

國 立 交 通 大 學

適用於多人線上遊戲動態負載管理之

混合同儕式雲端架構

An Efficient Hybrid P2P MMOG Cloud Architecture for

Dynamic Load Management

 研 究 生：王金鴻

 指導教授：王國禎 博士

適用於多人線上遊戲動態負載管理之混合同儕式雲

端架構

An Efficient Hybrid P2P MMOG Cloud Architecture for

Dynamic Load Management

研 究 生：王金鴻 Student：Ginhung Wang

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institutes of Network Engineering

Department of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in Computer Sciencmae

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

 i

適用於多人線上遊戲動態負載管理之混合同儕式雲端架構

學生：王金鴻 指導教授：王國禎 博士

國立交通大學 網路工程研究所

摘 要

近年來由於大型多人線上遊戲(MMOGs)的蓬勃發展，引起了學界和業界

的高度興趣。多人線上遊戲需要高度的彈性來面對環境的變化，因此我們

利用雲端的特性來與MMOG做結合。在雲端遊戲環境中，我們利用虛擬機器

來取代傳統實體遊戲伺服器。由於現今MMOGs主要系統架構為多伺服器架構，

虛擬遊戲世界會被切割成數個遊戲區域，每個遊戲區域由一個或多個實體

遊戲伺服器負責和客戶端玩家進行遊戲資訊的傳輸及執行。然而，在多伺

服器架構下，會因為大多數客戶端玩家感興趣的地圖區域相同，而造成遊

戲伺服器負載不平衡。在本論文中，我們在MMOGs中使用同儕式雲端計算架

構，使MMOGs在雲端計算的環境下獲得較彈性的資源利用。同儕式雲端計算

是一個結合高計算能力、高擴充性、高可信賴，以及分享伺服器資源及資

料的新概念。本論文提出一個混合同儕式雲端架構，此一架構可以更適用

於大型多人線上遊戲，它改進了現行多人線上遊戲多伺服器架構的缺陷。

除了提出一個適用於多人線上遊戲之混合同儕式雲端架構外，我們也針對

 ii

每一個遊戲伺服器提出多門檻負載管理機制和遊戲伺服器之間的負載管理

機制。本篇論文的架構與多伺服器架構相比較，在小於300毫秒的回應時間

內，我們的架構比多伺服器架構可多服務10.31%的玩家量。此外，在中高

負載時，我們的架構比多伺服器架構少27.9%的錯過期限比率。

關鍵詞：雲端計算、負載管理、同儕式多人線上遊戲、資源配置。

 iii

An Efficient Hybrid P2P MMOG Cloud

Architecture for Dynamic Load

Management

 Student: Ginhung Wang Advisor: Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

 In recent years, massively multiplayer online games (MMOGs) become more and more

popular. Many researchers, both in academia and industry, are very interested in MMOGs.

MMOG environments require a high degree of flexibility to respond to environmental

changes, including load change. We combine cloud computing with MMOGs to increase

flexibility of resource allocation. In an MMOG cloud environment, we use virtual machines

(VMs), instead of traditional physical game servers. A game world is divided into several

game regions. Each game region is serviced by at least one VM. However, in the multi-server

architecture, loads of regional servers may be unbalanced because there may be some regions

that attract more players. Peer-to-peer (P2P) cloud computing is a new approach that

combines high computation power, scalability, reliability and efficient information sharing of

servers. This paper proposes a hybrid P2P cloud architecture for MMOGs which includes

two-level load management, multi-threshold load management for each game server and load

management among game servers. It is suitable for players to interact with P2P cloud servers

and it avoids bottlenecks of the current multi-server MMOG architecture. Simulation results

show that the proposed architecture can support 10.31% more players under no deadline (300

ms) miss compared to the multi-server architecture. The proposed hybrid P2P cloud

 iv

architecture can reduce the average response time by 20.6% compared to the multi-server

architecture under medium to high load through flexible allocation of resources (virtual

machines). The proposed architecture also has 27.9% smaller deadline miss ratio than the

multi-server architecture under medium to high load.

Keywords: cloud computing, load management, massively multiplayer online game,

peer-to-peer, resource allocation.

 v

Acknowledgements

 Many people have helped me with this thesis. I am in debt of gratitude to my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would also like to

express my appreciation for all the classmates in the Mobile Computing and Broadband

Networking Laboratory for their invaluable assistance and inspirations. The support by the

National Science Council under Grant NSC99-2221-E-009-081-MY3 is also gratefully

acknowledged. Finally, I thank my father, my mother and my friends for their endless love

and support.

 vi

Contents

Abstract (in Chinese)…………………………………………….…………………...............i

Abstract ... iii

Contents ... vi

List of Figures ... viii

Chapter 1 Introduction ... 1

1.1 Motivation for a new MMOG architecture .. 1

1.2 Load management ... 1

1.3 Thesis organization .. 2

Chapter 2 Background .. 3

2.1 Load distribution techniques ... 3

2.2 Load management in MMOGs .. 4

Chapter 3 Related Work ... 5

3.1 Client-server MMOG architecture ... 5

3.2 Multi-server MMOG architecture.. 6

3.3 P2P MMOG architecture ... 7

3.4 P2P cloud computing architecture ... 8

Chapter 4 Proposed Hybrid P2P MMOG Cloud Architecture ... 9

4.1 Proposed cloud architecture ... 9

4.2 Game servers cloud ... 10

 vii

4.3 Multi-threshold load management ... 11

Chapter 5 Performance Evaluation ... 17

5.1 Simulation setup and evaluation metrics ... 17

5.1.1 Average response time .. 17

5.1.2 Average deadline miss ratio ... 18

5.2 Comparison between multi-server architecture and proposed hybrid P2P cloud architecture 19

Chapter 6 Conclusion .. 22

6.1 Concluding remarks ... 22

6.2 Future work ... 22

Bibliography .. 23

 viii

List of Figures

Figure 1: Load distribution techniques [27]. .. 3

Figure 2: Load management cycle [29]. ... 4

Figure 3: Client-server MMOG architecture [34]. ... 5

Figure 4: Torque MMOG multi-server architecture [19]. .. 7

Figure 5: P2P MMOG architecture [20]. .. 8

Figure 6: Cloud computing architecture based on P2P [26]. .. 8

Figure 7: Hybrid P2P MMOG cloud architecture. ... 10

Figure 8: Multi-threshold load management. ... 12

Figure 9: Multi-threshold load management algorithm (1/2). .. 13

Figure 10: Multi-threshold local load management algorithm (2/2). 14

Figure 11: Virtual machine creating procedure. ... 15

Figure 12: Game server load management procedure. ... 16

Figure 13: Average response time between multi-server and proposed hybrid p2p cloud

architecture. .. 20

Figure 14: Deadline miss ratio between multi-server and proposed hybrid p2p cloud

architecture. .. 20

Figure 15: Average response time under different thresholds of load. 21

file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563150
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563151
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563152
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563153
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563154
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563155
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563156
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563157
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563158
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563159
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563160
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563161
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563162
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563162
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563163
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563163
file:///H:/one%20cloumn/one%20column_Wang-rev-20010620.docx%23_Toc299563164

 1

Chapter 1

Introduction

1.1 Motivation for a new MMOG architecture

MMOGs have emerged in the past decade as a new type of large-scale distributed

applications. An MMOG is a real-time virtual world with many players across the real world.

Traditionally, MMOGs operate as multi-server architecture which is composed of many game

servers. Game servers simulate a virtual game world. They receive and process commands

from clients (players), and inter-operate with a billing and accounting system [3]. To support

ever more and more players, MMOG environments require a new architecture with a high

degree of flexibility to respond to environmental changes, including load change. Therefore,

in this paper, we propose a hybrid P2P cloud architecture for MMOGs to provide flexible

resource usages to deal with load change.

1.2 Load management

The game providers need to install and operate a large infrastructure, with hundreds to

thousands of computers for each game [27]. For example, the operating infrastructure of an

MMOG, World of Warcraft, has over 10,000 computers [5]. The traditional solutions to

decrease server loads are deploying more servers to the heavy-loaded areas [27]. This solution

is simple but has limitation of scalability. The other solution is using the multi-server

architecture, where game servers can be added to heavy-loaded areas on demand. In this paper,

we propose a hybrid P2P cloud architecture for MMOGs which includes two-level load

management: multi-threshold load management for each game server and load management

among game servers to resolve current architecture drawbacks.

 2

1.3 Thesis organization

The rest of this paper is organized as follows. In Chapter 2, we introduce an existing load

management procedure. In Chapter 3, we review existing MMOG architectures. We present

the proposed hybrid P2P MMOG architecture and a two-level load management scheme in

detail in Chapter 4. In Chapter 5, we discuss simulation results and compare the proposed

architecture with the multi-server architecture in terms of response time and deadline miss

ratio. In Chapter 6, we give concluding remarks and outline future work.

 3

Chapter 2

Background

2.1 Load distribution techniques

Today’s MMOG’s used three main techniques, zoning, replication, and instancing, to serve

hundreds to thousands of player, as shown in Figure 1. Through zoning, the virtual world was

divided into smaller blocks which are handled by different servers. Replication takes place

when the load of a zone is heavy because a huge number of players center on the zone. The

players still can see each other. Finally, instancing is a simplification of replication, which

distributes the session load by starting multiple parallel instances of the highly populated

zones. The instances are completely independent of each other, meaning that two players from

different instances will not see each other, even if they are located at nearby coordinates [15].

Zoning
Replication

 Figure 1: Load distribution techniques [27].

 4

2.2 Load management in MMOGs

In [29], the authors proposed a new predictive resource provisioning method based on a

stack of five services depicted in Figure 2. Firstly, a monitoring service collects online metrics

related to the performance of an MMOG session which could be of two kinds: (1) game

session-related, such as the number of entities and their positions in the game world, and (2)

resource-related, such as the CPU, memory, storage, and network load. Secondly, a load

prediction service is used to anticipating the future game world entity distribution from

historical traces. A capacity planning service includes generic analytical models to map an

entity distribution into a resource’s load, such as processor, memory, storage or network load.

In this service, it focuses on foreseeing potential hotspots in the game servers which make the

game environment fragmented and unplayable. A resource allocation service is provisioning

of a right amount of resources required for a proper execution that guarantees a good

experience to all players. Finally, a load balancing service is balancing the active servers’

load.

MMOG Session
(1)

Monitoring (2)

Load Prediction
(3)

Capacity Planning
(4)

Resource
Allocation (5)

Load Balancing
(6)

Figure 2: Load management cycle [29].

 5

Chapter 3

Related Work

3.1 Client-server MMOG architecture

Client-server MMOG architecture has players (clients) that send requests to a single

server. It is simple and easy to implement, but it is less scalable. As shown in Figure 3,

commands from players must go through a single server, and the single server handles

commands and returns state updates to players. The single server must be in the presence of

insufficient bandwidth and copious waiting time for players. To resolve the problems, there

are several approaches [28] to distribute traffic among multiple servers, such as a mirrored

server [29], generic proxy [30], or booster box [31].

Server

Player

Request

State Update

Figure 3: Client-server MMOG architecture [34].

 6

3.2 Multi-server MMOG architecture

Multi-server MMOG architecture [19] has various kinds of servers which provide

different functionalities as shown in Figure 4. The various servers are described as follows

[19]:

 Master Server - This server handles access of players and communicates with operated

servers. It assists players logging in a zone server and transfers data of players to the

corresponding zone server from the character server.

 Character Server - This is mainly stored the data of players. It assists players in using the

same characters on any zone servers.

 World Daemon - This server transfers players from a zone server to another zone server

that players expected. It also monitors each load of zone servers.

 Zone Cluster Server – It is composed of zone servers and mainly serves players. A zone

server is assigned to serve a specific zone.

 Client - A client moves between zone servers. A client sends a request to an interested

zone server.

In this MMOG multi-server architecture, the players in the same zone connect to the

specific zone server. Some zone servers will suffer heavy load if many players move into the

same zone. Hence, load balancing is needed to prevent the downgrade of service. In [29], it

creates a management server that monitors zone servers and decides a load balancing strategy.

In this case, the management server would become the bottleneck of the system [20].

 7

3.3 P2P MMOG architecture

In P2P MMOGs, they advance to multi-server architecture by lowering the cost of

centralized infrastructures and by distributing the processing load [20]. But the security is

their drawback. They have to request clients to share loading and clients could get some data

of other clients. Because of this reason, the P2P MMOG architecture usually runs on lower

security games.

As shown in Figure 5 [20], the server serves players and assigns some normal nodes to

become service nodes. A normal node is a player. When the server loading is more than a

threshold, the server will transform some normal nodes to service other players. This process

could cut down server loading but the security emerges more problems.

Master Server

World Daemon
World Daemon

Character Server

Zone Cluster Server
Zone Cluster Server

Zone Cluster Server Zone Cluster Server

Figure 4: Torque MMOG multi-server architecture [19].

 8

3.4 P2P cloud computing architecture

As shown in Figure 6 [26], the architecture includes three basic roles: User, Central Peer

and Side Peer. The Central Peer and Side Peer form two P2P networks, called central P2P

network and side P2P network, respectively. The central P2P network mainly maintains

metadata of dynamic mapreduce and backups DHT P2P storage cloud. The side P2P network

is mainly used to provide storage and computing resources.

C2C3

C1

Central
P2P

Network

P2P Cloud Architecture

Dynamic MapReduce

DHT P2P Storage
Cloud

Se
nd
 R
eq
ue
st

R
et
ur
n
R
es
ul
t

Upload/Download

Data

Send/Receive Computing

Result

Upload/Download Data

Side
P2P

Network

Figure 6: Cloud computing architecture based on P2P [26].

Service
node

Server

Normal
node

Figure 5: P2P MMOG architecture [20].

 9

Chapter 4

Proposed Hybrid P2P MMOG Cloud

Architecture

In this chapter, we propose a hybrid P2P cloud architecture for MMOGs which includes

two-level load management: (1) multi-threshold load management for each game server and

(2) load management among game servers. The components of the proposed architecture will

be described in section 4.1. Game servers in the game server cloud share information by P2P

manner. Section 4.2 introduces a game server cloud. In order to support this architecture, we

propose a multi-threshold load management procedure in section 4.3.

4.1 Proposed cloud architecture

MMOG environments require a high degree of flexibility to respond to environmental

changes, including load change. Thus, we combine cloud computing with MMOGs to

increase flexibility of resource allocation. Using virtualization technical on cloud could help

us get more security and scalability. The proposed cloud architecture includes four basic

components: game server cloud, players, character database and game regions data storage,

as shown in Figure 7. We introduce each component’s characteristics as follows:

 Game servers cloud – It consists a number of game servers and a game server has a

number of virtual machines (VMs) to serve players. A game server receives requests

from players, calculates new game states in regions, and responses to players. A game

server is also in charge of creating accounts for players when they login for the first time.

 Players – They move between game regions of a game world. The load of a game region

increases when players move into the game region.

 10

 Character database – It stores the data of players, such as equipment, rank, site, etc. It

also backups players’ data. The backup method is based on backup method of hadoop.

 Game regions data storage – It maintains game states in each region. It also backups

game states and object states in each game region.

4.2 Game servers cloud

In MMOG environments, there are huge messages, especially communication messages

between players. Game servers use a P2P protocol to exchange load information and game

region data. Game servers also use the P2P protocol to exchange the information of players.

By P2P flooding, each game server can know the other game servers’ load. When a game

server is overloaded, it will migrate some players to other game servers by the proposed game

server load management procedure.

Game servers cloud

C/S

Game regions

data storage

Character database

Hybrid P2P MMOG Cloud

Players

C/S
Master
server

Game
server

Database

Request

Response

P2P

Figure 7: Hybrid P2P MMOG cloud architecture.

 11

4.3 Multi-threshold load management

In the game servers cloud, we allocate VMs from game servers to service game regions.

Game regions do not setup on specific virtual machines. In this way, it could help the system

to get high scalability. We do not use a single master server in the game servers cloud, Game

servers communication is based on a P2P protocol. Game servers can exchange load

information by flooding in the P2P protocol. Game servers can perform load management by

themselves, and a game server is also in charge of creating accounts for players when they

login for the first time. This way can help resource allocation more efficient.

The multi-threshold load management focuses on VMs management. We use four

thresholds (T1, T2, T3, and T4) to define five loading layers (L1, L2, L3, L4, and L5) for each VM.

T1 is the lower bound of VM load. T2 and T3 define two preferred loading layers to service

players. T4 is the upper bound of VM load. As shown in Figure 8, each loading layer

represents a different load and status.

– L1 (Light): For a VMi operating in this layer, its players will be migrated to another

VMj serving the same region in L3, L2, or L4 (selection order). After the players in

VMi are migrated out, VMi will be released.

– L2 (Low): For a VMi with maximal load in this layer, it can provide capacity for a

VMj in L5 to migrate its players to this VMi.

– L3 (Medium): It is the optimal layer for VMs to stay.

– L4 (High): For a VMi operating in this layer, its loading is slightly high, but is

tolerable.

– L5 (Heavy): For a VMi operating in this layer, part of its players will be migrated to

another VMj serving the same region in L2, L3, or L1 (selection order) if there are

available VMs in these layers; If there are no VMs in these layers, the game server

load management will be executed.

 12

Figure 9 and Figure 10 show the flow chart of the multi-threshold load management

algorithm. The details of the multi-threshold load management algorithm are described in the

following.

1) We monitor the VMs in each game region and sort the VMs in each game region

according to their loadings in an ascending order.

2) If the VM in L5 is empty, go to step 7. Otherwise, go to step 3.

3) In this step, we know some VMs exist in L5. We check if there are VMs in L2. If

there are VMs in L2, we migrate VMi with maximal load in L5 to the VMj with

minimal load in L2, and then go to step 2. Otherwise, go to step 4.

4) We check if there are VMs in L3. If there are VMs in L3, we migrate VMi with

minimal load in L5 to the VMj with minimal load in L3, and then go to step 2.

Otherwise, go to step 5.

5) We check if there are VMs in L1. If there are VMs in L1, we migrate VMi with

minimal load in L5 to the VMj with minimal load in L1, and then go to step 2.

Otherwise, go to step 6.

L3 (Medium)

 L5 (Heavy)

L1 (Light)

L2 (Low)

L4 (High)
T4

T1

T2

T3

Figure 8: Multi-threshold load management.

 13

6) Executing the VM creating procedure to create a VM to share the load in this game

region.

7) In this step, we start to release VMs. Check if there is any VM in L1. If there is no

VM in L1, exit this procedure. Otherwise, go to step 8.

8) We check if there are VMs in L3. If there are VMs in L3, we migrate VMi with

minimal load in L1 to the VMj with minimal load in L3, release VMi, and then go to

step 7. Otherwise, go to step 9.

Migrate VMi with

maximal load in L5 to

VMj with minimal load

in L2

Sort the VMs in each

region according to their

loadings in ascending order

Is L5 empty?

Execute VM

creating procedure

Start

Is L2 empty?

No

No

Is L3 empty?

Migrate VMi with

minimal load in L5 to

VMj with minimal load

in L3

No

Yes

Yes

A

Yes

Is L1 empty?

Yes

No
Migrate VMi with

minimal load in L5 to

VMj with maximal load

in L1

Figure 9: Multi-threshold load management algorithm (1/2).

 14

9) We check if there are VMs in L2. If there are VMs in L2, we migrate VMi with

minimal load in L1 to the VMj with maximal load in L2, release VMi, and then go to

step 7. Otherwise, go to step 10.

10) We check if there are VMs in L4. If there are VMs in L4, we migrate VMi with

minimal load in L1 to the VMj with maximal load in L4, release VMi, and then go to

step 7. Otherwise, exit the procedure.

When a game region needs a new VM, the VM creating procedure is executed, as shown

in Figure 11. Firstly, the game server checks its resource. If it has enough resources, the game

server will create a new VM to service the game region. If not, the game server will turn

down the VM creating request. The game server executes the game server load management

procedure to transfer players to another game server.

A

Is L1 empty?

Is L3 empty?

Migrate VMi with

minimal load in L1 to

VMj with minimal load

in L3

Is L2 empty?

End

Migrate VMi with

maximal load in L1 to

VMj with minimal load

in L2

Yes

No

No

No

Yes

Yes

Release VMi

Is L4 empty?
No

Migrate VMi with

minimal load in L1 to

VMj with minimal load

in L4

Yes

Figure 10: Multi-threshold local load management algorithm (2/2).

 15

In the game server load management procedure, we mainly consider the physical

distance between players and game servers, because players need to be served with low

response time. As shown in Figure 12, firstly we find a neighboring game server who is

serving the same game region and has the lowest load. If not available, we select a

neighboring game server that is not serving the same game region and has the lowest load. If

not available, we select a distant game server that has capacity to service more players. The

selected game server will service the migrated players. Finally, if we could not find a game

server who has capacity to service more players, then it means all game servers are

overloading.

Start

Activate the VM

to service the

region

Does the game server have enough

resource to create a VM

Create a new VM

End

Turn down the VM

creating request

NoYes

Execute the game server

load management

procedure

Figure 11: VM creating procedure.

 16

Transfer some

players from calling

game server

 to this game server

End

Is there a game server

who has capacity to

service more players

Start

No

Yes Yes

Is there a neighboring

game server who is serving the

same game region and has he

capacity to service more

players

No

Yes

 Is there a neighboring

game server who is not

serving the same game region

and has the capacity to service

more players No

All game

servers are

overloading

Figure 12: Game server load management procedure.

 17

Chapter 5

Performance Evaluation

In this chapter, we first describe simulation setup and evaluation metrics. Then, we

evaluate the proposed hybrid P2P MMOG in terms of average response time, and average

deadline miss ratio.

5.1 Simulation setup and evaluation metrics

We use CloudSim [27] to simulate players’ behaviors by sending service requests to

game servers. Players’ requests were collected from Stendhal MMORPG using Wireshark.

The Stendhal MMORPG is running on Intel i7 2.93 GHz CPU with 512 MB RAM and 100

Mbps Ethernet. The average service time to serve a request is 0.2 ms. There are three game

servers and the upper bound of the response time is set to 300 ms according to [30]. Each

game server can create at most 40 VMs. The capability of a VM is 2000 MIPS with 1024 MB

RAM and 100 Mbps Ethernet (P3 capability). Each VM can support at most 59 players

(obtained from CloudSim). The total number of game regions is 30. In addition, a game

region is served by at least one VM, if there are players.

5.1.1 Average response time

The average response time is defined as the elapsed time between the time a player sends

a request to the time that a player actually receives the response, which is formulized as

follows:

 18

5.1.2 Average deadline miss ratio

The average deadline miss percentage ratio is defined as the response time being more

than a real time bound, and we set the real time bound to 300 ms according to [32], which is

formulized as follows:

where avgD = average deadline miss ratio

jRD = the total number of responses that miss the deadline in a game

server j

 jRT = the total number of responses in a game server j

 j = the jth
 game server

 m = total number of game servers

where avgT = average response time

iTR = the time interval for player to receive a response, and i is the i
th

request.

iTS = the time interval for player j to send a request, and i is the i
th

request.

 jn = the total number of requests for player j

 k = the kth
 round

 m = the total rounds of execution

 19

5.2 Comparison between multi-server architecture and

proposed hybrid P2P cloud architecture

Figure 13 shows the average response time of the multi-server architecture and proposed

hybrid P2P cloud architecture. The multi-server architecture has the lower response time

initially because a regional server’s capacity is higher than a VM’s. When the number of

players increases to 3490, the multi-server architecture has higher response time. This is

because its regional servers serve specific game regions. As a result, players are queued up for

a specific regional server. In our architecture, each VM has lower capacity, but our

architecture has higher scalability. VMs can be migrated to a busy game region and the

response time of players can be reduced. Because of this, our architecture performs better

after the number of players exceeding 3490.

Figure 14 shows the deadline miss ratio between the multi-server architecture and

proposed hybrid P2P cloud architecture. In the multi-server architecture, it has the lower

deadline miss ratio under lower number of players. It shows that with enough resources in the

multi-server architecture, the multi-server architecture can have good performance. The

proposed architecture has a smaller deadline miss ratio under medium to high load than the

multi-server architecture.

Figure 15 shows the average response time of the proposed hybrid P2P cloud

architecture under different thresholds settings. We set different thresholds to T1, T2, T3 and T4.

Before the number of players reaches 6400, the 0.2-0.3-0.7-0.8 setting has lower average

response time. This is become that new VMs are created to service players under lower load

(0.8). After the number of players is over 6400, the average response time for this setting

becomes higher than that of the other setting. Because VMs are activated early to service

game regions, there may be no VM to service really hotspot game regions later.

 20

Figure 13: Average response time between multi-server and proposed hybrid P2P cloud

architecture.

0

100

200

300

400

500

600

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

A
v

er
a

g
e

 r
es

p
o

n
se

 t
im

e
(m

s)

Number of players

Multi-server Hybrid P2P cloud (proposed)

0

0.1

0.2

0.3

0.4

0.5

0.6

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

D
ea

d
li

n
e

m
is

s
ra

ti
o

(%
)

Number of players

Multi-server Hybrid P2P cloud (proposed)

Figure 14: Deadline miss ratio between multi-server and proposed hybrid P2P cloud

architecture.

0

0.1

0.2

0.3

0.4

0.5

0.6

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

D
ea

d
li

n
e

m
is

s
ra

ti
o

(%
)

Number of players

Multi-server Hybrid P2P cloud (proposed)

 21

Figure 15: Average response time under different thresholds of load for the proposed

architecture.

100
130
160
190
220
250
280
310
340
370
400
430
460

800 1600 2400 3200 4000 4800 5600 6400 7200 8000

A
v

er
a

g
e

 r
es

p
o

n
se

 t
im

e

(m
s)

Number of players0.1-0.2-0.8-0.9 0.2-0.3-0.7-0.8

 22

Chapter 6

Conclusion

6.1 Concluding remarks

In this paper, we propose a hybrid P2P cloud architecture which includes multi-threshold

load management and game server load management for MMOG cloud environments. The

multi-threshold load management can make the utilization of virtual machines more efficient.

The game server load management transfers some players from an overloaded game server to

a neighbor game server with available capacity. The proposed hybrid P2P cloud architecture

can support 10.31% more players under no deadline (300 ms) miss compared to the

multi-server architecture. The proposed hybrid P2P cloud architecture can reduce the average

response time by 20.6% compared to the multi-server architecture under medium to high load

through flexible allocation of resources (virtual machines). The proposed architecture also has

a 27.9% smaller deadline miss ratio than the multi-server architecture under medium to high

load.

6.2 Future work

We may apply the proposed hybrid P2P cloud architecture to multi-game environments

for flexible allocation of resources. We will integrate an efficient load prediction scheme with

the proposed hybrid P2P cloud architecture to achieve more efficient allocation of resources

so as to further reduce the deadline miss ratio and average response time.

 23

Bibliography

[1] G. Dolbier and A. Goldschmidt, “The business of interactive entertainment,” in

Proceedings of the IBM Digital Media Solutions, May 2006.

[2] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game server system,”

Technical Report the University of Michigan, May 2001.

[3] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand platform for online

games,” IBM Systems Journal, vol. 45, no. 1, pp. 7–20, 2006.

[4] B. Hack, M. Morhaime, J.-F. Grollemund, and N. Bradford, “Introduction to vivendi

games,” [Online] Available: http://www.vivendi.com/, Jun 2006.

[5] S. Sukhyun, et al., "Blue Eyes: Scalable and reliable system management for cloud

computing," in Proceedings of the IEEE International Symposium on Parallel &

Distributed Processing, pp. 1-8, 2009.

[6] C.Majewski, C. Griwodz, and P. Halvorsen, “Translating latency requirements into

resource requirements for game traffic,” in Proceedings of the International Network, pp.

113-120, 2006.

[7] J. Slegers, I. Mitrani, and N. Thomas, "Evaluating the optimal server allocation policy for

clusters with on/off sources," the Performance Evaluation, vol. 66, pp. 453-467, 2009.

[8] R. Stanojevic and R. Shorten, "Load balancing vs. distributed rate limiting: an unifying

framework for cloud control," in Proceedings of the IEEE International Conference on

Communications, pp. 1-6, 2009.

[9] W. Streitberger and T. Eymann, "A simulation of an economic, self-organising resource

allocation approach for application layer networks," the Computer Networks, vol. 53, pp.

1760-1770, 2009.

 24

[10] Y. Lai and S. ZhongZhi, "An efficient data mining framework on Hadoop using Java

persistence API," in Proceedings of the IEEE 10th International Conference on Computer

and Information Technology, pp. 203-209, 2010.

[11] Z. Liang-Jie and Z. Qun, "CCOA: Cloud Computing Open Architecture," in Proceedings

of the IEEE International Conference on Web Services, pp. 607-616, 2009.

[12] V. Nae, A. Iosup, and R. Prodan, "Dynamic resource provisioning in massively

multiplayer online games," IEEE Transactions on Parallel and Distributed Systems, vol.

PP, pp. 1-1, 2010.

[13] Torque MMO Kit - Server Architecture

http://www.mmoworkshop.com/trac/mom/wiki/ServerArchitecture

[14] A. E. Rhalibi and M. Merabti, "Interest management and scalability issues in P2P

MMOG," in Proceedings of the Consumer Communications and Networking Conference,

pp. 1188-1192, 2006.

[15] X.-B. Shi, D. Yang, L. Du, and Z.-W. Wang, "Research on service management

techniques for P2P MMOG," in Proceedings of the International Conference on Internet

Technology and Applications, pp. 1-4, 2010.

[16] C. Yang, W. Tianyu, and L. Jianxin, "An efficient resource management system for

on-line virtual cluster provision," in Proceedings of the IEEE International Conference on

Cloud Computing, pp. 72-79, 2009.

[17] G. Zhenhuan, P. Ramaswamy, G. Xiaohui, and M. Xiaosong, "SigLM: signature-driven

load management for cloud computing infrastructures," in Proceedings of the 17th

International Workshop on Quality of Service, pp. 1-9, 2009.

[18] K. Il Kon, Z. Pervez, A. M. Khattak, and L. Sungyoung, "Chord based identity

management for e-healthcare cloud applications," in Proceedings of the 2010 10th

IEEE/IPSJ International Symposium on Applications and the Internet, pp. 391-394, 2010.

 25

[19] H. Chen and C. Cao, "Research and application of distributed OSGi for cloud

computing," in Proceedings of the 2010 International Conference on Computational

Intelligence and Software Engineering, pp. 1-5, 2010.

[20] P. Zhao, T.-l. Huang, C.-x. Liu, and X. Wang, "Research of P2P architecture based on

cloud computing," in Proceedings of the International Conference on Intelligent

Computing and Integrated Systems, pp. 652-655, 2010.

[21] C. Carter, A. E. Rhalibi, M. Merabti, and A. T. Bendiab, "Hybrid client-server,

peer-to-peer framework for MMOG," in Proceedings of IEEE International Conference

on Multimedia and Expo, pp. 1558-1563, 2010.

[22] V. Nae, R. Prodan, and T. Fahringer, "Cost-efficient hosting and load balancing of

Massively Multiplayer Online Games," in Proceedings of the IEEE/ACM International

Conference on Grid Computing, pp. 9-16, 2010.

[23] Q. Zhaoyang and W. Yanguang, "The design of the substation simulation model of

distributed virtual environment," in Proceedings of the Second International Symposium

on Computational Intelligence and Design, pp. 249-252, 2009.

[24] Su Min Jang and Jae Soo Yoo, “An efficient Load balancing mechanism in distributed

virtual environments,” the ETRI Journal, Vol.30, NO.4, PP.618-620, 2008.

[25] B. Hariri, S. Shirmohammadi, and M. R. Pakravan, "A distributed topology control

algorithm for P2P based simulations," in Proceedings of the Distributed Simulation and

Real-Time Applications, IEEE International Symposium, pp. 68-71, 2007.

[26] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer, "Efficient

management of data center resources for Massively Multiplayer Online Games," in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1-12, 2008.

[27] CloudSim: A Framework For Modeling And Simulation Of Cloud Computing

Infrastructures And Services http://www.buyya.com/gridbus/cloudsim/

http://www.buyya.com/gridbus/cloudsim/
http://www.buyya.com/gridbus/cloudsim/

 26

[28] E. Cronin, B. Filstrup, A.R. Kurc, and S. Jamin, “An efficient synchronization

mechanism for mirrored game architectures," in Proceedings of the 1st workshop on

Network and system support for games, pp.67-73, ACM Press, 2002.

[29] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game server system,"

University of Michigan Course Project Report, May 2001.

[30] M. Mauve, S. Fischer, and J. Widmer, “A generic proxy system for networked computer

games," in Proceedings of the 1st workshop on Network and system support for games,

pp.25-28, ACM Press, 2002.

[31] D. Bauer, S. Rooney, and P. Scotton, “Network infrastructure for massively distributed

games," in Proceedings of the 1st workshop on Network and system support for games,

pp.36-43, ACM Press, 2002.

