Measuring Difficulty and Complexity

of Puzzle Games

FRCRENER R B A et 2 HEE

Measuring Difficulty and Complexity

of Puzzle Games

f e IS CHE T B R 2
Measuring Difficulty and Complexity

of Puzzle Games

W 9 &£ REIR Student : Ching-Chao Chang
T5EEE 2BAT Advisor : Dr. Chuen-Tsai Sun
AR N
% ge I 2 B 58 BT
hE - &w X
A Thesis

Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

FEERE] 100 56 H

R
-E?\r?\
E@
Bl
Eu
W
%
i
S
\1-5‘\
B
/w
ki
|l

£ ERR hEFE TR B4
Wiiﬁ*§
SR et g jL

E T

P AEEFRE 2B AELATT F Y55 (puzzle game)k HEF
TR B E R YAL e A o AP K AL ITER R AT m;}j;fa‘* W
o T RFEITTYFE LR KA T RS R > B 2B R R R AT
'”*F PRt A Bt g g S B L e FlEL B g B iE ESE R k<l A

A A F oo
ﬂ?’iﬁﬂ—%éﬁﬁﬁﬁf’ﬁ$ ERHSE TS - R e LR
%¥ % 5 #% (Choice) 2 7~ & (Dead Ends) » A @ > % FF'* E*}? ek g R F Y
Phk gt sk R M 7 F enif %4 (Insight) - fig se k e k o gt

1’&3‘&3{ "B ENEE AR R A A A PRI T E R AuLR o
LL) ﬂ\fgm * H?-f’\lj 43‘_:1’:|F,,L12—) Fég}u fgfa /3 Iﬁ«/ﬁufl 5 ;%\ 15 ’é:')I‘—‘J- 4, IBF
A ATF F AN e e B R B0 o

AEFRERF I BFKoT R Y Eil H.(Cross Block) % #ji(Sudoku)
T ll%n%"éf*« KB FTAFRER hTE 2 v e B8 e B g % BT 0 A P TR
AR B Al R RER P E T DR REFERE | b R
Bk % 49 iE 1) 86%4p L B o

MNP L E AR AR ATRAFE R R

Measuring Difficulty and Complexity
of Puzzles Games

Student : Ching-Chao Chang Advisor : Dr. Chuen-Tsai Sun
Institute of Multimedia Engineering
National Chiao-Tung University

Abstract

How do we sorting puzzle levels according to their difficulty? This is most
important problem for all puzzle game designer. In past time, game designer must
analysis the techniques used by the puzzle, and then can use the result to sort their
difficulty ranks. However, this method depends on specific game feature that are very
difficult to calculate and understand because designer must master the game first.

Basically, find out a solution for a puzzle just like find out a way for a maze,
there are many choices and dead ends. But, different from “real” maze problem, the
difficulty of a puzzle decided by the insight it required. From the aspect of complex
system, emergent phenomenon describes when overall system complex increase then
amount of choice and dead ends also changed according to some principle that will
affect how difficult a puzzle is.

In this paper we propose a new approach to calculating puzzle complexity, one
based on approximating player ability to produce insights that lead to puzzle

completion. Our test results indicate an 86% sorting similarity rate.

Key Word: Puzzle Game, Difficulty Measure, Complexity Measure, Insight

ST AEKBARDRRL ShHwm Y ¥30Ed 0 c FRAGHFED & 311
%—éﬁé’TéF /é‘ji T’J‘-—L%é ’ i€§5\"§tf§ﬁ f'ﬁ’l'lt w j\T' Jllpﬁljmj&—?m‘? mfr%yﬂ—\" IJ' zt
S

FAO A TR EA IS AR Bk b LR A AN
PEH I A-FFENF R oBARAT A Rl GRS T LBEH T ko

AR A L R R AR T ﬁ#%%m4£w% DRI
P PR A AT Al R TR R A M R 0 A 1§ AT e
@%Eﬁﬁé’j$%ﬂﬁiuﬁﬂf&gﬁm1@°uiﬁ%ﬁbﬁapz’
Boend- 2 3 g g o

Fobo SRR Y PHEFTHRETORE P A dupl R R - 4
i _'rfnfa:‘g 2o FuRA A od EF X R A - A2k - 4 Board Game 7%
Bk Bend 2t chP o) RS RSB L EEEHARRT DRSPS
hp Aangf R B R A S SRR o

PLeh s S BRI R > M2 BB B AT AP XGRS B

WY AEE R A e gt o R EGRGIHE o

Bl G e, i
ADSTIACT. ... i
B i
OB e 0\
FIQUIE INAEX. .ot Vi
TaADIE INAEX. . e vii
COdE INABX. .. et e e vii
Chapter 1: L1 oo [0 Tod 1o USSR 1
Section 1.1 BacKgroUndc.cceevieiieiieieeieseete et s 2
Section 1.1.1: Digital Game: What is diffiCult?...........cccceevveveeieneiiennns 2
Section 1.1.2: Digital Game: Dynamic Difficult Adjust.........c...cccevvevvennene 4
Section 1.1.3: Digital Game: Player Modeling and DDAcccccovevvennne 7
Section 1.1.4: Puzzle Game: What is Puzzle? —— Meaning of Play....8
Section 1.1.5: Puzzle Game: What is Puzzle? —— Component............ 9
Section 1.1.6: Puzzle Game: Difficult Measure and Sorting..................... 11
Section 1.1.7: Puzzle Game: Complexity Theory......cccccceeveeveecververreenen. 12
A. Computational COMPIEXITYccvivrereeeriieiierienieiti e 12
B. Complex System and EMEIgENCEccceveerueereerieesiiiiieneeereeeeseeeiaesenens 13
Section 1.2: Motivation: Challenge in Puzzle Game Sortingcccccveuveeeen. 16
Section 1.3: Motivation: Mobile Game, Market and Puzzle Game................. 16
SECION 1,47 GOl ..o ittt et b ek sttt nee 17
Section 1.5: CONFIDULION wo.euviiiiiieieci st 17
Chapter 2: LIterature REVIEW.........ccueevieeiecieeie ettt ettt e e eaeeneas 19
Section 2.1: Tree SEArCH ... it 19
Section 2.2: Local SEArCN... ..o 25
Section 2.3: Simulated ANNEALINGc.ccevieviieieeeee e 26
Section 2.4: Pseudo-Random and Real-Randomcccocevivinieienieneniennne 30
Section 2.5: Game, Digital Game and Mediac.ccceveeveeeereeceeieseeeenee 30
Section 2.6 FIOW THEOIMYecueeceeeeeeeeeee et 32
Section 2.7: Three-part rule Modelccceevvveieiieieeeseee e 32
Chapter 3: MELNOA ... 34
Section 3.1 EXPEriment ONEccvevieieerieeie ettt 34
Section 3.2: EXPEriment TWOcovevuerierieeie ettt 38
Section 3.3: EXPeriment TRIEE.....ccvcceveeceeieeeeceee et 39
Section 3.4: EXPEriment FOUNccoeveeieiieeie et 40
Chapter 4: EXPEIMENT ...t st 41
Section 4.1 EXPEriment ONEccvevieieeieeie ettt 41

Section 4.1.1: Phase 1: Random Generated Puzzlec.ccccecvevevieniennnne. 41

Section 4.1.2: Implement Phase 1: Random Generated Puzzle................. 41

Section 4.1.3: Implement Phase 2: Calculate Branch and Dead Ends......43

Section 4.1.4: Result of Phase 3: Branch and Dead Endcccccun..... 45

Section 4.1.5: Implement Phase 4: Calculate Complexity.........c.c.ccevun.... 46

Section 4.1.6: Result of Phase 5: Complexity Sample Mean 48

Section 4.1.7: CONCIUSIONcviiiriiiirieeieeeeeee e 51

Section 4.2: EXPEriment TWOccvecuereerieeieeeeseeie e e ere et aessae e eseennas 53
Section 4.2.1: Phase 1: Select Puzzle LeVels........ccccovevevireeienieneniennn, 53

Section 4.2.2: Result of Phase 3: Average difficulty and Sorting.............. 53

Section 4.2.3: Implement: Calculate Sorting Similaritycccccveuneeee. 54

Section 4.2.4: Result of Phase 5: Sorting Similarity...........ccccoeevvevvenennen. 56

Section 4.2.5: CONCIUSIONc.oovveiiriiriiiieieeeeeee e 56

Section 4.3: EXPeriment TRI€E......c.vii i ciee ittt 57
Section 4.3.1: Phase 1: Select Puzzle in Each RankK..........c.ccccevveviiienene. 57

Section 4.3.2: Result Phase 3: Calculate Branch and Dead Ends............. 58

Section 4.3.3: Result Phase 4: Compute Complexitycccevvevvereerennen. 58

Section 4.3.4: Result Phase 5: Compare Rank Resultccccevennenee. 61

Section 4.3.5: CONCIUSIONc..ovveniiiiii ittt 62

Section 4.4: EXPEriment FOURcouooiieiieieeieeeecie st ae e s 62
Section 4.4.1: Phase 1: Select Training Sample........c..ccceueeveveevieneenreennn. 62

Section 4.4.2: Implement Phase 2: Parameter Tweak.............cccccevvvenennen. 63

Section 4.4.3: Result of Phase 2: Parameter Tweak.............ccccceevevueriennene. 64

Section 4.4.4: - Result of Phase 3: Calculate New Complexity.................. 64

Section 4.4.5: Result of Phase 4: Compare Rank Result...........c...cc........ 67

Section 4.4.6: CONCIUSIONoviiiiiiiiiieeieeee e 67

Chapter 5: L070] 1101 (113 [0 o RS S 68
Section 5.1: Complexity Sorting and Difficulty Mapping.........ccccoeeevevvvenennen. 68
Section 5.2: Measuring Digital Game Complexityccecvveveerveverceeseenreenen. 68
Appendix A: Puzzles in EXPeriments.........coiiiiiiiiii e 70
Appendix B: Collection of Pure Puzzle. ..o, 72
Appendix C: More Result of Experiment One...............cccooiviiiiiiiiiiiienn.. 75
Appendix D: Calculate Branch and DeadENdS................ccoooiiiiiiiiiiiiiien, 76
Appendix E: Game Data FOrmat.............ooiiiiiiiiii e 76
Appendix F: Puzzles in EXPeriment TWO..........covuiuiniiiiiiiiieeeiieeeiiee 80
R 12T 1] 00T 82

Table Index

Table 1 Max values in puzzle database.ccceeeeieecerierecese e 46
Table 2 Complexity and Difficulty reSult.ccooviriiiiiiiieiiiiiie e 53
Table 3 Result of match and sorting similarity.ccccvvvvveeiiiiiiicii e 56

Figure Index

Figure 1 TWO type Of DDA. ..ottt et e e e s e e e e e e e e et e e e e enneeas 6
Figure 2 Concept Model of Puzzle developed by Scott Kim.cccceeveiiieeeciineeecen, 9
Figure 3 Five 8enres Of PUZZIEccocuuviee et e 10
Figure 4 Emergence Phenomenon EXampleccoooveceiiiieeiee e e 15
Figure 5 Example of a puzzle SolUtion.ccooviiiiecieeceee e 20
Figure 6 Example of tre€ S arCh.......cuuiiiceiiie e e 21
Figure 7 Concept of minimum local searchcccoecoveieeiiiiei e, 26
Figure 8 Flow Chat of Simulated Annealing.cccceeeeeuiiieeecciiee e, 27
Figure 9 Game Taxonomy by Media........ccuviiirieiiii et et e e e 31
Figure 10 Mental State in flow theory. ..., 32
Figure 11 Cross Block’s PUzzle Game SPACE.c.cuvvieeeeieeieeeiiiieeeeisieeeeesveeeeesnveeeeeenneeas 35
Figure 12 Branch and Dead End Calculating Process.....cccccceevvicciiiieieee e cecciiereeeeee e, 36
Figure 13 BD-Complexity Calculating Modelcccoiiiieiere e 36
Figure 14 Example of random generated process of puzzle “cross block”. 43
Figure 15 Calculate for Branch and Dead ends by using answer node........................ 44
Figure 16 Average Number of Branches of each step.........ccccceeiiueeeiecciee e, 45
Figure 17 Average Number of dead ends of each step.......cc.ccceeiiiiiiiiiiieeeccieee e, 45
Figure 18 Average complexity of each stepcccveeeeiiiiiiiiiiinii e, 48
Figure 19 Result of Average all solved step complexity.cccceevveeeieiiieeeeccieee e, 48
Figure 20 More Detail of complexity mean in puzzle game space.cccccceecvvveeeennneen. 49
Figure 21 Average complexity before step 16.......cccceccuueeeeeiiieeiiiiieee e 49
Figure 22 Average complexity before step 11.......ccoovevevieieeiececeee e 50
Figure 23 Ratio of basic difficulty in puzzle database.ccccoevvevveiiiieieeeeeee 51
Figure 24 Complexity Average of each Crossblock difficulty level...........ccccocveernnneen. 52
Figure 25 Complexity and Difficulty rank result.........cccccooeeeieiiiiiiii e, 54
Figure 26 Sudoku Puzzles provides in TSA. ... e e e e 57
Figure 27 Average branch for each difficulty levels.ccccooveiiiiiiiiniieeeee, 58
Figure 28 Average dead ends for each difficulty levels...........cccooviiiiniiieicciieee, 58
Figure 29 Average Degree of Complexity for Each Difficulty Level..........ccccuveeeennieen. 59
Figure 30 Puzzle Samples Sorted by Complexitycccovvreeieiiiiicciieeee e, 60
Figure 31 Rank of complexity Sorting for each puzzle samples......ccccceeivecciiiirennennnn. 60
Figure 32 Process of select sample from puzzle database as sorting list. 61

vi

file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835312
file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835313
file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835314
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386863
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386864
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386865
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386866
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386867
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386868
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386869
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386870
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386871
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386872
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386873
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386874
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386875
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386876
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386877
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386878
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386879
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386880
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386881
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386882
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386883
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386884
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386885
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386886
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386887
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386888
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386889
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386890
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386891
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386892
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386893
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386894

Figure 33 Result of SOrting Similarity......cccovveeiiiiiiiiiiiieeeeee e 61

Figure 34 Training Sample SEIECt PrOCESS.....uvuviiiiiiieicirereeeeeeeeieirrere e e e eesirrrreeeeee e 63
Figure 35 Error and iteration of simulated annealing......c..cccccoeevvveerieiieiieiiiineeeneeeeenn, 64
Figure 36 Result of parameter Band D adjusts over 1500 iteration.cccceevvvveeeeennn. 64
Figure 37 Average complexity for each difficulty level after parameter tweak........... 65
Figure 38 Complexity of each puzzle sample after parameter tweak. 65
Figure 39 Rank of complexity sorting after parameter tweak.cccccvvveeicvieeennnnn. 66
Figure 40 Sorting Similarity after training.ccccccuveeeeiiieee e 67
Code Index
Code 1 Data Structure NOGE. ...ccoeuviiiiieiieee et e e 22
Code 2 Implementation for BFS tree search algorithm.ccccoveeiiiiiiicieeee 22
Code 3 Implement for expand fUNCLION.cc.eeeiieiiiiie e 23
Code 4 implement for graph search. ... 24
Code 5 Boltzman distribution for simulated annealing.ccc..cccoeveiiiieiiniiiee e, 28
Code 6 Temperature decrease function for simulated annealing.cccceveeennnen.n. 28
Code 7 Accept function for simulated annealing..........ccccvvviiiiiiieinniiiie e, 29
Code 8 Implement for random generate Cross DIOCK........cccoveveiieriiiieiieiececeee e, 42
Code 9 Implement normalize function for BD-Complexity Calculate Model 47
Code 10 Implement for sorting Similarity.cccceeeiiieiiiiieee e 55
Code 11 Implement for energy function in Simulated Annealing.cccceeeeunnenen. 63

vii

file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386895
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386896
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386897
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386898
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386899
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386900
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386901
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386902
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386852
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386853
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386854
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386855
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386856
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386857
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386858
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386859
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386860
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386861
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386862

Chapter 1: Introduction

How do we measure a puzzle’s level of difficulty? Game designers may employ
their expertise and feedback from players to rank the puzzles they have designed.
They may also take a simpler but nevertheless systematic way to reach the goal, for
example, adopting a game-specific feature as criterion and sort the puzzles out. A
handy measurement is the shortest step required to solve the puzzle, the less steps
required, the easier the puzzle.

In practice, it may be fun enough for most gameplay, because players can reach
the flow experience (M. Czikszentmihalyi, 1998) when they conquer one puzzle after
another arranged in ascending level of difficulty. When the difference in difficulty is
not that clear, the game producer can put puzzles into categories of difficulty, e.g.,
easy, medium, and hard, to allow the players select their current goal and test their
skills. Obviously, there is a risk factor in such approach. When puzzles arranged in a
wrong order and the players are not capable of picking the right challenge for their
current skills, they may endure a long period of frustration and anxiety, so as to give
up the game. Therefore, it is desirable to have a way to ‘optimize’ the gaming
experience by arranging puzzles in a smoothly ascending order of difficulty so that
most players can enjoy an uninterrupted challenge/skill upgrading experience.

Our goal of this research is to propose a general-purposed method to develop a
function that can arrange puzzles in ascending level of difficulty. However, before
trying to approach that goal, some questions need to be answered. The first is: what is
difficult?

Section 1.1: Background

” Game is a system in which players engage in an artificial conflict,
defined by rules that result in a quantifiable outcome.”—Rules of Play
(Katie Salen & Eric Zimmerman, 2003)

Section 1.1.1: Digital Game: What is difficult?

Based on flow theory, we know there has two key elements: Challenge and Skill.
In order to discuss about what is difficult, first, | give an assumption below:

Assumption 1: Challenge is a non-linear increase function relate to how many
obstacles are designed in game.

Assumption 2: Skill is a non-linear increase function relate to your performance
in the game.

As we known, flow theory point out when challenge meets skill, player is in
the state, called flow. What is this phrase means? Obviously, flow state equal to
proper difficulty for player. Degree of difficulty is highly related to challenge and skill.
Therefore, | give third assumption to define what is difficult:

Assumption 3: Difficult is a non-linear function relative to the combine of
challenge and skill.

Furthermore, if we want to design the function describes above, C-style function
prototype may look like following:

1. float Challenge(int numberOfObstacle);
2. float Skill(int playerPerformance);
3. float Difficult(int challenge, int skill);

But, there comes some problem.

How to design difficult function? In order to do that, we must ask: what is the
relation between challenge and skill? Although we can say relation between
difficult and challenge is positive relation, difficult and skill are negative relation,
however, relation between challenge and skill are ambiguity. Try to consider
following example:

1. If we know both difficult and skill are high, then we can say challenge > skill,
because player feel game are difficult. Therefore, reduce obstacle in game
can decrease difficulty.

2. If we know both difficult and challenge are low, then we can say challenge <
skill, because player feel game are easy. Therefore, add obstacle in game can
increase difficulty.

3. But, if both challenge and skill are high or low, how can we say? It just
means challenge just meet player’s skill, and has a “proper difficulty”, there
seems doesn’t has any relation between challenge and skill.

If we want to figure out relation between challenge and skill, and then calculate
out difficult will be first task. But, there will be some trouble. Why? Since difficult is
an objective concept depends on how people feeling about, thus, if we want to tell it
degree, we must compare with player’s previous experience.

For example, when we read the introduction or manual of a game, there doesn’t
emerges any feeling call “difficult”.——although we may feel the complexity of game
rule—After we get into the game, finally, we can tell the degree of difficult compare
to other similar game or problems.

Of course, some apparatus, like Eye Tracking, SCR (Skin Conductance
Response), EEG (Electroencephalography), to collect physical reply when playing the
game that can used to data mining on people’s cognitive level of feeling to help us
find out what is difficult. For example, there are some research trying to find out
player experience to explain the degree of playability for a game (Lennart E. Nacke et
al., 2009; Lennart Nacke & Craig A. Lindley, 2008). Of course, it may be used to
measure the degree of difficult, but these methods have too much disadvantage when
apply in real game design (you can’t always ask player to equip physical apparatus
when they play the game), therefore, goes beyond our research, so we don’t want to
dig into this method for discuss about difficulty.

Before close this section, here is summary: we can’t design difficult function
without knowing the relation between challenge and skill, if we want to know this
relation, we must use some subjective method to measure the player’s feeling, such as
Eye Tracking, SCR, or EEG, to decide this dynamic relation.

From discussion above, we know difficult is a relative concept that based on

3

player past experience. And then, next problem we want to focus on is: how do we
manipulate such concept in digital game? In next section, | will introduce a technique,
Dynamic Difficult Adjust (DDA), which trying to create flow state by adjusts difficult
based on player’s skill.

Section 1.1.2: Digital Game: Dynamic Difficult Adjust

Static difficulty is a popular method that almost single player game uses it for
player to adjust game difficulty. For example, in FTG or STG, we can always set
difficulty into Very Easy, Easy, Normal, Hard or Very Hard in system setting. But,
there exists several problems when we look this method from the viewpoint of flow
theory. First, difficult must manually set before game start by game designer. Second,
difficult is fixed while playing. Third, therefore, it can’t auto-adjust according to
player skill, that may trouble in crate flow state. Four, the most important, the feeling
of difficult is relative to game designer but not player. From the reason describe above,
there comes the research, call Dynamic Difficult Adjust (DDA).

DDA is based on flow theory. It core concept is to adjust difficult according to
player skill that try to adjust the game to “proper difficulty” for player. Therefore,
how to design challenge and skill function are important for this method. As we
defined previous, calculate obstacle in a game maybe an easy task for challenge
function, but how do we measure player performance for skill function? Fortunately,
every game must have a quantifiable outcome. Like game play score or player
remaining health, it is useful to help us to decide player performance.

If player skill > challenge, then add obstacle in game can increase difficulty. If
player skill < challenge, then reduce obstacle in game can decrease difficulty. Notice,
how well of skill function designed effects the performance of DDA. And skill
function is affected by the game design. Successful game design must bring
meaningful play to player. Katie Salen and Eric Zimmerman’s (2003) book “Rules of
Play, chapter3”, define meaningful play as descriptive and evaluative:

The descriptive definition addresses the mechanism by which all games create
meaning through play. The evaluative definition helps us understand why some games
provide more meaningful play than others.

The descriptive definition of meaningful play: Meaningful play in a game
emerges from the relationship between player action and system outcome; it is the

4

process by which a player takes action within the designed system of a game and the
system responds to the action. The meaning of an action in a game resides in the
relationship between action and outcome.

The evaluative definition of meaningful play: Meaningful play is what occurs
when the relationships between actions and outcomes in a game are both discernable
and integrated into the larger context of the game.

Discernability means that a player can perceive the immediate outcome of an
action. Integration means that the outcome of an action is woven into game system as
a whole.

From descriptive definition above, we know player performance can be measure
through the relationship between action and outcome, if game generate good outcome,
means player has good performance in game.

In addition to, evaluative definition indicate where we can find player’s
performance. Discernability means outcome of action takes in game can help DDA to
adjust difficult immediately. Integration means outcome of action takes in game can
help DDA to generate next game level according to player overall performance. | call
former as Immediate Difficult Adjust (IDA), which try to create an even game—but,
beatable—according to player agency and tension of game. And later as Content
Difficult Adjust (CDA), which combine Procedural Content Generation (PCG)
technigue——means use program to auto-generate game content——to consider
overall difficult balance to generate levels. I summarize these two DDA methods in
Figure 1.

Two type of DDA

input
performance ——————> DDA
Calculate player agency | Cumulate player performance
IDA CDA

DDA = Dynamic Difficult Adjust .

, o _ adjust lcreate
IDA = Immediate Difficult Adjust
CDA = Content Difficult Adjust -

Figure 1 Two type of DDA.

There have some DDA example:
1. Hunicke Robin and Chapman Vernell (2004) have applied DDA to FPS,
Half Life, use IDA to adjust difficult.
2. Ben Weber (2010), in his project “Infinite Mario with dynamic difficulty
adjustment” use CDA to generate new level according to player
performance.

I don’t want to go into detail of DDA because it will take several pages to discuss
it, but I think it is important to understand how to manipulate the feeling of difficult in
this research.

Although we introduce much about DDA, but there still have an ambiguity on
challenge and skill function. Before we design these two functions, we must consider
following situation in order to decide detail implements method:

1. How players are affected by obstacles? For example, the powerful
monster always increases the challenge and healing potions can decrease.

2. How player performance measured by actions they takes in game? In
some game systems, players receive more positive performance feedback
when they choose certain actions over others.

Next, let’s examine more about how to building challenge and skill function from

the view point of player modeling.

Section 1.1.3: Digital Game: Player Modeling and DDA

The purpose of player modeling is trying to find out the relationship between
obstacles, player action, and player feeling about game in order to do content creation
task. In Pedersen’s research, they collect following three data to validate how player
feeling about an action game, Infinite Mario Bros (C. Pedersen, J. Togelius, & G. N.
Yannakakis, 2010):

1. Controllable Feature: like number of gaps and average width of gaps, spatial
diversity of gaps...etc., that can be controlled by game designer or level
generate program. This part is related to obstacle.

2. Gameplay characteristics: like number of jump, time you complete the level,
item you collected...etc., that can only be collected when a player play the
game. This part is related to the action of player takes in game.

3. Questionnaire: After finish a pair of level, player is asked to rank the games
in order of emotional preference. Pedersen define following six emotions:
Fun, Challenge, Frustration, Predictability, Anxiety, and Boredom. Their
questionnaire may looks like this: 1. Level A has more challenge then level B.
2. Both games were equally challenge. 3. Neither of two game felt challenge.

According to collected data, they calculated correlation coefficient. Therefore,
we can actually tell the degree of obstacle or actions affects player mental state in
“Infinite Mario Bros”. For example: whether player complete level has “-0.5”
negative relation and average of gap width has “0.5” positive relation to challenge.
For detail experiment and result, you can find it in their research paper “Modeling
Player Experience for Content Creation” (C. Pedersen, et al., 2010). Based on the
degree of relations, DDA will perform more accurately according to player skill.
There has much Player Modeling application, like create personalized race track in
racing game (Ratan K. Guha, Erin Jonathan Hastings, & Kenneth O. Stanley, 2009;
Togelius. J., De Nardi, & Lucas, 2007), and adapt agent behavior to human player
(Kang. Yilin & Tan. Ah-Hwee, 2010).

Here, we finally come into our topic. Is puzzle game can apply such method for
sorting difficulty? What is controllable feature? And what is gameplay characteristic?
How do we design our questionnaire in order to measure the relationship between
obstacles, player action, and player feeling about game? For answer the question, we
must ask: 1. what is puzzle? 2. What’s difference between other digital games?

Section 1.1.4: Puzzle Game: What is Puzzle? ——
Meaning of Play

It is a good start point to quote from Scott Kim’s (2003, 2008) presentation slide
on Game Development Conference (GDC), “The Puzzlemaker's Survival Kit”: “A
puzzle is a problem that is fun to solve—as opposed to everyday “problems”— and
has a right answer —as opposed to a game (no answer) or a toy (no goal).” This
definition not only explains what puzzle is but also describe the motivation of why
people play it. From the definition, we know puzzle is a problem but different from
everyday problems we encounters. Although problem means something trouble and
undesired, however, we will feel fun to solve it.

Why? Scott Kim (2003) describe: “‘puzzle game symbolizes our desire to find
order in the universe.”. When we see something in disorder states, people always
want to control it— that is why puzzles display itself as complex forms and simple
forms after being solved. Furthermore, as James Paul Gee (2005) says: puzzle supply
order, control and workable environment, therefore, “goal” and “right answer” are
proved in puzzle worlds, not like a toy, puzzles are encouraging us to solve and
control those problems. —Lusory attitude, the term mentioned by Bernard Suits
(2005), in the book “The Grasshopper: Games, Life and Utopia” can also explain the

attitude we face the “puzzle problems”.

What is Lusory attitude? Lusory comes from the word “ludo”, in latin means
play, describe the attitude of players required to enter a game (Katie Salen & Eric
Zimmerman, 2003). In the puzzle, it is the attitude we confront the complex of puzzle
emerges from rules. For example, although we can just rearrange puzzle that simply
eliminate it complexity, but people still play it according to game operation rule.

From description above, we already know what is puzzle and attitude people face
it. And then, there comes a key problem: what is different between puzzle and other
digital game? From Scott Kim’s definition, he says game is no answer and puzzle has
a right answer. What is it mean? Quote from Chris Crawford (1984), we can give such
conclusion: game requires player to build their solution, but puzzle requires player to
find out designer’s solution. Therefore, we may still feel fun when play other
digital-game again and again, but only few times for a puzzle——a game is fun if
there exists uncertainty—nbecause for other digital-game, player doesn’t know
whether they can complete the level, but for a puzzle, they will remember how to
solve it in the few time of play the same level.

8

So far in this section, | introduce about the meaning of play, it is important
concept for designing meaningful game. Next, let’s examine about the component in

puzzle game.
Section 1.1.5: Puzzle Game: What is Puzzle? ——
Component
Game
/\ Situation
i~ Problem l
M2 Puzzle
Problem
: 1}1—' = - \
: TL;'E:-_:E‘ Choices < T » Dead Ends
Insiight 4 =
Insight
: _I:I-lﬁ; \ nsignts
' J Soluti
: ._'_. I: olution
- =3 Solution J,
Application

Figure 2 Concept Model of Puzzle developed by Scott Kim.

From Figure 2, Scott Kim (2003) separates game and puzzle as two different
concepts, as mentioned in previous section, game and puzzle has different meaning of
play. But, by introduce situation component, we can fit puzzles into a game. Situation
gives a goal that driven player to solve the puzzle; it explains background by using
story or a set of operation rule for player to comprehend it is a “game”. Without
situation component, puzzle can’t be a game. Situation guides us to handle the
problem. The problem, different from everyday problems we encounter, it looks like a
maze that has many choices and dead ends reside in it. Choice confuses player to
realize which road is correct, and dead ends prevent they from solution. But different
from “real maze”, it requires player using insight—the ability to find out which
choice is correct and quickly ignore dead ends.—to solve the puzzle. The solution is
applied on application in game. The use of Situation and Application component is
depending on the genres of puzzle.

Tetris Machinarium

Puzzle
(Cross block)

Incredible
Machine Boggle

E
W,
V
0

oo Bx ¥m
==

PR T il eraer oui

=

Figure 3 Five genres of puzzle

In Figure 3, we can see Scott Kim (2008) has separated five genres of puzzle:
Action, Story, Construction and Competitive and Pure puzzle. Basically, different
puzzle will require player different skill, for example:

1. In Action Puzzle, like Tetris, it requires player eye-hand coordination skill to
handle the game.

2. In Story Puzzle, like Machinarium (Amanita Design, 2009) it give a story
before each puzzle start in order to create immersion situation for player, but
player needs the ability to organize overall story in order to identify which
key item are used to solve the problems in game.

3. In Construction Puzzle, like Incredible Machine, it requires player Physics
knowledge in order to know whether your machine can work properly to
solve the problem.

4. In Competitive Puzzle, like Boggle, it needs both eye-hand coordination and
knowledge of English vocabulary in order to beat out others and win the
game.

Remember, the research goal of this thesis is to sort puzzle according to their
difficulty. Therefore, this research only focus on pure puzzle, because puzzles that
require math logic rather than physical skills or other types of knowledge, like action,
therefore it is easier to design difficult measure function compare to other genre of
puzzle. You can refer to Appendix to know the rule of “Cross Block” and “Sudoku”

10

that used in this research.

Section 1.1.6: Puzzle Game: Difficult Measure and Sorting

In this section, | want to answer the question raised at Section 1.1.3: Is puzzle
game can apply DDA for sorting difficult? What is controllable feature? And what is
gameplay characteristic? How do we design our questionnaire in order to measure the
relationship between obstacles, player action, and player feeling about game?

Of course, it is possible to apply DDA for a puzzle game if we can calculate
difficult, but there exists some problem in practical use.

1. For controllable feature, choices and dead ends is obstacle in puzzle but not
easy to control it compare to other game. In puzzle, because these two
features always emerge from the logic rule of game system, we can’t find out
a proper number of obstacles easily, it will cost much time to dynamic adjust
difficult for puzzle. For example, in Cross Block, number of choice and dead
ends emerge from the square interaction with other square, therefore, it need
much time for auto-generate program to find out proper number of
controllable feature for next level.

2. For gameplay characteristic, we can’t get accurate data from player. Because
meaning of play for a puzzle is to find out a solution, therefore, player tend to
know how to solve it if they already solves the problem that same as pervious.
Therefore, use time or retry as characteristic for measure performance, will
trouble with large variance of collected data for same puzzle that cause
analysis difficult.

3. For questionnaire, it is difficult to design question to find out relationship
between each obstacle and action, because player feel about the puzzle by
their whole emerge pattern but not individual object.

Remember, difficult function is depending on the challenge and skill function,
but every player has different skill every time they play puzzle, therefore “optimal
arrange” of puzzle will change every time for every player. Let’s summary we had
discussed so far: difficult is a relative concept that based on player past experience
and can’t be measure directly; if we want to apply DDA to puzzle game, it will also
have some trouble in increase obstacle and measure player performance to dynamic
adjust proper difficult for a player.

11

If such “optimal arrange” is difficult to achieve, why don’t we sort puzzle by
some criterion and map it to static difficult (\ery Easy, Easy, Normal, Hard and Very
Hard)? Because puzzle has the property of emergence that is some kind of complex
system, therefore, the goal of this research will focus on how to measure complexity,
at the same time, design a method to approximate it to difficult function (static
difficult). Compare to DDA, this method is more practical to real puzzle game
design process, that we doesn’t need to consider player skill dynamically, and
resorting and rescore puzzle’s difficult according to their performance.

My argument here is trying to separate the concept more clearly between
Difficulty and Complexity that will more convenience for us to further discuss the
topic.

From the aspect of research in task difficulty and task complexity discussion,
many papers separate these two terms as different concept: complexity as objective
measure and difficulty as subjective. (C. D. Giiss, E. Glencross, Ma. T. Tuason, L.
Summerlin, & F. D. Richard, 2004; J. Kim, 2005; P. Robinson, 2001)

Similar as our argument above, Jeonghyun Kim (2005) further divided difficulty
into two group: first is expected difficulty, which is the percept of difficulty before
you start the task; and second is experienced difficulty, which is the feeling after you
finish the task.

Next, | want to introduce complexity theory and it relation to puzzle game, which
Is an essential concept in this research.

Section 1.1.7: Puzzle Game: Complexity Theory

Complexity Theory has two kinds of meaning: one is Computational Complexity,
and another is the study of Complex System. In this section, | will briefly introduce
these two fields and their relation to puzzle game.

A Computational Complexity

Computational Complexity is the study of theoretical computer science and
mathematics that focus on how efficiency to handle a problem (M. Sipser, 1997;
Sanjeev Arora & Boaz Barak, 2009). For example, there have three famous type of
computational efficiency problem NP, NP-Complete and NP-Hard, indicate whether it

12

can be solved within linear time; furthermore, there also exists the problem about
space efficiency: PSPACE, PSPACE-Complete and PSPACE-Hard, indicate whether
it can be solved with limited space. Give an overview, there have some research may
like: Reduce Time Complexity By an Algorithm for solving a puzzle(R. E. Korf, M.
Reid, & S. Edelkamp, 2001), analysis Complexity of Search a Graph (N. Megiddo, S.
L. Hakimi, M. R. Garey, D. S. Johnson, & C. H. Papadimitriou, 1988) and a reduction
method for handle games(R. A. Hearn, 2006).

Puzzle is very suitable for further study in this field, because it require player to
choose a sequence of action in order to solve it that has many interesting feature for
calculate model. Quote from Robert Aubrey Hearn (2006), in his research,
Computational Complexity of a puzzle can classify into following category: “If a
game is a one-player puzzle with a bounded length, odds are it is NP-Complete.” and
“Indeed, unbounded puzzles are often PSPACE-Complete.”

Bounded and unbounded puzzle means whether it has a restrict length to solve it.
In unbounded puzzle we can always go back to previous state, therefore it has no
restrict length. Both of them need exponential time to compute a solution, but they are
different in whether we can use polynomial space to verify a specific action sequence
is correct. Because Savitch’s (1970) theorem had proofed that NP-SPACE = PSPACE,
therefore we can solve any puzzle problem with polynomial space. The main research
direction in this filed is how to solve a puzzle more computational and space
efficiently. Is computational effort relate to complexity of puzzle and can use for
sorting purpose? | think it is not a good idea, because Computational Time and Space
problem, your machine will run a long time or crash due to memory lacking when
compute a very complex puzzle.

B. Complex System and Emergence

What is complex system? Although this filed has been studied in modern
computer science for a long time, but it is one of profound problem that people tends
to understand in past several thousand years. Aristotle (384 BC — 322 BC), a noted
Greek philosopher, who first organized the concept in his questions about
Metaphysica: “The whole is more than the sum of its parts.”, that actually indicate the
most important property of complex system.

Jeremy Campbell (1982) looks this “whole phenomenon” from the aspect of

information, language, and DNA, says that when system beyond a “complex barrier”,

13

entirely new principle will come into play. The principle, call emergence, may allow a
system to self-organizing, replicating, learning, or adaptive itself to environment.

Penny Sweetser (2007) has summarized some common property for a complex
system: Elements, Interactions, Formation, Diversity, Environment, and Activities. In
other word, if there exist a set of elements, that will inter-interact with a set of rule in
an environment for specific purpose, their interaction process has large state space,
element will reorganize itself over time changed, and then it is a complex system. The
first deep exploration about emergence is from John Holland’s (1999) book
“Emergence: From Chaos to Order”, shows many example about how emergence
arise from complexity.

When a system is emergence, it means we can’t predict it high level behavior or
structure of system from observer lower level. But, not all of system is complex.
Christopher Langton (1995) provides four level of complexity for understand system:
Fixed, Periodic, Complex, and Chaotic. The boundary between Periodic and Complex
is complexity barrier; between Complex and Chaotic is edge of chaos. Beyond
complexity barrier means system will have emergence phenomenaon, but if it complex
reaches chaotic level, this phenomenon will disappear. Following two “Cross Block”
puzzle levels in Figure 4 shows complex and chaotic level of puzzle:

14

) ross Block by Chang Ching-Chao -_ = e o 2 il
e Y ke e @ gt gt o
1 H BN EEEEEEEEEN
| | EEEEEEEEER
H B EHEN H EEEEEEEEEN
EEEEEEEEER
H HE B EEEEEEEEEN
HE] | | EEEEEEEEER
H H EEEEEEEEEN
HEE BN | EEEEEEEEER
HEE BN EEEEEEEEER
HE EHR : EENEEEEEEER

(a) Complex Level (a) Chaotic Level

Figure 4 Emergence Phenomenon Example

(a) Complex level of puzzle that has high complexity. = (b) Chaotic level of puzzle that with
no complexity (no dead ends) that every square can interaction with each other to form a basic

element that can be canceled by player.

It shows emergence phenomenon in the “Cross Block” puzzle, that both choice
and dead ends will increase when it beyond complexity barrier and dead ends will
decrease when reach chaotic level.

The study has widespread research in many fields, such as Information
Complexity on Communication System (C. E. Shannon, 1948), Artificial Life
(Adamatzky. Andrew, 2010; Christopher G. Langton, 1995), Biological System
(Gerald M. Edelman & Joseph A. Gally, 2001), Economic System and Human Society
(Holling, 2001)...etc. We can’t survey all of those fields here for understand what is
complexity, since it will diverse our discussion to focus on puzzle game. With a
general idea, quote from Penny Sweetser (2007), we simply define complexity as
following meaning : “Complexity is a measure of the difficulty involved in

’

understanding a system.’

What means to understanding the puzzle? If someone can solve a puzzle level,
we say he/she understand it. How do we measure complexity of a puzzle? From
previous discuss, we know insight is important skill to solve a puzzle, and there has
two components will affect it: choice and dead ends. But, because they are emergence
phenomenon in the puzzle, therefore we can’t directly control it. How do we calculate
it? From computational complex theory we discuss, it will fail when we want to
expand search space in a puzzle. In chapter 4.1, | will introduce our approximate
method.

15

Section 1.2: Motivation: Challenge in Puzzle
Game Sorting

Basically, we can classify difficult model into two classes: dynamic difficult and
static difficult. There has several challenge of measure dynamic difficult in puzzle
game: First, because puzzle game have emergence property, therefore it is difficult to
control obstacle. Second, we must design a method to distinguish those puzzles which
players already know their answer in order to measure player’s skill correctly. Third,
it is difficult to find out relation between each object, because the difficulty of puzzle
is “whole” not individual obstacle. Therefore, in this research, we will only focus on
how to measure complexity and map it into static difficult.

Section 1.3: Motivation: Mobile Game, Market
and Puzzle Game

Recently, mobile game market has dramatically growth, especially when Apple
releases their cutting-edge product: iphone and ipod, there has more and more
company starting their game project on mobile platform. According to Apple’s official
news, the number of App Store—an online software download service for Apple’s
product (iPhone, iPod, iPod Touch), which launch on July 10, 2008
(Apple).—downloads already exceeds 10 billion, furthermore, it is worth noting that
TOP 10 of popular iPhone paid Application, 9 is games (Robin Wauters, 2011). Hence,
the market in the mobile game has large amount potential benefit. There has a
research shows that Mobile app market will be worth $25 billion U.S. dollar By 2015,
compare to 2010 is $ 6.8 billion (Sarah Perez, 2011).

My research is focus on puzzle game, which is very suitable for mobile platform,
because it has short play session and player can stop it at any time without punishment
compare to other hard core game. In fact, “The games that are popular on the mobile
platform are mostly casual games”’(Elina M.1. Koivisto, 2006)

Puzzle is a kind of casual game, which is popular in the mobile game. Just as
introduce on background, there have five different genres. But, we only focus on pure
puzzle, which doesn’t have any other additional element, since it convenience for our
research on calculate and sorting complexity.

Barry Clarke (1994) in his book, “Puzzles for Pleasure” collect large number of
puzzle and classify into two category according to their difficulty: Popular Puzzle and

16

Advanced Puzzle. Popular Puzzle requires modest insight and engagement that suit
for every people; Advanced Puzzle for those puzzle-solving manias, who think
Popular Puzzle too easy. In past time, designer tends to use their own sense to rank the
puzzle they design. If we can tell which puzzle is Popular, which is Advanced and tell
the degree of it complexity that relative to others, it will very helpful for puzzle game
design process.

Section 1.4: Goal

The purpose of this research is to design a general method that can sort pure
puzzle according to their complexity. In order to grasp more accurate purpose of this
research, here comes the summary about Difficulty and Complexity that described in
background.

Difficulty is a subjective and relative concept that based on player past
experience. Both challenge and player skill will affect it, but because measure player
skill in puzzle is difficult, therefore, we use complexity instead of difficulty for
sorting purpose.

Complexity is an objective concept that is the measure of difficulty involved in
understanding a system. In puzzle game, how difficult for a player to understand a
puzzle depends on their insight to a puzzle. As introduced in previous section, insight
will be affected by choice and dead ends, therefore, this research only uses these two
criterions for complexity measure, furthermore, design a method that can approximate
complexity to human sorting (difficulty).

Section 1.5: Contribution

Puzzle is a popular game type in mobile platform, which have short play session
time that is very suitable for time killing. As describe in motivation section, there has
more and more company starting their game project on mobile platform. But, there
exists a trouble for design a puzzle game: How do we decide arrange of puzzle? In the
past research, they are focus on how to solve a puzzle more efficiently in term of
computational and space complexity. However, it is not necessary for real game
application. Although all puzzle need to validation a solution, but if it cost too much
time, then it is not practical. The focus of this research is on complexity sorting,
which takes practical into account, is more essential for puzzle game designer.

17

Because almost all puzzle game can auto-generate by program, we can simply
generate large number of levels, therefore how to pick out a set of appropriate
complexity levels is very important topic.

Our result will be a calculate model, which can calculate complexity for any pure
puzzle. If you have a solving program and a solving sequence, then our model can tell
the score and rank base on all puzzles in the puzzle database.—It is very convenience
for puzzle game designer to analysis what is difficult in puzzle.

18

Chapter 2: Literature Review

This chapter mainly focuses on some basic technique, theories and method that
are related to our experiment method. You can skip this part if you already familiar
with it.

Section 2.1: Tree Search

Formulate game as tree search problem is very popular technique in the field of
Game Al. Programmer always apply this method to create “intelligent” in game, for
example, in two-player game like go, chess or Othello, we create intelligent opponent
to compete with human player; in RTS, like AOE, StarCraft, we let game agent find
out an optimal path from “A” point to “B” point to reduce effort of player control; in
puzzle game, like Sokoban, Sudoku, try to find out and validate a solution sequence to
give the hint for player.

Although I describe some application of tree search above, but I still doesn’t
explain what it is. What is tree search in term of programming? It is a problem solving
technique by discrete and expanding possible state of problem in order to find out a
solution. “Problem” and “Solution” are two essential concepts in this method. Russel
(2002) in his book list four element to define what is Problem:

1. Initial State: like concept model of puzzle | mentioned in chapter 1, it is the
entry of maze.

2. Successor Function: a set of action-state pair, record which action can lead to
which state. In tree search problem, it is branch or choice.

3. Goal Test: test whether our goal is achieve. It can be explicit, if current state
is on certain state we already list in goal list; or it can be implicit, if certain
condition of current state is achieve.

4. Path Cost: the cost from initial state to current state, it can be simply define
as time, distance or number of action executed, depend on your application.

The Solution is a set of action sequence that can lead problem from initial state to
goal state. Figure 5 is an example of Solution in Cross Block Puzzle:

19

T3 Cross Block by Chang Ching-Chao IR

= L = 51 Cross Block by Chang Ching Chas T s e [
’ S 3 level: 100 / 100 cross out: 5]
N (563, 180) 4 2\ <3 level: 100 / 100 cross ot 5
‘ \,‘*‘) @‘ solvedStep: 4 e r@ @ SoluadSiop: 4 (355, 246) ‘

Initial State, Path Cost =0 Path Cost = 1
Action 2: (4, 5) (9, 5) Action 2: (1, 1) (1, 10)
T Com Bk by Grarg Crirg B T 0 i Ty | % e
it @ level: 100 / 100 crdossdgtl.ltrsd 62, 209 ‘9 j b solvedstep: 4 (251, 20
& solvedStep:

]

)
H EE =EE
H B HE !
Path Cost =3
Path Cost =2 .
Action 4: (1, 10) (7, 10)
Action 3: (4, 3) (4, 9)
[riamame W=

(il
el A (B lovelid / 24
(547, 201)
08
| |

Goal State, Path Cost =4

Figure 5 Example of a puzzle Solution.

20

The core idea of tree search is to explore over all state space of problem in order
to found out a solution. Like it name, when you explored the state, you will find it
similar to the branch of tree, see Figure 6.

Figure 6 Example of tree search
How

do we design such algorithm? Because “state” only store representational dimension
of problem, therefore we need other data structure to record other information, such as
path cost f, depth of tree search, current state come from which state(parent), which
state current state can go (child), almost all literature call this kind of data structure as
“node”. You can simply use adaptive pattern or wrapper pattern, from design
pattern(Erich Gamma, Richard Helm , Ralph Johnson, & John M. Vlissides, 1994), to
including such information for state, the C++ code like Code 1:

21

[Ce++ code]

class Nodef
public:
NodaState® _state)|state= _states):
State® state;
float gy'realp ath cost
float h;/'heuristic, guess cost, used in informed search
float fy'/ patheost, f=g+ h
int depth; // depth in search tres
Nod o parent; //come from which state
map<Action®, State®™ child; // which state that current state can go

is

[C++ code]

Code 1 Data Structure Node.

Have node as basic data structure, our tree search implementation looks like
Code 2 and Code 3: algorithm from Russell’s (2002) book, chapter 3.

[C++ code]
vector<Action®> tresSearch(State imitialState)]
vector-Node®™ fringe
fringe.push baddnew Nod ef init State-=clonal)))k

while{ frue){
if{fringe empiy (I}
vector<Action®> noSoluton;
retur noSolutiony fean’t find solution, return null hist
i
NFIFQ, BFS
Nod ¢ node = fringe fromt();
fringe. erase{fringe.begin())

if(isGoal(nod €){
/itrace back from poal node to initial node, weean make the solution
return makeSolution(node);

i

vectior=Nod &= leaf = expand(node);

imsertd I fringe, loaf)://insart all nodein leaf to fringe

[C++ code]

Code 2 Implementation for BFS tree search algorithm.

22

[C4++ code]

vector=Node*> expand(Node* node)

vector<Node®> leaf;

nodechild = getSuceessorsinod el

map<Action®, State®>:iterator it

for(it = node child. besin(); it != node child end (); it++)
Action® a = it-=first;
State® newState = t-=second;
Nod ¢ newNode = new Node{nawState);
newNode->parent = node;
newNode-=g = node-=g + stepCostinode, acton, newNode);
newNode-=h = heuristic{newNode);//set heuristic as
newNode=f = newNode>g + newNod e=h;
newNode-=depth = node-=depth = 1;
leafpush badsmewNods);

¥

return leaf;

¥

[C4++ code]

Code 3 Implement for expand function.

In this algorithm, only thing you must do is to design your State class and
successor function because it various depends on application detail. But still, it have
some problem if there have some action that can go back to same state that previous
had expanded, then program will fail to explore over all state space because same stae
will be expanded again and again. In order to solve such problem, we must introduce
a list that can record state that already be expanded. The algorithm is called graph
search in Russell’s book. Code 4 is my implementation:

23

[C++ code]

vector<Action®> graphSearch{State imitialState)]
vector<Node®™ fringe vector=State®*> closed;
fringe.push_baddnew Nod o imit State-=clonel))):
whilal trus) |
if{fringa empty{)H
vector<Action® noSoluton;
retur noSolutiony'/can’t find solution, return null hist
H
Nod & node = fringe. fromi();
fringe. erase{fringe. begin());
iffisCoalinod &) {
/trace back from poal node to mitial node, weean make the solution
return makeSolution(pode);
H
if(} isCirele{nod e-=state, closed)){//check if nodeis already in closad
closed push backinode);
vector<Node®> leaf= expand({node);
msert Allfringe, leaf);/insert all node in leaf to fringe
jelse
delete node; node=NULL;
¥
H
raleasalclosed); //release memory

[C++ code]

Code 4 implement for graph search.

There have three main variations for search algorithm: Depth-First Search (DFS),
Breadth-First Search (BFS) and Uniform-Cost Search (UCS), all of them are different
at which node is expanded first. BFS expands the node from beginning of fringe; DFS
expands from back; and UCS expands from lowest cost.

Also, they have different benefit in solving the problem. BFS and UCS can find
optimal solution, but because all nodes must keep in memory, therefore space will be
a big problem,; else, although DFS doesn’t have memory problem, but it can’t find
optimal solution and not suitable for those problems which total depth too high or
unlimited.

Therefore, there comes the method to improve the problem describe above, like
Iterative Deepening Search. By gradually deeper search depth, our search tree can
improve space problem cause in BFS. Another improving technique like A*, is using

heuristic as cost measure, can reduce large amount of node doesn’t need to be

24

expanded that can increase searching performance.

But the algorithm in this section only suit for one player game, for those
two-player game problems like go or chess, we need apply min-max or alpha-beta.
We don’t introduce two-player game tree search, because it is not relate to this
research, but it core idea is same in this section.

Section 2.2: Local Search

Although tree search is a powerful problem solving method, but there still exists
some weak point, for example, if we want to solve a problem that with very large state
space, then it will always cost too much time to find a solution or crashed because run
out of memory. It is not very efficiency for those problems, which only wants to find
an acceptable goal state but not their solution path, such as 8-queen problem, therefore,
here comes another algorithm in computer science, call Local Search.

What is Local Search? It is an optimization technique by only consider current
state and gradually move to their better neighbor state and finally find an acceptable
goal state. The term optimization in this method doesn’t mean it will always find a
global optimal, but because we can always find an approximated optimize state, call
local minimum/maximum or local optimal.

Before starting search, we must design an objective function to measure the
goodness of current state. How do we define what is “better state” will affect we try to
find is local minimum or local maximum. If we feed training sample into objective
function to tell program what is good and what is wrong, then it is a kind of machine

learning. Like genetic algorithm, neural network...etc., all of them are local search.

Figure 7 shows the concept of local minimum search describe above that adapted
from (Russell. S. & P. Norvig., 2002) chapter 4:

25

Objective Funciton
A

shoulder

local minimum
flat:local minimum

4

=
/ Current State State SDECE
global minimum

Figure 7 Concept of minimum local search

Of course, it is the best result if we can find global minimum, however, local
search algorithm always stuck on following three places: local minimum, flat and
shoulder. There doesn’t any solution to remove this problem, but instead, we have a
principle to get a better result: “If at first you don’t succeed, try, try again.”(Russell. S.
& P. Norvig., 2002), by randomly initialize state, you will geta chance to approach
best result over state space.

Section 2.3: Simulated Annealing

Because classical local search algorithm tends to stuck on local optimal,
therefore if we can jump out local then it seem easier to find a better solution.
Simulated Annealing that are is such kinds of algorithm. By introduce some
probability to do random walk over state space, and then it can help us to jump out
local minimum / maximum state. The concept “annealing” come from physical says
that it “is the process used to temper or harden metals and glass by heating them to a
high temperature and then gradually cooling them, thus allowing the material to
coalesce into a low-energy crystalline state. ”(Russell. S. & P. Norvig., 2002)

26

Figure 8 is the flow chart of Simulated Annealing:

Randomly
initialized state

Calculate Energy

(or call Cost)

Return
Optimized State

disturb(currentState)

Is Accept?

currentState =

newState

Decrease

Temperature

Figure 8 Flow Chat of Simulated Annealing.

First step is randomly generating our state, it is because we want to increase
opportunity to find global optimal, and then we calculate energy of current state,
because this algorithm is local minimum search, therefore we can also call this energy
function as cost function. You must design this function depends on your application.
Next, try to test if current state is good enough, if so, and then it is an optimized state
and return it; else, try to adjust current state and test if we can accept this new state in
current temperature.

27

Temperature is a core concept in this method, it will affect whether we can
accept new state. It will accept new state by following rule, call Metropolis
criterion(Kai-Ju Chen & Kou-Yuan Huang, 2007):

First, Set deltaE = new state energy — old state energy.
If deltaE >= 0, then accept it immediately.
Else, using current temperature Tk to compute probability pt in Boltzman
distribution and randomly generate a random probability r.
4. If r <= pt, then accept it, else reject.

Boltzman function is a function to simulate the probability of transforming
physical state in certain temperature. It is defined by Code 5:

[C++ code]

float Simau lated Annealing: :Boltzman(float deltaF
float e = 2. 718281 B2 B4 3004 523536 1;
retwrn min(1.0f, pow(e, -deltaf /T kj;

¥

[C++ code]

Code 5 Boltzman distribution for simulated annealing.

When temperature Tk is high, then we will tend to change our state in spite of it
is a bad state compare to old state. Until temperature continue decrease down to
certain number, and then state will keep to a stable and find a local optimal. You can
try same temperature many times. Code 6 is my implement for temperature decrease
function:

[C++ code]

/! temperature decreass function
float Sinoulated Annealing: :schedulafloat €){
float alpha = 0.95;//decrease spead
float Toaax = 600/ imitial temp arature
return T max * pow(alp ha,t-1):
¥
[C++ code]

Code 6 Temperature decrease function for simulated annealing.

And is Code 7 is my implement for accept function:

28

[C++ code]

Sinmulated Annealing: risAcceptiState® oldState, State® newSte)]
float oldE nergy = energviold State);
float newE nergy = enargy(newState);
float deltsF = newE nergy - oldE nergy;

/! Metropolis criterion
ifidaltaf ==)/ if new state good then old state then accapt it invmediztaly
return true;
yelse]
float r = random umiform float(0, 1);
float pt = BoltzmanideltaF);
ifir <= pt){

return true;

return false;

[C4++ code]

Code 7 Accept function for simulated annealing.

The program used in this research is adapted from (Kai-Ju Chen & Kou-Yuan
Huang, 2007; Kou-Yuan Huang & Ying-Liang Chou, 2008), by design our state as
mathematical from, and gradually adjust its parameter, then we can get a set of
optimal parameter.

29

Section 2.4: Pseudo-Random and Real-Random

What is Pseudo-Random? In computer, we can’t really generate Real-Random
number because it is run by deterministic process. If you feed same random seed
(used to calculate) for random program to generate random number, you will find
your program generates same random sequence as pervious run and this number
sequence will repeat again and again as a period length.

Because we can predict number generated by program if it algorithm is known,
therefore, we call computer-generated random number as Pseudo-Random. In
computer science, there has much research introduce many algorithms about how to
approximate real-random.

Mersenne Twister (MT) is a most popular Pseudo-Random method nowadays that
developed by Makoto Matsumoto and Takuji Nishimura (1998). Its name is come the
fact that period length in algorithm will be a Mersenne prime (M,, = 2P — 1). In this
research, we adapt a MT variation call MT19937 which has long period (219937 — 1)
and can generate 32-bit integer, for our random process.

Section 2.5: Game, Digital Game and Media

What is game? Beginning works may be trace back to Johan Huizinga in 1954. He
was analysis what is game and it meaning from the aspect of philosophy. According to
his works, Homo Ludens (Johan Huizinga, 1954), says that game will be a game if it
satisfy following three feature:

1. Voluntary: Participator must with his/her own will to join the game.
Unreality: The content of game must achieve some fantasy content.
Separation and Regional limitation: game exist a boundary between reality and
fantastic, call magic circle in Rules of Play(Katie Salen & Eric Zimmerman,
2003).

What is digital game? It is the game that integrate with many different media, like

word, picture, music...etc. We can separate all digital-game and non-digital game as
Figure 9:

30

Figure 9 Game Taxonomy by Media.

Digital Game:

® Computer Game: use computer as game media.

® Console Game: use TV as game media like X-BOX, PS3.

® Handheld Game: use small device as game media like iPhone, PSP.

Non-Digital Game:

® Board Game: mainly use physical tool pencil, paper, or card ...etc., as play
media like Monopoly, Carcassonne, usually as indoor activity.

® Sport: use player’s own physical body to compete power for each other.

® Ground Game: Opposite to board game, it is an outdoor activity. Game like
Hide and seek, hopscotch, and geocaching may be classified into this
category.

But Taxonomy for each game are not fixed, for example, Wii-sport is successful
in combining Console Game and Sport as new play style.

31

Section 2.6: Flow Theory
In psychology, flow means optimal experience when challenge meets skill. The

term are propose by Czikszentmihalyi (1998). Figure 10 is mental state refer in flow
theory:

Challenge

High

Control

SKkill
Low High

Figure 10 Mental State in flow theory.

It worthy to note that flow condition only occur in high challenge and high skill,
where low challenge and low skill are considered as Apathy, means player doesn’t
care about whether they can get good performance in the game.

Section 2.7: Three-part rule model

The model are proposed by Katie Salen and Eric Zimmerman (2003). They divide

game rule into three parts:

1. Operational rules: structure of a game, how can we operate the games. We
must first know the legal input for a game, and then can start gameplay.
Operational rules have some property as following:

a. It must be an unambiguous and explicit, for example, write down on the
manual.

b. It must share among all players that everybody can access to it without any
information loss.

c. It must be fixed and repeatable, so it can helps us to identify and confirm

32

every game instance we play are actually same.

d. It must make binding among player that if they break the rule they may
pay some penalty that will reduce their fun experience, therefore player
may more likely to play the game according to the rules. Although there
have some situation that will make player to do some cheat, but the
problem doesn’t relate to this research, so we don’t discuss cheat problem
here. You can refer to Mia Consalvo (2007) works about cheat in games to
get more detail idea.

2. Constituative rules: It is logic part of games. How to explain game outputs and
select a set of legal inputs is essential part of gameness. When a better
explanation can be made, then better you will play the game. Player is required
to learn how to “insight” this rules in order to win. If we want to design or
analysis gameness for a game, Constituative rule is most important part we
must care, because it will emerge large amount of play strategy. For example,
in “Cross Block”, Constituative rule is number of “Cross Out” and wining
condition.

3. Implicit rules: like the social norm, it doesn’t explicitly write down on the
game manual, but everybody will obey the rule voluntarily. For example,
when play the chess or Go, it will break implicit rules when one player hide
game board from his/her opponent. This rule will always change depends on
environment when you play the game. There may have some implicit rule
become operation rule in different environment.

By the description above, we conclude that Constituative rules are the source
which brings the feeling of difficulty to players.

33

Chapter 3: Method

This research separate into following four experiments:

e Experiment One: Experiment on Puzzle Game Space for Complexity
Measure using “Cross Block”.

e Experiment Two: Validate results between Complexity and Difficulty
Using “Cross Block”.

e Experiment Three: Validate results between Complexity and Difficulty
using “Sudoku”.

e Experiment Four: Approximate Complexity to Difficulty, using “Sudoku”

The first two is preliminary experiment, which want to validate some property of
puzzle game. And another two is our main experiment, which validate the correct rate
of puzzle difficult sorting.

Section 3.1: - EXperiment One

As describe in chapter 1, Difficulty and Complexity in this research is two
different concepts. Complexity is objective according to puzzle itself and Difficulty is
subjective according to player past experience.

Generally speaking, the more solved step a puzzle required the more difficulty
and complexity a puzzle may be. But, is this assumption true? According to the
concept model of puzzle game developed by Scott Kim, introduced in chapter 1, we
known there have two attribute of puzzle will affect insight: choice, also call branch in
this research, and dead ends. | use these two criterions to measure complexity of
puzzle.

In order to validate the result, first, I want to introduce how to calculate
complexity. Because this research uses “Cross Block” that game board size equal to
10 * 10 as experiment puzzle (refer to chapter 1.1.6), therefore, here coming two
Property need to validate:

® Complexity Property 1: When solved step increase, puzzle’s complexity
should increase.

® Complexity Property 2: When cross_out is about half of game board, then it
complexity should be highest. In this experiment is cross_out_5 (10 /2 =5).

34

If result corresponds to both Property, then we can say complexity calculate
model in this research is successful. By generate large number of puzzle levels and do
statistic to observe whether overall Puzzle Game Space is corresponding property.
What is Puzzle Game Space? It indicates every possible state in a puzzle game.

Here have 5 phases in this experiment:

® Phase 1: Random generate large enough samples for each solved step. Like
Figure 11, only sample puzzle levels in game board Size = 10 * 10.

Figure 11 Cross Block’s Puzzle Game Space.

e Phase 2: Calculate branch and dead ends for each puzzle levels. Generally
speaking, expand all node will get more accurate result. But I don’t do that.
Why? Because there has many puzzles is NP-Complete problem. It takes too
much time, and either impossible to calculate for some complex puzzle. If we
only expand answer node (from random generate process, we know it), we can
reduce problem to linear time. Like Figure 12.

35

o’ N
Step 1: x vy *
Dead Ends =1 .
Branches = 2 _
rd ; ‘._‘_
Step 2: “ S
Dead Ends = 2 .
Branches = 2 I
" Step 3:
Initial Node Dead Ends = 0 *
Branches = 1
Branch Node
Branch Node (Answer) Dead Ends = 3

Branches = 5

Branch Node (Goal)

Dead End Node

| %

Action

Figure 12 Branch and Dead End Calculating Process

Phase 3: Calculate branch and dead end’s sample mean for each solved step.

Phase 4: Calculate complexity for each puzzle levels, you can see the method
| propose in Figure 13. Normalize function in this model can help us explain
result of complexity and doing parameter adjust.

Complexity
Complexity = B * Normalized (Branch) + ’I‘
D * Normalized (Dead End)

N
Complexity = Normalized (Complexity) y V
N N

N = Normalized Function

B and D are parameters 1 T

Branch Dead End
@ Figure 13 BD-Complexity Calculating Model

36

I will show the result in Section 4.1: for validate Complexity Property 1 & 2.
But, there still need furthermore validate process about the difference between

Complexity and Difficulty. Therefore, in next experiment, we use “Sudoku ™ puzzle to
validate the result and shows the ability of our method can handle different puzzle.

37

Section 3.2: Experiment Two

The purpose of this experiment is to validate correct rate of complexity sorting
by compare result in experiment one to human difficulty evaluation of puzzle. Here
has 5 phases in this experiment.

® Phase 1: Select the puzzle levels from Puzzle Database with proper
complexity distribution for human evaluation.

In order to validate the result of complexity, first, we must choose a set of puzzle
that have proper complexity distribute over puzzle game space. In experiment one, we
will generate a set of puzzle and calculate their complexity value with both parameter
B and D = 1. Because complexity value will be normalized, therefore, we can simply
separate into five basic difficulty groups as following:

e 0~0.125 (Very Easy)
e 0.125~0.25 (Easy)

e 0.25~0.5 (Normal)

e 0.5~0.75 (Hard)

e 0.75~ 1.0(\Very Hard)

Although Boundary between each basic difficulty doesn’t be validated, however
it is convenience enough for us to choose the puzzle. By random select the puzzle
levels from those four groups, we can get a set of puzzle with proper difficulty
distribution.

® Phase 2: Evaluate difficulty by real human player.
Collect data from player, with following process:

1. When player completing (even give up) one puzzle level, let them give a
difficulty score between 0 ~ 100.

2. When player finishing all puzzle levels (even there exist some give up
levels), let them rescore all puzzle difficulty again.

First score data wants to see whether player will affect their evaluation about
difficulty when complete more and more puzzle.

38

Second score data wants to compare ranking result that the experiment one
generated. By average all collect data, we compute arrangement familiar ratio that can
tell how successful the experiment one is.

® Phase 3: Average difficulty that evaluated by real human and sorting the
result.

® Phase 4: Calculate sorting similarity between Difficulty and Complexity with
small puzzle base.

® Phase 5: Calculate sorting similarity between Difficulty and Complexity with
large puzzle base.

The different between Phase 4 and Phase 5 is number of puzzle in puzzle
database. Small puzzle base means we only use experiment puzzle set that are picked
in phase 1 to compute complexity; large puzzle base means we will consider all
puzzle over puzzle space that are generated in experiment one to compute complexity
for each puzzle. Generally speaking, large puzzle base has more accurate complexity
value and sorting.

Section 3.3: Experiment Three

We use the Sudoku puzzle that provided by Taiwan Sudoku Association (TSA)
(W. Kuang-Chen (= s), 2008) to validate our result. In the website, they statistic
solve rate, time used to solved for each “Sudoku” puzzles and separate it to 5 ranks
that can corresponding to basic difficulty: very easy, easy, normal, hard, and very
hard.

e Phase 1: select proper amount of puzzle in each rank.

e Phase 2: find a solution sequence for each puzzle, we use solving program in
TSA (W. Kuang-Chen (& 5), 2008).

® Phase 3: Using solution sequence to calculate branch and dead ends for each
puzzle.

e Phase 4: compute complexity for each puzzle.

® Phase 5: compare rank result by website and complexity rank by calculate
sorting similarity.

39

Section 3.4: EXperiment Four

In this experiment, I will use simulated annealing to tweak parameter B and D in
Figure 4.3. By feeding training data collected in experiment three, we can improve
our complexity sorting result

¢ Phase 1: Random select training sample from TSA’s “Sudoku” puzzle.
e Phase 2: Use simulated annealing to tweak parameter B and D.

e Phase 3: Calculate new complexity.

® Phase 4: Compare rank result.

40

Chapter 4: Experiment

Section 4.1: EXxperiment One

In this section, I want to validate following two complexity property by generate
large enough puzzle sample over Puzzle Game Space:

e Complexity Property 1: When solved step increase, puzzle’s complexity
should increase.

e Complexity Property 2: When cross_out is about half of game board, then it
complexity should be highest. In this experiment is cross_out_5 (10 /2 =5).

Chapter 3.1 had already introduced experiment phase for experiments, in this
section, I will go into detail about how to implement it in this research and shows the
result.

Section 4.1.1: Phase 1: Random Generated Puzzle

Using “Cross Block™ as experiment game, and set game board size as 10*10,
program can random-generated up most to 100 squares puzzle. Here is the number of
puzzle that used in my experiments.

® Puzzle in each cross_out’s solved step = 100

e Puzzle in each cross_out(solved step 2~20) : 19 * 100 = 1900

e Total Puzzle Amount(cross_out 2 ~ cross_out 9): 1900 * 8 = 15200

e We don’t generate cross_out_1, cross_out 10 and Solved Step 1 because it
dead ends is 0 and meaningless to be a puzzle.

e After remove repeat puzzles, we get Total Puzzle Amount: 15155.

Section 4.1.2: Implement Phase 1: Random Generated
Puzzle

By consider all puzzles as some kind of state, this research we use GameState
class to record game board and it property, like branch, dead ends...etc. Function
prototype for generate puzzle looks like following:

void buildDatabase(int nGame, int maxStep, int crossOut).

41

There have 3 parameters:

® nGame : How much puzzle do you want to generate for each step?

® maxStep: How long of puzzle you desire? If game board size can’t contain more
steps then program assigned, it will simply generate it max step. For example, if
we assign maxStep as 20, but our puzzle instance can only generate no more than
15 steps puzzle, in such situation, the program will generate 15 steps.

® crossOut: how much block you can cancel with each step? For game board size
=10, itrange is 1 ~ 10.

Intuitively, cross out 1, 10 and step=1 are meaningless, therefore we generate it
from step 2. Refer to Code 8:

[C#+ code]

vector<Gamestate¥: states;

intsizex=10; intsiey =10
void buildData base{int nGame, int maxStep, int cross Outh
for{int step = 2; step <= maxStep; step++H
for{inti = 0 i < nGame ; #+){
GameState® state = new GameState|s iz ex, sizey);
state-r randomGenerate] cross Out, step);
states.push_back{state};

i
Call;

for(int i= 2 i < 10 #+}{
buildDataba se{ 1040, 20, i}

i

[C++ code]

Code 8 Implement for random generate cross block.

\ector “states” is our puzzle database for store generated puzzle. And, int sizex
and sizey indicate our game board size.

But, what is the mechanism of the function randomGenerate(crossOut, step)?

Figure 14 shows the process of randomGenerate function: Cross out = 5, solved step =
4.

42

w - [= 3 [77 Cross Black by Chang ChingChas ™ - i [y =)
B DRT(EIEAS wm | (@ @@ OIES T e
o
¥
o
o
o
H
H EE =EE H EHE =N
Step 6 Step 6
5] Cross Block by Chang Ching Chao ™% - e = e Cross Block by Cheng Ching:Chao - - r' [
rﬁé‘ PLB; ’\Le’} level: 100 / 100 Sg?j;dg?:p?d :?355‘1 246) r’ei-} @‘ <3 level: 100 / 100 ;r]tl::;dgltj:p:s“ E’Eﬁ‘?‘mm
EE B ©E N EE B EH =N
N N
b
o
N
o
N
H EE =EE H BN BN

Step 6 Step 6

Figure 14 Example of random generated process of puzzle “cross block”.

Section 4.1.3: Implement Phase 2: Calculate Branch and
Dead Ends

Generally speaking, expand all node will get more accurate result. But I don’t do
that in this research, why? Because there has many puzzles is NP-Complete problem.
It takes too much time, and either impossible to calculate for some complex puzzle. If
we only expand answer node (from random generate process, we know it), we can
reduce problem to linear time. Figure 15 shows our calculate process.

43

For detail implement code, please refer to appendix.

Step 1: 5 ¥ A

Dead Ends =1 .

Branches = 2

- |
-L" -~

Step 2: & N
Dead Ends = 2 . .
Branches = 2

Step 3: t

Initial Node Dead Ends =0
Branches = 1

Branch Node

Branch Node (Answer) Total Dead Ends = 3
Total Branches = 5

Branch Node (Goal)

Dead End Node

| %

Action

Figure 15 Calculate for Branch and Dead ends by using answer node.

44

Section 4.1.4: Result of Phase 3: Branch and Dead End

From the results Figure 16 and Figure 17, we can see both Branch and Dead
Ends are increase when solved step increase.

Branch in Puzzle Game Space
1200
1000
——Cross_out_2
200 —@—cross_out_3
——cCross_out_4
600 ——r0ss_out_5
cross_out_6
400 ~@—cross_out_7
cross_out_8
200 cross_out_9
cross_out_2~9
o — 0 AN
5 2 22 2R B 22 EEEEEEE E E B yosempemen
= = =T = = = = =2=.%°© W T =2 v v =/ T ®© = = Sampleforeachstep=100
R o = S = IR 7~ T S = - =

Figure 16 Average Number of Branches of each step

-
DeadEnds in Puzzle Game Space
120 _— — _
100 | —4—cross_out_2
== cross_out_3
80
e CrOss_out_4
e O 055 _OUE_S
60
+—Cross_out_6
—@—cross_out_7
40 |
cross_out_8
cross_out_9
200 |
cross_out_2-~9
e
S AR AR RRRRBERBERRERERER lanpefwexhsep=100
= = = = = = = = = = =1 = = = = = =1 = = mple for each step = 1
L T T - T - - T - I
L= L - T B - - T - B —]

Figure 17 Average Number of dead ends of each step

45

Section 4.1.5: Implement Phase 4: Calculate Complexity

Calculate model used in this research are refer in chapter 3, notice that both
Branch and Dead Ends are normalized because we need a method to control their
weighting.

How to implement normalize function? Because weighting between Branch and
Dead Ends are different for complexity measure, therefore normalize function can
help us doing parameter adjust for these two criterions. For complexity, it helps us to
explain result. We can simply divide by max value in Puzzle Database generated in
phase 1, like following:

e Normalize(Branch) = Branch / MAX(AIl Branch in Puzzle Database);

e Normalize(DeadEnds) = DeadEnds / MAX(AIl Dead Ends in Puzzle
Database);

¢ Normalize(Complexity) = (Complexity + MAX(AIl Complexity in Puzzle
Database) in case parameter B and D is negative) / MAX(AIl Complexity in
Puzzle Database);

In this experiment, we set parameter B and D as 1 for simple, and then all
max value is summarized in Table 1:

Table 1 Max values in puzzle database.

1640 1
198 1
1.567916 1

Code 9 is the implement for complexity calculate model.

46

[C++ code]

normalize] int filter, std:vector<GameState® > states){
switch{filter}{
case COMPLEXITY:

[fin case parameter i negative

float maxC = MAX[ABSCOMPLEXITY, states|;

for{inti =0 i = states.siza |; i++){
states[i]->complexity += maxC;

i

[fnormalize

maxC = MAX[COMPLEXITY, states |;

for{inti = 0; i < states.s e |; i++){
states[i]->complexity = states[i]-= complexity / maxC;

i

break;

i
normalize| int filter, GameState¥ state, stdivector< Games mte® » states)]
switch{filter}{

case BRAMN CH:
return | float)state-=nBranch / MAX[{BRANCH, states);
break;
case DEADEMND:
return | float)state-=nDeadEnd f MAX| DEADEND, states);
break;
i
return O
H
[C++ code]

Code 9 Implement normalize function for BD-Complexity Calculate Model

47

Section 4.1.6: Result of Phase 5: Complexity Sample Mean

From Figure 18, we can see it validates our Complexity Property 1: when solved
step increase, puzzle’s complexity should increase.

Complexity in Puzzle Game Space

0.9 }

08 -

=&—Cross_out_2
0.7 S

—@—cross_out_3

06 | ~—de—Cross_out_4
0.5 ¢} cross_out_5S

cross_out_6
0.4

—@—cross_out_7

03 ———cross_out_8
0.2 cross_out_9

-cross_out_2~9
0.1 -

y = complexity

) e -
0 e
4 9 4 9 9 9 g 1@ 9 a v 9 g9 99 9 9 9 g 9 sample for' each step =100
[} (1] (1] [1-3 (1] (13 1] (13 o (1] 3 (13 o -3] o [[1] [1-3
- - - - - & -) © o - -] © o = - -1 © -] - -
~Now O N o T S)
B v S Nye CpEg==E=RUE S EYE SOl E O\

Figure 18 Average complexity of each step

Next, in order to show more clear evidence about Complexity Property 2, Figure
19 is the average complexity over all steps.

Complexity in Puzzle Game Space

0.35
0.3
0.25
0.2 -
0.15 -
0.1 - I I m ALL step
0.05 - I

0 - . T T

) % ™ “ © A Lol) O
O\i\'/ 0&/ 0\}&/ 0&/ 0&/ 0&/ 0&/ 0&'/ \’)&.}
éo"’(’/ (}o"’c’/ (}D‘;,, (}0@/ (}0"‘9/ d5.*7"‘:'/ éo"a/ {}oc": @,_;:9
(&

Figure 19 Result of Average all solved step complexity.

48

From result, we can see cross_out_4 is most complexity one, it is because
Property 1 is true, therefore the result above is affected.

Complexity in Puzzle Game Space

09 |
0.8 |
07 —&—cross_out_2
~—i—cross_out_3
06 | e Cross_out_4
05 = cross_out_5
cross_out_6
0.4
~—@—cross_out_7
03 cross_out_8
0.2 cross_out_9
cross_out_2~9
0.1
y = complexity
0o lm=—=i le for each step = 100
sample for each step =
2 2 2 2 8 2 8 288 3 8B 38 3 8 8 8 3 8 B
- - © - o - = - - =] o © o =] o o -] =1 o
S B R S~~~ T~ -~

Figure 20 More Detail of complexity mean in puzzle game space.

From the Figure 20, we can see not all cross_out game can reach solved step 20,
therefore we decrease solved step to step 16 and step 11, and then we can see our
Complexity Property 2 is proved: When cross_out is about half of game board, then it
complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5). Refer to
Figure 21 and Figure 22.

Complexity in Puzzle Game Space

0.3 ("‘\)
0.25

0.2
0.15 -

01 B Average Before Step 16
0.05 I I

0 T T T T T T T T 1

\’} w.? &3‘ &(2 \.G/D &’) \? %.? {0,
& /0\) 9‘) & Q° & /00 & /o° el /0 6:»/\5 5 9\) 0&',
& & & ¢ ¢ & g
<

Figure 21 Average complexity before step 16.

49

Complexity in Puzzle Game Space
0.14

0.12

0.1 -

0.08 -
0.06 -
B Average Before Step 11
0.04

0.02 -

Figure 22 Average complexity before step 11.

50

Section 4.1.7: Conclusion

Figure 23 shows the result of puzzle’s complexity generated in phase 1 that
classify into five groups of basic difficulty. Although boundaries between groups were
not validated, the results are shown here as a convenient way to illustrate the
distribution of puzzles in terms of difficulty level.

Complexity of
Random Generated Puzzle

1% Total Puzzle Amount: 15155

M 0~0.125 (Very Easy)

m 0.125~0.25 (Easy)
0.25~0.5 (Normal)

M 0.5~0.75(Hard)

m 0.75~1.0(Very Hard)

Figure 23 Ratio of basic difficulty in puzzle database.

The results indicate that approximately one-half of the puzzle levels generated by
the program could be classified as very easy. According to complexity theory, when a
system goes beyond a “complexity barrier”, a behavior pattern will be emergent. In
puzzle games, this pattern is represented by the numbers of branches and dead ends,
which increase exponentially. In Crossblock, the boundary value between periodic
and complexity system is approximately 0.125, which occupy about half of puzzle in
puzzle database, when value beyond it and goes higher, then branch and dead ends
will increase dramatically more and more. Figure 24 shows the average complexity of
each difficulty level that supports our observation. Why? Try to consider following
facts:1.Complexity interval between very easy and easy is 0.18 - 0.053=0.127,
2.Between normal and hard is 0.37 — 0.18 = 0.19; 3.between normal and hard is 0.59 —
0.37 = 0.22; 4.between hard and very hard is 0.8 — 0.59 = 0.21.

As shown in first three, their complexity interval is gradually increased that
means it must beyond a “complexity barrier”, and when complexity level is “very
hard”, we know system almost reach “chaotic level” which must have highest
complexity value and will gradually decrease it complexity, that why interval between
hard and very hard stop to increase.

51

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Complexity Average

<@
co

/V 0.59

.053

0~0.125 (Very Easy)

0.125~0.25 (Easy) 0.25~0.5 (Normal) 0.5~0.75(Hard) 0.75~1.0(Very Hard)

Figure 24 Complexity Average of each Crossblock difficulty level

This experiment is about Puzzle Game Space not about correct rate of puzzle

levels sorting. Although | had proved both Complexity Property in this section for
“Cross Block”, but we still need further result to show that the method proposed in
this research is practical for real puzzle game sorting problem. In next experiment |
will validate the correct rate between Complexity and Difficulty.

52

Section 4.2: Experiment Two
Section4.2.1: Phase 1: Select Puzzle Levels
In this experiment, | want to test if human can really tell the difficulty if all
puzzle levels have close complexity. Therefore | select 10 puzzles that all complexity
in easy group and fixed those puzzles when release to player. In this research, we have

17 human evaluation data.

Section 4.2.2: Result of Phase 3: Average difficulty and
Sorting

Table 2 is the result of puzzle’s complexity and difficulty in this Test Experiment.

Table 2 Complexity and Difficulty result.

. 10 Puzzie 15200 Puzzle
Small Base Large Base Average
Complexi Complexi

| Po | 0.791718 0.115397 0.48

| P1 | 0.990111 0.205887 0.971

| P2 | 0.71508 0.180588 0.658

| P3| 0.778739 0.18051 0.968

| P4 | 0.521014 0.09901 0.695

| P5 | 0.843016 0.224348 0.64

| P6 | 0.687268 0.156099 0.867

0.704574 0.168785 0.673

| P8 | 1 0.219696 0.613

| Po | 0.820148 0.183803 0.89

We can see the difference between Small Base and Large Base more clearly, that
max value in database will affect our normalize function, all puzzle’s complexity in
Experiment Test that compute by large base are in very easy and easy group. Because
what we want to know is their sorting correct rate, therefore sorting those puzzles
according to the value in table above, we can get the rank for each puzzle. Like Figure
25:

o1

53

Rank of Each Level

M Small Base Rank

M Large Base Rank

m Human Rank

PO P1 P2 P3 P4 PS5 P6 P7 P8 PO

Figure 25 Complexity and Difficulty rank result

Actually, we get different sorting rank for small base, large base and human, it is
not convenience for us to compare the result by figure. Therefore, we must design a
method that can tell the sorting similarity rate between each rank list.

Section 4.2.3: Implement: Calculate Sorting Similarity
Here is my implement method for sorting similarity:

e Set if we have two sorted puzzle lists: listA and listB, all puzzles in lists are
same but sorted by different method.

e set listA is sorted by complexity

e set listB is sorted by difficulty(human or static difficult)

® [f puzzle’s rank in two lists is same, then similarity add 1

e [fpuzzle’s rank in two lists is different, then similarity add (1 — different of
two list) / list size

¢ Finally, before return the value, divided it by rank list size in order to
normalize result.

Code 10 is actual implement code for sorting similarity:

54

[C#+ code]

float simila rity0 fRank{v ector< GameState®: listh, vector<GameState®: listB }{
float result = 0;
float maxSize = max|listAsize]), listB.size{|);
for{floati = 05 i < listA.sizel); i+
GameState® stated = listAli]:
for{float j = & j = listB.size{); j+H
GameState® stateB = listB[j];
if{ statef-= isSame{ stateB J}{
iffi == jK
result = result+ 1;
relse{
float diff = abgli - j} / maxSize;
result = result+{ 1- diff};

h
h
h
h
return result f maxSize; [fnormalize
i
[Ce++ code]

Code 10 Implement for sorting similarity.

55

Section 4.2.4: Result of Phase 5: Sorting Similarity

We compare two rates for two ranked lists in Table 3. First is the percentage of
match, it means number of same rank in both. Second is Similarity, it means how
similar sorted of two lists.

Table 3 Result of match and sorting similarity.

Small Base | Small Base | Large Base

VS.
Large Base
Match 30% 8% 10% 24%
Similarity 86% 61% 64% 68%

We can see small base and large base actually have different rank because max
value in database will affect normalize function. Furthermore, compare to small base,
large base has higher sorting similarity rate between human. Finally, we compare each
people’s sorting similarity, their sorting similarity only reaches 68%, it seem
surprising that every people have different feeling about difficulty when puzzle have
near complexity levels.

Section 4.2.5: Conclusion
In this experiment, we see when puzzle have near complexity, then people tends
to have different rank because of different skill they have. Therefore, I think the

ability that can classify a puzzle into basic difficulty is more important than tell their
actual degree.

56

Section 4.3: Experiment Three

In this experiment, | want to validate the correct rate of complexity sorting by
using Sudoku that had been classified by other method. You can find the puzzle
sample we used in TSA(W. Kuang-Chen (& sk 4), 2008).

Section 4.3.1: Phase 1: Select Puzzle in Each Rank
Like Figure 26, every puzzle in TSA is marked with a difficulty level. Number of

“3” of a puzzle indicates difficult rank calculated by TSA, they classify all Sudoku
into 5 ranks.

T wa>
% 5 $018 B 4
T~
EEPEASS [0 BEHER - B EEREr A AR T LURRT -
Eom A TEEHFHES S REEHE BIhE SEMERE BoHTE
€ —L—E SIS0 1L 12 13 T—ES B AW SOOI
B sudolen HhEEREr TR HiThEE FEHAE AR RIRETEE Tk
5 (6] 19 1; 200 24 1; ey 1
8 |1]4 2 g 300" 2k Lz
5l8/7]9 B 152m 3: connie 1030 130"
; 4| |9]1 g 5 4 zadtdn 2:00" 4 aanitn 1 4n
o 5. 125456 25" | s v
=] 93 |54 (2 54 46 .18% 340 P— o & joree 050
5287 7. YUYU 4me 7 sasa 157
613 18 & sloop 3% 8 gadsdd 2000
2| 18] |4 9 jolnscn, 223" 9 Amy 205"
* 10 e 21"
1.2 6 3 1. 3206 20 12 sy 0'%"
3 2 2 sonis 1080 112" | 2 R 11"
514 L3 3: aanite 10360 | sy e
e i‘ - ; 5 4 sanits 1 azn 4 conniel (50 vz A
e 5. connie 1030 143" 5: shawmoon 13
1507 CRCNDE u 63 15.13% 30 = E e e
7 51 7 s 300" | T v | Q@
+ 8 8 1279 20510 | % e, 1130
2 5| 16| |8 9 1279 34 | owon 1
*k 10 165165 324" |10 Fokirkse 1
2114 6 1:vms 1" 1: ey 040
TN Z g v 2 Q@R 100"
3: 0101 1B | 3 cowielB0 1o
318 . 7 5 4 BB LG 1se | aom ret &
o 5 w2z vaor| s EHEE 106"
788 7 2 51 47 40 15105 143 o o B L
<21 i L |7 Fokrkr e |

Figure 26 Sudoku Puzzles provides in TSA.

Every puzzle is marked with a difficulty level. Number of Jkindicates how
difficult it is, upmost to five star. Meaning in each column: puzzle id, puzzle, number
of challenge, number of success solved, solved rate, average time, newest record,
fastest record, start challenge the puzzle.

The method used by TSA to measure difficult of a “Sudoku” is to evaluate
number of solve technique that a puzzle solving program require. The more difficulty
technique a puzzle required, and then the puzzle is more difficult. But, because we
don’t know whether the difficult level that marked by TSA is really correct or not,
therefore when choice the puzzle from it, we must take care of this issue. Fortunately,
TSA also provide solved rate in the column five for each puzzle, therefore we can
choice the puzzle based on this value that will reflect their difficulty more correctly. In

57

this experiment, we select 100 Sudoku puzzle for each difficult level. (5 * 100 = 500
puzzles)

Section 4.3.2: Result Phase 3: Calculate Branch and Dead
Ends

Before calculate complexity for each puzzle, we must decide parameter B and D.
By observe result in Figure 27 and Figure 28, we know branch is positive relation and
dead ends is somehow negative relation (normal and hard are not) when difficulty
increase, therefore, we set Bas 1 and D as -1.

Average Number of Branches for Each
Difficulty Level

5000

3000

2000 == Average number of
Branches
1000
0 T T T T 1
Very Easy Easy Normal Hard Very Hard

Level of Puzzle Difficulty

Figure 27 Average branch for each difficulty levels.

Average Number of Dead Ends for Each

Difficulty Level
400 ‘\
0 I S

250 \"ﬂ

200 \
150 4— Average number of
100 Dead Ends
50
0 T T T T

1
Very Easy Easy Normal Hard Very Hard
Level of Puzzle Difficulty

Figure 28 Average dead ends for each difficulty levels.

58

By using complexity calculate model describe in chapter 3, we get the result in
Figure 29:

Average Degree of Complexity for Each
Difficulty Level

09 - 081
0.8 -
0.7 -
0.6 -
0.5
0.4 -
0.3
0.2 -
0.1 -

0 - . — — T _—

Very Easy Easy Normal Hard Very Hard
Level of Puzzle Difficulty

-4 Average Degree of
Complexity

Figure 29 Average Degree of Complexity for Each Difficulty Level

We can see complexity is increase according to difficulty level. Therefore, our
method is successful to approximate difficulty of puzzle at minimum requirement.
How about overall success for each puzzle? Let examine more detail about
complexity we calculate in Figure 30:

59

Puzzle Samples Sorted by Complexity

% Very Easy

Puzzle Complexity M Easy

A Normal

> Hard

I Wery Hard

T T T T 1
o] 20 40 60 80 100
Number of Puzzles

Figure 30 Puzzle Samples Sorted by Complexity

It just put every puzzle into a rank from left to right in Figure 31, and we can see
this method is weak on those puzzles have both high or low branch and dead ends
which means our complexity calculation will become too high or too low. Another
problem may be the puzzle in normal and hard, we can’t classify the puzzle in these
two groups clearly—I think both of problems is caused by the property of our
method. Because we simply combine branch and dead ends as a polynomial, therefore
the method used to calculate branch and dead ends will affect result very large. In
this experiment, we only introduce a heuristic that simply skip “unique method” step,
which every novice player will know this technique, when we doing calculation. In
order to get more concrete result, we may need to figure out more concrete heuristic
when calculate branch and dead ends.

Rank of Complexity Sorting

=§=Very easy
== easy
==normal

=== hard

—f=very hard
0 10 20 30 40 50 60 70 80 90 100

Samples

Figure 31 Rank of complexity Sorting for each puzzle samples.

60

Section 4.3.4: Result Phase 5: Compare Rank Result

Because there five marked level difficulty in our puzzle database, therefore we
can randomly select one sample from each difficulty level (total Spuzzles) as listA,
sort it by our complexity as listB, and then we can compute sorting similarity between
these two lists. Select process like Figure 32:

listB = sort listA by complexity

listA

randomiselection

Figure 32 Process of select sample from puzzle database as sorting list.

By repeat large enough iteration of this comparing process, then we can validate
the correct of our method. Figure 33 is the similarity result that iterates over 50000
times:

Sorting Similarity
1 =

0.9 + —

0.8 1 s 2
Similarity 0.7 —

0.6

0.5 4

0.4 @ . ; i .)

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Average: 0.8 sorting sample

Figure 33 Result of Sorting Similarity

61

It shows that our sorting looks quite good on most of case, but there still have
space for improve. | will try to adjust parameter B and D by machine learning to find
out best result of complexity sorting.

Section 4.3.5: Conclusion

This experiment shows the ability of the method we propose can calculate
different type of puzzle games. But because different puzzle have different emergent
phenomena on their branch and dead ends, therefore sorting correctness will
dependent on play feature of different game. By separate all pure puzzle game as
following three types: Movement type puzzle like “Sokoban”, Elimination type
puzzle like “Cross Block” and Fill Out type puzzle like “Sudoku .1 think most
suitable puzzle game for apply the method we propose is Elimination and Movement
type. Because possibility of action that player can operate is too large, that generate
more exception than other two types of puzzle.

In appendix, | collect more puzzle games according to this classification.
Although complexity measure for Fill Out type puzzles in this “Sudoku” experiment
doesn’t perform as good as previous “Cross Block ™ experiment, but | think it is good
enough for real application.

Section 4.4: Experiment Four

In this experiment, we use simulated annealing to adjust our parameter B and D
in order to get more correct complexity evaluation for experiment three.

Section4.4.1: Phase 1: Select Training Sample
Because simulated annealing is a machine learning technique, therefore, we need

training sample before beginning our tuning program. Figure 34 is our training
samples select process: we randomly make 1000 training sample from puzzle database

62

Traning Samples

add to repeat

randomlselection

Section 4.4.2: Implement Phase 2: Parameter Tweak

Figure 34 Training sample select process.

Because our purpose is to improve sorting similarity, therefore we can implement
our energy method for simulated annealing as Code 11:

[C++ code]

TrainingData* trainingData;
float SimulatedAnnealing:renergy| GamePa rameter *pl{
float similarity = 0y
forint i = & i = trainingDa ta-> datas.size(}; i+
stduvector=GameState* = sample = training Data-=datas[i];
s5.@ kculateComplexity(p, sample):
vector<GameState®: listB = sortbyComplexity] ASCENT, sample);
similarity += ss.similarity OfRank{sample, listB };
¥
return 1 - {similarity / trainingData-= datas.size{] |;

[C++ code]

Code 11 Implement for energy function in Simulated Annealing.

Because the concept of simulated annealing is to reduce energy (or error, cost)
when repeat training iteration, therefore we minus 1 before returning the result.

63

Section 4.4.3: Result of Phase 2: Parameter Tweak

Figure 35 is the result of training process, our adjustion is successfully converge
error (1 — similarity) to 0.13.

Error and Iteration

0.4
Error 0.2
0.2
e
p
0.1
0.13
(o] T T T T !
o] 200 400 600 800 1000

Iteration

Figure 35 Error and iteration of simulated annealing.

Figure 36 shows the parameter that are adjusted over iteration in this training
iteration:

25
20
15 -+
10

—&—Parameter B

Value
o

—li—Parameter D

Iterations

Figure 36 Result of parameter Band D adjusts over 1500 iteration.

Finally, we get B = 18.1952 and D = 2.02334 is one of state that has lowest error.
The result may be changed when we start another training iteration.

Section 4.4.4: Result of Phase 3: Calculate New Complexity

Figure 37 is the result of average complexity for each difficulty levels, we can

64

see their value is more close between each level compare to the result in experiment
three:

Average Complexity
1
0.95
0.91
0.9 0.88 —
0-85/
0.85 0.81
0.8
0.75
0.75
0.7
Very Easy Easy Normal Hard Very Hard

Figure 37 Average complexity for each difficulty level after parameter tweak.

But it is actually improved it result, especially for those low complexity puzzle in
each level. Figure 38 and Figure 39 shows detailed sorting result:

Complexity of Puzzle Samples

& Very Easy

M Easy

A Normal

> Hard

°k Very Hard

Samples

Figure 38 Complexity of each puzzle sample after parameter tweak.

65

—#—Very Easy
Rank 3 i l-: B —i— Easy

=== Normal
=== Hard

2 IJ = \ery Hard

1 |

0 10 20 30 40 50 60 70 80 90 100
Samples

Figure 39 Rank of complexity sorting after parameter tweak.

66

Section 4.4.5: Result of Phase 4. Compare Rank Result

Figure 40 shows average sorting similarity is improved from 0.8 to 0.86.

Sorting Similarity

0.9 .

08—

Similarity 0.7 —— (D

0.6 D

0 5000 ~ 10000 ~ 15000 . 20000 ~ 25000 ~ 30000 35000 40000 45000 50000

i |
Average: 0.86 Sorting Sample

Figure 40 Sorting Similarity after training.

Section 4.4.6: Conclusion
From the result, we can see although our method is quite simple, but it is a
general method that can be used to measure difficult for different puzzle. Although

there still have some error, but | think if we can figure out complexity measure
heuristic for each different puzzle game, then it sorting correct rate will be improved.

67

Chapter 5: Conclusion

Section 5.1: Complexity Sorting and Difficulty
Mapping

Determining game difficulty is a challenging issue requiring detailed
understanding of game parameters. For puzzle games, Scott Kim has identified
branches and dead ends as universal puzzle components; in this project we tried to use
the two features to measure puzzle complexity. According to our experiment results,
the proposed method holds potential as an efficient method for mapping complexity to
static difficulty. We used simulated annealing to identify optimal parameters, but our
final sorting similarity data still suffered from a 14% error rate. Since different
puzzles have different emergent phenomena on their branches and dead ends, correct
sorting depends on play features that differ across different games. To achieve more
accurate results using our proposed method, it is therefore necessary to use
game-specific features when calculating numbers of branches and dead ends in order
to improve the fit between our process and behavior patterns (e.g., the ability to
quickly filter out bad choices and dead ends).

For example, in Sudoku, there exist some solving techniques to help us solve the
problem, like Last Digit, Hidden Single in Box...ctc.,. In order apply those technique
into our complexity calculate process, it is necessary to find out their emergent
phenomena on branch and dead ends that can help us to identify which node we need
to expand or count. We believe, more difficult technique a puzzle has, means higher
complexity value it will.

However, the use of game-specific features contradicts our goal of creating a
method that can be used for all puzzle games. Therefore our plans include designing a
more sophisticated complexity calculation model that considers a wider range of
search tree behavior features—for example, backtracking rates (indicating incorrect
choices) or number of cycled nodes.

Section 5.2: Measuring Digital Game Complexity

Does our proposed method can apply to other games? Generally speaking, our
proposed model can always apply to any kind of task——if we formulate target
problem as search tree form, and then branch and dead ends can be calculated to
measure complexity of the task. But, there may cause some problems when we want

68

to map complexity to difficulty, because there have much games require player many
different kind of skill that will diverse subjective feeling about difficulty. For example,
Tetris may require player eye-hand coordination, but not all people can follow the
speed of falling object; and boggle will require player English ability, player who
familiar with English will have obvious advantage.

Therefore, our complexity measuring result will limited to certain high skill
player group and meaningless to others. Because for those players that without certain
skill or knowledge can’t even start play the games. Furthermore, for those medium
skill players, game specific skill and knowledge will always be the source of difficulty.
Because different player will have different skill, thus, diverse feelings about
difficulty trouble us from map complexity to static difficulty. Therefore, we must try
to find out a method to combine complexity and game-specific feature first. For
example, in Tetris, how do we measure the challenge of falling object’s speed? And,
how do we combine challenge with complexity into a formula? But, as we discuss
before, it will break generality of our model.

69

Appendix A: Puzzles in Experiments
B.1: Cross Block
Cross Block is kind of pure puzzle that invented by DJ Trousdale(DJ Trousdale,

2009), where it goal is to clear all square on game board by drawing vertical or
horizon line.

\ level: 4 /15200 cross out 2 \ £ level: BI6B /15200 cross outi ?
refﬁ Pr_e‘} Nf)d solvedStep: 2 E,?a E 0 refﬁ Pr_e\i Nfﬁ | solvedStep: B :1513 Bp)i e

(a) (b)

Example of Cross Block, each line must equal to specific cross out number. (a)
Cross out 2 squares at one time, it requires 2 steps to solve. (b) Cross out 7 squares at
one time, it requires 8 steps to solve.

Generally, we can simply increase difficulty for this puzzle, by putting more
squares into game board. Like example in Figure 1.5, when solved step increase, then
it difficulty also increase. Although there exists some exception, but we don’t discuss
about the detail here. I will show overall puzzle game space results in chapter 4.1 for
Cross Block. Next, let’s return to our problem: How to measure the difficult for a
puzzle?

70

B.2: Sudoku

Another puzzle I will use in my experiment is “Sudoku” that is a very
famous puzzle.

%] sudoku by Chang Ching-Chae - - 1
3 1 7 2 3
S 2 1 ?
6 L 3 <
2 3 1 8
8 5 =
1 7 8 [4
[} 7 3
7 B 4 2
5 1 [8 3

Example of Sudoku Puzzle

The goal of “Sudoku” is to fill all square with a number 1 ~ 9, but constrain with
following rule: 1. the number in each row and column can’t repeat. 2. The number in
each 3*3 box region can’t repeat. For example in above figure, here have 9 box
regions that marked with yellow and white color.

71

Appendix B: Collection of Pure Puzzle

In this appendix, | simply collect some puzzle from internet according to
following classification: movement type, fill out type, elimination type.

B.1: Elimination Type

Marble Solitaire Minim

OPTIONS
RULES

HINT
SHOW MOVES
PAUSE

SHUEFLE

—

72

B.2:

Movement Type

Exorbis 2

Flashmaz

Set it up
Ace: 5
Moves: 0

JINDO

4

LEVELI UINESS MOVES O

Level: 16 Moves: 4 Time: 13

Sound Colors Menu Undo

Restart Guide

Telescope

Rush Hour

]
55 telescope

Aim of the game:

=

Level 1 Beginner -

Rush Hour

www.G5.dk

Help the red
heetle to exit.

About

Sliding Puzzle

Sokoban

73

B.3:

Fill Out Type

3D Logic 2

Cross word

TIME
00:10:01

Brag | []

Lol [T 1]

Check puzzle

Questions
Across
+ 1. Peaple of Kaerala speak this language
- 2.1tis spoken in Kamataka
+ 3 1tis spoken in Tamilnadu
- 4. The people of Assam speak this language
+ 5 Itis our national lanhuage
+ 6.The language spoken in UP

Down

+ 7.ltis spoken in Maharashtra

74

More Result of Experiment One

Appendix C

Branch Standard in

Puzzle Game Space

Cross_out_8

——CrOss_out_2
—@—Cross_out_3
i Cross_out_4
—CrOSS_out_S
——Cross_out_6
—@—cross_out_7

35
25
20
15
10

cross_out_9

step 20
step 19
step 18
step 17
step 16
step 15
step 14
step 13
step 12
step 11
step 10
step 9
step8
step7
step 6
step 5
stepd
step3
step 2

in

DeadEnds Stardard

Puzzle Game Space

=& Cross_out_2

out_3

| =@ cross

== Cross_out_4

—@—Cross_out_7

=== Cross_out_8

& -~ cross_out_9

100

“~—-cross_out_2~9
y= dard,
Sample for each step

¢

45
40

35

30

25

75

Appendix D: Calculate Branch and DeadEnds

[C#+=+ code]
void calculateBranchindDeadEnds| GameState* state){

GameState® doneState = state-=clone{);
for{inti = (s i < state-=solvedStep; i++}
MNode* node = new Mode{cloneState-=clong] J};
vector=Mode®> leaf = expand|node};
state->nBranch += leaf.size]);
state-=nleadEnd += node-=state-=nDeadEnd;
for{vectorzNode®: siterator it2 = leaf.bagin{}; it2 '= leaf.end(); it2++}{
Mode* n = ¥itd;
delete n;
n=MULL;
h
delete node;
node = NULL:
Grid al = state->solvedSequence[i] [0]:
Grid a2 = state-zsolvedSequence[i][state->cross0ut - 1];
GameControl::get ns@nce()->operation|cloneState, al, a2}/ foross out
h
delete cloneState;
clone5State = NULL

[C#+ code]

Implement Branch and Dead Ends calculate function for Cross Block.

Appendix E: Game Data Format

Following data are format example | store that used in my experiment.

E.1: Cross Block

[id]

4782

[cross out]
2

[sizex]

10

[sizey]

10

[game state]

76

(3,5)(8,5)
(6,2)(10,2)
(3,8)(3,10)
(5,6)(5,10)
(8,7)(8,10)
(9,1)(10,2)
(9,6)(10,6)
(3.6)(6.6)
[solved step]
8
[nDeadEnd]
3

[nBranch]
72
[complexity]
0.0749239

E.2: Sudoku

[id]

5311b

[sizex]

9

[sizey]

9

[game state]
030902005000400026002000030900004000005080400000500009050000300180007
000400308060
[nBranch]

3894

[nDeadEnd]

173

[complexity]

0

[challenge]

118

[success challenge]
30

77

[time]

18:34

[solve sequence]

1:¥ B4R f%--(8,3)=3,

2. % Ak fz--(3,4)=8,
3:F Fbrfz--(5,6)=9,
4:% B ficEra gk iz--(7,6)=1,
5:% BLficitra 4 fiz--(7,4)=2,
6: i e A f2--(8,4)=6,
7.8 $FArfz--(9,2)=2,

8: 4 #87 f3--(5,2)=6,
9: g 87 f3--(4,3)=8,
10:¥ ~ ¢ AR f2--(7,9)=8,
11t 4y f3--(4,8)=5,
12: 9t 407 f3--(4,7)=6,
13:&”:%##*,% f%--(8,9)=4,
14: fo gt 4 f2--(8,8)=9,
15: % $F4kfz--(8,7)=2,
16:7& — f%--(8,5)=5,

17 fc gt 4pf2--(19,5)=9,
18: fc ¥t 4p f2--(7,5)=4,
19: gt 4p f2--(9,3)=7,
20: B rE 4R fi2--(7,1)=6,
21 BctrE 4 fi2--(9,9)=1,
22:7& — f%--(7,3)=9,
23:7&— f%--(7,8)=7,

24: gt ra A fiE--(5,8)=1,
25 Bt rE Ak fiR--(5,4)=7,
26: B rE R iR--(4,4)=1,
2T BfrE Ak fiz--(4,2)=7,
287 — f%--(9,7)=5,

29: % #ARfE--(1,3)=6,
30: % AR fE--(6,7)=T7,
31: % #ARfE--(3,9)=7,
32:% AR f%--(6,8)=8,
33:r - f%--(1,8)=4,

34: % BApfE--(3,2)=4,
35 % #ARfE--(6,3)=4,

36:ri— f3--(2,3)=1,
37:% Ftpiz--(6,2)=1,
38:ri— f3--(2,2)=9,
39:% 4 iz--(3,7)=9,
40: % Ftpiz--(1,7)=1,
A1:ve— §3--(2,7)=8,
42:% Ftpiz--(1,1)=8,
4375 — f3--(1,5)=7,
44 % Ftpiz--(2,1)=T,
45:vi — f3--(3,1)=5,

A6 44 v 4 f2--(3,6)=6,
AT Hc it v 4 f2--(6,6)=3,
A48 et v 4 2 --(2,6)=5,
A9 Hc it e 4 f2--(4,5)=2,
50: et v 4 f2--(4,9)=3,
51 #c it ri 4 f2--(5,9)=2,
52: it v 4 f2--(5,1)=3,

53:rt - f%--(6,1)=2,
54:7& - f%--(6,5)=6,
55:7k - f%--(2,5)=3,
56:7& - f%--(3,5)=1,
[/solve sequence]

79

Appendix F: Puzzles in Experiment Two

Following puzzle had used in experiment two:

ol | Cross Block by Chang Ching-Chas ™ - [ey)
a h level: 1 /10 cross out: 2 level: 2 /10 cross out: 3 |
L 2 Frei e solvedStep: 10 1595, 36) ‘ r@ Pre¥ Next oot 10 1583, 99 |

7] Cross Block by Chang Ching'Chas B T AP .] %] Cross 8lock by Chang Ching-Chae. [E= =
level: 3 /10 cross out: S 1% £y < level: 4 /10 cross out: 3
¢ 99 sdvedSien B e | @Y e oo

8] Cross Block by Chang Ching Chag [E==EE) 1 Cross Block by Chang Ching -Chao ™ — A [l]
/ £ oy level:5/10 cross out: 3 / L 2 level:6 /10 cross ot B
e i SooecRiep s st |6 G et 5 27

80

59 Cross Block by Chang Ching-Chao

[y

- - =

=

r'aial P\r_e) N\ih level: 7 / 10

cross out: 5
solvedStep: B

(598, 215)
)]

5] Cross Block by Chang Ching-Chao
4 ' (0 level: 8 /10 cross out: 6
rif%‘ P\@ N\e} soluedStep: B D57, 159

1 Cross Block by Chang Ching-Chat S
4 £ 4 level: 3 /10 cross out: 3
fai%‘ P\@ N@} solvedStep: 10 :5?3‘?,148)

1 Cross Block by Chang Ching-Chao 1 0 |
4 £ (O level: 10 /10 cross out: B
raf% P\r-e} N\f% solvedStep: 3 :?:BL}?D)

81

Reference

Adamatzky. Andrew. (2010). Game of Life Cellular Automata: Springer-Verlag
New York Inc.
Amanita Design (Producer). (2009). machinarium. Retrieved from

http://machinarium.net/demo/

Apple. App Store Retrieved Jun 23, 2011, from
http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3
D25204%26ign-mscache%3D1

B. R. Clarke. (1994). Puzzles for Pleasure. Cambridge, England: Cambridge

University Press

Ben Weber. (2010). Infinite Mario with dynamic difficulty adjustment
Retrieved April, 2011, from
http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite ada

ptive mario, http://www.youtube.com/watch?v=kYbKNAmMZ1z4

Bernard suits. (2005). The Grasshopper: Games, Life and Utopia: Broadview
Press.

C. Crawford. (1984). Art of Computer Game Design. New York:
McGraw-Hill/Osborne Media.

C. D. Giiss, E. Glencross, Ma. T. Tuason, L. Summerlin, & F. D. Richard. (2004).
Task Complexity and Difficulty in Two Computer-Simulated
Problems:Cross-cultural Similarities and Differences. Paper presented at
the Proc. 26th Annual Conf. Cognitive Science Society, Mahwah.

C. E. Shannon. (1948). A Mathematical Theory of Communication. Bell System
Technical Journal, 27, 379-423, 623-656.

C. Pedersen, J. Togelius, & G. N. Yannakakis. (2010). Modeling Player Experience
for Content Creation. IEEE Trans. Computational Intelligence and Al in
Games, 2(1), 54-67.

Christopher G. Langton (Ed.). (1995). Artificial Life: An Overview: Cambridge:
MIT Press.

DJ Trousdale (Producer). (2009). Cross block. Retrieved from
http://djtrousdale.com/games/crossblock/

Elina M.I. Koivisto. (2006). Mobile Games 2010. Paper presented at the

CyberGames '06: Proceedings of the 2006 international conference on

Game research and development

Erich Gamma, Richard Helm , Ralph Johnson, & John M. Vlissides. (1994). Design
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley.

82

http://machinarium.net/demo/
http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3D25204%26ign-mscache%3D1
http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3D25204%26ign-mscache%3D1
http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario
http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario
http://www.youtube.com/watch?v=kYbKNAmZ1z4
http://djtrousdale.com/games/crossblock/

Gerald M. Edelman, & Joseph A. Gally. (2001). Degeneracy and complexity in
biological systems. Paper presented at the Proceedings of the National
Academy of Sciences of the United States of America.

H. Robin, & C. Vernell. (2004). Al for dynamic difficulty adjustment in games.
Paper presented at the Proc. of the Challenges in Game Al Workshop,
Nineteenth National Conf. on Artificial Intelligence, San Jose.

Holling, C. S. (2001). Understanding the Complexity of Economic, Ecological, and
Social Systems. Ecosystems, 4(5), 390-405. doi:
10.1007/s10021-001-0101-5

J. Kim. (2005). Task Difficulty in Information Searching Behavior: Expected
Difficulty and Experienced Difficulty. Paper presented at the Proc. 5th
ACM/IEEE-CS Joint Conf., New York.

James Paul Gee. (2005). Why Video Games Are Good for Your Soul: Common
Ground

Jeremy Campbell. (1982). Grammatical Man: Information, Entropy, Language,
and Life New York: Simon & Schuster.

Johan Huizinga. (1954). Homo Ludens—Study of the play-element in culture.

John H. Holland. (1999). Emergence: From Chaos to Order: Basic Books

Kai-Ju Chen, & Kou-Yuan Huang. (2007). Simulated Annealing for Pattern
Detection and Seismic Application. Proceedings of international Joint
Conference on Neural Networks.

Kang. Yilin, & Tan. Ah-Hwee. (2010). Learning Personal Agents with Adaptive
Player Modeling in Virtual Worlds. Paper presented at the 2010
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology.

Katie Salen, & Eric Zimmerman. (2003). Rules of Play: Game Design
Fundamentals. Cambridge: MIT Press.

Kou-Yuan Huang, & Ying-Liang Chou. (2008). Simulated annealing for
hierarchical pattern detection and seismic application. International Joint
Conference on Neural Networks(IJCNN 2008).

Lennart E. Nacke, Anders Drachen, Kai Kuikkaniemi, Joerg Niesenhaus, Hannu J.
Korhonen, Wouter M. van den Hoogen, . .. Yvonne A. W. de Kort. (2009).
Playability and Player Experience. Breaking New Ground: Innovation in
Games, Play, Practice and Theory. Proceedings of DiGRA 20089.

Lennart Nacke, & Craig A. Lindley. (2008). Flow and immersion in first-person
shooters measuring the player's gameplay experience. Proceeding Future
Play '08 Proceedings of the 2008 Conference on Future Play: Research,
Play, Share

83

M. Czikszentmihalyi. (1998). Finding Flow: The psychology of engagement with
everyday life. New York: Basic Books

M. Sipser. (1997). Introduction to the Theory of Computation: PWS Publishing.

Makoto Matsumoto, & Takuji Nishimura. (1998). Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS) - Special issue on uniform random number generation 8(1).

Mia Consalvo. (2007). Cheating: Gaining Advantage in Videogames, Chap 4.
Gaining Advantage: How Videogame Players Define and Negotiate
cheating.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, & C. H. Papadimitriou.
(1988). The Complexity of Searching a Graph. Journal of the Asmciation
for Computing Machinery, 35(1), 18-44.

P. Robinson. (2001). Task Complexity, Task Difficulty, and Task Production:
Exploring Interactions in a Componential Framework. Applied Linguistics,
22(1), 27-57.

Penny Sweetser. (2007). Emergence in Games: Charles River Media.

R. A. Hearn. (2006). Games, puzzles, and computation. Ph.D. dissertation,
Massachusetts Institute of Technology, Massachusetts.

R. E. Korf, M. Reid, & S. Edelkamp. (2001). Time complexity of
iterative-deepening-A*. Artificial Intelligence, 129(1-2).

Ratan K. Guha, Erin Jonathan Hastings, & Kenneth O. Stanley. (2009). Automatic
Content Generation in the Galactic Arms Race Video Game
Computational Intelligence and Al in Games, IEEE Transactions on 1, 4.

Robin Wauters. (2011). Boom - Apple's App Store Hits 10 Billion Downloads
Retrieved April, 2011, from
http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billi
on-downloads/

Russell. S., & P. Norvig. (2002). Artificial Intelligence:A Modern Approach Second
Edition: Prentice Hall.

S. Kim. (2003). The art of puzzle design:The Puzzlemaker's Survival Kit
Retrieved May, 2011, from

http://www.scottkim.com/thinkinggames/index.html

S. Kim. (2008). The art of puzzle design: Mathematics as a Creative Art Retrieved
April, 2011, from http://www.scottkim.com/thinkinggames/index.html

Sanjeev Arora, & Boaz Barak. (2009). Computational Complexity: A Modern
Approach: Cambridge University Press.
Sarah Perez. (2011). Mobile App Market: $25 Billion by 2015 Retrieved April,

84

http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billion-downloads/
http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billion-downloads/
http://www.scottkim.com/thinkinggames/index.html
http://www.scottkim.com/thinkinggames/index.html

2011, from
http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-
billion-by-2015.php

Togelius. J., De Nardi, R., & Lucas, S. M. (2007). Towards automatic personalised

content creation in racing games. Computational Intelligence and Games,
2007. CIG 2007. IEEE Symposium on (1-5 April 2007), 252 - 259.

W. Kuang-Chen (& & #§). (2008). Taiwan Sudoku Association Retrieved May,
2011, from http://sudoku.org.tw/

Walter J. Savitch. (1970). Relationships between nondeterministic and

deterministic tape complexities. Journal of Computer and System

Sciences.

85

http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-billion-by-2015.php
http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-billion-by-2015.php
http://sudoku.org.tw/

