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摘 要 

過去以內容感知為依據的影像縮放技術皆依賴顯著性區域偵測找出人眼視覺上

重要的區域，並以此做為維持影像內容的重要度依據。然而，視覺上重要的區域

並不代表是最需要被精確維持的。在本篇論文，我們利用影像中重要的輪廓結構

來引導整個影像縮放的流程。首先，我們使用一個影像分割技術擷取影像中的重

要輪廓結構。接著用一個包含輪廓結構資訊的三角形網格來表示這張影像。我們

對這個網格做變形，基於以下幾個條件限制：用來維持曲線形狀的條件，平滑整

個網格變形變化的條件，以及一個處理三角形翻轉問題的條件。以上的限制條件

可以使用最小平方法快速求解。實驗結果證明我們的方法能產生合理的結果，且

能極佳的維持影像內部結構。 
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ABSTRACT

Previous content-aware image resizing methods typically account for a saliency map to

determine the visually importance of the content and uses the saliency value as a measure of

preservation strength. However, it is observed that a visually salient region does not imply

the region needs precise preservation. In this thesis, we use the global structure of an image,

which is composed of the strong edges of the image, to guide the resizing steps. A powerful

image segmentation scheme [1] is first employed to extract the global structure. The image

is represented as a triangular mesh that fits the global structure. We deform the mesh with

several constraints: curve constraints are used to preserve the shape of the curve, a smoothness

constraint is used to smooth the deformation, and a foldover constraint is used to prevent the

triangle foldover. The above constraints can be efficiently solved in the linear least-squares

sense, and the experiments show that our method can produce convincing results and maintain

the overall structure well.
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C H A P T E R 1

Introduction

With the rapidly development of scientific and technological progress, more and more digital en-

tertainment products are generated to fulfill different purposes and requirements of consumers.

For instance, tablet PCs and smartphones can be conveniently carried and receive information

from the Internet anywhere, anytime. To make it portable, the size of tablet PCs and smart-

phones has to be restricted. The screen resolution is also limited by the size of the products.

Therefore, how to fully utilize the resource of a small display device becomes a demand of

users. Users may want to display images on the panel with full screen to see them clearly.

Since different images and display panels have distinct resolutions and aspect ratios, it is hard

to match every image to fit the screen. Thus, the issue to adjust an image to different resolutions

and aspect ratios is an image retargeting problem, which also can be called an image resizing

problem. So methods to overcome this problem have been studied in the past years.

There are many methods to retarget an image, and one basic method is the homogeneous

scaling operator, which equally stretches the image. Another simple operator is a cropping

operator, which removes outer part of the image to fit the target size.

Due to the need to preserve the image content when resizing an image, content-aware image

1



1.1 Contributions 2

retargeting methods are developed. Two representative image retargeting approaches are seam

carving methods and image warping methods. Seam carving methods [2][3][4] typically reduce

the image size by removing least significant or least noticeable seams in the image. Image

warping methods [5][6][7] regard the image as a continuous 2D domain. They define several

energy functions to measure the error of distortion and wish to find an optimal mapping from

the original image to the target size.

In previous methods, the saliency map [8][9][10] plays an important role on preserving the

image content. Nevertheless, the visually salient regions detected by the saliency detection

methods [8][9][10] might not always need preserving. For example, in Figure 1.1, flames might

be the prominent region at first glance because of their bright colors. However, in the image

retargeting problem, flames are not really the most important regions that need preserving. On

the contrary, the global structure, such as the building, should have a better preservation. It

seems that, by preserving the overall shape of the image, the contents of the image will also be

preserved. Accordingly, we focus on the global image structure preservation in this thesis.

(a) (b) (c)

Figure 1.1: Saliency map. (a) Original Image. (b) Saliency map using histogram-based contrast

method [10]. (c) Resized Image using optimized scale-and-stretch method [7].

1.1 Contributions

The contributions of this thesis can be summarized as below:
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• A curve-based image resizing method to produce convincing results.

• A quadratic minimization problem to efficiently solve.

• An iterative algorithm to reduce the foldover triangles.

1.2 Outline

The remainder of this thesis is organized as follows: Chapter 2 gives a background review on

the image resizing problem. Chapter 3 illustrates the framework and details of our proposed

method. Chapter 4 shows the results of this method. Lastly, conclusion and future work are

discussed in Chapter 5.



C H A P T E R 2

Related Work

In this chapter, we briefly review the development of the image retargeting problem. For a

comprehensive review, it can be referred to [11] and [12].

A straightforward retargeting operator is the homogeneous scaling operator, which simply

stretches the image to fit the target size without considering the image content. When the aspect

ratio of an image is changed, the content of the image is distorted.

Another simple retargeting operator is the cropping operator, which crops the image into

target size by manually selection or by some predefined condition such as cropping on the

center of image. The content of the cropped image is not stretched by using this operator.

However, some contents might be removed in order to satisfy the target image size. Content-

aware cropping methods [13][14] are developed by combining the cropping operator with an

importance measurement to determine the optimal cropping. Nevertheless, it might fail while

there are multiple important objects distributed around the image boundary.

In recent years, many researchers start to work on content-aware image retargeting methods.

Previous works can be roughly divided into two categories [11], which are discrete and contin-

uous. A popular class of the discrete approaches is seam carving, which is first introduced by

4
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Avidan and Shamir [2]. The basic idea of the seam carving method is by removing (or inserting)

seams to decrease (or increase) the image size. Avidan and Shamir [2] find an optimal seam

which has minimum energy cost in the image. However, they do not consider the distortion

occurred by removing seams. Rubinstein et al. [3] improve the original seam carving method

[2] by introducing a forward energy. They aim at finding an optimal seam which makes least

distortion after removing it. Another algorithm, multi-operator [4], was brought up to enhance

the result of its previous work. It combines seam carving, cropping and scaling to determine

an optimal solution. Generally, the primary limitation of seam carving approaches is that they

cannot provide a continuous solution, and a discontinuity result might cause visual artifact. Be-

sides the seam carving approaches, there is another discrete approach, shift-map, done by Pritch

et al. [15]. Although their work can produce visually pleasing result, it might change the image

content, for example, removing some objects or rearranging the image content formulation.

On the other hand, continuous approach typically represents the image as a mesh, and then

it nonlinearly warp the mesh to a target size. Gal et al. [5] view the image as a large pixel

grid mesh. They aim at finding an optimal warping function to make the deformation of the

importance regions, which are specified by the user, to be as-rigid-as possible. Differ from the

method of Gal et al. [5], Wolf et al. [6] determine the saliency map automatically. In their

formulation, a pixel with high importance should retain the distance with its neighbor to be

close to one, while a pixel with less importance can be mapped closer to its neighbor. To put

it more simply, important regions should remain original size, and less important regions are

allowed to be stretched more. Both Gal et al. [5] and Wolf et al. [6] need to solve a sparse

linear system with large number of variables, which is proportional to the number of pixels.

The computational cost might arise when the image is large. Wang et al. [7] represent the

image as a quad mesh. They wish each quad to be deformed as a scaling transformation, and

the preservation depends on the importance of each quad. Also, they introduce a line bending

energy term to smooth the mesh. It might generate artifact when the straight lines in the image

are not detected as salient regions. Krhenbhl et al. [16] perform the retargeting process on per-

pixel level by incorporating the ability of GPU computing to achieve real-time performance.



6

Some approaches [17][18] take the image structure into consideration. Consequently, they

use a triangular mesh, which can better represent the curves of image structure, instead of a

quad mesh. Yanwen et al. [17] define each salient region as a salient object and preserve each

object with a scaling transformation. Moreover, they detect and preserve straight lines as-rigid-

as possible. But some important curves in the image might distort after deformation if those

curves are not in the salient regions and not straight lines. Huang et al. [18] analyze the image

structure, such as symmetry and parallel lines, and preserve the relation of the image structure.

Their focus is different with ours since they are concerned about some specific relations among

curves, for example, they wish the curves with rotational symmetry remain the relative relation,

and we consider the shape of curves itself.

All the above content-aware methods mentioned in this chapter rely on a saliency map to

have best preservation.
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Method

3.1 Overview

The saliency map is employed in most content-aware image resizing approaches to guide the

resizing framework. It is used to determine the visually important regions and preserve these

regions from the distortion aggravation. However, the visually salient regions are not equivalent

to the most needed regions to be preserved. For instance, flames in an image often attract human

attention, but they are not necessary to be preserved precisely. For this reason, we would like

to drop the concept of the saliency map. Instead, we focus on the image structure, which is

another possibility to guide this work.

We present an image resizing method which focuses on image structure preserving. First,

analyze the input image by employing the contour detection and image segmentation method

introduced by Arbelez et al. [1]. Then, we can obtain an Ultrametric Contour Map (UCM),

which is a gray-level image to describe significant weighted curves. Secondly, extract curves

from the gray-level image and use a polygonal fitting scheme to obtain approximate curves.

Furthermore, triangulate the whole image as a triangular mesh which includes the curves we

7
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(a) Original Image (b) Image Analysis

(c) Polygonal Fitting (d) Triangulation

(e) Resized Image (f) Resized Mesh

Figure 3.1: Method Overview.
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extract. We define several energy functions to control the deformation of the triangular mesh.

Finally, by minimizing the energy functions, we can obtain the final resized mesh. And the

resized image can be obtained by simply rendering the mesh with the standard texture mapping

technique. The following sections describe each part in detail, and an overview of our method

is illustrated in Figure 3.1.

3.1.1 Basic Notation

An input image can be represented as a 2D triangular mesh G = (V,E, F ), with vertices V ,

edges E and triangles F , where V = {vi = (xi, yi) ∈ R2|i ∈ {1, . . . , nv}}.

In the image analysis phase, we extract a set of curves C = {Ci ⊂ E|i ∈ {1, . . . , nC}}

where each curve Ci contains a set of curve edges and has its own importance weight λi.

In the image resizing framework, the objective is to find an optimal warping from a m × n

image to a new size with m′ × n′ , that is, we wish to find a target mesh with a set of deformed

vertices V ′ = {v′i = (x
′
i, y

′
i) ∈ R2|i ∈ {1, . . . , nv}}. We denote V

′ as a large vector that is

composed of all the elements of V ′ .

For the requirement of the global curve constraint, we denote S = {si|i ∈ {1, . . . , nC}} as

a set of the common scale factor for each curve. S is a large vector that consists all the elements

of S. And we combine V
′ and S as W′

=

V
′

S

.

3.2 Image Analysis

In our image resizing framework, it requires to extract the image structures first, and edge

detection and image segmentation are still challenge problems. The simplest edge detection

methods are known as gradient operators such as Roberts operator [19], Sobel operator [20]

and so on. However, the information of edges derived from those gradient operators is local

and only considers the color changes of the neighborhood of pixel. Furthermore, most edge

detection methods cannot produce closed curves, it will possibly cause the deformed results to
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(a) (b) (c)

Figure 3.2: Contour detection and image segmentation method proposed by Arbelez et al.

[1]. (a) Original Image. (b) Maximal response of contour detector gPb over orientations. (c)

Weighted contours resulting from the Oriented Watershed Transform - Ultrametric Contour

Map (OWT-UCM) algorithm using gPb as input.

be not well preserved. That is because the shape of objects on the image is often composed of

closed curve. Accordingly, we look for a suitable image segmentation method, which produces

closed region boundaries.

In our framework, we employ a contour detection and image segmentation method intro-

duced by Arbelez et al. [1]. The primary reason using this method is that it considers both

local and global information, and the resulting curves have distinct weights. This method con-

siders the oriented gradient operator which measures the color difference around a large block

(for example, 10 × 10 circular block) of every pixel with an orientation. Also, it introduces

the concept of multiscale and captures both local and global change of the color. Moreover, it

applies a globalization method based on spectral clustering to refine the result. Finally, they use

a modified image segmentation scheme, that is called Oriented Watershed Transform (OWT),

to produce the final Ultrametric Contour Map (UCM). An example of their work can be seen in

Figure 3.2.
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3.3 Triangulation

We generate a mesh to represent the image after analyzing its structure. To better preserve the

curves on the image when resizing, it requires to make sample vertices on the curves. In this

paragraph the three steps to obtain a triangular mesh are discussed in particular. First, we extract

weighted curves from the UCM. Second, we sample on the curves and image boundary. Third,

we use a Delaunay Triangulator to obtain the triangular mesh.

3.3.1 Weak Curves Removing

Before extracting the curves on the UCM, it is necessary to remove weak edges first. We define

a threshold to remove the curves whose weights are less than the threshold. If the threshold

is too large, the image structure becomes too coarse. On the contrary, if the threshold is too

small, it will retain too much unnecessary detail. In our experiment, setting the value to 20 is

sufficient. (Weight ranges from 0 to 255.)

3.3.2 Curve Extraction

Since the UCM is a gray-level image which represents the weighted curves, it is necessary to

extract the curves from the UCM. To get a preliminary understanding of extracting curves, some

properties should be introduced. These are pixels in the UCM are 4-adjacency, all pixels on a

curve have the same weight, and each curve is one-pixel wide.

To exract a curve, a nonzero weight start point is selected and all connected neighboring

pixels which have a same weight are traced recursively. In this extracting process, the order of

traced pixels are recorded as the sequence of the curve. By examining every pixel in the UCM,

all curves can be extracted.
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(a) (b) (c)

Figure 3.3: Curve sampling. (a) Original curve. (b) Uniform sampling. (c) Polygonal fitting.

3.3.3 Curve Sampling

In order to preserve the image curve structure, we sample on the curves by a simple polygonal

approximation mechanism [21] instead of uniform sampling.

Figure 3.3 shows the sampling results using two different schemes, and the points in the fig-

ure represent pixels. Specifically, red points represent the sample points and blue lines represent

the approximate curves in Figure 3.3 (b) and (c). The original pixels and their linking order are

shown in Figure 3.3 (a), and the result of uniform sampling and polygonal approximation are

individually presented in Figure 3.3 (b) and (c).

It is observed that uniform sampling could not properly preserve the edge corner, but polyg-

onal fitting method captures more curve details and better fits the original curve.

Given an ordered sequence of pixels {p1, p2, ..., pn}, the first and the last pixels on the se-

quence can be defined as two initial points pA and pB, which are used to represent the initial

approximate curve, that is line pApB. For remaining pixels, we compute the distance to line

(a) (b) (c) (d)

Figure 3.4: Polygonal fitting illustration of an open curve.
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pApB, and select the farthest pixel as a new point pC . Then, two line segments pApC and pCpB

are acquired. That is, the curve is approximated as line segment pApC and line segment pCpB.

We iteratively refine the approximate curve by picking a new farthest point of each line seg-

ment until all the distance of pixels are less than the threshold. After fitting the curve, we pick

the points which are used to represent the approximate curve as sample points. If the distance

between two adjacent sample points exceeds the sampling threshold, we then uniformly sample

on the line segment. An example of polygonal fitting of an open curve is shown in Figure 3.4.

For a closed curve, we first determine two farthest points as split points, and then we divide

the closed curve into two open curves. In detail, the sequence of a closed curve, which can be

viewed as a circular sequence, is split into two parts by the two split points. As a result, the two

split sequences become two open curves, and the resting steps are the same as open curves.

3.3.4 Delaunay Triangulation

Many image resizing works use quad mesh to deform the image. Yet, using quad mesh cannot

fully control the image curve shapes since the curves on the image cannot be represented pre-

cisely by the vertices on a quad mesh. Consequently, we determine to use a triangular mesh in

our approach.

(a) (b)

Figure 3.5: Triangulation. (a) Before triangulation. (b) After triangulation.
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Given a set of curve edges, we apply a constrained conforming Delaunay triangulation [22]

to generate a triangular mesh which includes the curve edges. A constrained conforming Delau-

nay triangulation is a triangulation which should contain a given set of vertices and segments,

and it can add additional vertices to meet the constraints we set. To achieve better warping

result, it should uniformly distribute the vertices on the image. Instead of uniformly sampling

on the image before triangulation, there is an alternative way to achieve the requirement. The

Delaunay triangulator has an option to restrict the maximum area of a triangle. Setting the area

constraint can achieve the requirement. An example can be seen in Figure 3.5.

3.4 Energy Function Formulation

In this section, we introduce several constraints to control the triangular mesh. The primary

constraint in our framework is the curve structure constraint, which is used to preserve the

image structure. Deformation smoothness constraint is used to control and smooth the mesh.

The details are presented in following subsections.

3.4.1 Curve Structure Preservation

Our goal is to preserve the global structure of the image. One possibility is to preserve the

similarity of the shape of each object separately. However, it is hard to recognize all the objects

on the image, since object recognition is still a challenge task for the field of computer vision.

Therefore, we formulate this problem as a curve preservation.

Local Preservation

To maintain the shape of the image structure, we locally preserve each two adjacent curve edges,

which can be called as an edge pair. The relation of each edge pair is desire to be maintained.

More precisely, the shape of each edge pair should be preserved as similar as possible. Besides

that, the curves are expected to have no rotation. Thus, we can define the desired deformation
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of an edge pair to include uniform scaling and translation only.

To simplify the illustration, we denote the three vertices of edge pair i as vi−1, vi and

vi+1 ∈ V , respectively. In addition, we express the vertices using homogeneous coordinate,

and then the translation portion can be incorporated into the deformation matrix.

To preserve the shape of curves locally, we wish to minimize this energy function:

min
Zi,vi−1,vi,vi+1

{‖Zivi−1 − v
′

i−1‖2 + ‖Zivi − v
′

i‖2 + ‖Zivi+1 − v
′

i+1‖2}, (3.1)

where Zi is a scaling transformation matrix includes a translation portion, ans its format is:

Zi =


ri 0 txi

0 ri tyi

0 0 1

 .

Minimizing Equation 3.1 makes the deformation of the edge pair be as similar as a scaling

transformation matrix Zi.

Equation 3.1 can be reformulated as follow:

min
zi,ui

Hi = min
zi,ui

‖Cizi − ui‖2, (3.2)

where Ci contains the coordinates of undeformed vertices vi−1, vi and vi+1, zi contains the

unknown elements of Zi, and ui contains the coordinates of deformed vertices v
′
i−1, v′i and

v
′
i+1.

Ci =



xi−1 1 0

yi−1 0 1

xi 1 0

yi 0 1

xi+1 1 0

yi+1 0 1


, zi =


ri

txi

tyi

 ,ui =



x
′
i−1

y
′
i−1

x
′
i

y
′
i

x
′
i+1

y
′
i+1


To minimize Equation 3.2, we make

∂Hi

∂zi
= 0, and the equation is obtained:
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zi = (CT
i Ci)

−1CT
i ui. (3.3)

We multiply Ci to both sides of the equation.

Cizi = Ci(C
T
i Ci)

−1CT
i ui. (3.4)

Since Cizi = ui, the left side of Equation 3.4 can be substituted, and the unknown vector

zi is eliminated.

ui = Ci(C
T
i Ci)

−1CT
i ui. (3.5)

Then, the equation can be rewritten as follow:

(Ci(C
T
i Ci)

−1CT
i − I)ui = 0. (3.6)

Since the remaining unknown of Equation 3.6 is the vector ui whose elements are simply

the elements of V′ , Equation 3.6 can be rewritten as a linear combination of V′ .

Ec(ui) = ‖GiV
′‖2. (3.7)

The energy functions of all edge pairs can merge into a single energy function with different

weights which describe the importance of the curve edges.

Ec =
∑

βiEc(ui) (3.8)

The weight of edge pair i is given by:

βi =

 2liσi if it is a straight line

liσi otherwise
(3.9)

where li is the total length of the two edges and σi is the minimum weight of the two edges.

Since straight lines are the important structure in the image, we give those relation a larger

weight to preserve it better.
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Global Preservation

A local shape preservation allows different edges on a curve have distinct scale. Nevertheless,

we would like all edges on the same curve have same scale. Thus, it should add a global

preservation. Here, we want to control the scale of curves. We add a common scale factor

si ∈ S for each curve Ci. That is to say, each curve should have same scale. To accomplish the

goal, we formulate the equation:

Eg(W
′
) =

∑
Ci∈C

∑
(j,k)∈Ci

λi
‖vj − vk‖

‖si(vj − vk)− (v
′

j − v
′

k)‖2, (3.10)

where si is the scale factor of curve i.

Using this constraint, it can preserve the scale of each curve and the direction of each curve

edge.

3.4.2 Deformation Smoothness Preservation

Besides the curve preservation, we introduce a deformation smoothness constraint to prevent

the deformation between adjacent triangles changing rapidly.

Before introducing the smoothness constraint, we illustrate the derivation of an affine matrix

of a triangle first. For a triangle, its deformation can be represented as an affine transformation

matrix Ma. We denote vi and v
′
i, i ∈ {α, β, γ}, to be the undeformed and deformed vertices of

the triangle, respectively. Then, the relations between undeformed and deformed vertices are as

follows:

Mavα + d = v
′

α, (3.11)

Mavβ + d = v
′

β, (3.12)

Mavγ + d = v
′

γ, (3.13)

where d is a translation vector.
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By subtracting Equation 3.13 into Equation 3.11 and Equation 3.12 and combining the two

equations, it can be rewritten in a matrix form:

MaP = P
′
, (3.14)

where P =
(
(vα − vγ) (vβ − vγ)

)
and P

′
=
(
(v
′
α − v

′
γ) (v

′

β − v
′
γ)
)

.

Then, Ma can be obtained by multiplying P−1 into Equation 3.14:

Ma = P
′
P−1. (3.15)

Since P
′ can be represented as a linear combination of V′ and P is known, Ma can also be

represented as a linear combination of V′ .

We define a deformation smoothness term, which is called Es(V
′
).

Es(V
′
) =

|F |∑
i=1

∑
j∈adj(i)

αij‖Ti(V
′
)−Tj(V

′
)‖2, (3.16)

where αij =
(αi + αj)

2
is the average area of triangle i and triangle j, adj(i) represents the set

of adjacent triangles of triangle i, and Ti denotes the affine transformation of triangle i.

The energy term is minimized when the change of deformation is smooth.

3.4.3 Boundary Constraint

The image boundary should be fixed on the boundary. Therefore, it should make a hard con-

straint to fix the absolute position of the boundary vertices.

x
′

i =

 0, for vi ∈ Vleft
m
′
, for vi ∈ Vright

(3.17)

, where Vleft and Vright are the set of left and right boundary vertices respectively.

y
′

i =

 0, for vi ∈ Vbottom
n
′
, for vi ∈ Vtop

(3.18)
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, where Vbottom and Vtop are the set of bottom and top boundary vertices respectively.

Equation 3.17 and 3.18 can be done by substituting the value to the linear system. However,

to make it simple to implement, the two equations can be rewritten as a soft constraint with

large weights:

Eb(V
′
) =

∑
vi∈Vleft

‖x′i − 0‖2 +
∑

vi∈Vright

‖x′i −m
′‖2 +

∑
vi∈Vbottom

‖y′i − 0‖2 +
∑

vi∈Vtop

‖y′i − n
′‖2

(3.19)

If the weight of this constraint is large enough, then the solution of those boundary vertices

will be very close to the boundary.

3.4.4 Total Energy Function

The total energy function of this work can be simply combined as the weighted sum of the four

energy functions described previously.

E(W
′
) = wcEc(W

′
) + wgEg(W

′
) + wsEs(W

′
) + wbEb(W

′
), (3.20)

where wc, wg, ws and wb are weights.

The above equation can be viewed as a linear function of W′ since V
′ is a subset of W′ ,

and it can be represented in the matrix form:

E(W
′
) = ‖QW

′ − b‖2, (3.21)

where Q is a large sparse matrix.

3.5 Optimization and Foldover Prevention

Minimizing the objective function of Equation 3.21 can be viewed as a linear least-squares

problem because it is a quadratic function of x. Then we solve this problem using conjugate

gradient method.



3.5 Optimization and Foldover Prevention 20

We observed that the deformed mesh we obtained might have foldover problem, which is

common to see in most warping methods. Since the strength of structure preservation in each

region is distinct, this situation occurred seems reasonable. If there are foldover triangles on the

deformed mesh, the result obviously has visible distortion since it causes discontinuity in the

mesh.

To deal with this problem, we detect on the deformed mesh and record the foldover triangles.

Then we add constraints on those triangles to prevent the foldover triangles.

Given an original mesh and a deformed mesh, the deformation matrix of each triangle on the

mesh can be easily determined by solving Equation 3.15 on each triangle. Because the deforma-

tion matrix of a triangle is an affine matrix, it can be factored into a rotation part and a scale part

using polar decomposition. There are several ways to compute a polar decomposition. One way

is to use the results of Singular Value Decomposition (SVD). However, using SVD to compute

a polar decomposition is expensive. An alternative way is solved by a Newton algorithm [23].

What is more, there is a relatively simple 2D approximation of polar decomposition [24]. The

rotation part R of an affine matrix Ma can be computed as follow:

Given an affine matrix

Ma =

a b

c d

 .

Then, the rotation part

R = Ma + sign(det(Ma))

 d −c

−b a


scaled by a factor that makes column unit vectors.

When the rotation matrix is extracted, the scale part can be easily determined as S =

MaR
−1.

It should be noted that the extraction of rotation part might include a reflection. If the

rotation part is not a pure rotation, the reflection should be extracted. To detect the reflection,

just check the diagonal elements of the rotation matrix since the rotation matrix is in the form(
a b
−b a

)
. Ideally, it should be the same sign of the diagonal since the two diagonal elements
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(a) (b)

(c) (d)

Figure 3.6: An example of foldover. Green triangles represent foldover triangles. (a) Resized

image with foldover. (b) Resized mesh with foldover. (c) Resized image without foldover. (b)

Resized mesh without foldover.
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should be equal. If one diagonal element is positive and the other one is negative, it means the

rotation matrix includes a reflection. Then we extract it and multiply it to the scaling matrix.

By observing the elements in the scaling matrix, it can determine whether the triangle is

flipped and determine the flipping direction. If the first diagonal element is negative, it means

the triangle flips in x-direction. Likewise, flipping in y-direction can be observed in the second

diagonal element.

To encourage foldover triangles not to flip, a desired transformation matrix Mdesire
i for each

flipping triangle i is defined. We wish the foldover triangles to be deformed as what we ex-

pected.

The desired transformation matrix Mdesire
i of triangle i can be determined by modifying the

original transformation matrix Mi. The matrix Mi has been divided into a rotation matrix Ri

and a scaling matrix Si. Flipping means the scale factor of x-axis or y-axis is negative. Thus,

to discourage the triangle flipping, it can be done by encouraging the scale factor of the triangle

to be a positive value. A threshold of scale factor ts can be defined by the user. When the scale

factor of x-axis or y-axis is negative, we modify it to be ts. Then Mdesire
i can be computed as

the product of rotation matrix Ri with the modified scaling matrix.

Some triangles might be extremely squeezed but no flipping. For those triangles, it is desir-

able to constrain their scale factors to be the threshold value ts. Thus, besides flipping triangles,

we also detect the over-squeezed triangles whose scale factors are less than ts and treat them as

foldover triangles.

Therefore, the energy function on the foldover triangles can be defined as:

Ef (V
′
) =

∑
i∈Tm

‖Mdesire
i −M

′

i‖2, (3.22)

where Tm is the set of foldover triangles, Mdesire
i is the expected transformation matrix of

triangle i and M
′
i is the actual transformation matrix of triangle i. The above energy function

measures the total error of the transformation matrix and the desired matrix of all foldover

triangles.

Since the foldover constraint is defined, the overall energy function in Equation 3.20 can be
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modified by including Ef :

E(W
′
) = wcEc(W

′
) + wgEg(W

′
) + wsEs(W

′
) + wbEb(W

′
) + wfEf (W

′
), (3.23)

where wc, wg, ws, wb and wf are weights.

Equation 3.23 can be expressed in matrix form:

E(W
′
) = ‖AW′ − b‖2. (3.24)

For the whole resizing process, we use a set Tm to record the triangles which need modi-

fying. Initially, the set is empty. Each time we resize the image, it detects the triangles which

should restrict the scale as ts and puts those triangles into the set Tm. Besides, for the triangles

which are already in the set Tm, it is required to check whether a triangle in Tm still needs

modifying. A way to detect these triangles is to check current scaling matrix of these triangles.

If the scale factors of both axis are greater than the scaling threshold ts, it means the triangle

desires larger scale than the scaling threshold ts but it is restricted to be near the threshold. In

other words, the foldover constraint on the triangle is no longer needed. Then the triangle is

removed from the set Tm.

Algorithm 1 summarizes the iterative optimization process of our resizing framework.



3.5 Optimization and Foldover Prevention 24

Algorithm 1 Resize Image

Input: x0: initial solution; m′: new width; n′: new height;

Output: optimal x∗

1: iter ⇐ 0

2: Set system matrix A

3: Set right-hand side matrix b

4: Solve Ax = b (Equation 3.24) using conjugate gradient method

5: xlast ⇐ x∗

6: Detect foldover triangles

7: while state of foldover triangles is changed ∨iter > itermax do

8: Reset system matrix A

9: Set right-hand side matrix b

10: Solve Ax = b (Equation 3.24) using conjugate gradient method

11: if xlast ' x∗ then

12: return x∗

13: end if

14: xlast ⇐ x∗

15: Detect foldover triangles

16: iter ⇐ iter + 1

17: end while

18: return x∗
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Results

In this chapter, we present the experiment results produced by our method and compare with

several state-of-art methods. Moreover, we make some discussions with this method.

4.1 Results and Comparisons

In our implementation, the procedure of our resizing system is separated into two stages be-

cause they run on different OS systems. The first stage is the image analysis stage, and the

program, which is provided by Arbelez et al. [1], is written in Matlab and builds on Linux

and Mac environments. The second stage is the image resizing stage and we implement it in

C/C++, OpenCV and OpenGL under Windows 7. We run each test image once for the image

segmentation and store the segmentation result, the UCM, as a gray-level image. In each time

to resize an image, we load the image and the UCM of the image as inputs.

All the experiments presented in this thesis are performed on a PC with Intel Core i5-760

Processor (8M Cache, 2.80 GHz), 4GB ram, and nVidia GeForce GTX 480 GPU. We demon-

strate total 22 different examples with distinct characteristics to show that our method is suitable

25
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for different situations. Also, to show the efficiency of our method, we record the computational

time of the examples used in this section. Here we use Figure 4.9 as an example. The source

image of this figure is a 1024 × 718 image, and the triangular mesh is composed of 2351 ver-

tices, 6966 edges, and 4616 triangles. If we resize this image by directly changing the image

from original width to three-quarters, the computational time is 0.120275 sec. If we gradually

reduce the image width one pixel wide until the width becomes three-quarters of the original

width, the average processing time is 0.012 sec. The difference of the above two different ways

to resize is the initial guess of the solver, which is discussed in detail in Subsection 4.2.2. From

this example, it can be seen that our method can efficiently resize an image.

The first 11 examples are presented in Figure 4.1 - 4.11 and our results are compared with

five state-of-art methods which are seam carving (SC) [3], multi-operator (MultiOp) [4], shift-

map (SM) [15], optimized scale-and-stretch (SNS) [7], and streaming video (SV) [16], respec-

tively. The results of the five methods in the 11 figures are provided from the benchmark dataset

[25]. By comparing with these methods, it shows that our method can work as good as these

methods or even produce better results in some cases. Figure 4.12 - 4.22 show the other 11

examples. We make comparisons with homogeneous scaling (SCL), seam carving (SC) [2],

shift-map (SM) [15] and optimized scale-and-stretch (SNS) [7]. We have implemented the

seam carving method [2]. For the shift-map [15] , the authors provide an online shift-map sys-

tem. Using this system, we can upload image and set some parameters to generate a resized

image. For the optimized scale-and-stretch method [7], the authors have released their binary

code.

For simplicity, in the 22 figures which show the comparison results, we use the abbreviation

to represent each method and the original image, and all the full name of the abbreviation are

listed in Table 4.1.

In these figures, we mark the most obvious artifact with a red rounded rectangle. It is clear

to see that, in most cases presented in this section, the seam carving method generates severe

artifact, and the most noticeable situation is that the shape of the prominent object in an image

is broken. For example, in Figure 4.1 (b), 4.5 (b), 4.9 (b), and 4.19 (c), the structure of the
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house, the man, the heart shape, and the circular arc gate encounter strong distortion. It is

because that the seam carving method reduces the image size by directly removing pixels in

the image. Although the method can be successful in some situations where the image contains

enough homogeneous area to be removed, e.g. the sky in Figure 4.14, in general cases, there are

usually no enough unnoticeable seams in an image, e.g. Figure 4.19. Suffering from the discrete

nature, the seam carving method might easily destroy the structure of an image. Conversely,

image warping methods, such as the optimized scale-and-stretch method, the streaming video

method, and our method, can provide a continuous and smooth solution.

Besides the seam carving method, we observed that in some cases the multi-operator method,

which is a combination of seam carving, cropping and scaling, mainly relies on the cropping

and the scaling operator because the error cost of using seam carving is high. Therefore, the

multi-operator method cannot fully apply its ability of the integration of operators. For exam-

ple, in Figure 4.4 (c), due to the irregular structure of the background, it is hard to find suitable

seams without breaking the structure. Thus, the multi-operator crops the image a little and

mainly scales the image to fit the target size. The fish is then squeezed by the scaling operator.

Conversely, image warping methods can non-uniformly deform the structure to ensure the shape

of the fish and squeeze other contents. Another example is shown in Figure 4.1 (c). It is hard to

use seam carving operator and cropping operator to reduce image size, thus, it results in simply

scaling. In contrast, our method can maintain the important structures of the house, the moun-

tain, and the fence, stretch the sky and magnify the tree to fulfill the target size requirement and

achieve more desirable result.

For the same example (Figure 4.1) mentioned above, shift-map also performs a good result.

It finds an optimal mapping of each pixel from target image to input image in the principle of

minimizing the color and gradient differences of adjacent pixels of the target image. In this

case, the method is successful because the grasslands, the sky, and the fence have low color

and gradient change, and then the pixels near the right-hand side of the house can easily find

seamless shift pixels to be their neighbors. Applying the shift-map method, the result looks

seamless thanks to the smoothness term defined in their multi-label problem. However, in our
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experience of using the online shift-map system, it needs adjusting parameters to produce a

visually acceptable result. The authors of the shift-map design four sets of parameters and run

the shift-map for each test image with the four parameters sets to obtain different results. The

final result is selected from the four results. In our experiments, we follow their suggestions

and perform the same test on each image to obtain resized results. In many cases presented in

this section, the shift-map does not produce satisfactory results, for example, in Figure 4.13 (d),

part of the body of the Woman in left side is removed. And our result can preserve the shape of

the Woman well. Another example is in Figure 4.3 (d), it is hard to produce an acceptable result

containing the whole face, thus, they choose the result which crops half of the face. Using our

method, the resized image is obtained by adjusting the curve of the face and the hair.

The comparison turns to the warping approach. The optimized scale-and-stretch method can

produce pleasing result, e.g. Figure 4.2 (e), 4.4 (e), 4.6 (e), and 4.9 (e). This method represents

the image as a quad mesh and deforms the mesh by constraining each quad with a uniform

scale. The preservation in a more salient quad should be stronger than in a less salient quad.

Although they might preserve salient object in an image, the less salient regions are stretched or

squeezed without considering the structure in those regions. In contrast, our method considers

the global structure even if it is in the less salient region. Therefore, the structure in the less

salient region can be preserved as well.

In all the examples presented in this section, the streaming video method can also produce

pleasing results. Their method considers the problem in pixel level, thus the result can be more

accuracy. But the common problem is as the same as the optimized scale-and-stretch method.

Both of them do not consider the global structure since they focus on preserving the aspect ratio

of salient regions. Generally, most methods mainly preserve salient regions, thus the less salient

regions will be distorted more. For instance, in Figure 4.15, all the other methods expect ours do

not preserve the shape of the moon because the moon is less important in the image. However,

our method can preserve the circle shape well because all the global shapes of the image are

detected and preserved.
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Abbreviation Full Name

Original Original image

SCL Homogeneous scaling

SC Seam carving method [2]

MultiOp Multi-operator [4]

SM Shift-map [15]

SNS Optimized scale-and-stretch method [7]

SV Streaming video method [16]

Ours Our method

Table 4.1: Abbreviation Table

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.1: Comparison with state-of-art methods. (Case 1)
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(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.2: Comparison with state-of-art methods. (Case 2)

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.3: Comparison with state-of-art methods. (Case 3)
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(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.4: Comparison with state-of-art methods. (Case 4)

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.5: Comparison with state-of-art methods. (Case 5)
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(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.6: Comparison with state-of-art methods. (Case 6)

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.7: Comparison with state-of-art methods. (Case 7)
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(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.8: Comparison with state-of-art methods. (Case 8)

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.9: Comparison with state-of-art methods. (Case 9)
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(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.10: Comparison with state-of-art methods. (Case 10)

(a) Original (b) SC (c) MultiOp

(d) SM (e) SNS (f) SV (g) Ours

Figure 4.11: Comparison with state-of-art methods. (Case 11)
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(a) Original (b) SCL (c) SC

(d) SM (e) SNS (f) Ours

Figure 4.12: Comparison with state-of-art methods. (Case 12)

(a) Original (b) SCL (c) SC

(d) SM (e) SNS (f) Ours

Figure 4.13: Comparison with state-of-art methods. (Case 13)
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(a) Original (b) SCL (c) SC

(d) SM (e) SNS (f) Ours

Figure 4.14: Comparison with state-of-art methods. (Case 14)

(a) Original (b) SCL (c) SC

(d) SM (e) SNS (f) Ours

Figure 4.15: Comparison with state-of-art methods. (Case 15)
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(a) Original (b) SCL (c) SC

(d) SM (e) SNS (f) Ours

Figure 4.16: Comparison with state-of-art methods. (Case 16)

(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.17: Comparison with state-of-art methods. (Case 17)
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(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.18: Comparison with state-of-art methods. (Case 18)

(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.19: Comparison with state-of-art methods. (Case 19)
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(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.20: Comparison with state-of-art methods. (Case 20)

(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.21: Comparison with state-of-art methods. (Case 21)
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(a) Original

(b) SCL (c) SC (d) SM (e) SNS (f) Ours

Figure 4.22: Comparison with state-of-art methods. (Case 22)

4.2 Discussions

4.2.1 Choice of Solver

There are many ways to solve a linear least-squares system. In the beginning, we attempt to

use a direct solver, which pre-factorizes the system matrix once and then it can solve quickly

by back-substitution. It is the best choice when the system matrix is fixed since the costly pre-

factorization step only needs doing once and the back-substitution is fast. However, we may

dynamically adjust the system matrix when the state of foldover triangle changes. It results in

frequently re-factorizing the system matrix, which is a cost step. Therefore, we use a conjugate

gradient method to solve the linear least-squares problem. There is no need to factorize the

system matrix when using conjugate gradient method. It best fulfills our requirement since we

need to frequently adjust the system matrix.
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4.2.2 Initial Guess

Solving by a conjugate gradient method requires to start with an initial guess. The choice of

the initial guess is important. If the initial guess is far from the final optimal solution, it may

need more iteration to approach the optimal solution. In other words, the convergence will be

slow. As a result, to converge quickly, it requires properly choose the initial guess. We have

two possible solutions of the initial guess depending on the situation.

When user resizes the image width/height gradually, the best choice of the initial guess is

the solution of last frame. Because the change of deformation is continuous, the results of the

two adjacent frames should be similar.

When user specifies a resized width or a resized height, there is no information of similar

resizing result. Therefore, the best choice of the initial guess is the solution of homogeneous

scaling.

4.2.3 Convergence Speed

In our resizing framework, it needs iteratively adjusting the system matrix and resolving the

over-determined linear system until there is no foldover triangle or the solution is unchanged

anymore. In our experiments, the average number of iterations is less than three. Also, the

solver we used is a conjugate gradient solver, which is an iterative solver. We also measured the

number of the iterations of the solver, and we observed that it typically converges in less than

one hundred iterations. Thus the resizing process can be efficient.

4.2.4 Parameters

In our implementation, all the parameters are fixed to test all the results showed in this chapter.

The weights of constraints, wc, wg, ws, wb and wf , are set as 1.5, 0.5, 1.0, 40.0 and 10.0,

respectively. In our experiment, we set the sampling threshold as 50, that is, the length of an

edge on a curve cannot exceed to 50. Also, in the triangulation step, we need to set a maximum
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area threshold. Here we set it to 1082.53, which is the area of the equilateral triangle whose

edge length is 50. Besides that, we also normalize the value of the area of every triangle by

dividing the value with the maximum area threshold. Then all the area values are between 0 to

1. The edge length is also normalized by dividing with the sampling threshold.

In the foldover triangle detection step, it needs specifying a scale factor threshold value ts,

and we set it to be 0.15.

4.2.5 Limitations

This contour detection part of our framework could be replaced by any other contour detection

or image segmentation methods. However, the resized result strongly depends on the perfor-

mance of the image analysis part since our focus is on the curve preserving. It is a speed-

accuracy trade-off on choosing an image analysis method. To have a more accuracy result, it

might need much time to process the image. Therefore, in our implementation, we take the

image analysis part as a pre-processing. However, the image segmentation method we used is

still failed in some cases. For example, in Figure 4.23, the straight line structure of the roof is

failed to detect, thus the resized result of that part is slightly distorted. To have a better resizing,

we are seeking a more robust segmentation method in the future.

(a) Original Image (b) the UCM (c) Resized Image

Figure 4.23: An example of failed segmentation.
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Conclusion

We have presented a method for content-aware image resizing using image structure preserving

scheme. In our framework, a triangular mesh is used to represent the image with the curve

structure and several constraints are defined to control the mesh deformation. We have used

a local shape constraint to locally maintain the curves of the image. To ensure all the edges

on a curve have the same scale, a global constraint is introduced to restrict the scale of curve.

Besides the shape control, the mesh smoothness is accomplished by making the deformation of

neighboring triangles to be similar. Lastly, for the foldover triangles appeared in the warping

process, we make new constraints on those triangles to prevent them flipping. The experiments

have shown that, using the proposed method, a convincing resized image can be efficiently

generated. According to the experiment results, we prove that our method can preserve the

prominent objects well without using a saliency map since the shape is capture and preserved.

However, there are still some limitations in our method. The primary limitation is that the

quality of our result is affected by the accuracy of the segmentation result. If an important

curve is not captured well, that part of the image might not be preserved as well. What is more,

the segmentation method we apply cannot immediately generate segmentation result, thus we
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separate this step and pre-process it in advance.

In the future, we would like to enhance our image resizing method from three directions.

The first direction is that our method can combine the cropping operator to obtain better results.

Secondly, a more reliable image segmentation method is desired to apply in our framework.

Lastly, some specific relations among curves, such as parallel lines and symmetry, can be taken

into consideration.
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