have to request clients to share loading and clients could get some data
of other clients. Because of this reason, the P2P MMOG architecture usually runs on lower
security games.

As shown in Figure 5 [20], the server serves players and assigns some normal nodes to
become service nodes. A normal node is a player. When the server loading is more than a
threshold, the server will transform some normal nodes to service other players. This process

could cut down server loading but the security emerges more problems.

Server

/ Service
@ / node
<

Figure 5: P2P MMOG architecture [20].

3.4 P2P cloud computing architecture

As shown in Figure 6 [26], the architecture includes three basic roles: User, Central Peer
and Side Peer. The Central Peervand Side Peer form-two P2P networks, called central P2P
network and side P2P network, respectively. The central P2P network mainly maintains
metadata of dynamic mapreduce and backups DHT P2P storage cloud. The side P2P network

is mainly used to provide storage and computing resources.

P2P Cloud Architecture
/ Dynamic MapReduce '\Sea
Q&é‘ g
£
Q
i
v Sid
) ide
"2 . PP
) DA Network
%G Uy, wowoad
 DHT P2P Storage | yjp\o®

Cloud

Figure 6: Cloud computing architecture based on P2P [26].

Chapter 4
Proposed Hybrid P2P MMOG Cloud

Architecture

In this chapter, we propose a hybrid P2P cloud architecture for MMOGs which includes
two-level load management: (1) multi-threshold load management for each game server and
(2) load management among game servers. The components of the proposed architecture will
be described in section 4.1. Game servers in the game server cloud share information by P2P
manner. Section 4.2 introduces a game server cloud..In order to support this architecture, we

propose a multi-threshold load-management procedure in-section 4.3.

4.1 Proposed cloud-architecture

MMOG environments require a high degree of flexibility to respond to environmental
changes, including load change. Thus, 'we combine cloud computing with MMOGs to
increase flexibility of resource allocation. Using virtualization technical on cloud could help
us get more security and scalability. The proposed cloud architecture includes four basic
components: game server cloud, players, character database and game regions data storage,
as shown in Figure 7. We introduce each component’s characteristics as follows:
® Game servers cloud — It consists a number of game servers and a game server has a

number of virtual machines (VMs) to serve players. A game server receives requests

from players, calculates new game states in regions, and responses to players. A game
server is also in charge of creating accounts for players when they login for the first time.

® Players — They move between game regions of a game world. The load of a game region
increases when players move into the game region.

9

® Character database — It stores the data of players, such as equipment, rank, site, etc. It
also backups players’ data. The backup method is based on backup method of hadoop.
® Game regions data storage — It maintains game states in each region. It also backups

game states and object states in each game region.

[III\ 9
[18]
Game servers cloud Character database
Players

%@%9

Game regions
data storage

Hybrid-P2P MMOG Cloud

Figure 7: Hybrid P2P-MMOG cloud architecture.

4.2 Game servers cloud

In MMOG environments, there are huge messages, especially communication messages
between players. Game servers use a P2P protocol to exchange load information and game
region data. Game servers also use the P2P protocol to exchange the information of players.
By P2P flooding, each game server can know the other game servers’ load. When a game
server is overloaded, it will migrate some players to other game servers by the proposed game

server load management procedure.

10

4.3 Multi-threshold load management

In the game servers cloud, we allocate VMs from game servers to service game regions.
Game regions do not setup on specific virtual machines. In this way, it could help the system
to get high scalability. We do not use a single master server in the game servers cloud, Game
servers communication is based on a P2P protocol. Game servers can exchange load
information by flooding in the P2P protocol. Game servers can perform load management by
themselves, and a game server is also in charge of creating accounts for players when they
login for the first time. This way can help resource allocation more efficient.

The multi-threshold load management focuses on VMs management. We use four
thresholds (T4, To, T3, and T,) to define five loading layers (L;, Lo, L3, L4, and Ls) for each VM.
T, is the lower bound of VM load. Tyand T3 define two preferred loading layers to service
players. T4 is the upper bound of VM load. As shown in Figure 8, each loading layer
represents a different load and-status.

- Ly (Light): For a VM; operating in this layer, its players will be migrated to another
VM; serving the same region in-Ls,-L5, 0r L4 (selection order). After the players in
VM; are migrated out, VM; will be released.

- Lz (Low): For a VM;with maximal load in this layer, itcan provide capacity for a
VM in Ls to migrate its players to this VM.

- Lz (Medium): It is the optimal layer for VMs to stay.

— L4 (High): For a VM; operating in this layer, its loading is slightly high, but is
tolerable.

- Ls(Heavy): For a VM, operating in this layer, part of its players will be migrated to
another VM; serving the same region in Ly, L3, or L; (selection order) if there are
available VMs in these layers; If there are no VMs in these layers, the game server

load management will be executed.

11

7 I s(Heavy)
T L.(High)
75
/. s(Medium)
72 e
Z 2(OW)
L (Light)

Figure 8: Multi-threshold load management.

Figure 9 and Figure 10 show the flow chart of the multi-threshold load management

algorithm. The details of the multi=threshold load management algorithm are described in the

following.

1)

2)

3)

4)

5)

We monitor the VMs'in each game region and sort the VMs in each game region
according to their loadings in an‘ascending order.

If the VM in Ls is empty, go to step 7. Otherwise, go to step 3.

In this step, we know some VMs exist in Ls. We check if there are VMs in L,. If
there are VMs in L, we migrate VM; with maximal load in Ls to the VM; with
minimal load in L,, and then go to step 2. Otherwise, go to step 4.

We check if there are VMs in Ls. If there are VMs in L3, we migrate VM; with
minimal load in Ls to the VM; with minimal load in Lz, and then go to step 2.
Otherwise, go to step 5.

We check if there are VMs in L;. If there are VMs in L;, we migrate VM; with
minimal load in Ls to the VM; with minimal load in L;, and then go to step 2.
Otherwise, go to step 6.

12

6) Executing the VM creating procedure to create a VM to share the load in this game

Sort the VMs in each
region according to their
loadings in ascending order

region.

Yes

Is Ls empty?

Migrate VM; with
maximal load in Lsto
VM; with minimal load

inL,

Migrate VM; with
minimal load in Ls to
VM; with minimal load
inL,

Migrate VM; with
minimal load in Ls to
VM; with maximal load
inL1

Execute VM
creating procedure

e

Figure 9: Multi-threshold load management algorithm (1/2).

7) In this step, we start to release VMs. Check if there is any VM in L;. If there is no

VM in Ly, exit this procedure. Otherwise, go to step 8.

8) We check if there are VMs in L. If there are VMSs in L3, we migrate VM; with

minimal load in L; to the VM; with minimal load in L3, release VM;, and then go to

step 7. Otherwise, go to step 9.

13

9) We check if there are VMs in L,. If there are VMs in L,, we migrate VM; with
minimal load in L; to the VM; with maximal load in L, release VM;, and then go to
step 7. Otherwise, go to step 10.

10) We check if there are VMs in Ly. If there are VMs in L4, we migrate VM; with
minimal load in L; to the VM; with maximal load in L., release VM;, and then go to

step 7. Otherwise, exit the procedure.

Yes
Release VM, L

Migrate VM; with
minimal.load in L; to
VM, with'minimal load | &

inls3

Migrate VM; with
maximal load inL; to
VM, with minimal load | A

inL,

Migrate VM; with
minimal load in L, to
VM; with minimal load
in Ly

Is Ly empty?

Yes

End

Figure 10: Multi-threshold local load management algorithm (2/2).

When a game region needs a new VM, the VM creating procedure is executed, as shown
in Figure 11. Firstly, the game server checks its resource. If it has enough resources, the game
server will create a new VM to service the game region. If not, the game server will turn
down the VM creating request. The game server executes the game server load management

procedure to transfer players to another game server.

14

In the game server load management procedure, we mainly consider the physical
distance between players and game servers, because players need to be served with low
response time. As shown in Figure 12, firstly we find a neighboring game server who is
serving the same game region and has the lowest load. If not available, we select a
neighboring game server that is not serving the same game region and has the lowest load. If
not available, we select a distant game server that has capacity to service more players. The
selected game server will service the migrated players. Finally, if we could not find a game
server who has capacity to service more players, then it means all game servers are

overloading.

O s

Yes

Does the game server have enougr
resource to create a VM

Turn down the VM

Create a new VM .
creating request

Execute the game server
load management
Activate the VM procedure
to service the
region

Figure 11: VM creating procedure.

15

Is there a neighboring
game server who is not
serving the same game region
and has the capacity to servicg
more players

s there a neighboring
game server who is serving the
same game region and has he
capacity to service more
players

Is there a game server
who has capacity to
service more players

No

Transfer some
players from calling y
game server
to this game server
All game
<« Servers are
overloading
End

Figure 12: Game server load management procedure.

16

Chapter 5

Performance Evaluation

In this chapter, we first describe simulation setup and evaluation metrics. Then, we
evaluate the proposed hybrid P2P MMOG in terms of average response time, and average

deadline miss ratio.

5.1 Simulation setup and evaluation metrics

We use CloudSim [27] to simulate players’ behaviors by sending service requests to
game servers. Players’ requests were collected from Stendhal MMORPG using Wireshark.
The Stendhal MMORPG is running on-Intel 17 2.93 GHz CPU with 512 MB RAM and 100
Mbps Ethernet. The average service time to serve a request is 0.2 ms. There are three game
servers and the upper bound of the response-time is set to 300 ms according to [30]. Each
game server can create at most 40°VVMs..The capability of a VM is 2000 MIPS with 1024 MB
RAM and 100 Mbps Ethernet (P3 capability). Each VM can support at most 59 players
(obtained from CloudSim). The total number of game regions is 30. In addition, a game

region is served by at least one VM, if there are players.

5.1.1 Average response time

The average response time is defined as the elapsed time between the time a player sends
a request to the time that a player actually receives the response, which is formulized as

follows:

17

m b N
T oy =

1 TR, — TS;
vg — m_p

=1j=1i=1

RA

where T, = average response time

TR, = the time interval for player to receive a response, and i is the i"

request.
TS, = the time interval for player j to send a request, and i is the i
request.

p = the total number of players
n,; = the total number of requests for player j

k =the k"round

5.1.2 Average deadline miss ratio

The average deadline miss percentage ratio-is defined as the response time being more

than a real time bound, and we set.the real time-bound to 300 ms according to [32], which is

formulized as follows:

RD;

m]

J=1RT,

D =
avg m

where D, = average deadline miss ratio

RD; = the total number of responses that miss the deadline in a game
Server j
RT, = the total number of responses in a game server j

j =the j"game server

18

5.2 Comparison between multi-server architecture and

proposed hybrid P2P cloud architecture

Figure 13 shows the average response time of the multi-server architecture and proposed
hybrid P2P cloud architecture. The multi-server architecture has the lower response time
initially because a regional server’s capacity is higher than a VM’s. When the number of
players increases to 3490, the multi-server architecture has higher response time. This is
because its regional servers serve specific game regions. As a result, players are queued up for
a specific regional server. In our architecture, each VM has lower capacity, but our
architecture has higher scalability. VMs can be migrated to a busy game region and the
response time of players can be reduced. Because of this, our architecture performs better
after the number of players exceeding 3490.

Figure 14 shows the deadline miss ratio-between the multi-server architecture and
proposed hybrid P2P cloud architecture.” In the multi-server architecture, it has the lower
deadline miss ratio under lower number of players. It shows that with enough resources in the
multi-server architecture, the multi-Server architecture can have good performance. The
proposed architecture has a smaller deadline miss ratio under medium to high load than the
multi-server architecture.

Figure 15 shows the average response time of the proposed hybrid P2P cloud
architecture under different thresholds settings. We set different thresholds to T;, T,, Tz and Ta.
Before the number of players reaches 6400, the 0.2-0.3-0.7-0.8 setting has lower average
response time. This is become that new VMs are created to service players under lower load
(0.8). After the number of players is over 6400, the average response time for this setting
becomes higher than that of the other setting. Because VMs are activated early to service

game regions, there may be no VM to service really hotspot game regions later.

19

600

500 Pad
400 /.—././.7
300

200

100 -

Average response time (ms)

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

Number of players

== Multi-server . . =lll=Hybrid P2P cloud (proposed)

Figure 13: Average response time between multi-server and proposed hybrid P2P cloud
architecture.

0.6

y e

0.2

0.1 -

Deadline miss ratio (%0)

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

Number of players

=0— Multi-server =fll=Hybrid P2P cloud (proposed)

Figure 14: Deadline miss ratio between multi-server and proposed hybrid P2P cloud
architecture.

20

Average response time
(ms)
N
8

160
130 -
*{'

100 T

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

——010208YT0ELOf PIAYErS o

Figure 15: Average response time under different thresholds of load for the proposed

architecture.

21

Chapter 6

Conclusion

6.1 Concluding remarks

In this paper, we propose a hybrid P2P cloud architecture which includes multi-threshold
load management and game server load management for MMOG cloud environments. The
multi-threshold load management can make the utilization of virtual machines more efficient.
The game server load management transfers some players from an overloaded game server to
a neighbor game server with available capacity. The proposed hybrid P2P cloud architecture
can support 10.31% more players under. no deadline (300 ms) miss compared to the
multi-server architecture. The proposed hybrid P2P cloud-architecture can reduce the average
response time by 20.6% compared to the multi-server architecture under medium to high load
through flexible allocation of resources (virtual machines). The proposed architecture also has
a 27.9% smaller deadline miss ratio than the multi-server architecture under medium to high

load.

6.2 Future work

We may apply the proposed hybrid P2P cloud architecture to multi-game environments
for flexible allocation of resources. We will integrate an efficient load prediction scheme with
the proposed hybrid P2P cloud architecture to achieve more efficient allocation of resources

so as to further reduce the deadline miss ratio and average response time.

22

Bibliography

[1] G. Dolbier and A. Goldschmidt, “The business of interactive entertainment,” in
Proceedings of the IBM Digital Media Solutions, May 2006.

[2] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game server system,”
Technical Report the University of Michigan, May 2001.

[3] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand platform for online
games,” IBM Systems Journal, vol. 45, no. 1, pp. 7-20, 2006.

[4] B. Hack, M. Morhaime, J.-F. Grollemund, and N. Bradford, “Introduction to vivendi
games,” [Online] Available: http://www.vivendi.com/, Jun 2006.

[5] S. Sukhyun, et al., "Blue Eyes: Scalable and reliable system management for cloud
computing,” in Proceedings of the 1EEE International Symposium on Parallel &
Distributed Processing, pp. 1-8, 2009.

[6] C.Majewski, C. Griwodz,~and P. Halvorsen, “Translating latency requirements into
resource requirements for game traffic,” in Proceedings of the International Network, pp.
113-120, 2006.

[7] J. Slegers, 1. Mitrani, and N. Thomas, "Evaluating the optimal server allocation policy for
clusters with on/off sources,"” the Performance Evaluation, vol. 66, pp. 453-467, 20009.

[8] R. Stanojevic and R. Shorten, "Load balancing vs. distributed rate limiting: an unifying
framework for cloud control,” in Proceedings of the IEEE International Conference on
Communications, pp. 1-6, 2009.

[9] W. Streitberger and T. Eymann, "A simulation of an economic, self-organising resource
allocation approach for application layer networks," the Computer Networks, vol. 53, pp.

1760-1770, 2009.

23

[10] Y. Lai and S. ZhongZhi, "An efficient data mining framework on Hadoop using Java
persistence API," in Proceedings of the IEEE 10th International Conference on Computer
and Information Technology, pp. 203-209, 2010.

[11] Z. Liang-Jie and Z. Qun, "CCOA: Cloud Computing Open Architecture,”" in Proceedings
of the IEEE International Conference on Web Services, pp. 607-616, 20009.

[12] V. Nae, A. losup, and R. Prodan, "Dynamic resource provisioning in massively
multiplayer online games,” IEEE Transactions on Parallel and Distributed Systems, vol.
PP, pp. 1-1, 2010.

[13] Torque MMO Kit - Server Architecture
http://www.mmoworkshop.com/trac/mom/wiki/ServerArchitecture

[14] A. E. Rhalibi and M. Merabti,. "Interest: management and scalability issues in P2P
MMOG," in Proceedings of the Consumer Communications and Networking Conference,
pp. 1188-1192, 2006.

[15] X.-B. Shi, D. Yang, L. Du, aand Z.-W. Wang, "Research on service management
techniques for P2P MMOG," in Proceedings of the International Conference on Internet
Technology and Applications, pp. 1-4,2010.

[16] C. Yang, W. Tianyu, and L. Jianxin, "An efficient resource management system for
on-line virtual cluster provision,” in Proceedings of the IEEE International Conference on
Cloud Computing, pp. 72-79, 2009.

[17] G. Zhenhuan, P. Ramaswamy, G. Xiaohui, and M. Xiaosong, "SigLM: signature-driven
load management for cloud computing infrastructures,” in Proceedings of the 17th
International Workshop on Quality of Service, pp. 1-9, 20009.

[18] K. 1l Kon, Z. Pervez, A. M. Khattak, and L. Sungyoung, "Chord based identity
management for e-healthcare cloud applications,” in Proceedings of the 2010 10th

IEEE/IPSJ International Symposium on Applications and the Internet, pp. 391-394, 2010.

24

[19] H. Chen and C. Cao, "Research and application of distributed OSGi for cloud
computing,” in Proceedings of the 2010 International Conference on Computational
Intelligence and Software Engineering, pp. 1-5, 2010.

[20] P. Zhao, T.-l. Huang, C.-x. Liu, and X. Wang, "Research of P2P architecture based on
cloud computing,” in Proceedings of the International Conference on Intelligent
Computing and Integrated Systems, pp. 652-655, 2010.

[21] C. Carter, A. E. Rhalibi, M. Merabti, and A. T. Bendiab, "Hybrid client-server,
peer-to-peer framework for MMOG," in Proceedings of IEEE International Conference
on Multimedia and Expo, pp. 1558-1563, 2010.

[22] V. Nae, R. Prodan, and T. Fahringer, "Cost-efficient hosting and load balancing of
Massively Multiplayer Online Games," .in Proceedings of the IEEE/ACM International
Conference on Grid Computing, pp. 9-16; 2010.

[23] Q. Zhaoyang and W. Yanguang, “The design of the substation simulation model of
distributed virtual environment," in-Proceedings of the Second International Symposium
on Computational Intelligence and Design, pp..249-252, 2009.

[24] Su Min Jang and Jae Soo Yoo, “An‘efficient Load balancing mechanism in distributed
virtual environments,” the ETRI Journal, VVol.30, NO.4, PP.618-620, 2008.

[25] B. Hariri, S. Shirmohammadi, and M. R. Pakravan, "A distributed topology control
algorithm for P2P based simulations,” in Proceedings of the Distributed Simulation and
Real-Time Applications, IEEE International Symposium, pp. 68-71, 2007.

[26] V. Nae, A. losup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer, "Efficient
management of data center resources for Massively Multiplayer Online Games,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-12, 2008.

[27] CloudSim: A Framework For Modeling And Simulation Of Cloud Computing

Infrastructures And Services http://www.buyya.com/qgridbus/cloudsim/

25

http://www.buyya.com/gridbus/cloudsim/
http://www.buyya.com/gridbus/cloudsim/

[28] E. Cronin, B. Filstrup, A.R. Kurc, and S. Jamin, “An efficient synchronization
mechanism for mirrored game architectures,” in Proceedings of the 1st workshop on
Network and system support for games, pp.67-73, ACM Press, 2002.

[29] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game server system,"
University of Michigan Course Project Report, May 2001.

[30] M. Mauve, S. Fischer, and J. Widmer, “A generic proxy system for networked computer
games," in Proceedings of the 1st workshop on Network and system support for games,
pp.25-28, ACM Press, 2002.

[31] D. Bauer, S. Rooney, and P. Scotton, “Network infrastructure for massively distributed
games,"” in Proceedings of the 1st workshop on Network and system support for games,

pp.36-43, ACM Press, 2002.

26

