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益智遊戲難度與複雜性之衡量 

 
學生：張景照               指導教授：孫春在 博士 

國立交通大學 

多媒體工程研究所 

 

中文摘要 
 

 如何對關卡難度進行排序？這個問題是所有益智遊戲(puzzle game)設計師

所需面對的最重要課題。在以前，人們常常先分析解開該遊戲所使用的技巧有哪

些，並依技巧掌握的難度來決定最後的排序，不過，這個方法的問題點在於太過

依賴遊戲本身的特性而造成計算上的困難與難以理解。──設計者必需對該遊戲

非常精通才行。 

 

 其實，要找出一個益智遊戲的解，就像是在替迷宮找出口一樣，裡面充滿了

許多選擇(Choice)及死路(Dead Ends)，然而，不同於「真實」的迷宮問題，益智

遊戲的難度決定於該關卡所需的洞察力(Insight)。從複雜系統的觀點來看，這些

選擇及死路會隨著系統複雜度的上升而湧現，進而影響到玩家找到答案的難度。

因此，本研究不同於以往的做法，試圖以衡量湧現狀況做為出發點，設計出一個

適合所有益智遊戲的複雜度衡量模型。 

 

 本研究總共規畫了四個實驗，並使用了消除方塊(Cross Block)及數獨(Sudoku)

這二個益智遊戲來進行複雜度的衡量及比較。最後的實驗結果顯示了我們所提出

的複雜度計算模型，在數獨的複雜度排序上與「台灣數讀發展協會」上的難度排

序結果能夠達到 86%的相似度。 

 

關鍵詞：益智遊戲、難度衡量、複雜度衡量、洞察 
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Measuring Difficulty and Complexity 
of Puzzles Games 

 
Student：Ching-Chao Chang               Advisor：Dr. Chuen-Tsai Sun 

Institute of Multimedia Engineering 

National Chiao-Tung University 

 

Abstract 

 

 How do we sorting puzzle levels according to their difficulty? This is most 

important problem for all puzzle game designer. In past time, game designer must 

analysis the techniques used by the puzzle, and then can use the result to sort their 

difficulty ranks. However, this method depends on specific game feature that are very 

difficult to calculate and understand because designer must master the game first. 

 

 Basically, find out a solution for a puzzle just like find out a way for a maze, 

there are many choices and dead ends. But, different from ―real‖ maze problem, the 

difficulty of a puzzle decided by the insight it required. From the aspect of complex 

system, emergent phenomenon describes when overall system complex increase then 

amount of choice and dead ends also changed according to some principle that will 

affect how difficult a puzzle is.  

 

 In this paper we propose a new approach to calculating puzzle complexity, one 

based on approximating player ability to produce insights that lead to puzzle 

completion. Our test results indicate an 86% sorting similarity rate. 

 

Key Word: Puzzle Game, Difficulty Measure, Complexity Measure, Insight 
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Chapter 1: Introduction 

How do we measure a puzzle‘s level of difficulty? Game designers may employ 

their expertise and feedback from players to rank the puzzles they have designed. 

They may also take a simpler but nevertheless systematic way to reach the goal, for 

example, adopting a game-specific feature as criterion and sort the puzzles out. A 

handy measurement is the shortest step required to solve the puzzle, the less steps 

required, the easier the puzzle. 

 

In practice, it may be fun enough for most gameplay, because players can reach 

the flow experience (M. Czikszentmihalyi, 1998) when they conquer one puzzle after 

another arranged in ascending level of difficulty. When the difference in difficulty is 

not that clear, the game producer can put puzzles into categories of difficulty, e.g., 

easy, medium, and hard, to allow the players select their current goal and test their 

skills. Obviously, there is a risk factor in such approach. When puzzles arranged in a 

wrong order and the players are not capable of picking the right challenge for their 

current skills, they may endure a long period of frustration and anxiety, so as to give 

up the game. Therefore, it is desirable to have a way to ‗optimize‘ the gaming 

experience by arranging puzzles in a smoothly ascending order of difficulty so that 

most players can enjoy an uninterrupted challenge/skill upgrading experience.  

 

Our goal of this research is to propose a general-purposed method to develop a 

function that can arrange puzzles in ascending level of difficulty. However, before 

trying to approach that goal, some questions need to be answered. The first is: what is 

difficult? 
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Section 1.1: Background 
 

” Game is a system in which players engage in an artificial conflict, 

defined by rules that result in a quantifiable outcome.”──Rules of Play 

(Katie Salen & Eric Zimmerman, 2003) 

 

Section 1.1.1: Digital Game: What is difficult? 

 

Based on flow theory, we know there has two key elements: Challenge and Skill. 

In order to discuss about what is difficult, first, I give an assumption below: 

 

Assumption 1: Challenge is a non-linear increase function relate to how many 

obstacles are designed in game. 

Assumption 2: Skill is a non-linear increase function relate to your performance 

in the game.  

 

As we known, flow theory point out when challenge meets skill, player is in 

the state, called flow. What is this phrase means? Obviously, flow state equal to 

proper difficulty for player. Degree of difficulty is highly related to challenge and skill. 

Therefore, I give third assumption to define what is difficult: 

 

Assumption 3: Difficult is a non-linear function relative to the combine of 

challenge and skill.  

 

 Furthermore, if we want to design the function describes above, C-style function 

prototype may look like following: 

 

1. float Challenge(int numberOfObstacle); 

2. float Skill(int playerPerformance); 

3. float Difficult(int challenge, int skill); 

 

But, there comes some problem.  

 

How to design difficult function? In order to do that, we must ask: what is the 

relation between challenge and skill? Although we can say relation between 

difficult and challenge is positive relation, difficult and skill are negative relation, 

however, relation between challenge and skill are ambiguity. Try to consider 

following example: 
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1. If we know both difficult and skill are high, then we can say challenge > skill, 

because player feel game are difficult. Therefore, reduce obstacle in game 

can decrease difficulty. 

2. If we know both difficult and challenge are low, then we can say challenge < 

skill, because player feel game are easy. Therefore, add obstacle in game can 

increase difficulty. 

3. But, if both challenge and skill are high or low, how can we say? It just 

means challenge just meet player‘s skill, and has a “proper difficulty”, there 

seems doesn‘t has any relation between challenge and skill. 

 

 If we want to figure out relation between challenge and skill, and then calculate 

out difficult will be first task. But, there will be some trouble. Why? Since difficult is 

an objective concept depends on how people feeling about, thus, if we want to tell it 

degree, we must compare with player‘s previous experience. 

  

 For example, when we read the introduction or manual of a game, there doesn‘t 

emerges any feeling call ―difficult‖.──although we may feel the complexity of game 

rule──After we get into the game, finally, we can tell the degree of difficult compare 

to other similar game or problems. 

 

Of course, some apparatus, like Eye Tracking, SCR (Skin Conductance 

Response), EEG (Electroencephalography), to collect physical reply when playing the 

game that can used to data mining on people‘s cognitive level of feeling to help us 

find out what is difficult. For example, there are some research trying to find out 

player experience to explain the degree of playability for a game (Lennart E. Nacke et 

al., 2009; Lennart Nacke & Craig A. Lindley, 2008). Of course, it may be used to 

measure the degree of difficult, but these methods have too much disadvantage when 

apply in real game design (you can‘t always ask player to equip physical apparatus 

when they play the game), therefore, goes beyond our research, so we don‘t want to 

dig into this method for discuss about difficulty. 

 

 Before close this section, here is summary: we can‘t design difficult function 

without knowing the relation between challenge and skill, if we want to know this 

relation, we must use some subjective method to measure the player‘s feeling, such as 

Eye Tracking, SCR, or EEG, to decide this dynamic relation. 

 

 From discussion above, we know difficult is a relative concept that based on 
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player past experience. And then, next problem we want to focus on is: how do we 

manipulate such concept in digital game? In next section, I will introduce a technique, 

Dynamic Difficult Adjust (DDA), which trying to create flow state by adjusts difficult 

based on player‘s skill. 

 

Section 1.1.2: Digital Game: Dynamic Difficult Adjust  

 

Static difficulty is a popular method that almost single player game uses it for 

player to adjust game difficulty. For example, in FTG or STG, we can always set 

difficulty into Very Easy, Easy, Normal, Hard or Very Hard in system setting. But, 

there exists several problems when we look this method from the viewpoint of flow 

theory. First, difficult must manually set before game start by game designer. Second, 

difficult is fixed while playing. Third, therefore, it can‘t auto-adjust according to 

player skill, that may trouble in crate flow state. Four, the most important, the feeling 

of difficult is relative to game designer but not player. From the reason describe above, 

there comes the research, call Dynamic Difficult Adjust (DDA). 

 

DDA is based on flow theory. It core concept is to adjust difficult according to 

player skill that try to adjust the game to “proper difficulty” for player. Therefore, 

how to design challenge and skill function are important for this method. As we 

defined previous, calculate obstacle in a game maybe an easy task for challenge 

function, but how do we measure player performance for skill function? Fortunately, 

every game must have a quantifiable outcome. Like game play score or player 

remaining health, it is useful to help us to decide player performance. 

 

If player skill > challenge, then add obstacle in game can increase difficulty. If 

player skill < challenge, then reduce obstacle in game can decrease difficulty. Notice, 

how well of skill function designed effects the performance of DDA. And skill 

function is affected by the game design. Successful game design must bring 

meaningful play to player. Katie Salen and Eric Zimmerman‘s (2003) book ―Rules of 

Play, chapter3”, define meaningful play as descriptive and evaluative: 

 

The descriptive definition addresses the mechanism by which all games create 

meaning through play. The evaluative definition helps us understand why some games 

provide more meaningful play than others. 

 

The descriptive definition of meaningful play: Meaningful play in a game 

emerges from the relationship between player action and system outcome; it is the 
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process by which a player takes action within the designed system of a game and the 

system responds to the action. The meaning of an action in a game resides in the 

relationship between action and outcome.  

 

The evaluative definition of meaningful play: Meaningful play is what occurs 

when the relationships between actions and outcomes in a game are both discernable 

and integrated into the larger context of the game.  

 

Discernability means that a player can perceive the immediate outcome of an 

action. Integration means that the outcome of an action is woven into game system as 

a whole. 

 

From descriptive definition above, we know player performance can be measure 

through the relationship between action and outcome, if game generate good outcome, 

means player has good performance in game.  

 

In addition to, evaluative definition indicate where we can find player‘s 

performance. Discernability means outcome of action takes in game can help DDA to 

adjust difficult immediately. Integration means outcome of action takes in game can 

help DDA to generate next game level according to player overall performance. I call 

former as Immediate Difficult Adjust (IDA), which try to create an even game──but, 

beatable──according to player agency and tension of game. And later as Content 

Difficult Adjust (CDA), which combine Procedural Content Generation (PCG) 

technique──means use program to auto-generate game content──to consider 

overall difficult balance to generate levels. I summarize these two DDA methods in 

Figure 1. 
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There have some DDA example: 

1. Hunicke Robin and Chapman Vernell (2004) have applied DDA to FPS, 

Half Life, use IDA to adjust difficult.  

2. Ben Weber (2010), in his project “Infinite Mario with dynamic difficulty 

adjustment” use CDA to generate new level according to player 

performance. 

 

I don‘t want to go into detail of DDA because it will take several pages to discuss 

it, but I think it is important to understand how to manipulate the feeling of difficult in 

this research. 

  

Although we introduce much about DDA, but there still have an ambiguity on 

challenge and skill function. Before we design these two functions, we must consider 

following situation in order to decide detail implements method: 

 

1. How players are affected by obstacles? For example, the powerful 

monster always increases the challenge and healing potions can decrease.  

 

2. How player performance measured by actions they takes in game? In 

some game systems, players receive more positive performance feedback 

when they choose certain actions over others. 

 

Next, let‘s examine more about how to building challenge and skill function from 

the view point of player modeling. 

  

Figure 1 Two type of DDA.  
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Section 1.1.3: Digital Game: Player Modeling and DDA 

 

The purpose of player modeling is trying to find out the relationship between 

obstacles, player action, and player feeling about game in order to do content creation 

task. In Pedersen‘s research, they collect following three data to validate how player 

feeling about an action game, Infinite Mario Bros (C. Pedersen, J. Togelius, & G. N. 

Yannakakis, 2010): 

 

1. Controllable Feature: like number of gaps and average width of gaps, spatial 

diversity of gaps…etc., that can be controlled by game designer or level 

generate program. This part is related to obstacle. 

2. Gameplay characteristics: like number of jump, time you complete the level, 

item you collected…etc., that can only be collected when a player play the 

game. This part is related to the action of player takes in game. 

3. Questionnaire: After finish a pair of level, player is asked to rank the games 

in order of emotional preference. Pedersen define following six emotions: 

Fun, Challenge, Frustration, Predictability, Anxiety, and Boredom. Their 

questionnaire may looks like this: 1. Level A has more challenge then level B. 

2. Both games were equally challenge. 3. Neither of two game felt challenge.  

 

According to collected data, they calculated correlation coefficient. Therefore, 

we can actually tell the degree of obstacle or actions affects player mental state in 

―Infinite Mario Bros‖. For example: whether player complete level has ―-0.5‖ 

negative relation and average of gap width has ―0.5‖ positive relation to challenge. 

For detail experiment and result, you can find it in their research paper ―Modeling 

Player Experience for Content Creation‖ (C. Pedersen, et al., 2010). Based on the 

degree of relations, DDA will perform more accurately according to player skill. 

There has much Player Modeling application, like create personalized race track in 

racing game (Ratan K. Guha, Erin Jonathan Hastings, & Kenneth O. Stanley, 2009; 

Togelius. J., De Nardi, & Lucas, 2007), and adapt agent behavior to human player 

(Kang. Yilin & Tan. Ah-Hwee, 2010).  

 

Here, we finally come into our topic. Is puzzle game can apply such method for 

sorting difficulty? What is controllable feature? And what is gameplay characteristic? 

How do we design our questionnaire in order to measure the relationship between 

obstacles, player action, and player feeling about game? For answer the question, we 

must ask: 1. what is puzzle? 2. What‘s difference between other digital games? 
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Section 1.1.4: Puzzle Game: What is Puzzle? ── 

Meaning of Play 

 

 It is a good start point to quote from Scott Kim‘s (2003, 2008) presentation slide 

on Game Development Conference (GDC), ―The Puzzlemaker’s Survival Kit‖: “A 

puzzle is a problem that is fun to solve──as opposed to everyday “problems”── and 

has a right answer ──as opposed to a game (no answer) or a toy (no goal).” This 

definition not only explains what puzzle is but also describe the motivation of why 

people play it. From the definition, we know puzzle is a problem but different from 

everyday problems we encounters. Although problem means something trouble and 

undesired, however, we will feel fun to solve it.  

 

 Why? Scott Kim (2003) describe: “puzzle game symbolizes our desire to find 

order in the universe.”. When we see something in disorder states, people always 

want to control it── that is why puzzles display itself as complex forms and simple 

forms after being solved. Furthermore, as James Paul Gee (2005) says: puzzle supply 

order, control and workable environment, therefore, ―goal‖ and ―right answer‖ are 

proved in puzzle worlds, not like a toy, puzzles are encouraging us to solve and 

control those problems. ──Lusory attitude, the term mentioned by Bernard Suits 

(2005), in the book “The Grasshopper: Games, Life and Utopia” can also explain the 

attitude we face the ―puzzle problems‖.  

 

 What is Lusory attitude? Lusory comes from the word ―ludo‖, in latin means 

play, describe the attitude of players required to enter a game (Katie Salen & Eric 

Zimmerman, 2003). In the puzzle, it is the attitude we confront the complex of puzzle 

emerges from rules. For example, although we can just rearrange puzzle that simply 

eliminate it complexity, but people still play it according to game operation rule.  

 

 From description above, we already know what is puzzle and attitude people face 

it. And then, there comes a key problem: what is different between puzzle and other 

digital game? From Scott Kim‘s definition, he says game is no answer and puzzle has 

a right answer. What is it mean? Quote from Chris Crawford (1984), we can give such 

conclusion: game requires player to build their solution, but puzzle requires player to 

find out designer‘s solution. Therefore, we may still feel fun when play other 

digital-game again and again, but only few times for a puzzle.──a game is fun if 

there exists uncertainty──because for other digital-game, player doesn‘t know 

whether they can complete the level, but for a puzzle, they will remember how to 

solve it in the few time of play the same level. 
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 So far in this section, I introduce about the meaning of play, it is important 

concept for designing meaningful game. Next, let‘s examine about the component in 

puzzle game. 

 

Section 1.1.5: Puzzle Game: What is Puzzle? ── 

Component 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 From Figure 2, Scott Kim (2003) separates game and puzzle as two different 

concepts, as mentioned in previous section, game and puzzle has different meaning of 

play. But, by introduce situation component, we can fit puzzles into a game. Situation 

gives a goal that driven player to solve the puzzle; it explains background by using 

story or a set of operation rule for player to comprehend it is a ―game‖. Without 

situation component, puzzle can‘t be a game. Situation guides us to handle the 

problem. The problem, different from everyday problems we encounter, it looks like a 

maze that has many choices and dead ends reside in it. Choice confuses player to 

realize which road is correct, and dead ends prevent they from solution. But different 

from ―real maze‖, it requires player using insight──the ability to find out which 

choice is correct and quickly ignore dead ends.──to solve the puzzle. The solution is 

applied on application in game. The use of Situation and Application component is 

depending on the genres of puzzle. 

Figure 2 Concept Model of Puzzle developed by Scott Kim. 
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 In Figure 3, we can see Scott Kim (2008) has separated five genres of puzzle: 

Action, Story, Construction and Competitive and Pure puzzle. Basically, different 

puzzle will require player different skill, for example: 

 

1. In Action Puzzle, like Tetris, it requires player eye-hand coordination skill to 

handle the game. 

2. In Story Puzzle, like Machinarium (Amanita Design, 2009) it give a story 

before each puzzle start in order to create immersion situation for player, but 

player needs the ability to organize overall story in order to identify which 

key item are used to solve the problems in game. 

3. In Construction Puzzle, like Incredible Machine, it requires player Physics 

knowledge in order to know whether your machine can work properly to 

solve the problem. 

4. In Competitive Puzzle, like Boggle, it needs both eye-hand coordination and 

knowledge of English vocabulary in order to beat out others and win the 

game. 

 

 Remember, the research goal of this thesis is to sort puzzle according to their 

difficulty. Therefore, this research only focus on pure puzzle, because puzzles that 

require math logic rather than physical skills or other types of knowledge, like action, 

therefore it is easier to design difficult measure function compare to other genre of 

puzzle. You can refer to Appendix to know the rule of “Cross Block” and “Sudoku” 

Figure 3 Five genres of puzzle 
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that used in this research. 

 

Section 1.1.6: Puzzle Game: Difficult Measure and Sorting 

 

 In this section, I want to answer the question raised at Section 1.1.3: Is puzzle 

game can apply DDA for sorting difficult? What is controllable feature? And what is 

gameplay characteristic? How do we design our questionnaire in order to measure the 

relationship between obstacles, player action, and player feeling about game?   

 

 Of course, it is possible to apply DDA for a puzzle game if we can calculate 

difficult, but there exists some problem in practical use. 

 

1. For controllable feature, choices and dead ends is obstacle in puzzle but not 

easy to control it compare to other game. In puzzle, because these two 

features always emerge from the logic rule of game system, we can‘t find out 

a proper number of obstacles easily, it will cost much time to dynamic adjust 

difficult for puzzle. For example, in Cross Block, number of choice and dead 

ends emerge from the square interaction with other square, therefore, it need 

much time for auto-generate program to find out proper number of 

controllable feature for next level. 

2. For gameplay characteristic, we can‘t get accurate data from player. Because 

meaning of play for a puzzle is to find out a solution, therefore, player tend to 

know how to solve it if they already solves the problem that same as pervious. 

Therefore, use time or retry as characteristic for measure performance, will 

trouble with large variance of collected data for same puzzle that cause 

analysis difficult.  

3. For questionnaire, it is difficult to design question to find out relationship 

between each obstacle and action, because player feel about the puzzle by 

their whole emerge pattern but not individual object. 

 

 Remember, difficult function is depending on the challenge and skill function, 

but every player has different skill every time they play puzzle, therefore ―optimal 

arrange‖ of puzzle will change every time for every player. Let‘s summary we had 

discussed so far: difficult is a relative concept that based on player past experience 

and can‘t be measure directly; if we want to apply DDA to puzzle game, it will also 

have some trouble in increase obstacle and measure player performance to dynamic 

adjust proper difficult for a player.  
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 If such ―optimal arrange‖ is difficult to achieve, why don‘t we sort puzzle by 

some criterion and map it to static difficult (Very Easy, Easy, Normal, Hard and Very 

Hard)? Because puzzle has the property of emergence that is some kind of complex 

system, therefore, the goal of this research will focus on how to measure complexity, 

at the same time, design a method to approximate it to difficult function (static 

difficult).  Compare to DDA, this method is more practical to real puzzle game 

design process, that we doesn‘t need to consider player skill dynamically, and 

resorting and rescore puzzle‘s difficult according to their performance.  

 

 My argument here is trying to separate the concept more clearly between 

Difficulty and Complexity that will more convenience for us to further discuss the 

topic.  

 

From the aspect of research in task difficulty and task complexity discussion, 

many papers separate these two terms as different concept: complexity as objective 

measure and difficulty as subjective. (C. D. Güss, E. Glencross, Ma. T. Tuason, L. 

Summerlin, & F. D. Richard, 2004; J. Kim, 2005; P. Robinson, 2001) 

 

 Similar as our argument above, Jeonghyun Kim (2005) further divided difficulty 

into two group: first is expected difficulty, which is the percept of difficulty before 

you start the task; and second is experienced difficulty, which is the feeling after you 

finish the task.  

 

 Next, I want to introduce complexity theory and it relation to puzzle game, which 

is an essential concept in this research. 

 

Section 1.1.7: Puzzle Game: Complexity Theory 

 

 Complexity Theory has two kinds of meaning: one is Computational Complexity, 

and another is the study of Complex System. In this section, I will briefly introduce 

these two fields and their relation to puzzle game. 

 

A. Computational Complexity 

 

 Computational Complexity is the study of theoretical computer science and 

mathematics that focus on how efficiency to handle a problem (M. Sipser, 1997; 

Sanjeev Arora & Boaz Barak, 2009). For example, there have three famous type of 

computational efficiency problem NP, NP-Complete and NP-Hard, indicate whether it 
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can be solved within linear time; furthermore, there also exists the problem about 

space efficiency: PSPACE, PSPACE-Complete and PSPACE-Hard, indicate whether 

it can be solved with limited space. Give an overview, there have some research may 

like: Reduce Time Complexity By an Algorithm for solving a puzzle(R. E. Korf, M. 

Reid, & S. Edelkamp, 2001), analysis Complexity of Search a Graph (N. Megiddo, S. 

L. Hakimi, M. R. Garey, D. S. Johnson, & C. H. Papadimitriou, 1988) and a reduction 

method for handle games(R. A. Hearn, 2006).  

 

 Puzzle is very suitable for further study in this field, because it require player to 

choose a sequence of action in order to solve it that has many interesting feature for 

calculate model.  Quote from Robert Aubrey Hearn (2006), in his research, 

Computational Complexity of a puzzle can classify into following category: ―If a 

game is a one-player puzzle with a bounded length, odds are it is NP-Complete.” and 

“Indeed, unbounded puzzles are often PSPACE-Complete.”  

 

 Bounded and unbounded puzzle means whether it has a restrict length to solve it. 

In unbounded puzzle we can always go back to previous state, therefore it has no 

restrict length. Both of them need exponential time to compute a solution, but they are 

different in whether we can use polynomial space to verify a specific action sequence 

is correct. Because Savitch‘s (1970) theorem had proofed that NP-SPACE = PSPACE, 

therefore we can solve any puzzle problem with polynomial space. The main research 

direction in this filed is how to solve a puzzle more computational and space 

efficiently. Is computational effort relate to complexity of puzzle and can use for 

sorting purpose? I think it is not a good idea, because Computational Time and Space 

problem, your machine will run a long time or crash due to memory lacking when 

compute a very complex puzzle. 

 

B. Complex System and Emergence 

 

 What is complex system? Although this filed has been studied in modern 

computer science for a long time, but it is one of profound problem that people tends 

to understand in past several thousand years. Aristotle (384 BC – 322 BC), a noted 

Greek philosopher, who first organized the concept in his questions about 

Metaphysica: “The whole is more than the sum of its parts.”, that actually indicate the 

most important property of complex system.   

 

 Jeremy Campbell (1982) looks this ―whole phenomenon‖ from the aspect of 

information, language, and DNA, says that when system beyond a ―complex barrier‖, 
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entirely new principle will come into play. The principle, call emergence, may allow a 

system to self-organizing, replicating, learning, or adaptive itself to environment.  

 

 Penny Sweetser (2007) has summarized some common property for a complex 

system: Elements, Interactions, Formation, Diversity, Environment, and Activities. In 

other word, if there exist a set of elements, that will inter-interact with a set of rule in 

an environment for specific purpose, their interaction process has large state space, 

element will reorganize itself over time changed, and then it is a complex system. The 

first deep exploration about emergence is from John Holland‘s (1999) book 

―Emergence: From Chaos to Order‖, shows many example about how emergence 

arise from complexity. 

 

 When a system is emergence, it means we can‘t predict it high level behavior or 

structure of system from observer lower level. But, not all of system is complex. 

Christopher Langton (1995) provides four level of complexity for understand system: 

Fixed, Periodic, Complex, and Chaotic. The boundary between Periodic and Complex 

is complexity barrier; between Complex and Chaotic is edge of chaos. Beyond 

complexity barrier means system will have emergence phenomenon, but if it complex 

reaches chaotic level, this phenomenon will disappear. Following two “Cross Block” 

puzzle levels in Figure 4 shows complex and chaotic level of puzzle: 
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 It shows emergence phenomenon in the “Cross Block” puzzle, that both choice 

and dead ends will increase when it beyond complexity barrier and dead ends will 

decrease when reach chaotic level.  

 

 The study has widespread research in many fields, such as Information 

Complexity on Communication System (C. E. Shannon, 1948), Artificial Life 

(Adamatzky. Andrew, 2010; Christopher G. Langton, 1995), Biological System 

(Gerald M. Edelman & Joseph A. Gally, 2001), Economic System and Human Society 

(Holling, 2001)…etc.  We can‘t survey all of those fields here for understand what is 

complexity, since it will diverse our discussion to focus on puzzle game. With a 

general idea, quote from Penny Sweetser (2007), we simply define complexity as 

following meaning :“Complexity is a measure of the difficulty involved in 

understanding a system.”  

 

 What means to understanding the puzzle? If someone can solve a puzzle level, 

we say he/she understand it. How do we measure complexity of a puzzle? From 

previous discuss, we know insight is important skill to solve a puzzle, and there has 

two components will affect it: choice and dead ends. But, because they are emergence 

phenomenon in the puzzle, therefore we can‘t directly control it. How do we calculate 

it? From computational complex theory we discuss, it will fail when we want to 

expand search space in a puzzle. In chapter 4.1, I will introduce our approximate 

method. 

(a) Chaotic Level (a) Complex Level 

Figure 4 Emergence Phenomenon Example 

(a) Complex level of puzzle that has high complexity.  (b) Chaotic level of puzzle that with 

no complexity (no dead ends) that every square can interaction with each other to form a basic 

element that can be canceled by player.  
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Section 1.2: Motivation: Challenge in Puzzle 
Game Sorting 

 

 Basically, we can classify difficult model into two classes: dynamic difficult and 

static difficult. There has several challenge of measure dynamic difficult in puzzle 

game: First, because puzzle game have emergence property, therefore it is difficult to 

control obstacle. Second, we must design a method to distinguish those puzzles which 

players already know their answer in order to measure player‘s skill correctly. Third, 

it is difficult to find out relation between each object, because the difficulty of puzzle 

is ―whole‖ not individual obstacle. Therefore, in this research, we will only focus on 

how to measure complexity and map it into static difficult. 

 

Section 1.3: Motivation: Mobile Game, Market 
and Puzzle Game 

 

 Recently, mobile game market has dramatically growth, especially when Apple 

releases their cutting-edge product: iphone and ipod, there has more and more 

company starting their game project on mobile platform. According to Apple‘s official 

news, the number of App Store──an online software download service for Apple‘s 

product (iPhone, iPod, iPod Touch), which launch on July 10, 2008 

(Apple).──downloads already exceeds 10 billion, furthermore, it is worth noting that 

TOP 10 of popular iPhone paid Application, 9 is games (Robin Wauters, 2011). Hence, 

the market in the mobile game has large amount potential benefit. There has a 

research shows that Mobile app market will be worth $25 billion U.S. dollar By 2015, 

compare to 2010 is $ 6.8 billion (Sarah Perez, 2011).  

 

 My research is focus on puzzle game, which is very suitable for mobile platform, 

because it has short play session and player can stop it at any time without punishment 

compare to other hard core game. In fact, “The games that are popular on the mobile 

platform are mostly casual games”(Elina M.I. Koivisto, 2006) 

 

 Puzzle is a kind of casual game, which is popular in the mobile game. Just as 

introduce on background, there have five different genres. But, we only focus on pure 

puzzle, which doesn‘t have any other additional element, since it convenience for our 

research on calculate and sorting complexity.  

 

  Barry Clarke (1994) in his book, ―Puzzles for Pleasure‖ collect large number of 

puzzle and classify into two category according to their difficulty: Popular Puzzle and 
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Advanced Puzzle. Popular Puzzle requires modest insight and engagement that suit 

for every people; Advanced Puzzle for those puzzle-solving manias, who think 

Popular Puzzle too easy. In past time, designer tends to use their own sense to rank the 

puzzle they design. If we can tell which puzzle is Popular, which is Advanced and tell 

the degree of it complexity that relative to others, it will very helpful for puzzle game 

design process. 

 

Section 1.4: Goal  
 

 The purpose of this research is to design a general method that can sort pure 

puzzle according to their complexity. In order to grasp more accurate purpose of this 

research, here comes the summary about Difficulty and Complexity that described in 

background. 

 

 Difficulty is a subjective and relative concept that based on player past 

experience. Both challenge and player skill will affect it, but because measure player 

skill in puzzle is difficult, therefore, we use complexity instead of difficulty for 

sorting purpose. 

  

   Complexity is an objective concept that is the measure of difficulty involved in 

understanding a system. In puzzle game, how difficult for a player to understand a 

puzzle depends on their insight to a puzzle. As introduced in previous section, insight 

will be affected by choice and dead ends, therefore, this research only uses these two 

criterions for complexity measure, furthermore, design a method that can approximate 

complexity to human sorting (difficulty). 

 

Section 1.5: Contribution 
 

 Puzzle is a popular game type in mobile platform, which have short play session 

time that is very suitable for time killing. As describe in motivation section, there has 

more and more company starting their game project on mobile platform. But, there 

exists a trouble for design a puzzle game: How do we decide arrange of puzzle? In the 

past research, they are focus on how to solve a puzzle more efficiently in term of 

computational and space complexity. However, it is not necessary for real game 

application. Although all puzzle need to validation a solution, but if it cost too much 

time, then it is not practical. The focus of this research is on complexity sorting, 

which takes practical into account, is more essential for puzzle game designer.  
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Because almost all puzzle game can auto-generate by program, we can simply 

generate large number of levels, therefore how to pick out a set of appropriate 

complexity levels is very important topic. 

 

Our result will be a calculate model, which can calculate complexity for any pure 

puzzle. If you have a solving program and a solving sequence, then our model can tell 

the score and rank base on all puzzles in the puzzle database.──It is very convenience 

for puzzle game designer to analysis what is difficult in puzzle. 
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Chapter 2: Literature Review 

 This chapter mainly focuses on some basic technique, theories and method that 

are related to our experiment method. You can skip this part if you already familiar 

with it. 

 

Section 2.1: Tree Search 
 

 Formulate game as tree search problem is very popular technique in the field of 

Game AI. Programmer always apply this method to create ―intelligent‖ in game, for 

example, in two-player game like go, chess or Othello, we create intelligent opponent 

to compete with human player; in RTS, like AOE, StarCraft, we let game agent find 

out an optimal path from ―A‖ point to ―B‖ point to reduce effort of player control; in 

puzzle game, like Sokoban, Sudoku, try to find out and validate a solution sequence to 

give the hint for player. 

 

 Although I describe some application of tree search above, but I still doesn‘t 

explain what it is. What is tree search in term of programming? It is a problem solving 

technique by discrete and expanding possible state of problem in order to find out a 

solution. ―Problem‖ and ―Solution‖ are two essential concepts in this method. Russel 

(2002) in his book list four element to define what is Problem: 

 

1. Initial State: like concept model of puzzle I mentioned in chapter 1, it is the 

entry of maze. 

2. Successor Function: a set of action-state pair, record which action can lead to 

which state. In tree search problem, it is branch or choice. 

3. Goal Test: test whether our goal is achieve. It can be explicit, if current state 

is on certain state we already list in goal list; or it can be implicit, if certain 

condition of current state is achieve. 

4. Path Cost: the cost from initial state to current state, it can be simply define 

as time, distance or number of action executed, depend on your application. 

  

 The Solution is a set of action sequence that can lead problem from initial state to 

goal state. Figure 5 is an example of Solution in Cross Block Puzzle: 
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Initial State, Path Cost = 0 

Action 2: (4, 5) (9, 5) 

Path Cost = 1 

Action 2: (1, 1) (1, 10)  

Path Cost = 2 

Action 3: (4, 3) (4, 9) 

Path Cost = 3 

Action 4: (1, 10) (7, 10) 

Goal State, Path Cost = 4 

Figure 5 Example of a puzzle Solution. 
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 The core idea of tree search is to explore over all state space of problem in order 

to found out a solution. Like it name, when you explored the state, you will find it 

similar to the branch of tree, see Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 How 

do we design such algorithm? Because ―state‖ only store representational dimension 

of problem, therefore we need other data structure to record other information, such as 

path cost f, depth of tree search, current state come from which state(parent), which 

state current state can go (child), almost all literature call this kind of data structure as 

―node‖. You can simply use adaptive pattern or wrapper pattern, from design 

pattern(Erich Gamma, Richard Helm , Ralph Johnson, & John M. Vlissides, 1994), to 

including such information for state, the C++ code like Code 1: 

  

  

Figure 6 Example of tree search 
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 Have node as basic data structure, our tree search implementation looks like 

Code 2 and Code 3: algorithm from Russell‘s (2002) book, chapter 3. 

  

Code 1 Data Structure Node. 

Code 2 Implementation for BFS tree search algorithm. 
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In this algorithm, only thing you must do is to design your State class and 

successor function because it various depends on application detail. But still, it have 

some problem if there have some action that can go back to same state that previous 

had expanded, then program will fail to explore over all state space because same stae 

will be expanded again and again. In order to solve such problem, we must introduce 

a list that can record state that already be expanded. The algorithm is called graph 

search in Russell‘s book. Code 4 is my implementation: 

 

  

Code 3 Implement for expand function. 
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There have three main variations for search algorithm: Depth-First Search (DFS), 

Breadth-First Search (BFS) and Uniform-Cost Search (UCS), all of them are different 

at which node is expanded first. BFS expands the node from beginning of fringe; DFS 

expands from back; and UCS expands from lowest cost. 

 

 Also, they have different benefit in solving the problem. BFS and UCS can find 

optimal solution, but because all nodes must keep in memory, therefore space will be 

a big problem; else, although DFS doesn‘t have memory problem, but it can‘t find 

optimal solution and not suitable for those problems which total depth too high or 

unlimited. 

 

 Therefore, there comes the method to improve the problem describe above, like 

Iterative Deepening Search. By gradually deeper search depth, our search tree can 

improve space problem cause in BFS. Another improving technique like A*, is using 

heuristic as cost measure, can reduce large amount of node doesn‘t need to be 

Code 4 implement for graph search.  
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expanded that can increase searching performance. 

 

 But the algorithm in this section only suit for one player game, for those 

two-player game problems like go or chess, we need apply min-max or alpha-beta. 

We don‘t introduce two-player game tree search, because it is not relate to this 

research, but it core idea is same in this section. 

 

Section 2.2: Local Search  
 

 Although tree search is a powerful problem solving method, but there still exists 

some weak point, for example, if we want to solve a problem that with very large state 

space, then it will always cost too much time to find a solution or crashed because run 

out of memory. It is not very efficiency for those problems, which only wants to find 

an acceptable goal state but not their solution path, such as 8-queen problem, therefore, 

here comes another algorithm in computer science, call Local Search. 

 

 What is Local Search? It is an optimization technique by only consider current 

state and gradually move to their better neighbor state and finally find an acceptable 

goal state. The term optimization in this method doesn‘t mean it will always find a 

global optimal, but because we can always find an approximated optimize state, call 

local minimum/maximum or local optimal.  

 

 Before starting search, we must design an objective function to measure the 

goodness of current state. How do we define what is ―better state‖ will affect we try to 

find is local minimum or local maximum. If we feed training sample into objective 

function to tell program what is good and what is wrong, then it is a kind of machine 

learning. Like genetic algorithm, neural network…etc., all of them are local search. 

 

 Figure 7 shows the concept of local minimum search describe above that adapted 

from (Russell. S. & P. Norvig., 2002) chapter 4: 
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 Of course, it is the best result if we can find global minimum, however, local 

search algorithm always stuck on following three places: local minimum, flat and 

shoulder. There doesn‘t any solution to remove this problem, but instead, we have a 

principle to get a better result: ―If at first you don‘t succeed, try, try again.‖(Russell. S. 

& P. Norvig., 2002), by randomly initialize state, you will get a chance to approach 

best result over state space. 

 

Section 2.3: Simulated Annealing  
 

 Because classical local search algorithm tends to stuck on local optimal, 

therefore if we can jump out local then it seem easier to find a better solution. 

Simulated Annealing that are is such kinds of algorithm. By introduce some 

probability to do random walk over state space, and then it can help us to jump out 

local minimum / maximum state. The concept ―annealing‖ come from physical says 

that it “is the process used to temper or harden metals and glass by heating them to a 

high temperature and then gradually cooling them, thus allowing the material to 

coalesce into a low-energy crystalline state.”(Russell. S. & P. Norvig., 2002) 

 

 

Figure 7 Concept of minimum local search 



 

27 
 

 Figure 8 is the flow chart of Simulated Annealing: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 First step is randomly generating our state, it is because we want to increase 

opportunity to find global optimal, and then we calculate energy of current state, 

because this algorithm is local minimum search, therefore we can also call this energy 

function as cost function. You must design this function depends on your application. 

Next, try to test if current state is good enough, if so, and then it is an optimized state 

and return it; else, try to adjust current state and test if we can accept this new state in 

current temperature.  

 

Randomly 

initialized state 

Stop? 

Calculate Energy  

(or call Cost) 

 Is Accept? 

 

newState =  

disturb(currentState) 

 

currentState = 

newState 

Decrease 

Temperature 

Return 

 Optimized State 

Yes 

Yes 

No 

No 

Figure 8 Flow Chat of Simulated Annealing. 
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 Temperature is a core concept in this method, it will affect whether we can 

accept new state. It will accept new state by following rule, call Metropolis 

criterion(Kai-Ju Chen & Kou-Yuan Huang, 2007): 

 

1. First, Set deltaE = new state energy – old state energy. 

2. If deltaE >= 0, then accept it immediately. 

3. Else, using current temperature Tk to compute probability pt in Boltzman 

distribution and randomly generate a random probability r. 

4. If r <= pt, then accept it, else reject. 

 

 Boltzman function is a function to simulate the probability of transforming 

physical state in certain temperature. It is defined by Code 5: 

 

 

 

 

 

 

 

 

 When temperature Tk is high, then we will tend to change our state in spite of it 

is a bad state compare to old state. Until temperature continue decrease down to 

certain number, and then state will keep to a stable and find a local optimal. You can 

try same temperature many times. Code 6 is my implement for temperature decrease 

function: 

 

 

 

 

 

 

 

 

 

  And is Code 7 is my implement for accept function: 

 

 

 

Code 5 Boltzman distribution for simulated annealing. 

Code 6 Temperature decrease function for simulated annealing. 
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 The program used in this research is adapted from (Kai-Ju Chen & Kou-Yuan 

Huang, 2007; Kou-Yuan Huang & Ying-Liang Chou, 2008), by design our state as 

mathematical from, and gradually adjust its parameter, then we can get a set of 

optimal parameter. 

  

Code 7 Accept function for simulated annealing. 
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Section 2.4: Pseudo-Random and Real-Random 
 

What is Pseudo-Random? In computer, we can‘t really generate Real-Random 

number because it is run by deterministic process. If you feed same random seed 

(used to calculate) for random program to generate random number, you will find 

your program generates same random sequence as pervious run and this number 

sequence will repeat again and again as a period length.  

 

Because we can predict number generated by program if it algorithm is known, 

therefore, we call computer-generated random number as Pseudo-Random. In 

computer science, there has much research introduce many algorithms about how to 

approximate real-random.  

 

Mersenne Twister (MT) is a most popular Pseudo-Random method nowadays that 

developed by Makoto Matsumoto and Takuji Nishimura (1998). Its name is come the 

fact that period length in algorithm will be a Mersenne prime (𝑀𝑝 =  2𝑝 − 1). In this 

research, we adapt a MT variation call MT19937 which has long period (219937 − 1) 

and can generate 32-bit integer, for our random process. 

 

Section 2.5: Game, Digital Game and Media 
 

What is game? Beginning works may be trace back to Johan Huizinga in 1954. He 

was analysis what is game and it meaning from the aspect of philosophy. According to 

his works, Homo Ludens (Johan Huizinga, 1954), says that game will be a game if it 

satisfy following three feature: 

 

1. Voluntary: Participator must with his/her own will to join the game. 

2. Unreality: The content of game must achieve some fantasy content.  

3. Separation and Regional limitation: game exist a boundary between reality and 

fantastic, call magic circle in Rules of Play(Katie Salen & Eric Zimmerman, 

2003). 

 

What is digital game? It is the game that integrate with many different media, like 

word, picture, music…etc. We can separate all digital-game and non-digital game as 

Figure 9: 



 

31 
 

 

Digital Game: 

 Computer Game: use computer as game media. 

 Console Game: use TV as game media like X-BOX, PS3. 

 Handheld Game: use small device as game media like iPhone, PSP. 

 

Non-Digital Game: 

 Board Game: mainly use physical tool pencil, paper, or card …etc., as play 

media like Monopoly, Carcassonne, usually as indoor activity. 

 Sport: use player‘s own physical body to compete power for each other. 

 Ground Game: Opposite to board game, it is an outdoor activity. Game like 

Hide and seek, hopscotch, and geocaching may be classified into this 

category. 

 

 But Taxonomy for each game are not fixed, for example, Wii-sport is successful 

in combining Console Game and Sport as new play style. 

  

Figure 9 Game Taxonomy by Media.  



 

32 
 

Section 2.6: Flow Theory 
 

 In psychology, flow means optimal experience when challenge meets skill. The 

term are propose by Czikszentmihalyi (1998). Figure 10 is mental state refer in flow 

theory: 

 

 

 

 

 

 

 

 

 

 

 

 

 

„ 

 

 

 

 It worthy to note that flow condition only occur in high challenge and high skill, 

where low challenge and low skill are considered as Apathy, means player doesn‘t 

care about whether they can get good performance in the game.  

 

Section 2.7: Three-part rule model 
 

The model are proposed by Katie Salen and Eric Zimmerman (2003). They divide 

game rule into three parts: 

1. Operational rules: structure of a game, how can we operate the games. We 

must first know the legal input for a game, and then can start gameplay. 

Operational rules have some property as following:  

a. It must be an unambiguous and explicit, for example, write down on the 

manual. 

b. It must share among all players that everybody can access to it without any 

information loss.  

c. It must be fixed and repeatable, so it can helps us to identify and confirm 

Figure 10 Mental State in flow theory. 
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every game instance we play are actually same.  

d. It must make binding among player that if they break the rule they may 

pay some penalty that will reduce their fun experience, therefore player 

may more likely to play the game according to the rules. Although there 

have some situation that will make player to do some cheat, but the 

problem doesn‘t relate to this research, so we don‘t discuss cheat problem 

here. You can refer to Mia Consalvo (2007) works about cheat in games to 

get more detail idea. 

 

2. Constituative rules: It is logic part of games. How to explain game outputs and 

select a set of legal inputs is essential part of gameness. When a better 

explanation can be made, then better you will play the game. Player is required 

to learn how to ―insight‖ this rules in order to win. If we want to design or 

analysis gameness for a game, Constituative rule is most important part we 

must care, because it will emerge large amount of play strategy. For example, 

in ―Cross Block‖, Constituative rule is number of ―Cross Out‖ and wining 

condition. 

 

3. Implicit rules: like the social norm, it doesn‘t explicitly write down on the 

game manual, but everybody will obey the rule voluntarily. For example, 

when play the chess or Go, it will break implicit rules when one player hide 

game board from his/her opponent. This rule will always change depends on 

environment when you play the game. There may have some implicit rule 

become operation rule in different environment. 

 

By the description above, we conclude that Constituative rules are the source 

which brings the feeling of difficulty to players. 
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Chapter 3: Method 

 This research separate into following four experiments: 

 

 Experiment One: Experiment on Puzzle Game Space for Complexity 

Measure using “Cross Block”. 

 Experiment Two: Validate results between Complexity and Difficulty 

Using “Cross Block”. 

 Experiment Three: Validate results between Complexity and Difficulty 

using “Sudoku”. 

 Experiment Four: Approximate Complexity to Difficulty, using “Sudoku” 

 

The first two is preliminary experiment, which want to validate some property of 

puzzle game. And another two is our main experiment, which validate the correct rate 

of puzzle difficult sorting. 

 

Section 3.1: Experiment One 
 

 As describe in chapter 1, Difficulty and Complexity in this research is two 

different concepts. Complexity is objective according to puzzle itself and Difficulty is 

subjective according to player past experience. 

 

 Generally speaking, the more solved step a puzzle required the more difficulty 

and complexity a puzzle may be. But, is this assumption true? According to the 

concept model of puzzle game developed by Scott Kim, introduced in chapter 1, we 

known there have two attribute of puzzle will affect insight: choice, also call branch in 

this research, and dead ends. I use these two criterions to measure complexity of 

puzzle.  

 

 In order to validate the result, first, I want to introduce how to calculate 

complexity. Because this research uses “Cross Block” that game board size equal to 

10 * 10 as experiment puzzle (refer to chapter 1.1.6), therefore, here coming two 

Property need to validate: 

 

 Complexity Property 1: When solved step increase, puzzle‘s complexity 

should increase. 

 Complexity Property 2: When cross_out is about half of game board, then it 

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5). 
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 If result corresponds to both Property, then we can say complexity calculate 

model in this research is successful. By generate large number of puzzle levels and do 

statistic to observe whether overall Puzzle Game Space is corresponding property. 

What is Puzzle Game Space? It indicates every possible state in a puzzle game.  

 

 Here have 5 phases in this experiment: 

  

 Phase 1: Random generate large enough samples for each solved step. Like 

Figure 11, only sample puzzle levels in game board Size = 10 * 10. 

 

 

 

 

 

 

 

 

 

 

 

 Phase 2: Calculate branch and dead ends for each puzzle levels. Generally 

speaking, expand all node will get more accurate result. But I don‘t do that. 

Why? Because there has many puzzles is NP-Complete problem. It takes too 

much time, and either impossible to calculate for some complex puzzle. If we 

only expand answer node (from random generate process, we know it), we can 

reduce problem to linear time. Like Figure 12. 

 

 

 

 

 

 

 

 

 

 

Figure 11 Cross Block’s Puzzle Game Space. 
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 Phase 3: Calculate branch and dead end‘s sample mean for each solved step. 

 

 Phase 4: Calculate complexity for each puzzle levels, you can see the method 

I propose in Figure 13. Normalize function in this model can help us explain 

result of complexity and doing parameter adjust. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Phase 5: Calculate complexity‘s sample mean for each step.  

 

Figure 12 Branch and Dead End Calculating Process 

Figure 13 BD-Complexity Calculating Model 



 

37 
 

 I will show the result in Section 4.1: for validate Complexity Property 1 & 2. 

 

 But, there still need furthermore validate process about the difference between 

Complexity and Difficulty. Therefore, in next experiment, we use ―Sudoku” puzzle to 

validate the result and shows the ability of our method can handle different puzzle. 
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Section 3.2: Experiment Two 
 

 The purpose of this experiment is to validate correct rate of complexity sorting 

by compare result in experiment one to human difficulty evaluation of puzzle. Here 

has 5 phases in this experiment. 

 

 Phase 1: Select the puzzle levels from Puzzle Database with proper 

complexity distribution for human evaluation. 

 

 In order to validate the result of complexity, first, we must choose a set of puzzle 

that have proper complexity distribute over puzzle game space. In experiment one, we 

will generate a set of puzzle and calculate their complexity value with both parameter 

B and D = 1. Because complexity value will be normalized, therefore, we can simply 

separate into five basic difficulty groups as following: 

 

 0 ~ 0.125 (Very Easy) 

 0.125~0.25 (Easy) 

 0.25 ~ 0.5 (Normal) 

 0.5 ~ 0.75 (Hard) 

 0.75 ~ 1.0(Very Hard) 

 

 Although Boundary between each basic difficulty doesn‘t be validated, however 

it is convenience enough for us to choose the puzzle. By random select the puzzle 

levels from those four groups, we can get a set of puzzle with proper difficulty 

distribution. 

 

 Phase 2: Evaluate difficulty by real human player. 

 

 Collect data from player, with following process: 

 

1. When player completing (even give up) one puzzle level, let them give a 

difficulty score between 0 ~ 100. 

2. When player finishing all puzzle levels (even there exist some give up 

levels), let them rescore all puzzle difficulty again. 

 

 First score data wants to see whether player will affect their evaluation about 

difficulty when complete more and more puzzle.  



 

39 
 

 

 Second score data wants to compare ranking result that the experiment one 

generated. By average all collect data, we compute arrangement familiar ratio that can 

tell how successful the experiment one is. 

 

 Phase 3: Average difficulty that evaluated by real human and sorting the 

result. 

 

 Phase 4: Calculate sorting similarity between Difficulty and Complexity with 

small puzzle base. 

 

 Phase 5: Calculate sorting similarity between Difficulty and Complexity with 

large puzzle base. 

  

 The different between Phase 4 and Phase 5 is number of puzzle in puzzle 

database. Small puzzle base means we only use experiment puzzle set that are picked 

in phase 1 to compute complexity; large puzzle base means we will consider all 

puzzle over puzzle space that are generated in experiment one to compute complexity 

for each puzzle. Generally speaking, large puzzle base has more accurate complexity 

value and sorting. 

 

Section 3.3: Experiment Three 
 

 We use the Sudoku puzzle that provided by Taiwan Sudoku Association (TSA) 

(W. Kuang-Chen (巫光楨), 2008) to validate our result. In the website, they statistic 

solve rate, time used to solved for each “Sudoku” puzzles and separate it to 5 ranks 

that can corresponding to basic difficulty: very easy, easy, normal, hard, and very 

hard. 

 

 Phase 1: select proper amount of puzzle in each rank.  

 Phase 2: find a solution sequence for each puzzle, we use solving program in 

TSA (W. Kuang-Chen (巫光楨), 2008). 

 Phase 3: Using solution sequence to calculate branch and dead ends for each 

puzzle. 

 Phase 4: compute complexity for each puzzle. 

 Phase 5: compare rank result by website and complexity rank by calculate 

sorting similarity. 
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Section 3.4: Experiment Four 
 

 In this experiment, I will use simulated annealing to tweak parameter B and D in 

Figure 4.3. By feeding training data collected in experiment three, we can improve 

our complexity sorting result 

 

 Phase 1: Random select training sample from TSA‘s ―Sudoku‖ puzzle. 

 Phase 2: Use simulated annealing to tweak parameter B and D. 

 Phase 3: Calculate new complexity. 

 Phase 4: Compare rank result. 
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Chapter 4: Experiment 

 

Section 4.1: Experiment One 
 

 In this section, I want to validate following two complexity property by generate 

large enough puzzle sample over Puzzle Game Space: 

 

 Complexity Property 1: When solved step increase, puzzle‘s complexity 

should increase. 

 Complexity Property 2: When cross_out is about half of game board, then it 

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5). 

 

 Chapter 3.1 had already introduced experiment phase for experiments, in this 

section, I will go into detail about how to implement it in this research and shows the 

result. 

 

Section 4.1.1: Phase 1: Random Generated Puzzle 

 

 Using ―Cross Block‖ as experiment game, and set game board size as 10*10, 

program can random-generated up most to 100 squares puzzle. Here is the number of 

puzzle that used in my experiments. 

 

 Puzzle in each cross_out‘s solved step = 100 

 Puzzle in each cross_out(solved step 2~20) : 19 * 100 = 1900 

 Total Puzzle Amount(cross_out_2 ~ cross_out_9): 1900 * 8 = 15200 

 We don‘t generate cross_out_1, cross_out_10 and Solved Step 1 because it 

dead ends is 0 and meaningless to be a puzzle. 

 After remove repeat puzzles, we get Total Puzzle Amount: 15155. 

 

Section 4.1.2: Implement Phase 1: Random Generated 

Puzzle 

 

 By consider all puzzles as some kind of state, this research we use GameState 

class to record game board and it property, like branch, dead ends...etc. Function 

prototype for generate puzzle looks like following: 

   

 void buildDatabase(int nGame, int maxStep, int crossOut).  
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 There have 3 parameters:  

 

 nGame : How much puzzle do you want to generate for each step? 

 maxStep: How long of puzzle you desire? If game board size can‘t contain more 

steps then program assigned, it will simply generate it max step. For example, if 

we assign maxStep as 20, but our puzzle instance can only generate no more than 

15 steps puzzle, in such situation, the program will generate 15 steps. 

 crossOut: how much block you can cancel with each step? For game board size 

= 10, it range is 1 ~ 10.  

 

 Intuitively, cross out 1, 10 and step=1 are meaningless, therefore we generate it 

from step 2. Refer to Code 8: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Vector ―states‖ is our puzzle database for store generated puzzle. And, int sizex 

and sizey indicate our game board size. 

 

 But, what is the mechanism of the function randomGenerate(crossOut, step)? 

Figure 14 shows the process of randomGenerate function: Cross out = 5, solved step = 

4. 

Code 8 Implement for random generate cross block. 
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Section 4.1.3: Implement Phase 2: Calculate Branch and 

Dead Ends 

 

 Generally speaking, expand all node will get more accurate result. But I don‘t do 

that in this research, why? Because there has many puzzles is NP-Complete problem. 

It takes too much time, and either impossible to calculate for some complex puzzle. If 

we only expand answer node (from random generate process, we know it), we can 

reduce problem to linear time. Figure 15 shows our calculate process. 

 

 

Step 6 Step 6 

Step 6 Step 6 

Figure 14 Example of random generated process of puzzle “cross block”.  
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 For detail implement code, please refer to appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15 Calculate for Branch and Dead ends by using answer node. 
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Section 4.1.4: Result of Phase 3: Branch and Dead End 

 

 From the results Figure 16 and Figure 17, we can see both Branch and Dead 

Ends are increase when solved step increase. 

 

 

 

Figure 16 Average Number of Branches of each step 

Figure 17 Average Number of dead ends of each step 
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Section 4.1.5: Implement Phase 4: Calculate Complexity 

 

 Calculate model used in this research are refer in chapter 3, notice that both 

Branch and Dead Ends are normalized because we need a method to control their 

weighting. 

 

 How to implement normalize function? Because weighting between Branch and 

Dead Ends are different for complexity measure, therefore normalize function can 

help us doing parameter adjust for these two criterions. For complexity, it helps us to 

explain result. We can simply divide by max value in Puzzle Database generated in 

phase 1, like following: 

 

 Normalize(Branch) = Branch / MAX(All Branch in Puzzle Database); 

 Normalize(DeadEnds) = DeadEnds / MAX(All Dead Ends in Puzzle 

Database); 

 Normalize(Complexity) = (Complexity + MAX(All Complexity in Puzzle 

Database) in case parameter B and D is negative) / MAX(All Complexity in 

Puzzle Database); 

 

  In this experiment, we set parameter B and D as 1 for simple, and then all 

max value is summarized in Table 1: 

 

 

 

 

 

  

Code 9 is the implement for complexity calculate model. 

 

 

 

 

 

 

 

 

 

Table 1 Max values in puzzle database. 
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Code 9 Implement normalize function for BD-Complexity Calculate Model 
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Section 4.1.6: Result of Phase 5: Complexity Sample Mean 

  

 From Figure 18, we can see it validates our Complexity Property 1: when solved 

step increase, puzzle‘s complexity should increase. 

 

 

 Next, in order to show more clear evidence about Complexity Property 2, Figure 

19 is the average complexity over all steps. 

Figure 18 Average complexity of each step 

Figure 19 Result of Average all solved step complexity. 
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 From result, we can see cross_out_4 is most complexity one, it is because 

Property 1 is true, therefore the result above is affected.   

 From the Figure 20, we can see not all cross_out game can reach solved step 20, 

therefore we decrease solved step to step 16 and step 11, and then we can see our 

Complexity Property 2 is proved: When cross_out is about half of game board, then it 

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5). Refer to 

Figure 21 and Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 More Detail of complexity mean in puzzle game space. 

Figure 21 Average complexity before step 16. 
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Figure 22 Average complexity before step 11. 
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Section 4.1.7: Conclusion 

 

 Figure 23 shows the result of puzzle‘s complexity generated in phase 1 that 

classify into five groups of basic difficulty. Although boundaries between groups were 

not validated, the results are shown here as a convenient way to illustrate the 

distribution of puzzles in terms of difficulty level. 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 The results indicate that approximately one-half of the puzzle levels generated by 

the program could be classified as very easy. According to complexity theory, when a 

system goes beyond a ―complexity barrier‖, a behavior pattern will be emergent. In 

puzzle games, this pattern is represented by the numbers of branches and dead ends, 

which increase exponentially. In Crossblock, the boundary value between periodic 

and complexity system is approximately 0.125, which occupy about half of puzzle in 

puzzle database, when value beyond it and goes higher, then branch and dead ends 

will increase dramatically more and more. Figure 24 shows the average complexity of 

each difficulty level that supports our observation. Why? Try to consider following 

facts:1.Complexity interval between very easy and easy is 0.18 - 0.053=0.127; 

2.Between normal and hard is 0.37 – 0.18 = 0.19; 3.between normal and hard is 0.59 – 

0.37 = 0.22; 4.between hard and very hard is 0.8 – 0.59 = 0.21.   

 

 As shown in first three, their complexity interval is gradually increased that 

means it must beyond a ―complexity barrier‖, and when complexity level is ―very 

hard‖, we know system almost reach ―chaotic level‖ which must have highest 

complexity value and will gradually decrease it complexity, that why interval between 

hard and very hard stop to increase. 

Total Puzzle Amount: 15155 

Figure 23 Ratio of basic difficulty in puzzle database. 
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 This experiment is about Puzzle Game Space not about correct rate of puzzle 

levels sorting. Although I had proved both Complexity Property in this section for 

“Cross Block”, but we still need further result to show that the method proposed in 

this research is practical for real puzzle game sorting problem. In next experiment I 

will validate the correct rate between Complexity and Difficulty.   

  

Figure 24 Complexity Average of each Crossblock difficulty level 



 

53 
 

Section 4.2: Experiment Two 
 

Section 4.2.1: Phase 1: Select Puzzle Levels 

 

 In this experiment, I want to test if human can really tell the difficulty if all 

puzzle levels have close complexity. Therefore I select 10 puzzles that all complexity 

in easy group and fixed those puzzles when release to player. In this research, we have 

17 human evaluation data. 

 

Section 4.2.2: Result of Phase 3: Average difficulty and 

Sorting 

 

 Table 2 is the result of puzzle‘s complexity and difficulty in this Test Experiment. 

 

 

 

 

 

 

 

 

 

 

  

 

 

We can see the difference between Small Base and Large Base more clearly, that 

max value in database will affect our normalize function, all puzzle‘s complexity in 

Experiment Test that compute by large base are in very easy and easy group. Because 

what we want to know is their sorting correct rate, therefore sorting those puzzles 

according to the value in table above, we can get the rank for each puzzle. Like Figure 

25: 

Table 2 Complexity and Difficulty result. 



 

54 
 

 

 Actually, we get different sorting rank for small base, large base and human, it is 

not convenience for us to compare the result by figure. Therefore, we must design a 

method that can tell the sorting similarity rate between each rank list. 

  

Section 4.2.3: Implement: Calculate Sorting Similarity  

 

 Here is my implement method for sorting similarity: 

 

 Set if we have two sorted puzzle lists: listA and listB, all puzzles in lists are 

same but sorted by different method. 

 set listA is sorted by complexity 

 set listB is sorted by difficulty(human or static difficult) 

 If puzzle‘s rank in two lists is same, then similarity add 1 

 If puzzle‘s rank in two lists is different, then similarity add (1 – different of 

two list) / list size 

 Finally, before return the value, divided it by rank list size in order to 

normalize result.  

 

 Code 10 is actual implement code for sorting similarity: 

 

 

 

 

 

Figure 25 Complexity and Difficulty rank result 
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Code 10 Implement for sorting similarity. 
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Section 4.2.4: Result of Phase 5: Sorting Similarity 

 

 We compare two rates for two ranked lists in Table 3. First is the percentage of 

match, it means number of same rank in both. Second is Similarity, it means how 

similar sorted of two lists. 

  

 We can see small base and large base actually have different rank because max 

value in database will affect normalize function. Furthermore, compare to small base, 

large base has higher sorting similarity rate between human. Finally, we compare each 

people‘s sorting similarity, their sorting similarity only reaches 68%, it seem 

surprising that every people have different feeling about difficulty when puzzle have 

near complexity levels. 

 

Section 4.2.5: Conclusion 

  

 In this experiment, we see when puzzle have near complexity, then people tends 

to have different rank because of different skill they have. Therefore, I think the 

ability that can classify a puzzle into basic difficulty is more important than tell their 

actual degree. 

  

Table 3 Result of match and sorting similarity. 
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Section 4.3: Experiment Three 
 

 In this experiment, I want to validate the correct rate of complexity sorting by 

using Sudoku that had been classified by other method. You can find the puzzle 

sample we used in TSA(W. Kuang-Chen (巫光楨), 2008). 

 

Section 4.3.1: Phase 1: Select Puzzle in Each Rank 

 

 Like Figure 26, every puzzle in TSA is marked with a difficulty level. Number of 

―★‖ of a puzzle indicates difficult rank calculated by TSA, they classify all Sudoku 

into 5 ranks. 

 

  

 Every puzzle is marked with a difficulty level. Number of ★indicates how 

difficult it is, upmost to five star. Meaning in each column: puzzle id, puzzle, number 

of challenge, number of success solved, solved rate, average time, newest record, 

fastest record, start challenge the puzzle. 

 

 The method used by TSA to measure difficult of a ―Sudoku‖ is to evaluate 

number of solve technique that a puzzle solving program require. The more difficulty 

technique a puzzle required, and then the puzzle is more difficult. But, because we 

don‘t know whether the difficult level that marked by TSA is really correct or not, 

therefore when choice the puzzle from it, we must take care of this issue. Fortunately, 

TSA also provide solved rate in the column five for each puzzle, therefore we can 

choice the puzzle based on this value that will reflect their difficulty more correctly. In 

Figure 26 Sudoku Puzzles provides in TSA. 
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this experiment, we select 100 Sudoku puzzle for each difficult level. (5 * 100 = 500 

puzzles) 

 

Section 4.3.2: Result Phase 3: Calculate Branch and Dead 

Ends 

 

 Before calculate complexity for each puzzle, we must decide parameter B and D. 

By observe result in Figure 27 and Figure 28, we know branch is positive relation and 

dead ends is somehow negative relation (normal and hard are not) when difficulty 

increase, therefore, we set B as 1 and D as -1. 

 

 

 

 

 

 

 

 

 

 

 

Section 4.3.3: Result Phase 4: Compute Complexity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 Average branch for each difficulty levels. 

Figure 28 Average dead ends for each difficulty levels. 
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 By using complexity calculate model describe in chapter 3, we get the result in 

Figure 29: 

 

 

 

 We can see complexity is increase according to difficulty level. Therefore, our 

method is successful to approximate difficulty of puzzle at minimum requirement. 

How about overall success for each puzzle? Let examine more detail about 

complexity we calculate in Figure 30: 

 

 

 

 

Figure 29 Average Degree of Complexity for Each Difficulty Level 
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 It just put every puzzle into a rank from left to right in Figure 31, and we can see 

this method is weak on those puzzles have both high or low branch and dead ends 

which means our complexity calculation will become too high or too low. Another 

problem may be the puzzle in normal and hard, we can‘t classify the puzzle in these 

two groups clearly──I think both of problems is caused by the property of our 

method. Because we simply combine branch and dead ends as a polynomial, therefore 

the method used to calculate branch and dead ends will affect result very large.  In 

this experiment, we only introduce a heuristic that simply skip ―unique method‖ step, 

which every novice player will know this technique, when we doing calculation. In 

order to get more concrete result, we may need to figure out more concrete heuristic 

when calculate branch and dead ends.  

 

Figure 30 Puzzle Samples Sorted by Complexity 

Figure 31 Rank of complexity Sorting for each puzzle samples.  



 

61 
 

Section 4.3.4: Result Phase 5: Compare Rank Result 

 

 Because there five marked level difficulty in our puzzle database, therefore we 

can randomly select one sample from each difficulty level (total 5puzzles) as listA, 

sort it by our complexity as listB, and then we can compute sorting similarity between 

these two lists. Select process like Figure 32: 

 

 By repeat large enough iteration of this comparing process, then we can validate 

the correct of our method. Figure 33 is the similarity result that iterates over 50000 

times: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 Process of select sample from puzzle database as sorting list. 

Average: 0.8 

Figure 33 Result of Sorting Similarity 
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 It shows that our sorting looks quite good on most of case, but there still have 

space for improve. I will try to adjust parameter B and D by machine learning to find 

out best result of complexity sorting. 

 

Section 4.3.5: Conclusion  

 

 This experiment shows the ability of the method we propose can calculate 

different type of puzzle games. But because different puzzle have different emergent 

phenomena on their branch and dead ends, therefore sorting correctness will 

dependent on play feature of different game. By separate all pure puzzle game as 

following three types: Movement type puzzle like “Sokoban”, Elimination type 

puzzle like “Cross Block” and Fill Out type puzzle like “Sudoku”.I think most 

suitable puzzle game for apply the method we propose is Elimination and Movement 

type. Because possibility of action that player can operate is too large, that generate 

more exception than other two types of puzzle. 

 

 In appendix, I collect more puzzle games according to this classification. 

Although complexity measure for Fill Out type puzzles in this “Sudoku” experiment 

doesn‘t perform as good as previous “Cross Block” experiment, but I think it is good 

enough for real application. 

 

Section 4.4: Experiment Four 
 

 In this experiment, we use simulated annealing to adjust our parameter B and D 

in order to get more correct complexity evaluation for experiment three. 

 

Section 4.4.1: Phase 1: Select Training Sample 

 

 Because simulated annealing is a machine learning technique, therefore, we need 

training sample before beginning our tuning program.  Figure 34 is our training 

samples select process: we randomly make 1000 training sample from puzzle database 
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Section 4.4.2: Implement Phase 2: Parameter Tweak 

 

 Because our purpose is to improve sorting similarity, therefore we can implement 

our energy method for simulated annealing as Code 11: 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Because the concept of simulated annealing is to reduce energy (or error, cost) 

when repeat training iteration, therefore we minus 1 before returning the result. 

 

Figure 34 Training sample select process. 

Code 11 Implement for energy function in Simulated Annealing. 
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Section 4.4.3: Result of Phase 2: Parameter Tweak 

 

 Figure 35 is the result of training process, our adjustion is successfully converge 

error (1 – similarity) to 0.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 36 shows the parameter that are adjusted over iteration in this training 

iteration: 

 

 

 

 

 

 

 

 

 

 

 

 

 Finally, we get B = 18.1952 and D = 2.02334 is one of state that has lowest error. 

The result may be changed when we start another training iteration. 

 

Section 4.4.4: Result of Phase 3: Calculate New Complexity 

 

 Figure 37 is the result of average complexity for each difficulty levels, we can 

Figure 35 Error and iteration of simulated annealing. 

18.1952 

2.02334 

Figure 36 Result of parameter Band D adjusts over 1500 iteration. 
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see their value is more close between each level compare to the result in experiment 

three: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 But it is actually improved it result, especially for those low complexity puzzle in 

each level. Figure 38 and Figure 39 shows detailed sorting result: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 37 Average complexity for each difficulty level after parameter tweak. 

Figure 38 Complexity of each puzzle sample after parameter tweak. 



 

66 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 39 Rank of complexity sorting after parameter tweak.  
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Section 4.4.5: Result of Phase 4: Compare Rank Result 

 

 Figure 40 shows average sorting similarity is improved from 0.8 to 0.86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 4.4.6: Conclusion 

 

 From the result, we can see although our method is quite simple, but it is a 

general method that can be used to measure difficult for different puzzle. Although 

there still have some error, but I think if we can figure out complexity measure 

heuristic for each different puzzle game, then it sorting correct rate will be improved. 

  

Average: 0.86 

Figure 40 Sorting Similarity after training. 
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Chapter 5: Conclusion 

 

Section 5.1: Complexity Sorting and Difficulty 
Mapping 

 

 Determining game difficulty is a challenging issue requiring detailed 

understanding of game parameters. For puzzle games, Scott Kim has identified 

branches and dead ends as universal puzzle components; in this project we tried to use 

the two features to measure puzzle complexity. According to our experiment results, 

the proposed method holds potential as an efficient method for mapping complexity to 

static difficulty. We used simulated annealing to identify optimal parameters, but our 

final sorting similarity data still suffered from a 14% error rate. Since different 

puzzles have different emergent phenomena on their branches and dead ends, correct 

sorting depends on play features that differ across different games. To achieve more 

accurate results using our proposed method, it is therefore necessary to use 

game-specific features when calculating numbers of branches and dead ends in order 

to improve the fit between our process and behavior patterns (e.g., the ability to 

quickly filter out bad choices and dead ends).  

 

 For example, in Sudoku, there exist some solving techniques to help us solve the 

problem, like Last Digit, Hidden Single in Box…etc.,. In order apply those technique 

into our complexity calculate process, it is necessary to find out their emergent 

phenomena on branch and dead ends that can help us to identify which node we need 

to expand or count. We believe, more difficult technique a puzzle has, means higher 

complexity value it will. 

 

 However, the use of game-specific features contradicts our goal of creating a 

method that can be used for all puzzle games. Therefore our plans include designing a 

more sophisticated complexity calculation model that considers a wider range of 

search tree behavior features—for example, backtracking rates (indicating incorrect 

choices) or number of cycled nodes. 

 

Section 5.2: Measuring Digital Game Complexity 
 

 Does our proposed method can apply to other games? Generally speaking, our 

proposed model can always apply to any kind of task──if we formulate target 

problem as search tree form, and then branch and dead ends can be calculated to 

measure complexity of the task. But, there may cause some problems when we want 



 

69 
 

to map complexity to difficulty, because there have much games require player many 

different kind of skill that will diverse subjective feeling about difficulty. For example, 

Tetris may require player eye-hand coordination, but not all people can follow the 

speed of falling object; and boggle will require player English ability, player who 

familiar with English will have obvious advantage. 

  

 Therefore, our complexity measuring result will limited to certain high skill 

player group and meaningless to others. Because for those players that without certain 

skill or knowledge can‘t even start play the games. Furthermore, for those medium 

skill players, game specific skill and knowledge will always be the source of difficulty. 

Because different player will have different skill, thus, diverse feelings about 

difficulty trouble us from map complexity to static difficulty. Therefore, we must try 

to find out a method to combine complexity and game-specific feature first. For 

example, in Tetris, how do we measure the challenge of falling object‘s speed? And, 

how do we combine challenge with complexity into a formula? But, as we discuss 

before, it will break generality of our model. 
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Appendix A:   Puzzles in Experiments 
 

B.1:   Cross Block 

 

 Cross Block is kind of pure puzzle that invented by DJ Trousdale(DJ Trousdale, 

2009), where it goal is to clear all square on game board by drawing vertical or 

horizon line.  

 

 Example of Cross Block, each line must equal to specific cross out number. (a) 

Cross out 2 squares at one time, it requires 2 steps to solve. (b) Cross out 7 squares at 

one time, it requires 8 steps to solve. 

 

 Generally, we can simply increase difficulty for this puzzle, by putting more 

squares into game board. Like example in Figure 1.5, when solved step increase, then 

it difficulty also increase. Although there exists some exception, but we don‘t discuss 

about the detail here. I will show overall puzzle game space results in chapter 4.1 for 

Cross Block. Next, let‘s return to our problem: How to measure the difficult for a 

puzzle? 

  

(a) (b) 
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B.2:   Sudoku 

 

 Another puzzle I will use in my experiment is “Sudoku” that is a very 

famous puzzle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The goal of ―Sudoku‖ is to fill all square with a number 1 ~ 9, but constrain with 

following rule: 1. the number in each row and column can‘t repeat. 2. The number in 

each 3*3 box region can‘t repeat. For example in above figure, here have 9 box 

regions that marked with yellow and white color.  

  

Example of Sudoku Puzzle 
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Appendix B:   Collection of Pure Puzzle 
 

 In this appendix, I simply collect some puzzle from internet according to 

following classification: movement type, fill out type, elimination type.  

 

B.1:   Elimination Type 

 

                         

Marble Solitaire Minim 

  

NingPo Mahjong  
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B.2:   Movement Type 

 

Exorbis 2 Flashmaz 

  

Mummy Maze Open Doors 2 

  

Telescope Rush Hour 

 

  

Sliding Puzzle Sokoban 
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B.3:   Fill Out Type 

 

 

3D Logic 2 Cross word 
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Appendix C:   More Result of Experiment One 
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Appendix D:   Calculate Branch and DeadEnds 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E:   Game Data Format 
 

Following data are format example I store that used in my experiment. 

 

E.1:   Cross Block 

 

[id] 

4782 

[cross out] 

2 

[sizex] 

10 

[sizey] 

10 

[game state] 

Implement Branch and Dead Ends calculate function for Cross Block. 
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(3,5)(8,5) 

(6,2)(10,2) 

(3,8)(3,10) 

(5,6)(5,10) 

(8,7)(8,10) 

(9,1)(10,1) 

(9,6)(10,6) 

(3,6)(6,6) 

[solved step] 

8 

[nDeadEnd] 

3 

[nBranch] 

72 

[complexity] 

0.0749239 

 

E.2:   Sudoku 

 

[id] 

5311b 

[sizex] 

9 

[sizey] 

9 

[game state] 

030902005000400026002000030900004000005080400000500009050000300180007

000400308060 

[nBranch] 

3894 

[nDeadEnd] 

173 

[complexity] 

0 

[challenge] 

118 

[success challenge] 

30 
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[time] 

18:34 

[solve sequence] 

1:宮摒餘解--( 8,3 )=3, 

2:宮摒餘解--( 3,4 )=8, 

3:宮摒餘解--( 5,6 )=9, 

4:區塊數對唯餘解--( 7,6 )=1, 

5:區塊數對唯餘解--( 7,4 )=2, 

6:數對唯餘解--( 8,4 )=6, 

7:宮摒餘解--( 9,2 )=2, 

8:數對摒除解--( 5,2 )=6, 

9:數對摒除解--( 4,3 )=8, 

10:單元宮摒餘解--( 7,9 )=8, 

11:數對摒除解--( 4,8 )=5, 

12:數對摒除解--( 4,7 )=6, 

13:數對摒除解--( 8,9 )=4, 

14:數對唯餘解--( 8,8 )=9, 

15:宮摒餘解--( 8,7 )=2, 

16:唯一解--( 8,5 )=5, 

17:數對唯餘解--( 9,5 )=9, 

18:數對唯餘解--( 7,5 )=4, 

19:數對唯餘解--( 9,3 )=7, 

20:數對唯餘解--( 7,1 )=6, 

21:數對唯餘解--( 9,9 )=1, 

22:唯一解--( 7,3 )=9, 

23:唯一解--( 7,8 )=7, 

24:數對唯餘解--( 5,8 )=1, 

25:數對唯餘解--( 5,4 )=7, 

26:數對唯餘解--( 4,4 )=1, 

27:數對唯餘解--( 4,2 )=7, 

28:唯一解--( 9,7 )=5, 

29:宮摒餘解--( 1,3 )=6, 

30:宮摒餘解--( 6,7 )=7, 

31:宮摒餘解--( 3,9 )=7, 

32:宮摒餘解--( 6,8 )=8, 

33:唯一解--( 1,8 )=4, 

34:宮摒餘解--( 3,2 )=4, 

35:宮摒餘解--( 6,3 )=4, 
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36:唯一解--( 2,3 )=1, 

37:宮摒餘解--( 6,2 )=1, 

38:唯一解--( 2,2 )=9, 

39:宮摒餘解--( 3,7 )=9, 

40:宮摒餘解--( 1,7 )=1, 

41:唯一解--( 2,7 )=8, 

42:宮摒餘解--( 1,1 )=8, 

43:唯一解--( 1,5 )=7, 

44:宮摒餘解--( 2,1 )=7, 

45:唯一解--( 3,1 )=5, 

46:數對唯餘解--( 3,6 )=6, 

47:數對唯餘解--( 6,6 )=3, 

48:數對唯餘解--( 2,6 )=5, 

49:數對唯餘解--( 4,5 )=2, 

50:數對唯餘解--( 4,9 )=3, 

51:數對唯餘解--( 5,9 )=2, 

52:數對唯餘解--( 5,1 )=3, 

53:唯一解--( 6,1 )=2, 

54:唯一解--( 6,5 )=6, 

55:唯一解--( 2,5 )=3, 

56:唯一解--( 3,5 )=1, 

[/solve sequence] 
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Appendix F:   Puzzles in Experiment Two  
 

Following puzzle had used in experiment two: 
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