

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

以 骨 架 驅 動 之 交 互 參 數 化

Skeleton-Driven Cross-Parameterization

研 究 生：廖仁傑

指導教授：莊榮宏 教授

 黃世強 教授

中 華 民 國 一百 年 十 月

以骨架驅動之交互參數化

Skeleton-Driven Cross-Parameterization

研 究 生：廖仁傑 Student：Jen-Chieh Liao

指導教授：莊榮宏 Advisor：Jung-Hong Chuang

黃世強 Wingo Sai-Keung Wong

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

October 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年十月

以骨架驅動之交互參數化

研究生 : 廖仁傑 指導教授 : 莊榮宏 博士

 黃世強 博士

國立交通大學

資訊學院多媒體工程研究所

摘 要

我們提出一個以骨架資訊來產生兩三維物體間交互參數化之方法。給予兩個物

體，我們擷取出其骨架並取得骨架與物體表面間、以及骨架與骨架間之對應資

訊。兩物體接著會透過切割程序分成數個相對應的區塊，接著我們將每一個對應

的區塊分別參數化到一個平面上。而每一參數化之分割區塊，我們則透過一個迭

代放鬆法來產生分割區塊間之交互參數化，此迭代放鬆法主要由骨架與表面以及

骨架與骨架間之對應資訊來驅動。兩物體分割區塊之交互參數化產生後，我們於

分割區塊之邊緣處使用一個平滑化的程序來產生出最後的對應結果。概要來說，

我們使用了密集的骨架與物體表面間之對應資訊當作軟性限制來建立交互參數

化。相較於先前之技術，此方法可以自動的產生出物體間有意義之特徵對應且無

須給予對應限制點，並僅需提供少量之對應點在分割區塊的邊緣處即可。此方法

也可以自動的產生出特徵的部分對應。

 i

Skeleton-Driven Cross-Parameterization

Student: Jen-Chieh Liao Advisor: Dr. Jung-Hong Chuang

Dr. Wingo Sai-Keung Wong

Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

We propose a novel skeleton-driven framework for cross-parameterization between two 3D

polygonal models. Given two models, we first extract their curve skeletons, retrieve the skeleton-

to-surface mapping information, and derive a skeleton-to-skeleton mapping. We then segment

both meshes into several consistent parts and for each part pair we embed the parts in cor-

respondence onto a planer domain. After the process of embedding, we apply an iterative

relaxation scheme on each parameterized part that takes the skeleton-to-surface and skeleton-

to-skeleton mapping information into account. A smoothing process is invoked at the end so

as to smooth the cross-parameterization along the part boundaries. Briefly speaking, we use

the dense skeleton-to-surface mapping information as the soft constraints during the cross-

parameterization construction. As a result, our method can match the object features automati-

cally without the general feature constraint points as common approaches. The method requires

only a few user inputs that specify matching points on the part boundaries. We also show that

our method can generate partial mapping results for the models that have unique object features.

i

Acknowledgments

I would like to thank my advisors, Professor Jung-Hong Chuang and Wingo Sai-Keung

Wong, for their guidance, inspirations, and encouragement. I am also grateful to my senior

colleague, Tan-Chi Ho for his enlightenment and generously sharing his research works, such

as PMLab and MSP skeleton. I-Cheng Yeh help us generate all kinds of testing results we ask

with the approach he proposed. And then I want to appreciate my brother Jen-Chieh Liao for

his kind assistances, useful suggestions and help me figure out the rendering related questions.

I would like to thank to all my colleagues in CGGM lab: Cheng-Guo Huang, Shao-Ti Lee,

Bo-Yin Yao, Mu-Shiue Li, Yi-Shan Li for their patient listening and discussing with me on the

research issues. Tsung-Shian Huang helps me understand much rendering knowledge, and all

my junior colleagues’ kind assistances. Thanks to International Games System CO., LTD. for

offering me research scholarship. I especially want to thank my parents for their love, support,

care and tolerance. Without my parents, I could not pass all the frustrations and pain in my life.

ii

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Organization of the thesis . 3

2 Related Work 4

2.1 Shape correspondence . 4

2.2 Skeleton correspondence . 5

2.3 Cross-parameterization . 6

2.3.1 Base complex method . 6

2.3.2 Deformation-driven method . 8

2.3.3 Hybrid method . 8

3 Algorithm 11

3.1 Overview . 12

3.2 Skeleton extraction and mapping construction 13

3.3 Consistent segmentation . 14

3.3.1 Skeleton-driven segmentation . 14

3.3.2 Part boundary growing and refinement 15

3.4 Cross-parameterization . 16

3.4.1 Initial embedding . 17

iii

3.4.2 Relaxation . 20

3.5 Part boundary smoothing . 22

3.5.1 Hint position generation . 23

3.5.2 Shape preserving generation of base mesh 24

3.5.3 Deformation and re-projection . 27

4 Experimental Result 31

4.1 Result . 31

4.2 Timing information . 55

5 Conclusions 56

5.1 Summary . 56

5.2 Limitations . 57

5.3 Future works . 60

Bibliography 61

iv

List of Figures

2.1 An example of shape correspondence . 5

2.2 An example of least-squares mesh [MAN08] 9

3.1 System overview . 12

3.2 Circular parameterization domain and its mapping to each other 15

3.3 Part boundary refinement . 16

3.4 Overview of the cross-parameterization computation for two parts 17

3.5 The differential coordinates . 18

3.6 The illustration for the orientation adjustment 19

3.7 Mapping error . 21

3.8 Interquartile Range (IQR) . 22

3.9 Hint position generation . 23

3.10 The cross-parameterization step in [WPZM10], which maps a lion model to its

own convex hull. (a) lion model (b) convex hull cross-parameterization com-

puted using the uniform representation (c) convex hull cross-parameterization

computed using the mean-value Laplacian representation 25

3.11 The illustration of the vertex without mapping position 25

3.12 Base mesh generation . 26

3.13 Mapping from a dog (a) to a wolf (b), (c) after deformation (d) after re-projection 29

v

3.14 Mapping vertices and edges of the dog model before part boundary smoothing

(different edge color represents different parts) 29

3.15 Mapping vertices and edges of the dog model after part boundary smoothing

(different edge color represents different parts or the overlapping regions) . . . 30

4.1 The visualization of skeleton-to-surface mapping of the dog model 32

4.2 The visualization of skeleton-to-surface mapping of the wolf model 32

4.3 The visualization of the skeleton-to-surface mapping slices 33

4.4 The skeleton node correspondence between the dog and wolf model 34

4.5 The skeleton-to-skeleton mapping between the dog and wolf model 34

4.6 The segmented parts and matching points colored in red and blue specified on

the part boundaries . 35

4.7 The cross-parameterization between the dog and wolf model 35

4.8 The cross-parameterization of the heads between the dog and wolf model . . . 36

4.9 The cross-parameterize result of the limbs between the dog and wolf model. (a)

front legs (b) back legs . 36

4.10 The twist effect due to the lack of the orientation information on the slice region 37

4.11 The cross-parameterization between the lion and cat model 37

4.12 The cross-parameterization of the head part between the lion and cat model . . 38

4.13 The cross-parameterization of the front legs between the lion (top) and cat (bot-

tom). The texture repeat cycle is doubled from left to right to clarify the result . 38

4.14 The cross-parameterization of the back legs between the lion (top) and cat (bot-

tom). The texture repeat cycle is doubled from left to right to clarify the result . 39

4.15 The cross-parameterization and slicing of the skeleton-to-surface mapping of

the left back leg of the lion and cat model . 40

4.16 The cross-parameterization of the front legs between the lion (top) and cat (bot-

tom) model with different cut positions. (a) upper one-third (b) middle (c) lower

one-third . 40

vi

4.17 The cross-parameterization between the horse models in the standing pose and

in normal pose . 41

4.18 The cross-parameterization between the head parts of the horse model in differ-

ent poses . 42

4.19 The cross-parameterization between the left front legs of the horse models in

different poses . 42

4.20 The mapping result from a long ear cat head to the lion head with different

mapping error weights . 43

4.21 The mapping result from a long ear cat head to the lion head with different

stretch error weights . 44

4.22 The cross-parameterization between the long ear cat head and lion head (side

view) . 45

4.23 The cross-parameterization between the long ear cat head and lion head (front

view) . 45

4.24 The cross-parameterization between the long ear cat head and lion head (top view) 46

4.25 The cross-parameterization between the dragon and wolf model 47

4.26 The cross-parameterization of the head part between the dragon and the wolf

model . 47

4.27 The cross-parameterization of the limbs between the dragon and wolf model.

(a) right front leg (b) left front leg . 48

4.28 The cross-parameterization of the limbs between dragon and wolf model. (a)

right back leg (b) left back leg . 48

4.29 The cross-parameterization of the tail part between the dragon and wolf model . 49

4.30 The visualization of slice mapping from the dragon to the wolf model 49

4.31 Skeleton node correspondence between the dragon and wolf model 50

4.32 Partial mapping of horns from the dragon to the wolf model 50

4.33 Partial mapping of the left two claws from the dragon to the wolf model 51

4.34 Partial mapping of the right two claws from the dragon to the wolf model . . . 51

vii

4.35 Partial mapping of tails from the dragon to the wolf model 51

4.36 The slicing of the skeleton-to-surface mapping of the camel and the horse model 52

4.37 The cross-parameterization between the hose and camel model 53

4.38 The cross-parameterization of the body between the horse and camel model . . 53

4.39 The cross-parameterization of the limbs between the horse and the camel model.

(a) front legs (b) back legs. The dotted lines represent the approximate segmen-

tation positions in the segmentation process 54

4.40 Partial mapping of tail from the camel to horse model 54

5.1 L2 stretch can not recognize the distortion caused by the rotation along the

indicate direction . 58

5.2 Illustration of orientation angle calculation . 59

5.3 The folding phenomenon in the parameterization domain 60

viii

C H A P T E R 1

Introduction

A cross-parameterization (or inter-surface mapping) between different shapes is a fundamental

task in a number of applications, such as object recognition, shape morphing or blending, texture

and surface feature transfer, pair-wise model editing, and geometry remeshing. The cross-

parameterization establishes a bijective mapping between the vertices of the given meshes by

mapping vertices onto an identical domain or by mapping one mesh onto another directly.

Several cross-parameterization methods have been proposed in the last decade. These meth-

ods require a set of correspondent points to be specified as constraints for generating the cross-

parameterization between the given models. The corresponding constraint points are obtained

either by using automatic methods or by the users. The automatic method finds the constraint

points by taking the local saliency value and the closeness of the point to the tip areas into

account. Since the finding criterion of the automatic method is quite simple, directly using

the constraint points generated by the method usually can not generated satisfying mapping

results. Therefore, common approaches require the users to specify corresponding constraint

points manually. Users need to indicate the constraint points on the areas that are geometrically

or perceptually important such as eyes, mouths, or the tip of the limbs. Also, the mapping result

1

2

can be enhanced by specifying more corresponding constraint points manually. But when the

number of the corresponding constraint point increases, the complexity of the geometrical and

topological operations raises [KS04, SAPH04]. Also, in order to obtain a satisfactory cross-

parameterization result, user often needs to specify numerous corresponding constraint points

between the two models. This could be time consuming and tedious. When the models have

unique features (e.g. one has a tail and the other has not), user often needs to specify additional

constraint points to achieve reasonable partial mapping results. Yet, to specify such constraint

points around the area that has no apparent features may not always be intuitive.

According to the survey paper [vKZHCO10], to semantically correspond two different mod-

els, we usually need a high-level descriptor to improve the correspondence. For example,

Shalom et al. [SSSCO08] use the shape-diameter function (SDF) to partition the models and

use it to find the corresponding parts in other objects. Hu et al. [HLW09] assign each seg-

ment part a bone and correspond the segment parts of the models by adopting a graph matching

technique on the skeleton graphs. Our motivation is to find a high level descriptor to assist

the computation of the cross-parameterization between the given models. Skeleton is an ap-

propriate choice since it represents the global structure of a model and is not sensitive to the

local surface noise. Several skeleton corresponding schemes also have been proposed in the

last decade. The other information we need is the meaningful dense mapping information be-

tween the skeleton and the surface. Although there exist many skeletonization methods that can

produce skeleton-to-surface mapping information, these methods lack of the consideration for

the surface features. However, some skeletonization methods proposed recently can encode the

surface shape features onto the skeleton nodes and fill the lack. Ho [Ho11] extracts the skeleton

by iterative shrinking the mesh using the minimum slice perimeter function, which encodes the

local shape information associated with the surface points. This provides dense mapping infor-

mation between the skeleton and the surface that approximately matches the human perception.

Therefore, we may have a chance to construct the cross-parameterization between the models

by utilizing the skeleton-to-skeleton and skeleton-to-surface mapping information. With this in-

formation, we can compute the mapping difference for each vertex by measuring the mapping

1.1 Contributions 3

difference on the skeletons. Since skeleton is a set of line segments, measuring the mapping

difference on the skeletons is much easier than directly compute it on the surfaces. Also, it

does not affect by models which have extremely different orientations or poses. With the dense

mapping information encode on the skeletons, we can match the object features well without

users to specify corresponding constraint points.

1.1 Contributions

The main contributions of our work are:

• The method can achieve cross-parameterization results that match the object features.

• The method performs well on the models with significant different part sizes or shapes.

• The method requires only a few orientation adjustment points specified by the users man-

ually.

1.2 Organization of the thesis

The following chapters are organized as follows. Chapter 2 gives the review and the back-

ground knowledge of the previous researches. Chapter 3 describes our cross-parameterization

algorithm, including the overview, skeleton extraction and mapping, part segmentation, cross-

parameterization and part boundary smoothing. Chapter 4 shows the experimental results of

our cross-parameterization algorithm with several different visualizations. We summarize our

cross–parameterization algorithm and discuss its limitations and future works in Chapter 5.

C H A P T E R 2

Related Work

In this chapter, we review the previous work of shape correspondence and cross-parameterization.

2.1 Shape correspondence

Shape correspondence establishes a meaningful correspondence between geometric elements of

the given objects. The types of element may be mesh primitives, surface feature points, skeletal

features, or local parts of the model. The correspondence between the geometric elements can

be one-to-one, one-to-many, or many-to-many. Figure 2.1 shows an example of a one-to-one

correspondence of the surface feature points between two objects. Since the objects may have

large difference in pose, shape, and surface detail, establishing the correspondence based on the

similarity of local geometric information can be difficult. Higher level descriptors which can

describe the global structures of the objects and semantics of the parts help to overcome this

problem.

According to the survey presented by Kaick et al. [vKZHCO10], the shape correspondence

problem can be categorized into similarity-based correspondence, rigid alignment, non-rigid

4

2.2 Skeleton correspondence 5

Figure 2.1: An example of shape correspondence [ZSCO+08].

alignment, and time-varying registration. The skeleton correspondence and cross-parameterization

problem are a part of the similarity-based correspondence.

2.2 Skeleton correspondence

Curve skeleton is a common shape descriptor since it represents the global structure of a 3D

shape and is insensitive to the surface noises. Therefore, to generate the skeleton correspon-

dence between the given models can be efficient. Several methods utilize the skeleton or reeb

graph to solve the matching problem. Sundar et al. [SSGD03] performed a greedy and depth-

first search scheme to find the bipartite graph that has maximum cardinality and minimum

weight between the two skeleton graphs. Biasotti et al. [BMSF06] constructed the partial

shape-matching by finding the maximum common sub-graph between the two reeb graphs. The

sub-graph is able to recognize the similar sub-parts of the objects represented as 3D polygonal

meshes. Both methods match the common subgraphs by searching along graph connectivity.

Therefore, they are either sensitive to topological differences or require complicated strategies

to edit the topological structures. Au et al. [ATCO+10] used a voting scheme to handle the

topological difference and the symmetry switching problems. They employ the combinatorial

search and local topology consistency pruning test to filter out the poor correspondences which

2.3 Cross-parameterization 6

have large topological differences. The multidimensional scaling (MDS) [EK03] is invoked

to straighten the skeletons so as to deal with the pose variant condition. Since the algorithm

is purely geometric-based, unaware of the semantics of parts. It may mismatch components

with different semantics but similar geometry. Liu [Liu10] extended the work of [ATCO+10]

by adding symmetric detection, structure diagnosing, and spatial configuration into the system.

These information help to overcome the large structural difference or topology noise causing by

gluing, enhance the correctness of partial correspondence, and handle the condition of the com-

posite object. Since the objective function considers not only curve skeleton but also surface

information, it can also recognize the relative position of the corresponding groups.

2.3 Cross-parameterization

Cross-parameterization methods can be divided into three major categories: base complex

method, deformation-driven method, and hybrid method.

2.3.1 Base complex method

Usually, it is hard to directly construct the inter-surface mapping between the two models since

the models are often different in orientation, object feature, and surface local feature. Therefore,

most of the cross-parameterization methods generate the inter-surface mapping through an in-

termediate common parameterized domain. The construction can be summarized as three major

steps: First, an intermediate common domain is found. Second, each model is embedded into

the common domain separately and the correspondence between the common domain and the

model is derived. Third, the inter-surface mapping between the models is constructed through

the composition of the common domains.

Several methods use the base complex as the intermediate domain. Lee et al. [LDSS99]

generated the coarse mesh as a simplicial complex that retains the user select feature points by

using MAPS [LSS+98]. Since the coarse meshes of the source and target does not guarantee to

have the same topology connectivity. An alignment and projection is adopted to construct the

2.3 Cross-parameterization 7

correspondence map between the coarse meshes. And an iterative relaxation procedure and user

adjustment is invoked to produce the final inter-surface mapping. Usually, this method does not

suit the models that differ greatly in shapes. Therefore, later methods use the consistent segmen-

tation to found the coarse meshes. The consistent segmentation guarantees the coarse meshes of

the source and target models having the same topology. As a result, each segment patch can be

directly corresponded to the other without alignment and projection. In the proposed method of

Praun et al. [PSS01], user specified corresponding constraint points and their connectivity as in-

put, the method partitioned a mesh into triangular patches by tracing the paths along the surface.

The correspondence of each vertex is then constructed according to its lying patch. Kraevoy et

al. [KS04], and Schreiner et al. [SAPH04] extend the methods of [PSS01] to construct the

simplicial complex and retrieved the patches automatically. Both methods required correspond-

ing constraint points specified by user only. Kraevoy et al. [KS04] mapped the surfaces onto

the patches through the shape preserving parameterization method proposed by Floater [Flo03]

to generate the mapping from the surface to simplicial complex. Schreiner et al. [SAPH04]

used an alternative approach that does not compute an explicit map between the surface and

simplicial complex. Instead, they directly create and optimize a continuous map between the

meshes. The inter-surface mapping is constructed by minimizing the map distortion during the

interleaved coarse-to-fine refinement of both meshes. Pan et al. [PWPY07] adopted the method

of [KS04] and enhanced the cross-parameterization results by adjusting the simplicial complex

iteratively according to the previous generated result.

For the base complex method that construct triangular patches on the meshes [PSS01, KS04,

SAPH04, PWPY07], often cannot avoid complicated geometric and topological operations.

Which intend to prevent intersections and blocking, to reach consistent cyclic orders and to

avoid swirls. Furthermore, they usually need to deal with the discontinuity between the patch

boundaries with additional smoothing process. These operations are time consuming and un-

stable for complex shapes.

2.3 Cross-parameterization 8

2.3.2 Deformation-driven method

Several methods use the deformation-driven approach for deriving cross-parameterization. Deformation-

driven approach directly deforms one mesh to the other by minimizing some energy functions.

The energy function consists of components that pull the vertices of one mesh towards the de-

sired location while preserving the shape of the mesh. Usually, the deformation process requires

user to specify several corresponding constraint points between the input models.

Allen et al. [ACP03] used a template fitting technique to construct the cross-parameterization

for a set of human models in the same pose by minimize a error metric that measures the dis-

tance from each vertex to the target surface, the difference in the affine transformation matrix,

and the closeness of the corresponding constraint points. But optimization can easily converge

to a poor local minimum for the models that differ greatly in shapes. Sumner and Popovic

[SP04] used a method similar to [ACP03] and changed the feature matching term into an iden-

tity transformation constraint, which intends to prevent the method from generating a drastic

change in the shape of the mesh and to achieve optimal smoothness. However, both methods

require the source and the target models to be similar in the shape and the pose. Hu et al.

[HLW09] solve this problem by segmenting the models into consistent parts and computing the

cross-parameterization for each part independently using the method of [ACP03]. Each parts

are then combined together to generate the final results. Wu et al. [WPZM10] generated the

model transduction between two models by deforming the source model to the target model.

They replaced the general Laplacian differential coordinate term that used in the deformation

process with the mean value coordinate proposed by Floater [Flo03]. Since the mean value

coordinate encodes the shape features. This approach preserves the local shape detail of the

source model during the deformation process and enhances the cross-parameterization results.

2.3.3 Hybrid method

When the models differ greatly in shape or pose, deforming one model to the other directly may

generate unsatisfied result since the optimization converges to a poor local minimum. Recent

2.3 Cross-parameterization 9

work [MAN08, WPZ+11, YLSL11] constructs the cross-parameterization by using the hybrid

approach, which can be summarized in two major steps: First, the source and the target mod-

els are mapped onto a coarse mesh, respectively. Second, the cross-parameterization is then

generated via the mapping obtained by deforming one coarse mesh to another coarse mesh.

Matsui et al. [MAN08] first deformed the models into a shrink-like coarse mesh using the

least-squares mesh (LS-mesh) [SCO04] as shown in Figure 2.2, and generated the final cross-

parameterization by applying an iterative closest point learning algorithm on the LS-meshes.

Wu et al. [WPZ+11] segmented the input meshes into consistent parts and mapped each of

them onto a convex hull. The convex hull is then deformed into the other one by minimizing the

energy function similar to [WPZM10]. The inter-surface mapping between the parts is gener-

ated through the composition of the mappings from a convex hull to a part. Yeh et al. [YLSL11]

also generated LS-meshes of input models as coarse meshes. The method first deformed one

coarse mesh to the other coarse mesh obtain the initial coarse fitting. Second, they performed

an fine fitting to generate the cross-parameterization. The fine fitting found the additional reli-

able correspondences automatically and deformed the source mesh further to match the shape

features greatly. They also proposed a dual-domain mesh relaxation method to greatly avoid or

eliminate the problem of pinching and foldover artifacts during the deformation process.

Figure 2.2: An example of least-squares mesh [MAN08].

2.3 Cross-parameterization 10

Although the recent work of cross-parameterization can generate satisfactory global struc-

ture mapping between the models, there is still room for improvement. In the case of the

given models have extremely different size of the object parts, these methods usually require

more corresponding constraint points to be specified in order to generate the desired mapping.

In addition, the minimum required number of the corresponding constraint points and their

placement to generate the satisfactory results is quite ambiguous. Therefore, we propose a fast

method which can construct the cross-parameterization between the models that is able to well

match both the global features and the object features of the models based on only a few match-

ing points specified by the users. It requires only one to two matching points on the segment

part boundaries, which are quite intuitive and easy to specify.

C H A P T E R 3

Algorithm

In most of the cross-parameterization approaches, user needs to specify corresponding con-

straint points on the given models to constrain the mapping in these regions. However, the

minimum number of the feature points required and how to position there constraint points

for generating the satisfactory results are quite ambiguous. This motivated us to develop a

cross-parameterization method that does not need users to specify corresponding constraint

points manually. We propose a skeleton-driven cross-parameterization algorithm that can gen-

erate surface-to-surface mapping between given models with limited user intervention. Our

method aims at constructing the cross-parameterization by using the information provided by

the skeleton-to-skeleton mapping and the skeleton-to-surface mapping. The dense skeleton-to-

surface mapping provides natural constraint information for feature correspondence.

To construct the cross-parameterization using such mapping information, we may encounter

two major problems: First, we need to find a way to utilize the dense skeleton-to-surface map-

ping information as constraints during the cross-parameterization computation. Since the con-

straints are many, directly solve it using the deformation-driven methods may have no solutions

or result in pinching and foldover artifacts. Second, the skeleton-to-surface mapping only en-

11

3.1 Overview 12

codes the shape features of the surface and lacks the orientation information. Therefore, we

need to apply some additional constraints to handle this problem. To deal with the two prob-

lems, we plan to embed the polygon meshes onto the planer domain. Under the planer domain,

we can adopt an iterative local relaxation method to construction the cross-parameterization.

The relaxation approach utilizes the dense mapping information as a guide to move each vertex

to the reasonable parameterize position. And the insufficient orientation information problem

can also be dealt by measuring the distortions of the embedded polygons.

3.1 Overview

skeleton extraction and mapping construction

consistent segmentationcross parameterization

part boundary smoothing

Figure 3.1: System overview.

3.2 Skeleton extraction and mapping construction 13

Figure 3.1 shows the main steps of our cross-parameterization method, for given source and tar-

get models, the first step extracts curve skeletons using the method proposed by [Ho11]. Note

that the derived skeleton possesses a dense skeleton-to-surface mapping. Second, we construct

the skeleton-to-skeleton mapping such that each skeleton node of the source (target) skeleton

maps to a position on the target (source) skeleton. These two mapping information will be used

later in the consistent segmentation and the parameterization process. Third, we segment both

meshes into several consistent parts and to parameterize both parts onto the same intermediate

planer domain. On the intermediate domain, we generate the surface-to-surface mapping be-

tween parts by minimizing the stretch and mapping error through a relaxation process. Finally,

we smooth the mapping along the part boundaries to compute the final cross-parameterization.

3.2 Skeleton extraction and mapping construction

The skeleton is extracted directly from a 3D model based on the so-called MSP function de-

scribed in [Ho11]. MSP is a surface function that describes the internal local volume of the

object around a surface point, and is used here to transform the original mesh to a shrunk

skeleton-like mesh during the skeletonization process. With the approach of an iterative edge

swap framework, this shrunk mesh then degenerates into a 1D curved skeleton. Instead of us-

ing the traditional edge-collapsed operator, the edge swap operator is used to change the edge

connectivity without simplifying the geometry. A compact error metric is used to measure the

deviation of the shrunk mesh vertex. Under this guidance, a curved skeleton can be yielded with

dense skeleton nodes which corresponding to a set of shrunk vertices. As a result, the skeleton

generated by this MSP-driven method provides a dense skeleton-to-surface mapping in which

each skeleton node corresponds to a set of shrunk vertices. This mapping information encodes

the volumetric information on the skeleton and provides a natural constrain information for

feature correspondence.

After the skeletons of the source and the target meshes are extracted, we establish the cor-

respondence of the terminal and junction nodes between two skeletons either by the work of

3.3 Consistent segmentation 14

[Liu10] or manually. The skeleton nodes are mapping through a linear interpolation along the

skeleton path. For those unique features that do not have the corresponding positions, we assign

their correspondences to be same as the nearest corresponded node. For example, in Figure

4.31, the three protrusions on the dragon’s tail will be corresponded to the no.12 skeleton node

of the wolf model.

3.3 Consistent segmentation

Since our system construct the cross-parameterization through a relaxation process, which itera-

tively adjust the weight of the one ring vertices for each vertex. The new position for the vertices

is compute through the weighting sum of the one ring vertices. In addition, we want to mea-

sure the stretch during the relaxation process in order to overcome the orientation information

deficiency problem. Therefore, we required the medium to be a 2D planer domain. To embed a

polygon mesh into a planer domain without folding (as shown in Figure 5.3), the polygon mesh

must have exactly one open boundary. Hence, we perform a consistent segmentation by using

the skeleton-to-skeleton and the skeleton-to-surface mapping. The segmentation approach can

be divided into two major steps, including skeleton-driven segmentation (Subsection 3.3.1) and

part boundary growing and refinement for avoiding sinking vertices into local minimum in the

relaxation process (Subsection 3.3.2).

3.3.1 Skeleton-driven segmentation

After the skeleton-to-skeleton mapping is established, we have a fully correspondence of the

skeleton nodes between the source and target skeletons. Since each skeleton path represents

a specific surface region of the mesh, it is easy to map the surface region between the source

and target through the skeleton mapping. With this correspondence information, we can eas-

ily segment the mesh into several parts by performing the segmentation on the skeleton. We

analyze all the source skeleton paths and filter out the small skeleton paths which are related

to the local structure such as mouth or ears. For the rest of the skeleton paths that relate to

3.3 Consistent segmentation 15

the main structure of the model (like neck, belly, limbs, etc), we cut each of them from the

center to separate the skeleton paths into several segments. Since the center of a skeleton path

usually refers to a surface region in cylinder shape, cutting at this position usually results in a

low boundary distortion during the initial embedding (Subsection 3.4.1). After we finish the

skeleton segmentation, we obtain the segment parts of the mesh simultaneously with each part

corresponding to a specific skeleton limb. The segmentation on the target mesh can be obtained

by simply transferring each cut node of the source skeleton to the target skeleton through the

skeleton-to-skeleton mapping.

3.3.2 Part boundary growing and refinement

Since our parameterization domain is circular, vertex nears the part boundary may mapped to a

position that lies outside the embedded region of the corresponding part; as show in Figure 3.2.

''TSΠ

''STΠ

S’ T’
iv iv

Figure 3.2: Circular parameterization domain and its mapping to each other.

To overcome the problem mentioned above as well as to smooth the mapping result along

the part boundaries, we out grow the part boundaries such that adjacent parts overlap by a small

region. Next, we refine the part boundaries to avoid the case that a triangle degenerats to a line

during the parameterization process. We remove a triangle from the part if its two edges are

on the part boundary path. If the removing the triangle will cause it to be isolated, we add the

3.4 Cross-parameterization 16

fan-shaped triangles between one of the triangle edges and the adjacent boundary edge into the

part as shown in Figure 3.3.

Figure 3.3: Part boundary refinement.

3.4 Cross-parameterization

The correspondences between the source and target parts can be obtained after the part seg-

mentation. Each part pair’s internal mapping is then constructed through the parameteriza-

tion. As in Figure ??, the mapping is a composition of three consequent mappings: ΠST =

ΠSS′ ◦ΠS′T ′ ◦Π−1TT ′ , where ΠSS′ (ΠTT ′) is the mapping from the source (target) mesh to its 2D

circular parameterization domain. ΠS′T ′ is the mapping from the source parameterization do-

main S ′ to the target parameterization domain T ′ that simply maps each point in S ′ to T ′ using

the parameterization position u(x, y) in S ′. Therefore, our main purpose is to find a suitable

parameterize position for each vertex of the parts to obtain the reasonable mapping on surface.

To reach this goal, we proposed an iterative relaxation method, which is a two step approach

consists of an initial embedding (Subsection 3.4.1) and a relaxation process (Subsection 3.4.2)

as describe below.

3.4 Cross-parameterization 17

'SSΠ

''TSΠ

1
'

−ΠTT

S T

S’ T’

Figure 3.4: Overview of the cross-parameterization computation for two parts.

3.4.1 Initial embedding

We embed the parts in correspondence into a 2D circular domain by using the mean value

coordinates proposed by [Flo03], which is shape preserving and has low angular distortion.

The boundary vertices of S are mapped into the boundary vertices of S ′. For each inner vertex

vi of S, its projected point ui on S ′ is derived by minimizing the following local quadratic

energy:

E(ui) =
∑

(i,j)∈E

wij(uj − ui)2, (3.1)

where

wij =
tan(αij/2) + tan(βij/2)

‖vj − vi‖
(3.2)

3.4 Cross-parameterization 18

is the mean-value coefficient, αij and βij are the angles shown in Figure 3.5. The optimal

iv
ijβ

ijα
jv

Figure 3.5: The differential coordinates.

positions for ui can be found by solving a sparse system of linear equations:∑
(i,j)∈E

wij(uj − ui) = 0 (3.3)

In order to have a better cross-parameterization, the embedding of source and target parts

need to be adjust. This can be done by requiring users to specify a matching point on the bound-

aries of the parts. As shown in Figure 3.6, users specify the matching point on the boundaries

of the source and target parts (ex: the bottom of the neck). Note that specifying these matching

points are much easier and more intuitive than assigning the general corresponding constraint

points to user. In our experience, one to two matching points are suitable in most cases.

For each vertex ui in the parameter domain let us define its stretch σi = σ(ui) by

σi =
√∑

A(Tj)σ(Uj)2/
∑

A(Tj) (3.4)

σ(U) =
√

(Γ2 + γ2)/2 (3.5)

where A(T) denotes the area of triangle T and the sums are taken over all triangles Tj sur-

rounding mesh vertex vi corresponding to ui, σ(U) is the L2 stretch for a embedded triangle, Γ

and γ are the maximal and minimal Eigen values of the metric tensor induced by the mapping

[SSGH01]. To alleviate the L2 stretch of the embedded triangles and to have a more uniform

3.4 Cross-parameterization 19

matching point

S’ T’ T’

S T

without adjustment with adjustment

Figure 3.6: The illustration for the orientation adjustment.

distribution of the vertices on the parameterization domain. We relax the stretch of the embed-

ding geometry with the previous work of [YBS04], which iteratively changing the edge weights

for each vertex:

wnew
ij =

w
′
ij∑

(i,j)∈E w
′
ij

, (3.6)

where

w
′

ij =
wold

ij

σj
, (i, j) ∈ E, (3.7)

and solving (3.3) to derive the new optimal positions. The process iteratively pushes each

embedded vertex towards a direction with lower stretch. Therefore, embedded triangle with

high L2 stretch can be lowered by the replacement of the neighbor vertices.

Notice that we do not need to relax the stretch of the embedding geometry to the optimal

result like [YBS04]. The main purpose of this approach is to prevent the embedding vertices

from sinking into the local minimum of the following relaxation process. Since the control

variable of the following relaxation process are the stretch error and the mapping error, which

are defined in the following paragraphs, an extremely high stretch may dominant the relaxation

3.4 Cross-parameterization 20

process and let the mapping error to be merely effective.

3.4.2 Relaxation

After the initial part parameterization, the source and target part are embedded into a 2D circu-

lar domain without folding. We proposed a relaxation approach to iteratively improve the result

on the source and target. The main purpose is to push each embedded vertex towards a direction

which leads to the position that has the reasonable mapping on surface. Using the same idea as

[YBS04], each improvement step we adjust the one ring edge weight for each vertex of the pa-

rameterization generated at the previous step. And the new optimal position for each embedded

vertex is found by solving (3.3). The improvement process is execute until it converge, which

the difference of the parameterization result between the last step and the current step are little

or having a visually good mapping on surface.

w
′

ij =
wold

ij

wmEm(i, j) + wsEs(j)
, (i, j) ∈ E (3.8)

To reach our requirement, we modified the edge weight changing term in (3.7) of [YBS04] to

(3.8). We add a mapping error into the system and alleviate the original stretch error to prevent

it from dominating the edge weight adjustment process. The two error metrics are described

below.

Mapping Error (Em)

The mapping error is used to guide the parameterization of the source mesh such that two

adjacent vertices are mapped to two vertices on the target mesh that are close. As illustrated

in Figure 3.7, the mapping error defined for the the edge (vi, vj) is to symbolize the distance

between the two skeleton nodes corresponding to vi and vj:

Em(i, j) =
‖p1− p2‖

D

=
‖ΩST (ΩS(vi))− ΩT (Π−1TT ′(ΠS′T ′(ΠSS′(vj))))‖

D

(3.9)

3.4 Cross-parameterization 21

1

skeleton to skeleton mapping

vertex to skeleton
mapping

circular parameterization domain
source skeleton target skeleton

T

interpolation

vertex to skeleton
mapping

p1
p2

vi

vj

'SSΠ S’ T’

''TSΠ

1
'

−ΠTTS

SΩ
TΩ

STΩ

Figure 3.7: Mapping error.

where ΩS (ΩT) is the surface-to-skeleton mapping, ΩST is the skeleton-to-skeleton mapping

between the source and target skeleton, D is the longest length on the skeleton.

Stretch Error (Es)

The stretch error is used to preserve the triangle shape to generate a parameterization that has

a more uniform distribution within the embedded region. Here we simply use the L2 stretch

term defined on the vertex as we mentioned before in (3.4). Since the L2 stretch symbolizes the

root-mean-square stretch over all directions in the parameterized domain, we can not find a way

to truly normalize it. Usually, the vertices in the fineness area of the model may have extremely

higher stretch values than most of the vertices. Directly normalizing the stretch value using

the average stretch value of the total vertices may result in too small stretch values for most

vertices and hence let the mapping error dominate the weight adjustment process. Therefore,

we normalize it using the mean of inliers’ stretch value M :

Es(i) =
σi
M

(3.10)

Here we use the Interquartile Rage to find the inliers since the calculation time is fast and easy

to implement [UC96]. We sort all previous vertex stretch values in an increasing order. The

first and third quartile (Q1 and Q3) are calculated to compute the Interquartile Rage: IQR =

Q3 −Q1. The inliers are the values between Q1 − 1.5 ∗ IQR and Q3 + 1.5 ∗ IQR.

3.5 Part boundary smoothing 22

0% 25% 50% 75% 100%

Q1 Q3

IQR

Figure 3.8: Interquartile Range (IQR).

The relaxation process can be think as a mass-spring system consists of the parameterize

vertices {ui} and corresponding energies. In each iteration, we improve each ui by pushing

it towards the direction which has lower energy. This adjustment is made by relaxing and

strengthening the springs connected to it. Since the process can be transformed into a sparse

system of linear equations, the single optimization step is fast.

3.5 Part boundary smoothing

After relaxation of the mapping error for each part pair (Si, Ti), i = 1, ..., n, we obtain an inter-

surface mapping from Si to Ti, except for some vertices that are close to the part boundaries.

To compute the mapping position for vertex that are close to the part boundaries and to smooth

the mapping result around part boundaries, we apply a boundary smoothing process for each

overlapping region: Sij = {Si ∩ Sj} and Tij = {Ti ∩ Tj}, where Si ∩ Sj 6= φ and Ti ∩ Tj 6= φ.

Our smoothing process can be thought as a local deformation. It is a three step approach,

including hint position generation (Subsection 3.5.1), shape preserving generation of base mesh

(Subsection 3.5.2), deformation and re-projection (Subsection 3.5.3). In the first step, we com-

pute the hint position for each vertex except some vertices that are close to the part boundaries.

This hint position gives a desired moving position for the vertex during the deformation process.

In the Second step, we construct the base mesh for deformation. The base mesh guarantees the

vertices on it to be distributed nicely without pinching and foldover artifacts. Meanwhile, it

provides the initial mapping positions for the vertices that are close to the part boundaries. In

3.5 Part boundary smoothing 23

Last step, we deform the base mesh to fit the hint positions as much as possible while preventing

the pinching and foldover artifacts. A re-projection is invoked at the end to ensure the deformed

vertex lies on the target surface. Since the overlapping area is quite small, applying the defor-

mation method on this area will not have the mesh pinching or foldover artifacts that usually

happen when the entire model is directly deformed.

3.5.1 Hint position generation

boundary
of R

boundary
of R

local parameterization of the
overlapping region

parameterization of
the local region R

x 1-x

Si Sj

boundary of Siboundary of Sj

boundary
of Ti

boundary
of Tj

S’i

Ti Tj

T’i

T’j

''
iiTSΠ

''
jjTSΠ

v’ki

v’kj

1
'

−Π
jjTT

SΓ TΓ

L’k_interp

vk_hint

Lk

L’ki

L’kj

uki u’ki

ukj u’kj

'
jj SSΠ

S’j

'
iiSSΠ

vk

1
'

−Π
iiTT

ji SS ∩

Figure 3.9: Hint position generation.

We need to create the hint position as the desired location after deforming the vertices. As

in Figure 3.9, the vertex vk inside Si ∩ Sj , has the mapping positions v′ki and v′kj on the target

surface, which are mapped through the inter-surface mapping from Si to Ti and from Sj to Tj ,

respectively. That is,

v′ki = Π−1TiT ′i
(ΠS′iT

′
i
(ΠSiS′i

(vk))),

v′kj = Π−1TjT ′j
(ΠS′jT

′
j
(ΠSjS′j

(vk))).
(3.11)

3.5 Part boundary smoothing 24

In this case, we need to find a consistent mapping position (hint deformation position) for

the vertex vk according to its importance to Si and Sj . Since the overlapping region is a band

shaped polygon, we can use the distance between vk and the part boundaries as the weighting

coefficient for interpolating v′ki and v′kj . To ensure that the hint position lies inside the target

surface, we do the interpolation on the parameterized domain of the target local region R.

Because the boundaries of the part pair (Si, Ti) and (Sj, Tj) are matched, the mapping region

of Si ∩ Sj can approximate the region Ti ∩ Tj . Thus, the target local region R that is required

to cover the mapping area of Si ∩ Sj , can be found efficiently through a region growing started

from the overlapping region Ti ∩ Tj . After the region growing, we can compute a hint position

vk hint for each vk by interpolating v′ki and v′kj on the local parameterized domains as follows:

vk hint = Γ−1T ((1− x)L′ki + xL′kj), (3.12)

where

Lk = ΓS(vk), (3.13)

L′ki = ΓT (v′ki), (3.14)

L′kj = ΓT (v′kj), (3.15)

and x is the coordinate of Lk of the horizontal axis in the local parameterize domain for Si∩Sj ,

ΓS and ΓT are the embedded mappings of Si ∩ Sj and the local region R, respectively.

3.5.2 Shape preserving generation of base mesh

After the hint deformation position for each vertex inside the Si ∩ Sj is calculated, we need to

derive a base mesh for the deformation process. Here, we adopt the least-square mesh approach

proposed in [SCO04] but change the uniform weight (reciprocal of the vertex valence) with the

mean value coordinate as we mentioned before in Subsection 3.4.1. This has been showed that

the representation can successfully capture the shape detail of the base mesh and enhance the

deformation result [WPZM10]; as shown in Figure 3.10.

3.5 Part boundary smoothing 25

(a) (b) (c)

Figure 3.10: The cross-parameterization step in [WPZM10], which maps a lion model to its

own convex hull. (a) lion model (b) convex hull cross-parameterization computed using the

uniform representation (c) convex hull cross-parameterization computed using the mean-value

Laplacian representation.

To generate the base mesh, we need to specify constraints on the boundaries of the base

mesh. As shown in Figure 3.11, blue and green colored vertex represents the vertex of Si and

Sj , respectively. Black colored vertex represents the vertex without mapping position. Usually,

the vertex close to the part boundary like v1, can obtain the mapping position derived from the

inter-surface mapping Sj to Tj . But when the distortion of the boundary is high, a few vertices

may not have the mapping positions either from the inter-surface mapping Si to Ti or Sj to Tj ,

as vertex v2 for example.

vertex with
no mapping
position

no mapping pos vertex

Sj

Si

mapping position
obtain from Sj

mapping position
obtain from Si

Si

Sj

1v 1v

2v

2v

Figure 3.11: The illustration of the vertex without mapping position.

3.5 Part boundary smoothing 26

Sj

growing

growing

Si 1
''''

−ΠΠΠ
iiiiii TTTSSS

1
''''

−ΠΠΠ
jjjjjj TTTSSS

TS

vertices on the out
growing boundaries

vertices on the out
growing boundaries

boundary constraints for
base mesh generation

Figure 3.12: Base mesh generation.

Therefore, a region growing process is invoked to ensure that the constraint points on the

boundaries of base mesh have the mapping positions on the target surface. As illustrated in

Figure 3.12, starting from the overlapping region on the source part, we out grow the boundaries

of Si and Sj until the vertices on both boundaries have the mapping positions on the target

surface. The mapping positions of the vertices on the out growing boundaries are considered as

the boundary constraints on the base mesh. And the position for each inner vertex of the base

mesh is derived by minimizing the local energy:

Em(vi) =
∑

(i,j)∈E

wij∑
(i,j)∈E wij

(vj − vi)2, (3.16)

where wij is the mean-value coefficient defined in (3.2). The energy minimization process can

be transformed into a sparse linear system of degree n, where n is the total number of the

vertices inside the base mesh:

Ax = b, (3.17)

3.5 Part boundary smoothing 27

where

Aij =

1 i = j

− wij∑
(i,j)∈E wij

vi /∈ boundary vertex, (i, j) ∈ E

0 otherwise,

(3.18)

bi =

 vi map vi ∈ boundary vertex

0 otherwise,
(3.19)

A is the coefficient matrix, each diagonal element of the matrix we assign the value to be one

to let it multiply with the unknown vi. In each row of A, we assign the value − wij∑
(i,j)∈E wij

to the element which corresponds to the one ring vertex vj or zero otherwise. b is the matrix

that defines the local combination energy. For the element of b that corresponds to the inner

vertex of the base mesh, we assign zero to minimize the local energy. For the element of b that

corresponds to the vertex vi that lies on the boundary of the base mesh, we assign its value to

be the mapping position vi map of vi. Since the vertex on the base mesh boundary have exactly

one mapping position, we can directly use the mapping position as hard constraints to construct

the boundaries of the base mesh.

3.5.3 Deformation and re-projection

When the base mesh is generated, the last thing we need to do is to deform it to the desired

shape we want. This step should be subjected to the convex combination constraints to assure

that the deformation result will not fold over. We deform each vertex of the base mesh towards

the hint position as much as possible, except the vertex that lies on the boundary of the base

mesh. To compute the deformed positions for the vertices, we formulate the following energy

minimizing problem:

E(vi) = Em(vi) + whEh(vi), (3.20)

3.5 Part boundary smoothing 28

where Em is the energy we defined in 3.16, wh is weight, and Eh is the hint position approxi-

mation energy:

Eh(vi)m =
∑
i∈S

(vi − vi hint)2, (3.21)

where S is the set of indices of the inner vertices of base mesh, and vi hint is the hint position of

the vertex vi. The energy minimization process can be transformed into a matrix form:

A′x = b′, (3.22)

where

A′ =

 A

whH

 , (3.23)

Hij =

 1 j = si ∈ C

0 otherwise,
(3.24)

b′k =

 bk k ≤ n

whvsk−n
n < k ≤ n+m,

(3.25)

A is the n × n matrix we defined in 3.18, H is the hint position coefficient matrix of the base

mesh, m is the number of the set of the internal vertex that has hint position vs, s ∈ C, where

C = s1, s2, ..., sn is the set of indices of the hint vertices. Using the same idea as forming

matrix A, for each element of A′ that corresponds to the vertex with hint position, we assign its

value to be one, or zero otherwise. For the row element of b′k that are greater than n, we assign

its value to be the product of weight wh and the hint position of vk in order to deform the base

mesh to the hint position.

Notice that the deformation procedure can not guarantee that the deformed vertex lies ex-

actly on the target surface. Therefore, we project the deformed base mesh to the nearest triangle

of the target mesh to get the final mapping result. Figure 3.13 shows the result of the dog after

the deformation and re-projection process. Since most of the hint positions of the inner ver-

tices abide the convex combination constraint, the shape of the deformed source mesh usually

close to the shape of the target mesh. Figure 3.14 and 3.15 shows the mapping vertices of the

3.5 Part boundary smoothing 29

dog model before and after the boundary smoothing process. We can observe that the map-

ping positions of the vertices are nicely distributed along the part boundaries after the boundary

smoothing process.

(a) (b) (c) (d)

Figure 3.13: Mapping from a dog (a) to a wolf (b), (c) after deformation (d) after re-projection.

Figure 3.14: Mapping vertices and edges of the dog model before part boundary smoothing

(different edge color represents different parts).

3.5 Part boundary smoothing 30

Figure 3.15: Mapping vertices and edges of the dog model after part boundary smoothing (dif-

ferent edge color represents different parts or the overlapping regions).

C H A P T E R 4

Experimental Result

In this chapter, we present the experimental result of the cross-parameterization with the pro-

cessing time required, including cross-parameterization, part boundary smoothing, and repro-

jection.

4.1 Result

In this section, we demonstrate the experimental result of our cross-parameterization method.

The cross-parameterization between the two models is generated by minimizing the combi-

nation error we proposed. Our method utilizes the skeleton-to-skeleton mapping and the dense

skeleton-to-surface mapping to construct the cross-parameterization between two models. There-

fore, we can generate the cross-parameterization for each pair of corresponding parts by speci-

fying only two to three matching points on the part boundary such that part boundaries aligned

on the parameterized domain. Figure 4.1 and Figure 4.2 shows the skeleton-to-surface mapping

by coloring the surface with the same color of the correspondent skeleton node, which changes

smoothly along the surface. The dense skeleton-to-surface mapping slices are shown in Figure

31

4.1 Result 32

4.3.

Figure 4.1: The visualization of skeleton-to-surface mapping of the dog model.

Figure 4.2: The visualization of skeleton-to-surface mapping of the wolf model.

4.1 Result 33

Figure 4.3: The visualization of the skeleton-to-surface mapping slices.

The skeleton-to-skeleton mapping is constructed by matching the junction and terminal

skeleton node first. And the rest of the skeleton nodes are mapping through a linear interpola-

tion along the skeleton path. Figure 4.4 shows the correspondence of the junction and terminal

skeleton node, each pair of the corresponding skeleton nodes are marked with same number.

Figure 4.5 demonstrates the skeleton-to-skeleton mapping between the dog and wolf, we draw

each skeleton node of the dog model with the mapping position on the skeleton path of the wolf

model to visualize the skeleton-to-skeleton mapping.

4.1 Result 34

Figure 4.4: The skeleton node correspondence between the dog and wolf model

Figure 4.5: The skeleton-to-skeleton mapping between the dog and wolf model.

Figure 4.6 shows the matching points we assigned for each pair of parts The red colored

edges are the part boundaries and the green colored edges represent the open boundaries which

will be closed during the parameterization.

4.1 Result 35

Figure 4.6: The segmented parts and matching points colored in red and blue specified on the

part boundaries.

Since the proposed method measures the mapping error between two vertices by using the

distance between their corresponding skeleton points along the skeleton. Therefore, the method

can handle the cases in which models have feature parts in different orientations and size. Fig-

ure 4.7 shows the cross-parameterization result between the dog and wolf, who have ears in

extremely different orientation. We visualize the mapping results by texture mapping the target

models with a check board texture.

Figure 4.7: The cross-parameterization between the dog and wolf model.

4.1 Result 36

With the skeleton-to-skeleton mapping and the dense skeleton-to-surface mapping informa-

tion, the object features between models can be matched automatically. To closely observe the

mapping result for the local regions, we increase the texture repeat cycles and showed the re-

sult in Figure 4.8, Figure 4.9, and Figure 4.10. Since the mapping error is defined only as the

distance on the skeleton, some twists may happen along the direction which perpendicular to

tangent of the skeleton due to the lack of the orientation information (as shown in the indicative

region in Figure 4.10).

Figure 4.8: The cross-parameterization of the heads between the dog and wolf model.

(a) (b)

Figure 4.9: The cross-parameterize result of the limbs between the dog and wolf model. (a)

front legs (b) back legs.

4.1 Result 37

Figure 4.10: The twist effect due to the lack of the orientation information on the slice region.

We also test our work on the lion and cat models with different size of parts, such as fore-

head, ears, neck, limbs, belly, etc. As shown in Figure 4.11 - Figure 4.14, the lion has larger

forehead and smaller ears than that of cat. Also, the length and the shapes of their limbs are

different. Our method matches these features well without much distortion.

Figure 4.11: The cross-parameterization between the lion and cat model.

4.1 Result 38

Figure 4.12: The cross-parameterization of the head part between the lion and cat model.

Figure 4.13: The cross-parameterization of the front legs between the lion (top) and cat (bot-

tom). The texture repeat cycle is doubled from left to right to clarify the result.

4.1 Result 39

Figure 4.14: The cross-parameterization of the back legs between the lion (top) and cat (bot-

tom). The texture repeat cycle is doubled from left to right to clarify the result.

Since the vertices around the tip of an object part usually map to the same skeleton node,

the mapping error of these vertices are the same. Therefore, it is hard to map the tip region well

if the skeleton does not protrude close enough to the surface. As shown in the squared region

in Figure 4.9 and Figure 4.15, the tip region of the left back leg maps to the same skeleton

node and higher geometry distortion is induced in the tip area. Compare to mapping results

of the front legs in Figure 4.13, we observe that the mapping results around the tip regions of

the front legs are better than that of the back legs between the lion and the cat model. This is

because the shape of the front legs between the lion and the cat are similar. In this situation,

we can easily find the optimal cross-parameterization that minimizes the energy without much

distortion. Thus the area around the tip region can be matched well automatically even when

4.1 Result 40

the skeleton does not protrude close enough to the surface.

Figure 4.15: The cross-parameterization and slicing of the skeleton-to-surface mapping of the

left back leg of the lion and cat model.

(a) (b) (c)

Figure 4.16: The cross-parameterization of the front legs between the lion (top) and cat (bottom)

model with different cut positions. (a) upper one-third (b) middle (c) lower one-third.

4.1 Result 41

In Figure 4.16, we show the mapping result for the parts resulting from different cutting po-

sitions. The dotted lines represent the cutting positions in the segmentation process. We observe

that inappropriate segmentation often results in cross-parameterization of higher distortions; as

shown in the squared region. Since cut in these positions, one of the segment parts that shared

the cut boundary is large and having higher stretch on the parameterize domain. As in Figure

4.16(c), cutting in the lower one-third of the legs makes the front belly of the lion and cat be-

come much larger, and result in cross-parameterization of higher distortion compare to (a) and

(b).

We also derived the cross-parameterization for the models in different poses. Since the

object has similar topology, the cross-parameterization between them can be easily done with

our approach. In Figure 4.17 - Figure 4.19 we demonstrate the cross-parameterization between

the horse in the standing pose and in normal pose. We observe that our method is insensitive to

the pose.

Figure 4.17: The cross-parameterization between the horse models in the standing pose and in

normal pose.

4.1 Result 42

Figure 4.18: The cross-parameterization between the head parts of the horse model in different

poses.

Figure 4.19: The cross-parameterization between the left front legs of the horse models in

different poses.

4.1 Result 43

Next, we change the weight for the mapping error term to show its influence in the opti-

mization process. To show the influence of the mapping error with different weights, we test

the parts that have extremely different sizes and fineness. In the example, we enlarge the cat

ears and do the subdivision such that the ear has four times number of faces as the lion’s ears.

The cross-parameterization results with mapping error of different weights are shown in Figure

4.20. When the weight wm of the mapping error increases, we observe that the mapping area of

the cat’s eats lies closer to the place with lower mapping error. However, if the weight wm is too

high, the mapping area will suffer in high stretches and distortions on the target surface. Also,

as shown in Figure 4.21, we observe a nearly opposite trend compares to Figure 4.20 when the

influence of the stretch error increases.

wm = 1.0 wm = 1.5 wm = 2.0 wm = 2.5wm = 0.5

ws = 1.0

(a)

wm = 1.0 wm = 1.5 wm = 2.0 wm = 2.5wm = 0.5

ws = 1.0

(b)

wm = 1.0 wm = 1.5 wm = 2.0 wm = 2.5wm = 0.5

ws = 1.0

(c)

wm = 1.0 wm = 1.5 wm = 2.0 wm = 2.5wm = 0.5

ws = 1.0

(d)

wm = 1.0 wm = 1.5 wm = 2.0 wm = 2.5wm = 0.5

ws = 1.0

(e)

Figure 4.20: The mapping result from a long ear cat head to the lion head with different mapping

error weights.

4.1 Result 44

ws = 1.0 ws = 1.5 ws = 2.0 ws = 2.5ws = 0.5

wm = 1.0

(a)

ws = 1.0 ws = 1.5 ws = 2.0 ws = 2.5ws = 0.5

wm = 1.0

(b)

ws = 1.0 ws = 1.5 ws = 2.0 ws = 2.5ws = 0.5

wm = 1.0

(c)

ws = 1.0 ws = 1.5 ws = 2.0 ws = 2.5ws = 0.5

wm = 1.0

(d)

ws = 1.0 ws = 1.5 ws = 2.0 ws = 2.5ws = 0.5

wm = 1.0

(e)

Figure 4.21: The mapping result from a long ear cat head to the lion head with different stretch

error weights.

In general, we setws a little bit higher thanwm due to our mapping error lacks the orientation

information. Setting ws higher can prevent the shape from distorting a lot during the relaxation

process (as shown in Figure 4.20 (e)). But when the size and fineness of the parts differs a lot,

setting wm higher than ws is necessary (as shown in Figure 4.20 (c)), since the high stretch error

constrain the vertex from moving further to the ideal position during the relaxation process.

We also show the cross-parameterization between the parts with extremely different sizes

and fineness. In Figure 4.22 - 4.24, we can observe that the ear parts still can approximately

match to each other.

4.1 Result 45

Figure 4.22: The cross-parameterization between the long ear cat head and lion head (side

view).

Figure 4.23: The cross-parameterization between the long ear cat head and lion head (front

view).

4.1 Result 46

Figure 4.24: The cross-parameterization between the long ear cat head and lion head (top view).

If the mapping error is carefully tuned by the users during the mapping error relaxation,

our method can be applied to the models which have extremely different appearance. User can

tune the weight wm to be a little bit higher if the distance between the vertex and the reasonable

mapping positions are far after the relaxation. On the other hand, if user observes high distortion

of the mapping polygons, user may lower the weight wm and let the weight ws to be higher. In

Figure 4.25 - Figure 4.29, we demonstrate an example of the cross-parameterization between

the dragon and the wolf model. Since the shapes of the two models are extremely different,

high distortion observed in these cases usually can not be avoided (as shown in Figure 4.30).

4.1 Result 47

Figure 4.25: The cross-parameterization between the dragon and wolf model.

Figure 4.26: The cross-parameterization of the head part between the dragon and the wolf

model.

4.1 Result 48

(a) (b)

Figure 4.27: The cross-parameterization of the limbs between the dragon and wolf model. (a)

right front leg (b) left front leg.

(a) (b)

Figure 4.28: The cross-parameterization of the limbs between dragon and wolf model. (a) right

back leg (b) left back leg.

4.1 Result 49

Figure 4.29: The cross-parameterization of the tail part between the dragon and wolf model.

Figure 4.30: The visualization of slice mapping from the dragon to the wolf model.

We also demonstrate the partial mapping skeletons of the dragon and wolf model; as shown

4.1 Result 50

in Figure 4.31. Skeleton paths that linked by the matched skeleton nodes are corresponded

accordingly. The mappings of the skeleton nodes inside the skeleton path are generated auto-

matically through a linear interpolation along the skeleton path. For those nodes that do not

have correspondences, their corresponding positions are the nearest node that has correspon-

dence. For example, the three protrusions on the dragon’s tail will be corresponded to the

skeleton node 12 of the wolf model. Therefore, the mapping of these unique feature parts will

be constrained to the nearby area on the target model by minimizing both of the stretch and

mapping error. Since the mapping error can only constrain the mapping position of the unique

feature parts in nearby approximated regions, the qualities of the mapping still have room for

improvement.

Figure 4.31: Skeleton node correspondence between the dragon and wolf model.

Figure 4.32: Partial mapping of horns from the dragon to the wolf model.

4.1 Result 51

Figure 4.33: Partial mapping of the left two claws from the dragon to the wolf model.

Figure 4.34: Partial mapping of the right two claws from the dragon to the wolf model.

Figure 4.35: Partial mapping of tails from the dragon to the wolf model.

4.1 Result 52

Figure 4.36: The slicing of the skeleton-to-surface mapping of the camel and the horse model.

Our approach uses the skeleton-to-surface mapping information to determine the map-

ping error.The cross-parameterization between the models can not be well constructed if the

skeleton-to-surface mapping is not good. As shown in Figure 4.36, the body of the camel has a

strong bulge at the center which results in the unsatisfactory skeleton-to-surface mapping result.

The cross-parameterization between the horse and the camel has higher distortion around the

body and the upper part of the limbs, which are connected to the body after the segmentation

(as shown in Figure 4.38 and Figure 4.39).

4.1 Result 53

Figure 4.37: The cross-parameterization between the hose and camel model.

Figure 4.38: The cross-parameterization of the body between the horse and camel model.

4.1 Result 54

(a) (b)

Figure 4.39: The cross-parameterization of the limbs between the horse and the camel model.

(a) front legs (b) back legs. The dotted lines represent the approximate segmentation positions

in the segmentation process.

Finally, we show the partial mapping result between the horse and camel model. Since the

shape of the tail part is quite simple, the partial mapping between the horse and the camel can

be well done; as shown in Figure 4.40.

Figure 4.40: Partial mapping of tail from the camel to horse model.

4.2 Timing information 55

4.2 Timing information

Table 4.1 lists the performance summary of the proposed skeleton-driven cross-parameterization

present in figure 4.7 - 4.19, 4.25 - 4.40. All the results are performed on Intel Core 2 Duo CPU

E6600 2.4GHz with 4GB DDR2 memory, using a single thread implementation. Since our

segmentation process is based on the skeleton-to-skeleton and the skeleton-to-surface mapping

information, the process can be done quickly within a second. It usually takes five to seven sec-

onds for users to specify the matching points by the users for each part pair. Our method does

not implement space subdivision on models to accelerate the point-in-triangle test that used in

the part cross-parameterization, boundary smooth, and re-projection process. We only apply

some simple tests to filter out the triangles that are far from the vertex. Therefore, when the

fineness of the input models increase, the processing time increases.

Table 4.1: Performance summary
Model Source Target Matching Point Time(sec)

Source Target #V #F #V #F #MP Part Segmentation Part Cross-Param. Part Boundary Smooth Re-Projection

Dog Wolf 4,530 9,056 4,712 9,420 14 0.093 24.530 2.422 2.547

Lion Cat 5,196 10,388 5,046 10,088 16 0.078 32.313 2.672 3.453

Horse1 Horse2 15,002 30,000 15,002 30,000 16 0.218 209.05 9.109 26.312

Dragon Wolf 14,331 28,658 15,651 31,298 19 0.328 408.12 10.750 19.391

Camel Horse 10,020 20,036 10,002 20,000 14 0.171 87.063 5.859 17.156

Note: second column: the number of vertices (#V) and faces (#F) of the source model; third column: the number

of vertices (#V) and faces (#F) of the target model; fourth column: the number of user-specified pairs of matching

points (#MP); fifth column: the process time of the segmentation, part cross-parameterization, part boundary

smoothing, and re-projection.

C H A P T E R 5

Conclusions

We give a brief summary of the proposed cross-parameterization algorithm in this chapter. We

also discuss the limitation of our system, and propose several future works.

5.1 Summary

We have presented a novel algorithm that generates the cross-parameterization between the

source and the target mesh with only a few matching points specify on part boundaries. Our

method utilizes the correspondence information of the skeleton-to-surface and skeleton-to-

skeleton to measure the mapping error for cross-parameterization. To derive the cross-parameterization,

we iteratively push every vertex towards a position that has lower mapping error while preserv-

ing the shape of the mesh until the optimization converges. To satisfy such relaxation scheme,

we required the medium to be a 2D planer domain. In order to parameterize mesh onto the

planer domain without folding, we consistent segment input models into several parts in cor-

respondence by using the skeleton-to-surface and skeleton-to-skeleton mapping information.

Since the relaxation is done through the 2D parameterize domain, we can ensure that the pinch-

56

5.2 Limitations 57

ing and foldover artifacts that are usually encountered in traditional deformation driven ap-

proach will not occur in our method. A smoothing process is invoked at the end to smooth the

cross-parameterization along the part boundaries and generate the mapping for the vertices that

are near the part boundaries. The algorithm is fast and efficient as the energy minimization pro-

cess can be formulated into a sparse linear system. Differ from general approaches that require

users to specify the corresponding constraint points. Our approach requires users to specify

the matching points with similar orientation on the part boundaries of source and target model.

Specifying these matching points are much easier and more intuitive than assigning the general

corresponding constraint points.

5.2 Limitations

The proposed algorithm uses a mapping error and geometry stretch to determine if a vertex’s

mapping position is reasonable or not. This works well in most cases, but when the input models

are perfect symmetry (e.g. a cylinder) with high vertex stretch on the parameterization domain,

it could be hard to decide the desired mapping positions. As in Figure 5.1, the proposed error

metric can not recognize the case when the red points’ mapping position rotate with respect to

the skeleton node on the mapping slice.

Since the corresponding skeleton positions of these red colored does merely changes after

the rotation, the skeleton mapping position difference will not increase. And the L2 stretch can

only response to the combined effects of the maximal and minimal Eigen value of the embedded

triangle. Therefore, it can not deal with the case that the triangles is long and narrow (as the

triangles with red edges in Figure 5.1).

5.2 Limitations 58

on parameterize domain

skeleton

mapping position

Figure 5.1: L2 stretch can not recognize the distortion caused by the rotation along the indicate

direction.

Currently we suggest a method to deal with the perfect symmetry problem, by adding the

symmetry information to the mesh (a dense symmetry line segments that lies inside the mesh).

With this information, we can generate the rotation angle for each vertex according to the clos-

est symmetric line: As illustrated in Figure 5.2, we project a vertex to the plane which passing

through the mapped skeleton node and having the normal direction L to get the project point v′i,

where L = (SkelDir×SymmLineDir)×SymmLineDir. Then, we dot the line directionK

to the symmetry line to get the rotation angle θ, where K = v′i − si. After each vertex generate

the rotation angle, we can calculate the rotation angle difference to prevent the perfect symme-

try rotation problem with the similar approach we proposed in Subsection 3.4.2 However, to

automatically generate the dense and consistent symmetry lines that do not affect by the poses

or local features is not an easy task.

5.2 Limitations 59

symmetry line

surface vertex mapped
skeleton node

projection plane

plane normal
K

vi

v’i

si

skeleton direction

θ

Figure 5.2: Illustration of orientation angle calculation.

Also, in the smoothing process for part boundary, we have to guarantee that the local pa-

rameterization domain used for interpolation must contain all the mapping positions. If the

out-growing region has more than two boundaries, the local parameterization domain will have

at least one hole inside and violate our assumption. Therefore, our method does not support the

local out-growing region with more than two boundaries.

Our method does not support user to assign the corresponding constaint points as previous

deformation-driven approaches. Usually, these additional constraints may violate the convex

combination constraint and result in folding after the relaxation(as shown in Figure 5.3).

Since our parameterization method needs to guarantee the segment part to be embedded on

the planer domain without folding, we can not deal with the segment part with genus greater

than zero.

5.3 Future works 60

Figure 5.3: The folding phenomenon in the parameterizaiton domain.

5.3 Future works

To further improve our cross-parameterization algorithm, we would like to seek for a new non-

planer parameterize domain that is suitable for the mapping error relaxation method and allows

a directly embedding without the segmentation. By this way, mesh will not suffer from high

parameterization stretch on the planer domain and the requirement of the boundary smoothing

process can be eliminated. Another direction is to extend our approach into a fully automatic

cross-parameterization method without any user intervention.

Bibliography

[ACP03] B. Allen, B. Curless, and Z. Popović. The space of human body shapes: re-

construction and parameterization from range scans. In ACM Transactions on

Graphics (Proc. SIGGRAPH), pages 587–594, 2003.

[Ale02] M. Alexa. Recent advances in mesh morphing. Computer Graphics Forum,

21(2):173–196, 2002.

[ATCO+10] O. K.-C. Au, C.-L. Tai, D. Cohen-Or, Y. Zheng, and H. Fu. Electors voting

for fast automatic shape correspondence. In Computer Graphics Forum (Proc.

Eurographics 2010), volume 29, pages 645–654, 2010.

[BM92] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14:239–256, 1992.

[BMP02] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition

using shape contexts. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 24:509–522, 2002.

[BMSF06] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno. Sub-part correspon-

dence by structural descriptors of 3d shapes. Computer-Aided Design, 38:1002–

1019, 2006.

[EK03] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE

61

Bibliography 62

Transactions on Pattern Analysis and Machine Intelligence, 25:1285–1295,

2003.

[Flo03] M. S. Floater. Mean value coordinates. Comput. Aided Geom. Des., 20:19–27,

2003.

[GGGZ05] T. Gatzke, C. Grimm, M. Garland, and S. Zelinka. Curvature maps for local

shape comparison. In Proceedings of International Conference on Shape Mod-

eling and Applications, pages 244–253, 2005.

[GMGP05] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global reg-

istration. In Proceedings of the third Eurographics symposium on Geometry

processing, 2005.

[HLS07] K. Hormann, B. Lévy, and A. Sheffer. Mesh parameterization: theory and prac-

tice. In ACM SIGGRAPH 2007 courses, 2007.

[HLW09] J. W. Hu, L. G. Liu, and G. Z. Wang. Easy cross parameterization for articulated

shapes. Journal of Zhejiang University Science A, 10(10), 2009.

[Ho11] T. C. Ho. Slice-driven shape analysis and geometry processing of 3D models.

PhD thesis, National Chiao Tung University, 2011.

[HR87] D. D. Hoffman and W. A. Richards. Readings in computer vision: issues, prob-

lems, principles, and paradigms. chapter Parts of recognition, pages 227–242.

Morgan Kaufmann Publishers Inc., 1987.

[JSW05] T. Ju, S. Schaefer, and J. Warren. Mean value coordinates for closed triangular

meshes. In ACM Transactions on Graphics (Proc. SIGGRAPH), pages 561–566,

2005.

[KCVS98] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-

resolution modeling on arbitrary meshes. In Proceedings of the 25th annual

Bibliography 63

conference on Computer graphics and interactive techniques, pages 105–114,

1998.

[KFR03] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical

harmonic representation of 3D shape descriptors. In Proceedings of the 2003 Eu-

rographics/ACM SIGGRAPH symposium on Geometry processing, pages 156–

164, 2003.

[KS04] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing

of 3d models. In ACM Transactions on Graphics (Proc. SIGGRAPH), pages

861–869, 2004.

[LDSS99] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh mor-

phing. In Proceedings of SIGGRAPH 99, pages 343–350, 1999.

[Liu10] C. M. Liu. Symmetry-aware partial shape correspondence. Master’s thesis,

National Chiao Tung University, 2010.

[LSS+98] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. Maps:

Multiresolution adaptive parameterization of surfaces. Proceedings of the 25th

annual conference on Computer graphics and interactive techniques, pages 95–

104, 1998.

[MAN08] S. Matsui, K. Aoki, and H. Nagahashi. 3d triangular mesh parameterization with

semantic features based on competitive learning methods. IEICE - Trans. Inf.

Syst., E91-D:2718–2726, 2008.

[PSS01] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In

Proceedings of the 28th annual conference on Computer graphics and interac-

tive techniques, pages 179–184, 2001.

[PWPY07] J. Pan, H. Wu, C. Pan, and Q. Yang. A novel scheme for efficient cross-

parameterization. 2007.

Bibliography 64

[RT07] D. Reniers and A. Telea. Skeleton-based hierarchical shape segmentation. In

Proceedings of the IEEE International Conference on Shape Modeling and Ap-

plications, pages 179–188, 2007.

[SAPH04] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-surface mapping. In

ACM Transactions on Graphics (Proc. SIGGRAPH), pages 870–877, 2004.

[SCO04] O. Sorkine and D. Cohen-Or. Least-squares meshes. In Proceedings of Shape

Modeling International, pages 191–199, 2004.

[SKK04] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by edit-

ing their shock graphs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26:550–571, 2004.

[SP04] R. W. Sumner and J. Popović. Deformation transfer for triangle meshes. In ACM

Transactions on Graphics (Proc. SIGGRAPH), pages 399–405, 2004.

[SPR06] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their

applications. Found. Trends. Comput. Graph. Vis., 2:105–171, 2006.

[SSCO08] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skele-

tonisation using the shape diameter function. The Visual Computer, 24:249–259,

2008.

[SSGD03] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape

matching and retrieval. In Proceedings of the Shape Modeling International,

page 290, 2003.

[SSGH01] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive

meshes. In Proceedings of the 28th annual conference on computer graphics and

interactive techniques, pages 409–416, 2001.

Bibliography 65

[SSSCO08] S. Shalom, L. Shapira, A. Shamir, and D. Cohen-Or. Part analogies in sets of

objects, 2008.

[UC96] G. Upton and I. Cook. Understanding statistics. 1996.

[vKZHCO10] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape

correspondence. In Proc. of Eurographics State-of-the-art Report, 2010.

[WPZ+11] H. Y. Wu, C. H. Pan, H. B. Zha, Q. Yang, and S. D. Ma. Partwise cross-

parameterization via nonregular convex hull domains. IEEE Transactions on

Visualization and Computer Graphics, 17:1531–1544, 2011.

[WPZM10] H. Y. Wu, C. H. Pan, H. B. Zha, and S. D. Ma. Model transduction for triangle

meshes. J. Comput. Sci. Technol., 25:583–594, 2010.

[WZL+10] H. Y. Wu, H. Zha, T. Luo, X. L. Wang, and S. Ma. Global and local isometry-

invariant descriptor for 3d shape comparison and partial matching. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 438–

445, 2010.

[YBS04] S. Yoshizawa, A. Belyaev, and H. P. Seidel. A fast and simple stretch-

minimizing mesh parameterization. In Shape Modeling Applications, pages

200–208, 2004.

[YLSL11] I. C. Yeh, C. H. Lin, O. Sorkine, and T. Y. Lee. Template-based 3d model

fitting using dual-domain relaxation. IEEE Transactions on Visualization and

Computer Graphics, 17:1178–1190, 2011.

[ZSCO+08] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi.

Deformation-driven shape correspondence. In Computer Graphics Forum (Proc.

SGP), pages 1431–1439, 2008.

	論文封面
	論文內頁
	論文摘要
	thesis

