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Perspective and Parallax Preserved Inpainting for Stereoscopic
Architectural Scene Images

Student: Pin-Hua Lu Advisor: Prof. I-Chen Lin

Institute of Multimedia Engineering
National Chiao Tung University

ABSTRACT

Image completion algorithms are powerful for removing undesirable obstacle objects.
Nevertheless, when the undesirable obstacle objects cover a large amount of the background
and the background is artificial constructed, structure of the background is difficult to
maintain. In this thesis, we present an automatic image completion method for stereoscopic
architectural scene images. We take advantage of two-view information to reduce obstacle
pixels and preserve parallax consistency. A vanishing point and vanishing line prediction is
used to perspective correct the input images to eliminate perspective artifacts. A
structure-enhanced patch searching algorithm is also proposed to preserve the architectural
structure. The proposed method is performed on a number of artificial construction images

to show reasonable results.

Keywords: Perspective structure analysis, image completion
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Chapter 1

Introduction

Digital cameras have become prevalent for daily use. People use digital photos to
record landscapes and landmarks during their trips. But the picture is rarely “perfect” due to
the complex surrounding and framing preference. Obstacles like trees, street lights or
commercial flags often play a role as undesirable objects covering the main character of the

SCene.

In this thesis, we focus on the photos in an architecture theme. The main subject of the
photo is buildings or artificialities with structural design like brick walls. Users specified
obstacle object that need to be removed. The foreground object removal remains a hole in

the image and needed to be filled. It results in an image completion problem.

Example-base image inpainting, a digital image processing technique is widely used to
fill in the holes caused by removing foreground objects in an image. But strong artifacts
may appear during the inpainting process and make the synthesized region incompatible

with the real part.

Wang et al. proposed a stereoscopic inpainting algorithm [WANO8], using stereo

images with corresponding disparity maps. The algorithm improves the traditional

1



example-based single image inpainting. It takes advantage of the two-view and disparity

information to produce a more reasonable result.

The conceptual idea of example-based inpainting is to fill missing pixels by copying
small fragments from known region. It assumes the fragments are aligned with the image
plane. Nevertheless, this is barely satisfied in architecture-themed photos unless the photo is
taken in the frontal view. The perspective artifacts heavily influence the image completion

result.

The oblique fragment problem can be solved through orientation indication by skilled
users. However, in an architecture-themed photos limitation, there are some special
characteristics in buildings that can help performing automatically perspective correction

process.

We propose a system for removing foreground objects in stereo architecture-themed
photos with automatic perspective correction. The system uses an automatic vanishing point
prediction to estimate the main building orientation and performs perspective correction.
With perspective correction, perspective artifacts that may not be detected during the
consistency-check can be alleviated. We also applied a structure-enhanced patch searching
method to better connect the structure lines. In addition to the automatic perspective
correction, our approach takes advantage of the strength of stereoscopic inpainting for more

reasonable image completion.



Chapter 2

Related Work

Our work is related to the literature of image completion. Image completion algorithms
deal with the problem of filling missing region in images. Two fundamental approaches
have been proposed to solve the image completion problem: image inpainting methods and

example-based approaches.

Image inpainting methods are good at filling narrow gaps like speckles, scratches, and
overlaid text in image [BCV01;BBS01;BSC00;CHA01;MAS98]. Image inpainting
considers that images are composed by structures, shapes, and objects separating from one
another by sharp edges. The term “digital image inpainting” was first introduced in [BSCO00]
by Bertalmio et al. These inpainting techniques propagate linear structures, called isophotes,
to fill the gaps in image. They were inspired by partial differential equations (PDEs), and
worked as restoration algorithms. When dealing with larger missing regions, noticeable

blurring effect may occur during the diffusion process.

Example-based approaches took advantage of texture synthesis to avoid blurring effect,
where large texture patches are synthesized from small texture samples. Bertalmio et al.
pioneered at this approach [BVS03]. Their algorithm decomposes image into image

structure and texture components. The image structure part is then processed by inpainting
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method, and the texture part is processed by texture synthesis on per-pixel basis. Two
components are summed to be the result image. However, working on per-pixel basis still
remains limited to removing small missing gaps. Fragment-based approaches [BAROZ;
CPTO03; DCYO03] usually produce better results on larger missing areas. Drori et al.
proposed an algorithm [DCYO03] to iteratively find and copy similar circular image fragment
to current unknown location. The results of [DCY03] were impressive but time consuming.
Criminisi et al. proposed a patch-based greedy sampling algorithm [CPTO3] like
fragment-based approach, but faster and simpler. They determined filling orders at missing
region boundary with a priority measurement different from original onion peeling
algorithm. The priority is obtained by measuring the surrounding known pixels and isophote

strength.

Some completion approaches from multiple images have been explored in the last
decade. Chan et al. use an additional image as reference [CHAO02]. They applied landmark
matching to calculate an affine mapping between reference image and the input image. And
the warped patches were copied to recover the missing part of the input image. Wilczkowial
et al. [WBTO05] and Hays et al. [HAYOQ7] used multiple images to increase the sampling
space. While the same scene but different view images are used in [WBTO5], large amount
of different scene images are used in [HAYO07]. Bhat et al. [BHAOQ7] used depth information
estimated from a video sequence to guild the sampling process. However, this work requires
a large number of nearby video frames. Wang et al. proposed a stereoscopic inpainting
algorithm [WANO8] which takes a pair of stereo images and disparity maps as input. In the
work of Wang et al. [WANO8], disparity maps could be precalculated by any existing stereo

algorithm and help the inpainting process.

Interactive image completion methods allow user to provide some constraint or
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information to help the completion process. Sun et al. [SYJO5] proposed an interactive
completion approach that users provided feature curves and image structure propagation.
Pavi¢ et al. presented a system [PSKO06] which allowed users to define 3D planes by
marking quads on input image for perspective correction. They relieved the fragment

alignment problem in fragment-based approaches.

In addition to image completion, our work uses an automatic perspective correction
based on vanishing point and vanishing line geometry and is related to vanishing point
prediction. Many vanishing point prediction algorithm have been proposed. Gaussian
Sphere approach was first present by Barnard [BAR83]. This approach transfers line
segments in the image to circles on the Gaussian sphere and a point on the Gaussian sphere
corresponds to a vanishing point in the.image. Some methods have been proposed to
enhance Gaussian Sphere approach. ‘Almansa et al. [ADV03] proposed a method that
combined Gaussian sphere and Hough transform. And Aguilera et al. [ALCO05] suggest a
combination of RANSAC and Gaussian Sphere method to detect both vanishing points and
vanishing directions. Coughlan et al. [CY99; CYO03] determined the orientation of the
viewer in the scene using Bayesian Model under the Manhattan assumptions, which is
satisfied in most indoor and outdoor city scenes. This manner was then extended by [SD04]

with expectation maximization (EM) method to estimate the vanishing directions.



Chapter 3

Overview

Our method is mainly inspired by the Stereoscopic Inpaint algorithm, presented by
Wang et al. [WANO8] They use a warping algorithm to first fill the missing pixels from the
two view information introduced by stereo images. And they used a refined exemplar-based
inpaint [CPTO3] to complete the rest missing pixels. They also proposed a method to check

the filling pixels’ consistency and detect unreliable pixels.

We use the framework of Stereoscopic Inpainting to decrease obstacle pixels and check
the consistency of inpainting results. Furthermore, we propose an automatic vanishing point
and vanishing lines prediction for perspective correction. The exemplar-based inpainting
algorithm is then performed on the perspective corrected space. And we further modify the
patch searching algorithm in exemplar-based inpainting to preserve the vanishing line

structure of the building.

There are three main stages in our inpainting system:
1. Image completion through two-view warping:
To execute the warping stage, we need to first fill the occluded pixels in the disparity maps.
A segmentation-based approach is used to accomplish the disparity maps. Missing pixels

are mostly covered by the removed foreground object. These missing pixels may be visible
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in the other view and can be filled by warping from the other image.

2. Automatic perspective correction:

After the warping stage, there are still missing pixels in stereo images that cannot be seen in
both views. We use an exemplar-based inpainting algorithm performed on perspective
corrected space to fill them. An automatic perspective correction mapping matrix is
calculated by estimating the vanishing point and vanishing lines of the main building in the

images.

3. Iterative Exemplar-based Inpainting:

A modified exemplar-based inpainting is proposeed to complete the stereo images and the
disparity maps. By checking the color. consistency of the filled pixels utilizing the
characteristic of stereo images, we can detect the unreliable filling results. Re-inpainting
these unreliable pixels forms an iterative inpainting scheme, and produces a more

reasonable completion.

We take stereo images {I;, I}, disparity maps {D,, Dr}, and sets of occluded pixels in
the two views {0, O} as input. User defines the removing foreground object pixels as
{Q;, Qgr}. The first stage fills the occluded pixels in disparity maps, and the result is denoted
as {D,, Dg}. For the pixels in Q, that are visible in the right view and the pixels in Qg
that are visible in the left view, we warp I, using D, to the right view and I, using Dp
to the left view. The warping result is denoted as {D;, Dz} and {f,, [z}. In the second stage,
the result of perspective corrected images and disparity maps are denoted as { /¥, 17 } and
{DF,DF }. The third stage completes both color and disparity values, referred as {I';,I'g}

and {D';,D'r}.
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Chapter 4

Preprocessing of Disparity Maps and Images

4.1 Occlusion Filling for Disparity Map

The occlusion filling process for the two input disparity maps are performed
independently. Taking disparity maps { D, ,Dg } and sets of occluded pixels { 0, ,0xr } as
input, { D, ,Dr } denote the left and right disparity maps after occlusion filling. Since the
process for two disparity maps have the same scheme, we will only describe the process for

one view in detail.

By the widely used segment constraint, the disparity values of a small segment region
change very smoothly. A 3D plane can be used to model the disparity values in a region.
First the input images are split into small regions. We perform the mean shift segmentation
[COMO2] on the input stereo images for clustering. Adjacent pixels with similar colors are
grouped into a set of segments S = {S;, S,,...}. Note that a larger segment region leads

to a smoother result, but a smaller segment region better satisfies the segment constraint.

With the occlusion maps { 0, , Oy }, we further classify the segments into three sets to

fill disparity values for pixelsin 0 c 0;:
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Figure 3: Handling the occlusion parts of the disparity maps. Red area is occlusion parts and
grey area is known disparity values. Black slash area is one of the segments. Left, middle and
right picture shows the segment of Syon occ, Spart occ @and Soce -

S:NOTL_OCC ={S|SES~ A ||SﬂO|| =O} (1)
Spartocc = {SISE€S A |ISQON'>0 AllS—0l|>2-1ISI|} )
Soce ={SISES A|ISn0O||[>0A|IS=0l| <2-]IS]|} (3)

The elements in Syon occ » Spart occ ad Socc stand for segment regions which have

different ratio of overlapping pixels with the occluded pixels.

For segment regions in Syn occ» all disparity values are known and can be modeled
by a set of 3D plane parameters, therefore, we apply a RANSAC [FIS81] based plane fitting

algorithm to assign disparity planes to these segment regions.

For segment regions in Spur¢ occ and Sp.., there are missing disparity values.
Consider a segment region S, disparity value disp € S n O is unknown, and our goal is to

assign a disparity plane to S, so that disp can be calculated through the plane parameters.
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Segment regions in Spq,: pcc and Spc. have different ratio of known disparity values,
and 1 is the measurement threshold. Depending on the ratio of known pixels, two different

filling approaches are used.

Segment regions in Spu: oo are considered have sufficient known pixels to
determine a representational disparity plane. Therefore the plane parameters can be
computed based on pixels in set S — O using RANSAC plane fitting algorithm, and then the

occluded pixels are calculated through the plane parameters.

For Sy.c, due to the lack of known disparity values in segment regions, we need to
find optimal disparity planes for the segments. A greedy algorithm is used to assign proper
plane parameters. Searching for the segment pair( t, s )that minimizes a matching cost E(t, s),
where t is the target segment with no plane parameter assigned yet and s is the source
segment already having a set of plane parameters. Once segment pair (t, s) is found, plane
parameters of s is assigned to t, and the unknown disparity values can be filled. The

matching cost E(t, s) is defined as a weighted sum of three terms:
E(t’ 5) = Eclr(tf S) + Aadandj (tr S) + AvisEvis (tr S) (4)

Where E_,-(t,s) is the measurement for color similarity between two segments. It is
defined as:

5,_»-65
E t,s) =1——=——= 5
cir(t,5) B ©)

Et and 55 are the average color vectors of segments t and s. E,4; is a binary adjacency
function used to determine whether t and s are adjacent. It returns 1 if the two segments are

neighbors. This term is added due to that neighboring segments tend to have similar plane

12



parameters. E,;s(t,s) penalizes disparity assignments that cause inconsistent visibility
relationships. The weak consistency constraint [GONO3] pointed out that occluded pixels
must be occluded by a closer object, which means occluded pixels must have smaller

disparity value than its corresponding pixel in the other disparity map:

EL(xly) SBR(X_EL(%Y)J’) (6)

ER(X,}/)SEL(X‘FER(X,}/),}/) (7)

E,is(t,s) returns the ratio of pixels in t that violate this constraint.

4.2 Image Completion through Warping from another Viewpoint

User Specifies pixels of foreground objects to be removed as {Q;,Qz }. Removing
these pixels will leave holes in input images and disparity maps. Thanks to the image from
another view, we have additional information to complete the image. Our goal in this stage
is to fill these pixels through warping from the other view. The results are images {I;, Iz}

and disparity maps {D;, Dp}.

Stereo images with disparity maps can consider as two images with per-pixel
correspondence. In the prior section, we recovered the disparity values of occluded parts.
Which means the corresponding positions of the occluded pixels in each other image is
known. After removing foreground objects in one view, part of the background objects
which are not covered by foreground objects in another view can be seen. Hence, we can
mutually complete each other image through 3D warping [MMB97]. For the right view

completion, if(x — D, (x,y),y) € Qg, We can set:

13



iR(x - BL(X,J’)»J’) = IL(x'y)

ﬁR(x_EL(x’y))y) :DL(x'y) (8)

Similarly, for the left view completion, if(x + Dz(x,y),y) € Q,, we can set:

iL(x + ER(x,y),y) = IR(x'y)

EL(X+5R(x,}’):3’):DR(x'Y) (9)

During the warping process, when multiple pixels are warped to a same destination,
we choose the one with the largest disparity value because smaller disparity value means a

larger distance from the viewpoint and should not be visible.

Pixels satisfy above conditions are filled with color and disparity values through warping
and are removed from { Q; , Qg }. This reduces the amount of pixels to be filled, and
because the warped pixels are real “seen” in the other view, the filling result is more natural

and reasonable.
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Figure 4: One view of the stereo image inputs.

Figure 5: Red area is user defined foreground object.
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Figure 6: After warping from another view.
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Chapter 5

Automatic Perspective Correction

Fragment-based image completion techniques are powerful tools and often used to fill
in missing pixel information caused by foreground object removal. The conceptual idea is to
repeatedly fill missing pixels by copying small source fragment from known regions of the
image and eventually complete the whole missing region. The fundamental assumption of
fragment-based image completion approaches is that for a small enough fragment, it is
considered to be nearly planar. However, fragment planes may not aligned to the view plane
in real world photos. Simply copying pixels from source fragment may cause perspective

artifacts.

In [DVLO6], authors presented an interactive system for exploiting information about
the approximate 3D structure in a scene in order to estimate and apply perspective
corrections. The system requires user to sketch convex quad-grids to calculate a 3 x 3
homography matrix which rectifies the grids aligned to the view plane. In this chapter, we
propose a scheme which can automatically define a proper convex grid for perspective
correction using the vanish lines in single image. The process is applied independently to

both stereo images.

5.1 Vanishing Point Predicting

17



3D parallel lines under perspective projection meet a point in an image called
vanishing point, and the lines intersecting at vanishing point are called vanishing lines. For
artificialities, structure lines of a plane tend to be aligned to each other in parallel or
orthogonal. This phenomenon is most satisfied in architecture designs. Therefore, for an
architectural scene with a single horizontal vanishing point, the vanishing point should be
an assembly point of a large proportion of lines in the image. We propose learning a model
P( x| 1) to predict the position x of the vanishing point in the image. We also assume that

from salient lines are of high potential to be vanishing lines in the image.

Our goal is to find strong structure lines in the image, and the rendezvous of these lines
are the potential vanishing points. First we use canny edge detection [CAN86] to provide
strong edge information in the image. A strong structure line can be considered as a line on
which lies many edge pixels. Here, we use Hough Transform [DOH72] to detect the strong

structure lines. In the image space, a straight line can be described as:

y=—(52)x+ ) (10)

sin @ sin 6

The parameter y stands for the distance between the line and the origin, while 4 is the angle
of the vector from the origin to this closest point. Therefore a straight line can be
represented as a point (y, 6) in the parameter space. However, a point in image space is
represented as a sinusoidal curve in the (y, 6) plane. The idea of Hough Transform for
detecting straight lines is to draw sinusoidal curves on the (y, 8) plane for each edge pixel’s
coordinate in image plane. For position p with (yp, 8p) in the parameter space with sufficient
curves passing through, it indicates that the line parameter y,and 6, may contain a strong

structure line in the image space.
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We obtain a strong structure line set L ={l;, l,,..}. Each structure line
subsequently casts probabilistic votes for possible vanishing point positions, where the
hypothesis score is obtained as a sum over all votes. The score function S is defined as a

probability density over the vanishing point position x = (X, y) in the image I:

P(|I) o Xe, PIDPUID (11)

The functions P( 1 | I ) specifies strong structure line | found in the image I, which then votes
for the vanishing point position x by P( x | | ). By analyzing this voting space, vanishing

point can be predicted.

Figure 7: Each point on a structure line use a single

Gaussian to vote for the position of vanishing point.

Each structure line [ € L in the image is a potential vanishing line and votes for the
vanishing point. Practically, we maintain an two dimension accumulator I, to record the
voting score. A 5x5 discrete Gaussian kernel is applied on every pixel that structure line |

passing through on the accumulator space.
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Figure 8: 5x5 discrete Gaussian kernel.

Note that I, has a greater size than image | since the vanishing point may be out of the

image.

We further suppress wrong vanishing point prediction by choosing Mth highest scored
vanishing point candidates V = {V; ...Vj,} from . l., and then check for the amount of
corresponding vanishing lines. Structure line L € L is considered a corresponding
vanishing line of a vanishing point candidate V,, € ¥ if the distance between V, and | is
less than a threshold . The candidate with most vanishing lines is marked as the vanishing
point of the image, and the vanishing lines corresponding to the vanishing point is marked
as the vanishing lines of the image. Thus we obtained vanishing points {V,, Vr} and

horizontal vanishing line sets {VL_, VLr} for the stereo images.

5.2 Perspective Correction

We want to define a 3x3 homographic transform A to map (X, Y), the coordinate of
source image to (X, y), the coordinate of target image in which the building plane is aligned

to the view plane:
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wx X
Iwyl =A|Y (12)
w 1

A simple way is to provide two convex grids with endpoints correspondence, aligned the
building plane and to the view plane. Here, we use two horizontal vanishing lines and two
vertical lines that lie on the building plane to stretch the first grid. While {VL., VLg}
provide the two horizontal vanishing lines, two vertical lines are chosen from the structure
lines that are not marked as vanishing lines. Since structure lines at the linked edge of two
walls are nearly perpendicular to the ground plane and the photo’s optical axis is usually
parallel to the ground plane, structure lines with small orientation difference from the y-axis
in the image space can be used as vertical lines. Since the mapping matrix is applied to all
pixels in the source image, the size of the grids are not so important. We can pick any two
horizontal vanishing lines and two vertical lines to form the grid aligned to the building
plane. The grid aligned to the view plane is defined as a rectangular that is just enough to
contain the first grid. In this manner, the correspondence of the endpoints is acquired

intuitively.

Figure 9: Vanishing lines and vanishing point prediction. Purple lines are vanishing lines,
and green spot is the predicted vanishing point. The yellow spots and blue lines obtain the

grid aligned the building plane.
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Note that the vertical lines in an image may not be so strong because of the obstacle in
front of the building or bad framing. We can use the found vertical lines from the other view
since the move of the camera between stereo images is horizontal. If there are no
appropriate vertical lines in both images, y-axis can be used to derive an acceptable result.
After the grids are defined, A can be computed using least square method. The perspective
corrected images {17 ,7%} and their correspond disparity maps { DF,DP } are obtained

by applying Ato {I,,Ix} and {D,,Dg}.

Figure 10: Perspective corrective space.
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Chapter 6

Image Completion Through Exemplar-Based

Inpainting

In warping stage, the pixels, covered by the foreground object and visible in the other
view, are already filled and removed from {Q;,Qgz }. The rest pixels in {Q;,Qg} are
invisible in both stereo images. Here, we extend an exemplar-based inpaintint algorithm
[CPTO3] to fill these pixels in each image independently. Since we have additional disparity
maps, the energy function used to find optimal patch in [CPT03] can be improved for a

more reasonable result as mentioned in [WANOS].

In chapter five, we use an automatic perspective correction scheme to further reduce
the perspective artifacts caused by the patches which are not aligned to the image plane.
After the perspective correction step, we obtained perspective corrected images {17 ,1% }
with corresponding disparity maps { D?, DE 3}, the removed foreground object regions to be

filled are {QF ,QF }. The inpainting step is performed on the perspective corrected space.

With per pixel correspondence through stereo images and disparity maps, we can cross
verify the consistence of the two completed images for unreasonable results and re-inpaint

the inappropriate pixels.
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6.1 Exemplar-Based Inpainting

In the work of Criminisi et al. [CPTO03], authors proposed an efficient algorithm that
combines the advantages of “texture synthesis” and “inpainting” They determined the
optimal order in filling unknown pixels and used an exemplar-based texture synthesis for

propagating linear image structures.

We use Wy to denote a square patch, of size m*m pixels, centered at pixel p, ® as the
source region that provides samples, and Q as the region need to be filled. The whole
process can be split into a two-step iterative algorithm. First, we find the contour 6Q of the
target region Q and calculate the priority value of each patch W = {qu| p € 60 } The one
with the highest priority value will be filled first. Once the target patch ¥ is determined, we
search for a source patch ¥ to fill the unknown pixels in Wi The process continues until

there are no pixels in Q.

6.1.1 Determining the filling order

At the begining of each iteration, we decide the target patch ¥ that should be
filled first. Given a patch W, centered at the point p for some p € 8Q, we calculate a
priority value P(p) to decide the filling order. The concept of priority is to find patches
that are on the continuation of strong edges and surrounded by reliable pixels. Filling

these patches first preserves the structure of the image and leads to a reasonable result.

The priority P(p) is computed as:

P(p) = C(p)D(p) (13)
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where C(p) is the confidence term to measure the surrounded pixels of ¥, and D(p) is

the data term to measure strong edges passing through Py,

C(p) is defined as :

qE¥pNQ (@

Cp) = 1220 (19

where |‘Pp| is the area of W,. During initialization, the function C(p) is set to zero if
p € Q, and one for the others. After pixel r € ¥, N Q is filled, C(r) is updated as C(p).
The confidence term C(p) encourages filling those patches with more early filled pixels

first.

D(p) is defined as:

_ Vg |
a

D(p) (15)

where a is a normalization factor and n; is a unit vector orthogonal to the contour 6
in the point p. The data term D(p) is a function stands for the strength of isophotes
crossing 0Q. This term encourages linear structure to be synthesized first, therefore

broken lines tend to connect and preserve the structure of the image.

6.1.2 Finding the source patch

When all priorities on the contour 8 are calculated, the target patch W which has
the highest priority is found. We search for a source patch W which is most similar to

W:. With additional disparity maps, we search the optimal source patches based on
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three assumptions:

® A source patch has higher probability to be an adequate sample, if its color
histogram is similar to that of filled pixels in the target patch.

® A source patch has higher probability to be an adequate sample, if its
disparity values are similar to that of filled pixels in the target patch.

® The missing pixels in target patch are usually farther away from the removed
foreground object. Therefore the missing region should be filled using target

patch with smaller disparity values than the removed pixels.

Thus, we search in @ for a patch W that satisfies:

¥ = arg ming, ee F (¥ , ¥e) (16)

where F(¥,,¥;) measures the similarity of two patches and can be defined as:

F(lps ’ Lpt) = V(S' t) * [Fclr(lps ’ lpt) + kdistis(qu rlpt) + kvinviw(Lps ’ lpt)] (17)

F.,-(W,,¥,) measures the color similarity between two patches and defined as
the already filled colors’ sum of squared differences between the two patches. Here
the color space of CIE Lab is used due to the non-uniformly sensitivity of human

eyes.

Fuis (W, W,) measures the disparity similarity of the two patches. It is calculated

as the difference of disparity values of the already filled pixels in the two patches.
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Figure 11: Structure-enhanced patch searching algorithm.

The last term F,;, (W, ,¥;) is the penalty of source patch which has larger

disparity values in the missing pixel positions and is defined as:
Foiw(¥s,¥e) = f(DP(s +v),DP(t + v)) (18)

where v € {x |(t + x) € ¥, N Q} andf(a;b) returns 0 if a<b, and 1 otherwise.

Since the vanishing lines have been perspective corrected to horizontal lines, we
further utilize the horizontal structure of the building to find source patch. we multiply
the energy function with V(s,t):

V(s,t) = kyyy + 2251 (19)

Theight

where V(s,t) increases when s and t have larger vertical distance. This makes the
process tend to find the source patch with the same y-coordinate. We call this a
structure-enhanced patch searching algorithm. Figure 11 shows that our algorithm
prefers W, than W,' during they both have same texture with W, at the right side of

patch.

After a source patch is found, we copy the color of pixel p' € ¥, N Q to the
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corresponding position ¢’ in . The disparity of p’ is computed from the disparity
plane parameter of the segment where ¢’ belongs. Therefore, both color and disparity
values of missing pixels in target patch are completed. The results of this step is

represented as {1’V ,I'%} and {D'V,D'%}

6.2 Consistency Check

For image completion using a single image, the inpainting results may not be further
improved without prior information such as the geometry of background objects. Thanks to
additional image information, per-pixel correspondence through disparity maps can help
checking unreliable pixel fillings. We would like to emphasize that the inpainting step is
performed on perspective corrected space, and the view plane orientations of stereo images
have been rectified. We need to backward transform the results in section 6.1 to {I';,I' }

and {D',,D'gr }.
Assuming the surfaces in the scene are close to Lanbertian, color consistency of

corresponding pixels in two stereo views can be used to check consistency of the inpainting

results. We use following constraints to detect inappropriate pixel fillings:

|I,L(X;J’) _I,R(X_D,L(x,}’),}’N <eg

[I'r(x,y) = I' (x + D' (x,y), )| < & (20)

28



where ¢ is the error threshold of the color consistency.

Pixelsin {Q;,Qg } failed to the consistency check are considered unreliable. We can

restart the perspective correction and inpainting steps to re-fill these pixels for better results.
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Chapter 7

Results and Discussion

In this chapter, we demonstrate the effectiveness of our perspective correction and
structure enhanced inpainting algorithm on architectural images. We also compare the

results of our method and original stereoscopic inpainting [WANO8].

The iterative inpainting and consistency-checking framework [WANO8] can reduce
many of the inappropriate filled pixels.-More iterations will recover a more coincident result
pair. Practically, the progress converges to a visually consistent result after four or five

iterations.

Without perspective correction, perspective artifacts may still remain after many
iterations and are sensitive to human eyes. Inpainting on a perspective corrected space can
recover a smoother result on the attachment where structures meet. The structure-enhanced
patch searching algorithm can further maintain the architectural structure on under or over

textured area.
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7.1 Results
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Figure 12: Input stereo images and user defined obstacle pixels (red pixels).
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Figure 13: Four iterations of original stereoscopic inpainting.

Top to bottom: iteration 1 to 4.
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Figure 14: Fourth iteration of one view in Figure 13.

33




Figure 15: Four iterations of our method without structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 16: Fourth iteration of one view in Figure 15.
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Figure 17: Four iterations of our method with structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 18: Fourth iteration of one view in Figure 17.

Figure 19: Comparison of three approaches.
Left to right: Original stereoscopic inpainting, our method without structure enhancement,
our method with structure enhancement.
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Figure 20: Input stereo images and user defined obstacle pixels (red pixels).
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Figure 21: Four iterations of original stereoscopic inpainting.

Top to bottom: iteration 1 to 4.
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Figure 22: Fourth iteration of one view in Figure 21.
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Figure 23: Four iterations of our method without structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 24: Fourth iteration of one view in Figure 23.
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Figure 25: Four iterations of our method with structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 26: Fourth iteration of one view in Figure 25.
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Figure 27: Comparison of three approaches.

Left to right: Original stereoscopic inpainting, our method without structure enhancement,
our method with structure enhancement.
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Figure 28: Input stereo images and user defined obstacle pixels (red pixels).
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Figure 29: Four iterations of original stereoscopic inpainting.
Top to bottom: iteration 1 to 4.
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Figure 30: Fourth iteration of one view in Figure 29.
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Figure 31: Four iterations of our method without structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 32: Fourth iteration of one view in Figure 31.
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Figure 33: Four iterations of our method with structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 34: Fourth iteration of one view in Figure 33.

Figure 35: Comparison of three approaches .
Left to right: Original stereoscopic inpainting, our method without structure enhancement,
our method with structure enhancement.




Figure 36: Input stereo images and user defined obstacle pixels (red pixels).
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Figure 37: Four iterations of original stereoscopic inpainting.

Top to bottom: iteration 1 to 4.
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Figure 38: Fourth iteration of one view in Figure 37.
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Figure 39: Four iterations of our method without structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 40: Fourth'iteration of one view in Figure 39
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Figure 41: Four iterations of our method with structure enhancement.

Top to bottom: iteration 1 to 4.
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Figure 42: Fourth iteration of one view in Figure 41.

Figure 43: Comparison of three approaches.
Left to right: Original stereoscopic inpainting, our method without structure enhancement,

our method with structure enhancement.
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7.2 Discussion

We showed results of different input stereo images. The backgrounds of these images
are structural artificiality. Different types of obstacle are marked by user and removed from
the images. The image completion results of the original stereoscopic inpainting are showed
in Figure 13, 21, 29, 37. We can see the perspective artifacts on the connection of structure
line still remain after four iterations of inpainting. Using our method without structure
enhancement leads to more reasonable results (Figure 15, 23, 31, 39). The perspective
artifacts are effectively reduced but some ghost effects showed up in Figure 16 and Figure
32. Using structure enhanced patch searching in our method, the ghost effects are eliminated
(Figure 18 and Figure 34) and the structure of the background is better preserved (Figure 19,

27, 35, 43).

59



Chapter 8

Conclusion

We proposed an automatic image completion method for architectural scene images.
Our system takes stereo images and disparity maps as input. Foreground obstacles are
defined by users. The stereoscopic inpainting scheme is used for reducing removed pixels
from two-view information and detecting unreliable filling pixels. The unreliable pixels are
re-inpainted to preserve parallax consistency of stereo images. Since human eyes are
sensitive to the structure of artificiality, we improved the inpainting algorithm using
vanishing point and vanishing line prediction to project the image to perspective corrected
space. Exemplar-based inpainting is performed on the perspective corrected space, and the
perspective artifacts are effectively alleviated. We also applied a structure-enhanced patch
searching method to exemplar-based inpainting to better preserve the structure of buildings.

The results of our method are reasonable and natural.
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