f

~1t [. \\\ ;((
5| V) A2 3 N

ZIRE TREMErn

"t X

B % E & L EKBEZIH L-UEHH A A

Origamic Architecture: Automatic Animal Paper Card from 3D Models

B OR O REH
FEEHIR B IR

FERBE — 8 KA

BE)EAEIRMBEZAT — UM AR

Origamic Architecture: Automatic Animal Paper Card from 3D Models

BEOROAECREM Student : Yi-Shan Tsai
F/EHIR A= Advisor : Prof. Zen-Chung Shih
1l 4 Prof. Der-lor Way

B o x @ K #
EAE N QR R A

2 &

A Thesis
Submitted'to Institute’of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Multimedia Engineering

June 2011

Hsinchu, Taiwan, Republic of China

FERE—BF5A

B %&£ LA MREZ R - DAE M AR

A REH B EHIR: Rl B
MAS MR
B 3L 2 BARE S W IR A K AT

'

HEEF R A —RRENNIETR cRMEAE AR BT E S BT
RBRRA G BHE BRI SRS B ey B > BB G N H 0 BRI R BRI F R
RERHIFFTEL - CREFEHERT R FEER RHMA REA BT R > #Ht
— R BAR B AR A RIS - mAEFEMEHL T > APAENFIr e a4
WM EFREFRBMEHR > EPEHFF LB ERXRAN T A HEHME 5 - AN
P ERET R A EF T LB EES BREEFEF TSR EmEGHAHE -

ARERSUEFI AR mANEMEARPEF OB ETWE > &
AHAETR LB E c ARERAN > AR THME TR E RETHRARL R
it B A BEF R 694 R MG 2R 0 B ABER R SR A -

Origamic Architecture: Automatic Animal Paper Card from

3D Models

Student: Y1 Shan Tsai Advisor: Prof. Zen-Chung Shih
Prof. Der-Lor Way

Institute of Multimedia Engineering
National Chiao-Tung/University

ABSTRACT

Origamic architecture is a paper,art which creates @ 3D reproduction by cut-out and
folding a single sheet of paper. However, designing origamic architecture is a challenging
work because of this special feature. In Chinese culture, people sends Chinese New Year’s
card to each other in the period of Chinese New Year, and Chinese zodiac animals are the
most common topics. It will be interesting if we integrate origamic architecture and animal
to paper card. In this paper, we propose a novel algorithm for helping users create an animal
paper card from a 3D model, and output a layout of origamic architecture. The algorithm
first do the 2D segmentation to the 3D model, and create layers of origamic architecture.
After putting layers onto layout, our algorithm creates connection between layers. Finally,
we check the stabilization of layers and merge un-stable layers and output the layout of

origamic architecture.

II

Acknowledgements

First of all, I would like to express my sincere gratitude to my advisors, Prof. Zen-Chung
Shih and Prof. Der-Lor Way for their guidance and patience. Without their encouragement, I
would not complete this thesis. Thanks also to all the members in Computer Graphics and
Virtual Reality Laboratory for their reinforcement and suggestion. I want to thank to all the
people who ever supported me during these days. Finally, I will sincerely dedicate this

thesis to my parents.

III

Contents

ABSTRACT (in ChiNESE) ceeeeeeeeraeeeeesasecesaseeessasscesssssesssssccssssccsssssccssnssans I
ABSTRACT (in ENglish) eecccesecsecsensncsancsensecssnssnesncssncsssssncssesssessessssssssssasssssssssssssece IT
ACKNOWLEDGEMENTScoiiiiiiinitinsniisnnsssnsssissssssssssssesssssssssssssssssasssse I
CONTENTS ..tiitiitinnnisnisssecssisssnsssisssessssssssssssssssssssssssssassssssssasssssssssssssssssassass v
LIST OF FIGUREScoutiitictictinninsnnisnicssnisssisssnssssiss v
LIST OF TABLESuuuiiiiiiiiitinsnnicnncstisssessssssssnsss VII
CHAPTER 1 INtroduction.........ccceeeneicsecssnnssnecssnncssncssnsssncsssnsssecsssssssssssssssssssssssssses 1
1.1 MOBIVATION.coooeeiiiieiiee ettt eaae e 1
1.2 SYSEEIM OVEFVIEW ...ccovueiieeeeiiieeeeiiee e eeitee et e et e e e siiree e s saraeesenns 2
CHAPTER 2 Related WOTKScccviiieiisicsseiisnensnncsnncsssisssncsssnsssncsssnssssssssssssssssssssses 4
2.1 Paper CTAftINGcooouveeieeiiiiiiieiie ettt eaee e 4
2.2 Paper ATCRITECTHUTTIGcccouvveeiieiiieieeiiiee ettt e e 5
2.3 Shape ADSTrACTION 0 e oeieinsteshade s Beneeeeeeeeeeeieeesveeesseeensseesnaaeeens 6
2.4 Non-Photorealistic Renderingc.. 5 u cceeeceeenceeenieeeniieeenneenns 6
CHAPTER 3 Background...... == Il b o WA\ < 7
3.1 Origamic ArCRUIE CHUTC i 5o 30l ciue e siamsn e e eveeeeveeeeveeseeseeennseeenens 7
3.2 Designing Process of Origamic ArchiteCtuleus...........cooocvveeeveeennnennns 8
CHAPTER 4 Layers Generation.......st..cssssssssssssssssassesceesssscssossesssascsssasessssssssssssssass 12
4.1 Shape Generation.i....a. ddeti e 14
4.2 Layers Generation 4 v semm s smsssoesio stenseessseeesseesssseessssesssssesssses 16
CHAPTER 5 Layout Generationecsiioniiieccssccsssscssssscssssssssssssssssssssssssssssssass 21
5.1 ANALYSIS Of CONNECTIONSc..evveeevieeiieeeieeeiiieeecieeeieeeeveeeevee e ens 22
5.2 Horizontal Connection Generationccceeeveeeeceeesceessiueesnnens 26
5.3 Vertical Connection Generationccueeeveeeeeeeeecueeesiueessiveennns 28
5.4 Layout RefiemMeENtccccuueeeeeiuiieieeiiieeeeiiieeeesieeeeeeiieeeseiieee e 31
CHAPTER 6 ReSUILScoueeiueiineiiiinnisnnnnnnsnisssnisnnsssessssisssnssssssssesssssssssssssssssassass 33
CHAPTER 7 Conclusion and Future WorkK...........eeicseissncieecssencsnnssnncssennans 40
REFERENCEuuuiiiiiitiintinnnicticnnnisssecsssisssnsssisssans 42

v

List of Figures

Figure 1.1: SYSteM OVEIVIEW.ccccuiiieiiieeiieeeiieeeieeeereeesteeesireeeseveeeereeesaeessneesssaeesnseeesnseens 3
Figure 2.1: : Results of architectures in automatic origamic architectures [20].................... 6
Figure 2.2: Result of non-architecture in automatic origamic architectures [20].................. 6

Figure 3.1: Origamic architectures creations of architectures worked by Masahiro

CRALANIL ..eeiteieeee ettt ettt sttt e 8
Figure 3.2: Origamic architectures creations of animals worked by Masahiro Chatani........ 8
Figure 3.3: Origamic architecture layout of kangaroo [S]......c.ccceeveeviieniieeeiieenieeeieeeene 10
Figure 3.4: A simple example of stable origamic architecture.ccoecveereveencveencreeennne. 11
Figure 4.1: The flowchart of layers generation...........c.cceccueeerieeerieeenieeeiiee e e eieeeevee e 13
Figure 4.2: Depth maps with different parameters o and f.cccceeecvveeiieeeiieencieeeeeene, 15
Figure 4.3: Results of Canny edge detection with different parameters h and 1.................. 15

Figure 4.4: Results of model segmentation with and without merging neighboring

segments. (a) Initial result of model-segmentation. (b) Refined result of

model segmentation‘by Merging SegmMentSud. .. cooueerueerueenienieeienieeeeseeeee 16
Figure 4.5: Example of origamic architecture with all layers stable.cccccoeeeinienien. 18
Figure 4.6: Coordinates of 3D origamic-architectire and 2D layout.............ccccceeuerneennen. 19
Figure4.7: Result of allocating layers according to model segmentation and its

corresponding depth MapP. . .cossssmssmummmmmnm oo & i eniieiieeieeieeeeeee e 20
Figure 5.1: The flowchart of layout generation. ... ol il i 22

Figure 5.2: A sketch illustrates thedocation of connection between L; and L;’s supporting
JAYET L vt e e 23
Figure 5.3: Examples for two major kinds of connections in origamic architecture [5]. 24
Figure 5.4: Scores of contour for horizontal connection and vertical connection of
Stanford bunny model...........cccueieiiiiiiiieeieee e 25
Figure 5.5: Generating process of an horizontal CONNECtiON.ccevveevieeririeenciieenieeennne 27
Figure 5.6: When target layer (gray) is broken by the connection, the connection will be
eroded horizontally to make the target layer continuous.cccceeeeeuveerneenne 28
Figure 5.7: Generating process of vertical CONNECION.ccccueeervieerieeniieeeiieeeieee e 29
Figure 5.8: The vertical connecting segment is splitted into three parts. Bottom to top:
source layer ensuring part (blue), connecting part (green), eroding part (red). 30
Figure 5.9: Generating process of vertical CONNECON.cccueeervieerieeeiieeeiieeeiiee e 30

Figure 6.1: (a) Original 3D model of example 1. (b) Result of segmentation. (c) Result of

Layout. (d) Result of origamic architecture.ccccevvveeriieerieeerieeeieeeiieene 34
Figure 6.2: Result Of Li [20].. ccuveeeiiieiiiieeiieeee ettt 34
Figure 6.3: The flowchart of layout generation.cccccueeevveeeriieenieeeiieeeeee e eevee e 35

\Y%

Figure 6.4: (a) Original 3D model of example 3. (b) Result of segmentation. (c) Result of
Layout. (d) Result of origamic architecture.ccceeevveerireerieeeriieeieeeieeene 36
Figure 6.5: (a) Original 3D model of example 4. (b) Result of segmentation. (c) Result of
Layout. (d) Result of origamic architecture.ccceevveerireerieeeriieeieeeiieens 37
Figure 6.6: (a) Original 3D model of example 5. (b) Result of segmentation. (c) Result of
Layout. (d) Result of origamic architecture.cceeevveeriieerieeenieeeieeeiieene 37
Figure 6.7: (a) 3D models of example 6. (c) Result of Layout. (d) Result of origamic
ATCRILECTUTE. ...eievviieeiiee ettt ettt e et e e et e e et e e estaeesnsaeesssaeesnseeesnsnaenns 38
Figure 6.8: Two origamic architecture of statue of liberty. (a) The result of our algorithm.
(b) The work designed by Masahiro Chatani.............ccceeeveeerieennieeenieeeieeeene, 39

VI

List of Tables

Table 4.1: Parameters in €dge deteCtion..cocueiviiriieiiiiiieeniieeiceteeeeteeee e

\ Teo6

VII

CHAPTER 1

Introduction

1.1 Motivation

Origamic architecture is a paper art which creates a pop-up card by cutting and folding
a single sheet of paper. While openingthe origami architecture, it’s amazing that a
two-dimensional pattern on the card gradually, transforms.to a three-dimensional object. In
Chinese culture, people sends,Chinese-New Year’s .card to.each other in the period of
Chinese New Year. The patterns shown on theChinese New Year’s card most are Chinese
zodiac animals. It will be interesting if we bind-origamic architecture with various patterns

of animals.

The two major topics of origamic architecture are architecture and creature. Unlike
architectures, creatures are organized by smooth curvatures. It’s crucial for origamic
architecture that how to express the shape of creatures with limited number of curvatures
and layers. In this thesis, we develop a system which transforms 3D animal models into 2D
layers, and put 2D layers onto origamic architecture, and finally generate the layout of
origamic architecture. By this system, people can easily design different kinds of origamic
architecture by 3D animal models, and having fun from the joyful results.

Our contributions are shown as follow:

1. The proposed algorithm for generating origamic architecture follows the generating

1

process of origamic architecture by artist.

2. The proposed algorithm for generating layers of origamic architecture according to
various features of input model.

3. The proposed method for generating connections between layers is suitable for
various shapes of layers.

4. We propose a clear and simple rule for examining the stability of origamic

architecture.

1.2 System Overview

Our system consists of three steps: -Sshape-generation, layers generation, layout

generation. Figure 1.1 shows théflow of-our proposed system.

First of all, the layers of‘origamic architecture are generated from a 3D model. The
system will do orthogonal projection, of the input model. which placed by user, and then
render the projected model by bi-level shading.'As a result, the rendered model will be
broken into pieces. Users can select pieces and merge them to form layers of origamic
architecture. After computing the depth of layers using depth map, positions of layers on the

layout are determined.

Then the system will construct connections between layers and form the layout of
origamic architecture. The system will find the contour which located between two layers
and analyze it. The result of analyzing will determine the type of connection between layers.
After locating the position of layers and connections on the layout, we should do refinement

to make the layout stable.

Finally, the system will refine the layout in order to make the origamic architecture
stable. During the refinement process, layers can be merged, and the layout can be
generated iteratively until the entire layout become stable.

After getting the layout, users can send their origamic architecture works to each other.

\ Orthogonal
projection
N
Shape
Generation Input Model
\ ==
Adding —
Connections il ~
:> > -
Layers Layout Origamic

. Generation ' Generation _ architecture
Refinements

Figure 1.1 System Overview.

CHAPTER 2
Related Works

In this chapter, we review some previous works. First we focus on paper crafting and
paper architecturing. Then we briefly survey the shape abstraction and non-photorealistic

rendering.

2.1 Paper Crafting

Paper crafting includes sewveral types of topics. The following are some major topics of

paper crafting.

Paper cutting 1s a Chinese traditional art which cuts out stylistic patterns by making
use the symmetry of patterns and paper overlapping. Xu [29] proposed a simple but efficient
algorithm for generating paper-cutting pattern automatically. Li [19] extends the
two-dimensional paper-cutting to three-dimensional paper-cuts, and generates animations

with paper-cuts in interactive way.

Origami is the art which crafts a model using paper folding without damaging the
paper. Hull [14] proposed a method for origami by using a piece of paper without using
cutting or gluing. For the past few years, the folding algorithms and foldability of paper has
been attracted extractive attention in the field of computer geometry [9]. Tachi [27]

introduced an algorithm for automatically generating arbitrary polyhedral surfaces. For
4

curved folding, which is much more restricted than conventional origami, Kilian [16]
proposed an algorithm for generating curved folding automatically based on the analysis of

developable surface.

Paper modeling is to model 3D models using developable patches or strips. Mitani [24]
proposed a method for modeling the surface of a model by strips. Other methods which use

mesh simplification on paper modeling are Garland [11], Cohen [7], and Wei [28].

2.2 Paper Architecturing

Previous work on pop-up crafting is mostly computer—aided environment for designing
pop-up crafts. Glassner [12] propesed a system which lets users design V-fold card
interactively. Matini [23] introdticed a computer-aided origamic architecturing system based
on the concept of CAD. Although this system €nsures) that the output planar layout is

foldable, it cannot ensure whether the output layoutis stable or not.

Algorithmic solutions for automatically generating pup-up crafting have arisen in
recent years. Li [20] proposed a system which automatically generates origamic architecture,
and ensured the layout can erect in stable manner. Some results are shown in Figure 2.1.
However, this method cannot work well for organic models which need to be retained
important features while generating origamic architecture, as shown in Figure 2.2. In our
work, we provide a method for generating non-architectural origamic architecture by

considering the characteristics of an input object.

Figure 2.2: Result of non-architecture in automatic origamic architectures [20]

2.3 Shape Abstraction

There are many methods {or“approximating, threesdimensional models. Lai [17]
proposed a method based on segmentation-of modelsurface and approximation of model by
simplified patches. Kalogerakis*[15] proposed -the method of ‘model segmentation based on
training fashion. Mehra [21] introduced an algotithm /for abstracting three-dimensional
models by characteristic curves, and reconstructing the abstracted model by these curves.
Eisemann [10] proposed a view-dependent method for converting 3D models into 2D layers.
Our model layering approach considers not only viewer’s direction but also lighting effect

on the model in order to make the origamic architecture looks stereo.

2.4 Non-Photorealistic Rendering

Non-photorealistic rendering is concerned about how to extract lines which can
illustrate the shape of objects. Hertzmann [13] proposed suggestive contour to illustrate the
shape of model with smooth surface. Except contours, ridge lines and valley lines [25] are

also the useful information to define object characteristics.

CHAPTER 3

Background

3.1 Origamic Architecture

In this section, we will introduce the development of origamic architecture and animal
works of origamic architecture.

The technique of paper-making is originated by Cai Lun(#:44%) in the late Eastern Han
Dynasty of China in 114 ADs~After paper spréad from China to Europe in the thirteenth
century, European artists began'to develop sculptures-of paper in the mid-eighteenth century.
Using the skills of cutting, crimping, folding, and gliing, the planar paper can turn into a

three-dimensional work.

Origamic architecture is developed by Masahiro Chatani in Japan. He began to develop
a brand new kind of pop-up card using techniques of origami, paper folding, and kirigami,
paper cutting, in 1980. There are several types of origamic architecture. The type introduced

in this thesis is the type of 90 degree-opened which doesn’t use the skill of gluing.

Figure 3.1: Origamic architectures creations of architectures worked by Masahiro
Chatani.

The topics of origamic architecture are extensive, ranging from geometric parallel
patterns or world famous buildings (shown as Figure 3.1) to animals and plants. Buildings

are mostly regular structured and with'clear layering. With these features, designing

origamic architecture of buildings 1 animals. However, the origamic

architectures creations of ani n.(N buildings. Figure 3.2 shows

the origamic architectures of a

Figure 3.2: Origamic architectures creations of animals worked by Masahiro Chatani.

3.2 Designing Process of Origamic Architecture

In this section, we observe the process of designing origamic architecture and illustrate

our concept of algorithm in constructing an origamic architecture.

Analyzing origamic architectures of Chatani [5], we summarize the following steps for
designing origamic architecture for animals:

1. Decide the depths of patterns.

2. Put patterns onto the layout according to their depths and form the layers.

3. Create connections between layers.

As Li [20] defined, two outer regions that meet at the central fold called backdrop and
ground. Li [20] first discussed the behavior of patches that parallel to backdrop and ground
in an origamic architecture, and then constructed origamic architecture by these patches to
approximate shape of input model under the rule of stability. In this way, for models which
are regular in shape and consist of straight-lines-or.planes which are mutually parallel to
each other such as architectures; the algorithm performs well. However, for models which
are consisted of smooth curves.and irregular surfaces; the algorithm of Li [20] will fail. For
Li[20] only approximating the shape: of“model by" two diréctions of patches under the
constraint of origamic architecture..Therefore, for models such as animals whose normal

direction are various on surface, the result of approximation will not be pleasant.

Therefore, we propose a concept of layers and connections. We define the patterns
parallel to backdrop as layers for illustrating features of models in shape, and the patterns
parallel to the ground as connections between layers. When users open the origamic
architecture by moving background and backdrop, the patterns will “pop-up” along the fold
lines. Figure 3.3 shows layout of origamic architecture. The yellow regions are called
backdrop, the blue regions are called gound. The red regions are layers, and green regions
are connections between two layers.

We illustrate the features of animals by layers which are parallel to backdrop, and

connect these layers for ensuring the stability of origamic architecture.
9

Figure 3.3: Origamic architecture layout of kangaroo [5].

In Li [20], the stability of origamic architecture is.defined on patches which may have
two directions. Therefore, the definition for stability will be complex and difficult to
understand. In this thesis, wesconcentrate on relationships between layers and ground or
backdrop, and we obtain a clearer and simpler rule for determine stability of layers as
follow:

1. If a layer has connection with both ground and backdrop, it is stable.
2. If a layer has connection with ground or backdrop, and having connection with a
stable layer, it is stable.

3. If alayer has no less than two connections with different stable layers, it is stable.

If all the layers are stable, the origamic architecture is called stable. A simple example is
shown in Figure 3.4. There are two layers in this example. The former layer connects with
both ground and backdrop. So it is a stable layer. The latter layer has connection with a
stable layer (the former layer) and backdrop. Thus it is also a stable layer. As a result, this

origamic architecture is stable because the layers in it are all stable.

10

Figure 3.4: A simple example of stable origamic architecture from [20].

11

CHAPTER 4

Layers Generation

In this chapter, we describe how to get segmentations from the input model, and how
to generate layers of origamic architecture with easy user operations. Figure 4.1 shows the

flowchart of layers generation.

First, the system will do orthegonal projectionof the 3D model input by user and then
render the projected model by bi-level shading. User:can move the light source and model at
ease. After user determines the directions-and positions of"light source and model for
generating origamic architecturey the system will- detect edges of depth map and rendering
result. The extracted edges will segment the-image of input model into pieces, and then the
system will colorize these pieces with different colors. User can merge the broken pieces by
simple operations. Finally, the system will compute the depth of each merged piece, and

these pieces will be outputted as layers of origamic architecture.
This chapter is organized as follows. In section 4.1, we segment the input model through the

rendering results of bi-level shading and depth map. Then we describe the generation of

layers in section 4.2.

12

Depth \ 4 Bi-level
4\:'5_‘[3 Orthogonal fl‘fﬂ!"g
Projection
Edge . E Edge
Detection v Detection

Segmentation

Segments a

Merging % a

. J

Depth

Computing

Figure 4.1: The flowchart of layers generation

13

4.1 Shape Generation

For generating layers of an origamic architecture, we expect that each layer shows
features of the model. Our goal of model segmentation is to separate model into layers
while preserving features of a model. Here we propose an image-based method for
separating a 3D model.

First we do orthogonal projection of the input model, and render the model using

bi-level shading. We define the color C of the model:

C_{o, if n-l<k
s 1, if n-l>k

4.1

where n is the normal of a point on-the model surface; [is the direction of light; k is the
threshold value between 0 and .

We use Canny edge detector [3] to detect edges of the.result of bi-level shading, and
separate the image of model into pieces=.On the other’hand, we also detect the edges of the
depth map by Canny edge detector. Before applying Canny edge detector, the shading of the

depth map will be changed as follows:
Cy = clamp(B(a — C4),0,1) 4.2)

Where C; and Cj are current and new magnitude of a pixel in depth map respectively, a
and g are parameters which change the shading of the depth map and are controlled by the
user.

When detecting edges of a depth map, user can control two threshold values & and [of edge

detector, as shown in Table 4.1.

14

Parameter Function

h An upper threshold. If the magnitude of a pixel is larger than this

value, then it will be considered as an edge pixel.

l A lower threshold. If the magnitude of a pixel is smaller than this

value, then it will be considered as a non-edge pixel.

Table 4.1: Parameters in edge detection.

Figures 4.2 and 4.3 show examples of different parameter settings of depth map and
edge detection. By different settings, the result of detected edges shows different features of
the input model.

o @

(a)Original depth map (b)a=4.16, =0.27 (©)a=4.94,=0.24

Figure 4.2: Depth maps with different parameters a and .

(a) Original image b) h=0.14,1=0.0 (c) h=0.67,1=0.28
a=4.12,=0.23

Figure 4.3: Results of Canny edge detection with different parameters i and L.

15

Then the system will separate the image of input model into segments by edges of
bi-level shading and depth map, and apply erode operation to each segment in order to
remove insignificant pieces. Finally, we colorize each survival segment with different color
and expand each segment iteratively until segments touch each other or the border of model
image.

Moreover users can choose neighboring segments arbitrarily and merge them into one
segment. The final segments are imported into the process of layers generation. Figure 4.4

shows the results of model segmentation with and without merging segmentations by user.

& U

(a) b)

Figure 4.4: Results of model segmentation with and without merging neighboring segments.
(a) Initial result of model segmentation. (b) Refined result of model segmentation by

merging segments.

4.2 Layers Generation

In this section, we introduce the process of layers generation and the deletion of

unreasonable layers.

16

4.2.1 Layers Initialization

For each segment obtained in Section 4.1, the system will calculate the depth value of
each segment according to the new depth map. We define the initial depth of each segment

as:

4.3)

D _ ZXESiCé(x)
Si T Ng.

4

where S; is the set of pixels in segment i, Nsiis the number of pixels of S, and C; is the

depth value of new depth map.

4.2.2 Layers Refinement

For building stable origamic architecture, the first thing Wwe should take into account is
the hierarchical structure of layers. "A stable -layei<in/origamic architecture should be
supported by ground or another neighboring-layetr which is shallower than it at contacting
points. Consider Figure 4.5. L, has two neighboring layers L3 and L4 which are shallower
than L, at contacting points. As a result, L; and L4 become supporting layers for L;.

Therefore, we construct a bottom-up hierarchical structure to ensure the stability of layers.

17

Figure 4.5: Example of origamic architecture with all layers stable.

First, we construct a directed graph which records the connections between layers

where:

® A node represents a layer.
® The root of the graph is.a ts. to layers that touch ground

directly.
® Each edge points from node: and Q are neighboring layers

and P is shallower than Q.

For the layer which does not have parent which is shallower than it, we merge it into

its neighboring layer which is closer than other neighbors in depth field.

Then we determine the depth of each layer. To make origamic architecture look stereo

and layered, we sort the layers by their depth value D;, and define new depth value Dii as:

D} =Dy, + K-i ,0 <i<N, (4.4)

Where Ny is amount of layers, L is the sorted array of layers and D;, < D, ,and Kk isa

18

constant value.

Finally, we can define relationships between layers and folding line in origamic
architecture, and put layers onto the layout. The position of folding line represents the depth

of backdrop. As backdrop is deeper than all layers, we define the depth of backdrop as:
DBackdrop = DLO + kN 4.5)
For allocate the position of layers onto the layout, we define the following equations:

{ X(@2p) = X(3D) 4.6)

Yep) = Z@3p) T Y3b)

Where z@3p) represents the depthrvalue of layer. Figure 4.5 shows the coordinate systems of

3D origamic architecture and 2D-layout.

y![)t

ZiD))

I

Xoo =\ op)

y 3Dy

Figure 4.6: Coordinates of 3D origamic architecture and 2D layout.

Figure 4.6 shows the result of allocating layers onto layout according to the result of
model segmentation and its corresponding depth map. If one layer in the layout is

overlapped by other layers and splitted into pieces, the system will cut this layer and split it
19

into new layers which share the same depth.

(a) Result of model segmentation. (b) Depth map corresponding to model

segmentation.

<— Folding Line

(c) Results of allocating layers onto layout of origamic architecture.
Figure 4.7: Result of allocating layers according to model segmentation and its

corresponding depth map.

20

CHAPTER 5

Layout Generation

In this chapter, we describe process of generating connections between layers and
method to ensure the stability of the origamic architecture. Figure 5.1 shows the flowchart

of layout generation.

First, the system will analyze contours between layers and compute scores of two kinds
of connection: horizontal connection and vertical connection. According to the result of
scores, the system will pick up-segments which lic_on border between layers and decide
how to generate connections. Thenithese connections will be put onto the layout of origamic
architecture by taking overlap of connection into consideration. After putting all available
connections onto layout, the system will test stability of origamic architecture. If the
origamic architecture is stable, the layout will be output as result of layout generation.
Otherwise, the system will choose an unstable layer and merge it with another layer and

re-generate the layout.

The rest of this chapter is organized as follows. In Section 5.1 we introduce two types of
connection used between layers, horizontal connection and vertical connection, and describe
generating process of connections in Sections 5.2 and 5.3 separately. In Section 5.4 we

describe how to ensure stability of origamic architecture and output layout.

21

Connecting
Scores

& SPIPULE),

-J

Input Layers
\ P Y /\HorizontaIConnection Vertical Connection/

[e———————

Layers N
| =]
Merging

Figure 51: The flowchart of dJayout.genération.

Origamic
Architecture

5.1 Analysis of Connections

In this section, we analyze features of connections between layers from examples of

Chatani [5], and conclude with a rule for generating connections between layers.

For generating connection between two layers, first we should know the position
where the connection is located at. Figure 5.2 illustrates a simple condition for connecting
two layers L; and L,. In Figure 5.2, L, and L, are two layers and L, is in front of L; and
lower than L;. C is a connection between L; and L, which is located at the bottom of L; and

the top of L.

If we would like to locate another connection C’ between L, and another layer which is

22

in back of L, and lower than L,, we will find that there is no more space of origamic
architecture to form connection C’. Therefore, we conclude that a layer cannot form
connections, to forward or backward, at top and bottom of the layer simultaneously. As a
result, for all pairs of layers in origamic architecture, we generate connections from top of

the front one to bottom of the back one.

AN

Figure 5.2: A sketch illustrates the location of connection between L; and L,’s supporting
layerL,.

Then we find that there are two" major-kinds of connection: horizontal connection and
vertical connection. An horizontal connection often lies on segment of border which is
near-horizontal, and a vertical connection often lies on a near-vertical segment of border.
Figure 5.3 shows different examples for horizontal connection and vertical connection.
Therefore, we propose a method for extracting the segments of border between layers, and

classify these segments for different kinds of connections.

23

Horizontal

Vertical
Connection

Connection

Figure 5.3: Examples for two majorkinds-of connections.in origamic architecture [5].

First, we compute scores for horizontal connection Sgprand vertical connection Sy of

each point x of layer’s contour as follows:

Suy(Liy,x) = (m"‘ 811) X 612 (5.1)
Sy(Li, x) = (Islope(x)| + 821) X 623 (5.2)

where 9 is a constant for striking a balance between Sy and Sy. Figure 5.4 shows the result
of computing Sy and Sy. For segments which are greenish, the system will generate vertical

connections. Otherwise, horizontal connections will be generated for reddish segments.

24

- Score of horizontal connection

E Score of vertical connection

Figure 5.4: Scores of contour for horizontal connection and vertical connection of Stanford

bunny model.

For each layer L, we choose a point X whichshas the highest score in the sequence of
contour points, either Sy of Sy, assthe’seed of .connecting segment. The segment extends for

continuous points Xx; if :

((SH (L; xseed) - SV(L; xseed)) X ((SH(L' xi) " SV(L; xi)) >0 (5-3)

and Ny (xi) = Ny (Xseea) s Xr<i<ys (5.4)

where connecting segment ranges from x, to x,, and N(x) indicates the neighboring

layer of L at point x.

After extracting a connecting segment, the scores along this segment will be set to zero.
Then the system will extract next connecting segment until there is no more segment to
extract. As a result, the contour of layer L will be cut into several segments. These segments
are classified into two groups, horizontal connection and vertical connection, according to
the higher score of segments. As a result, connections will be generated in different ways

according to the groups these segments belong to.

25

As discussed in section 5.1, connections will be only generated at top of front layer and
bottom of back layer. In this thesis we only discuss connections which generated backward.
Therefore, the connecting segment which located at bottom of front layer and top of back
layer will be neglected. While generating connections for a pair of layers, we define the
front one as the source layer, the back one as the target layer, and difference of depths
between source layers as | D | . Moreover, holes on the layout between source layer and

target layer will be filled with the color of target layer to avoid fragments of the layout.

5.2 Horizontal Connection Generation

In this section, we introdu¢e how-to generate horizontal connection between layers.

Figure 5.5 shows the process of.generating horizontal connection.

Given a horizontal connecting segment extracted from Section 5.1, the system will first

find a sub-segment §; which has the widest aXis-aligned bounding box Bg, with its height

< k. Then the system will create an examining area E with its bottom aligned with Bg,’s

Wl

bottom, and set its height as | D | and width as the width of the layer, as shown in Figure

55().

As a result, the system can find a segment at the bottom of E which includes the
bottom of Bg, and has intersection with the source layer, as shown in Figure 5.5(c). For
this segment, called connecting base, the system generates a connection (g, with the top
wider than connecting base, as shown in Figure 5.5(c), and defines the score of erosion A for
it:

26

N(Cs.NL

where £ means length of connecting base, and N(x) means the number of pixels of x.

If the score is smaller than a threshold value &, then this connection is generated. Otherwise,
for reducing the score of erosion, Bg, will be moved upward slightly as Bg,’ and the
system will regenerate the connection until Bg,' has no intersection with Bg,, the system

will abandon this connecting segment.

(a) Widest sub-segment S; and its (b) Creation of examining area.

N

bounding box.

Cs;

(c) Segment (green) for generating (d) Construction of horizontal connection.
horizontal connection.

Figure 5.5: Generating process of a horizontal connection.

27

After generating a connection, the system will examine the layout and eliminate the
connection according to the following rules:
1. The connection should not overlap with any layer which does not belong to source
layer or target layer.
2. If target layer will be broken into pieces after generating connection, the connection
will be eroded horizontally, as shown in Figure 5.6, to make the target layer

continuous.

Figure 5.6: When target layer (gray) is¢broken by the connection, the connection will be

eroded horizontally to make the target layer.continuous.

If the eroded connection touches the source layer and target layer without broken, then

the connection will be retained. Otherwise, the connection will be abandoned.

5.3 Vertical Connection Generation

From the example in Figure 5.3 (b), we find that the process of generating a vertical
connection consists of the following steps, as shown in Figure 5.7:
1. Choosing a segment of contour between two layers with its height equalsto | D | .
2. Putting a vertical connection on the source layer side.

3. Pushing target layer toward source layer along the border higher than the

28

connection.

¢
‘

(a) Source layer (red) and target layer (pink) before generating connection.

i’

= 1=~ p¥

¢

))] (c) Moving border from target layer
(b) Putting connection on the source.side.
toward source layer.

(d) Result of generating vertical connection.

Figure 5.7: Generating process of vertical connection.

Therefore, given a vertical connecting segment, we split it into three parts: source layer

ensuring part, connecting part, and eroding part. Figure 5.8 shows an example of segment

29

separation.

IR

ensuring height
of source layer

Figure 5.8: The vertical connecting segment is splitted into three parts. Bottom to top:

source layer ensuring part (blue), connecting part (green), eroding part (red).

(5.6)

where x is a point of Sg, & is the height of x from bottom of Sg , and H is the height of Sk.

Figure 5.9 illustrates the generating process of a vertical connection.

(a) (b) (c) (d)

Figure 5.9: Generating process of vertical connection.

30

(a) Separating process of connecting segment. (b) Generation of connection. (c) Erosion to

source layer. (d) Result.

5.4 Layout Refinement

After generating connections, we compute scores of them, and put them onto layout
from high score to low score. For an horizontal connection, the wider the connection is, the
stronger the origamic architecture will be. For a vertical connection, the higher the erosion
is, the smoother the segment between eroding region and source layer will be. Therefore, we

define the scores of connection as:

9 . _ .
5= {{’ \Y ,if up —down connection 5.7

H , if left —=Tight connection

where v is a constant parameterto strike a balancebetween | two types of connections.

For each layer, the system sorts connections by.score, and puts connections onto layout
sequentially from the highest score. In this thesis, we define a “good” connection as:

1. A connection whose width from bottom to top is wider than a user-defined

threshold.

2. A connection which does not break source layer or target layer into pieces.
Whenever putting a connection onto layout, the system checks the remaining space of
layout for connections. If the remaining space is enough for making this connection as a
“good” connection, then this connection will be put onto layout. Otherwise, the system
skips this connection and puts the next one. Note that backdrop could be broken into pieces
before putting connections onto layout. Some of these pieces are cut out while generating

origamic architecture. Considering stability of origamic architecture, these pieces will

31

eliminate the remaining space of layout for connection.

After putting all available connections onto the layout, the system checks the stability
of each layer. If all of layers are stable, the layout will be output as the result for origamic
architecture. Otherwise, the system will choose an unstable layer and merge it with the
nearest neighboring layer in depth field, and re-generate layers and layout iteratively until

all of layers are stable.

When choosing an unstable layer for merging process, the system gives the first
priority to the layer which does not have any connection with other layers, and the second
priority to the layer which has only ©one connection with a neighboring layer, and the last

priority to all others.

32

CHAPTER 6

Results

In this chapter, the implementation and results are presented. The input sources are 3D
triangle meshes, and the output results are 2D layout images. The algorithm is implemented
in C++ language using OpenGL and OpenCV. The experiment was carried out on a Intel®

Core™ 17 PC with 3GHz CPU and 12GB memory.

In our system, users need to define some: parameters for generating origamic
architecture. In layers generating process, users‘have to contrél position of light source and
input model, and change four parameters of depth-map for extracting features of depth.
Then users can decide how to merge/neighbering segments for creating layers. In layout

generating process, users need to choose minimum width for connections.

Example 1 is a simplified Stanford bunny which consists of 1,068 triangles as shown
in Figure 6.1 (a). Figure 6.1 (b) shows the result of model segmentation. Figure 6.1(c)
shows the layout of origamic architecture. Figure 6.1(d) shows the 3D result of origamic
architecture. Figure 6.2 shows the result of Li [20], the shape of Stanford bunny looks fuzzy
because of complex structure of origamic architecture. Comparing with the result of Li [20],
our origamic architecture represents features of Stanford bunny with simpler structure

clearly.

33

(a) (b)

Figure 6.2: Result of Li [20].

Example 2 is a model of horse as shown in Figure 6.3 (a). Figure 6.3 (b) shows the

result of model segmentation. Figure 6.3(c) shows the layout of origamic architecture.

34

Figure 6.3(d) shows the 3D result of origamic architecture.

(a) (b)

© | —
Figure 6.3: (a) Original 3D model of examplé 1. (b) Result of segmentation. (c) Result of

Layout. (d) Result of origamic architecture.

Example 3 is a simplified Stanford Dragon which consists of 4,588 triangles as shown
in Figure 6.4 (a). Figure 6.4 (b) shows the result of model segmentation. Figure 6.4(c)
shows the layout of origamic architecture. Figure 6.4(d) shows the 3D result of origamic

architecture.

Example 4 is a model of dairy cattle as shown in Figure 6.5 (a). Figure 6.5 (b) shows

the result of model segmentation. Figure 6.5(c) shows the layout of origamic architecture.

35

Figure 6.5(d) shows the 3D result of origamic architecture.

Example 5 is a model of walking cat as shown in Figure 6.6 (a). Figure 6.6 (b) shows
the result of model segmentation. Figure 6.6(c) shows the layout of origamic architecture.

Figure 6.6(d) shows the 3D result of origamic architecture.

S

(a) (b)

(d)
(©
Figure 6.4: (a) Original 3D model of example 3. (b) Result of segmentation. (c) Result of

Layout. (d) Result of origamic architecture.

36

(a) (b)

()
Figure 6.5: (a) Original 3D model o

Layout. (d) Result of origamic architecture.

b
@ (b)

37

AN

(©)
Figure 6.6: (a) Original 3D model of example 5. (b) Result of segmentation. (c) Result of

Layout. (d) Result of origamic architecture.

Our algorithm is flexible; users can design erigamic architecture using multiple models.
Example 6 puts two kinds of model in-an-origamic.architecture as shown in Figure 6.7 (a).
Figure 6.7(b) shows the layoutof origamic architecture. Figutre 6.7(c) shows the 3D result

of origamic architecture.

7S~

o

335 AQ

® (b)

38

()
Figure 6.7: (a) 3D models of example 6. (c) Result of Layout. (d) Result of origamic
architecture.

For non-animal models, our algorithm is also very well for models which are special in

(a) (c)

Figure 6.8: Two origamic architecture of statue of liberty. (a) The result of our algorithm. (b)

The work designed by Masahiro Chatani.

For 90° animal origamic architecture, our algorithm works well. However, there are
still some limitations. The rules of our algorithm cannot be applied to other types of

origamic architecture, such as 180° and 360° origamic architecture.
39

CHAPTER 7

Conclusion and Future Work

In this thesis, we propose a system for generating origamic architecture of animals
which takes features of animals into account. We propose a concept of layers and
connections which is different from Li [20] in generating origamic architecture. For layers,
we extract the features of model and put them on layers of origamic architecture. For
connections, we take various types of bordershetweéen layers into account, and ensure the

stability of origamic architecture.

We implement this systems by two major-processes: layers generation and layout
generation. In the former process, we /provide-an-intuitive user interface for extracting the
shapes of layers. First we extract the features of model by bi-level shading which reflects
the feature of normal direction of model surface, and use depth map to extract the feature of
model in depth of input model. In generating layout, we define two types of connection,
horizontal connection and vertical connection, for handling various situations in generating
connections at border between layers. Moreover, we define clear rules for checking stability
of layers, and refine the layout to maintain the stability of origamic architecture. As a result,
users can design an origamic architecture of animals without any skill or experiment in

designing origamic architecture.

However, there are still some issues left to be studied in the future.

40

1. While extracting the segmentations of models, users have to change position of light
source and model carefully. If segments do not show features of the model, the result of

generated origamic architecture is hard to be recognized.

2. In some cases of artist designed origamic architecture, features of shape are also
considered while generating connections. If the shapes of connections also reflect the

features of model, it will be more attractive for generated origamic architecture.

3. If an origamic architecture has too much layers, the features of input model will be
destroyed. Therefore, for a stable origamic architecture whose structure is too complex,
we would like implement an user interface to decide how much and which layers should

be merged in order to preserve,the features:of .input model with few layers.

41

Reference

[1]

HE

(2]

[9]

#3#F o The Collection of the Paper Crafts . & 3b, =%k x4k, &, 85.
BB o Koy EEAER MR, g, KB, K 79.
& B OB R - & B X8 # &2 7 In

http://taiwanpedia.culture.tw/web/content?1D=7437 ,2010.

Canny J. A computational approach to edge detector. IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. Pami-8, NO.6 November, 1986.

Chatani, M. Origamic Architecture of Masahiro Chatani. R 7%, % B4k, 1983.

Chatani, M. Origamic Architecture, 5 E#E[1993.

Chatani, M. and K. Nakazawa Paradisesof Qrigamic Architecture, 2 E 4+, 1990.

Cohen, J., Olano, M.,and,Manocha;-D. 1998. Appearance preserving simplification. In
SIGGRAPH ’98: Proc. 25th annual conference on Comiputer graphics and interactive
techniques, ACM, New York, NY. USA, 115-122.

DeCarlo, D., A. Finkelstein, et al./“Suggestive contours for conveying shape” . In ACM
Trans. Graph. Vol.22, No.3, pp. 848-855, 2003.

Demaine, E. D. and J. ORourke. Geometric Folding Algorithms: Linkages, Origami,

Polyhedra, Cambridge University Press, 2007.

[10] Eisemann, E. , Sylvain P. , Frédo D., A visibility algorithm for converting 3D meshes

into editable 2D vector graphics, ACM Transactions on Graphics (TOG), v.28 n.3,

August 2009.

[11] Garland, M., and Heckbert, P. S. Surface simplification using quadric error metrics. In

SIGGRAPH ’97: Proc. 24th annual conference on Computer graphics and interactive,

1997.

[12] Glassner, A. “Interactive pop-up card design. Part 2” . In Computer Graphics and

42

Applications, IEEE Vol.22(, No.2), pp.74-85, 2002.

[13] Hertzmann, A. and D. Zorin. “Illustrating smooth surfaces” . In Proceedings of the
27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co. , pp. 517-526, 2000.

[14] Hull, T. 1994. On the mathematics of flat origamis. Congr. Numer. 100, 215-224.

[15] Kalogerakis, E., A. Hertzmann, et al. “Learning 3D mesh segmentation and labeling”.
In ACM Transactions on Graphics (TOG) Vol.29, No.4: 1-12, 2010.

[16] Kilian, M., Flory, S., Chen, Z., Mitra, N. J., Sheffer, A., And Pottmann, H. 2008.
Curved folding. ACM Trans. Graphics 27, 3, 75:1-9.

[17] Lai, Y.-K., Q.-Y. Zhou, et al. “Feature sensitive mesh segmentation”. In Proceedings of
the 2006 ACM symposium on_Solid-and-physi¢cal modeling. Cardiff, Wales, United
Kingdom, ACM, pp. 17-25;2006:

[18] Lang., R. J. Origami 4, A K Peters, Ltd, 2009

[19] Li, Y., Yu, J., Ma K.-L., and Shi, J; 2007:3d paper-cut medeling and animation. Comput.
Animat. Virtual Worlds 1874-5, 395-403.2007.

[20] Li, X.-Y., C.-H. Shen, et al. “Popup:_automatic.paper architectures from 3D models” .
In ACM Trans. Graph. Vol.29, No.4, pp.1-9, 2010.

[21] Mehra, R., Q. Zhou, et al. “Abstraction of man-made shapes”. In ACM Trans.
Graphics Vol.28, No.5,pp. 137, 2009.

[22] Mi, X., D. DeCarlo, et al. “Abstraction of 2D shapes in terms of parts” . In
Proceedings of the 7th International Symposium on Non-Photorealistic Animation and
Rendering. New Orleans, Louisiana, ACM, pp. 15-24, 20009.

[23] Mitani, J., H. SUZUKI, et al.. “Computer aided design for origamic architecture
models with voxel data structure” . In Transactions of Information Processing Society
of Japan Vol.44, No.5, pp. 1372-1379, 2003.

[24] Mitani, J., and Suzuki, H. 2004. Computer aided design for origamic architecture models

43

with polygonal representation. In CGI ’04: Proceedings of the Computer Graphics
International, IEEE Computer Society, Washington, DC. USA, 93-99.

[25] Ohtake, Y., A. Belyaev, et al.. “Ridge-valley lines on meshes via implicit surface
fitting”. In ACM Trans. Graph. Vol.23, No.3,pp. 609-612, 2004.

[26] Okamura, S. and T. Igarashi. “An Interface for Assisting the Design and Production of
Pop-Up Card”. In Proceedings of the 10th International Symposium on Smart
Graphics. Salamanca, Spain, Springer-Verlag, pp. 68-78, 2009.

[27] Tachi, T. 2009. Origamizing polyhedral surfaces. IEEE Transactions on Visualization

and Computer Graphics 16, 2, 298-311.

[28] Wei, J., and Lou, Y. Feature preserving mesh simplification using feature sensitive

metric. Journal of Computer Science& Technology 25, 3, to appear. 2010.
[29] Xu, J., Kaplan, C. S., and Mi;,X:"2007. Computef-generated papercutting. In PG ’07:

Proc. 15th Pacific Conference on Compuiter Graphics and Applications, IEEE Computer

Society, Washington, DC+USA, 343-350:

44

