

國 立 交 通 大 學

多媒體工程研究所

碩士論文

益智遊戲難度與複雜性之衡量

Measuring Difficulty and Complexity

of Puzzle Games

研 究 生：張景照

指導老師：孫春在 教授

中華民國 100 年 6 月

國 立 交 通 大 學

多媒體工程研究所

碩士論文

益智遊戲難度與複雜性之衡量

Measuring Difficulty and Complexity

of Puzzle Games

研 究 生：張景照

指導老師：孫春在 教授

中華民國 100 年 6 月

益智遊戲難度與複雜性之衡量

Measuring Difficulty and Complexity

of Puzzle Games

研 究 生：張景照 Student：Ching-Chao Chang

指導老師：孫春在 Advisor：Dr. Chuen-Tsai Sun

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國 100年 6月

i

益智遊戲難度與複雜性之衡量

學生：張景照 指導教授：孫春在 博士

國立交通大學

多媒體工程研究所

中文摘要

 如何對關卡難度進行排序？這個問題是所有益智遊戲(puzzle game)設計師

所需面對的最重要課題。在以前，人們常常先分析解開該遊戲所使用的技巧有哪

些，並依技巧掌握的難度來決定最後的排序，不過，這個方法的問題點在於太過

依賴遊戲本身的特性而造成計算上的困難與難以理解。──設計者必需對該遊戲

非常精通才行。

 其實，要找出一個益智遊戲的解，就像是在替迷宮找出口一樣，裡面充滿了

許多選擇(Choice)及死路(Dead Ends)，然而，不同於「真實」的迷宮問題，益智

遊戲的難度決定於該關卡所需的洞察力(Insight)。從複雜系統的觀點來看，這些

選擇及死路會隨著系統複雜度的上升而湧現，進而影響到玩家找到答案的難度。

因此，本研究不同於以往的做法，試圖以衡量湧現狀況做為出發點，設計出一個

適合所有益智遊戲的複雜度衡量模型。

 本研究總共規畫了四個實驗，並使用了消除方塊(Cross Block)及數獨(Sudoku)

這二個益智遊戲來進行複雜度的衡量及比較。最後的實驗結果顯示了我們所提出

的複雜度計算模型，在數獨的複雜度排序上與「台灣數讀發展協會」上的難度排

序結果能夠達到 86%的相似度。

關鍵詞：益智遊戲、難度衡量、複雜度衡量、洞察

ii

Measuring Difficulty and Complexity
of Puzzles Games

Student：Ching-Chao Chang Advisor：Dr. Chuen-Tsai Sun

Institute of Multimedia Engineering

National Chiao-Tung University

Abstract

 How do we sorting puzzle levels according to their difficulty? This is most

important problem for all puzzle game designer. In past time, game designer must

analysis the techniques used by the puzzle, and then can use the result to sort their

difficulty ranks. However, this method depends on specific game feature that are very

difficult to calculate and understand because designer must master the game first.

 Basically, find out a solution for a puzzle just like find out a way for a maze,

there are many choices and dead ends. But, different from ―real‖ maze problem, the

difficulty of a puzzle decided by the insight it required. From the aspect of complex

system, emergent phenomenon describes when overall system complex increase then

amount of choice and dead ends also changed according to some principle that will

affect how difficult a puzzle is.

 In this paper we propose a new approach to calculating puzzle complexity, one

based on approximating player ability to produce insights that lead to puzzle

completion. Our test results indicate an 86% sorting similarity rate.

Key Word: Puzzle Game, Difficulty Measure, Complexity Measure, Insight

iii

誌 謝

 經過了無數個失眠的夜晚，這篇論文終於誕生了。特別是經歷過日本 311地

震與輻射外洩事件之後，更讓我覺得能夠平安回來並順利的將論文完稿是一件非

常幸運的事。

 首先，我必須要感謝指導我的孫春在老師，謝謝他同意讓我在碩二這麼關鍵

的時期能夠到日本一圓留學的夢想。雖然因為地震的關係提早了半個學期回來，

但在東京大學交換學生這半年的時間讓我體驗到非常寶貴的生活經驗。另外，也

非常很高興能夠跟在孫老師身邊進行遊戲相關的研究，讓我有機會從學術的觀點

進入這塊領域，並給予我許多以前從未思考過的方向。能在孫老師身邊做研究，

真的是一件非常享受的事。

 另外也謝謝學習科技實驗室的同學們，在交大的這段時光能夠跟你們在一起

渡過真的很高興，特別讓我懷念的是每天聚在一起玩遊戲、打 Board Game 的那

段時光，真的是非常的快樂。也很感謝東京大學近山老師及其實驗室的同學們，

在日本的這段期間受到你們不少的照顧。

 此外，也謝謝我的家人，以及其他關心我的朋友們。沒有你們的支持，這篇

論文是難以完成的。在此，致上最深的謝意。

iv

Index

中文摘要…………………………………………………………………….………...i

Abstract……….……….….…………………………………………………………..ii

誌謝……………………………………………..…………………………………...iii

Index……………………………..………………………………………………..…iv

Figure Index……..……………………………………………………………….….vi

Table Index…..…………………..…………………………………………………vii

Code Index………….. ..………………………………………………………..….vii

Chapter 1: Introduction .. 1

Section 1.1: Background .. 2

Section 1.1.1: Digital Game: What is difficult? .. 2

Section 1.1.2: Digital Game: Dynamic Difficult Adjust 4

Section 1.1.3: Digital Game: Player Modeling and DDA 7

Section 1.1.4: Puzzle Game: What is Puzzle? ── Meaning of Play 8

Section 1.1.5: Puzzle Game: What is Puzzle? ── Component 9

Section 1.1.6: Puzzle Game: Difficult Measure and Sorting 11

Section 1.1.7: Puzzle Game: Complexity Theory 12

A. Computational Complexity .. 12

B. Complex System and Emergence .. 13

Section 1.2: Motivation: Challenge in Puzzle Game Sorting 16

Section 1.3: Motivation: Mobile Game, Market and Puzzle Game 16

Section 1.4: Goal .. 17

Section 1.5: Contribution ... 17

Chapter 2: Literature Review ... 19

Section 2.1: Tree Search .. 19

Section 2.2: Local Search ... 25

Section 2.3: Simulated Annealing .. 26

Section 2.4: Pseudo-Random and Real-Random ... 30

Section 2.5: Game, Digital Game and Media .. 30

Section 2.6: Flow Theory ... 32

Section 2.7: Three-part rule model .. 32

Chapter 3: Method ... 34

Section 3.1: Experiment One ... 34

Section 3.2: Experiment Two ... 38

Section 3.3: Experiment Three ... 39

Section 3.4: Experiment Four .. 40

Chapter 4: Experiment ... 41

Section 4.1: Experiment One ... 41

v

Section 4.1.1: Phase 1: Random Generated Puzzle 41

Section 4.1.2: Implement Phase 1: Random Generated Puzzle 41

Section 4.1.3: Implement Phase 2: Calculate Branch and Dead Ends 43

Section 4.1.4: Result of Phase 3: Branch and Dead End 45

Section 4.1.5: Implement Phase 4: Calculate Complexity 46

Section 4.1.6: Result of Phase 5: Complexity Sample Mean 48

Section 4.1.7: Conclusion ... 51

Section 4.2: Experiment Two ... 53

Section 4.2.1: Phase 1: Select Puzzle Levels .. 53

Section 4.2.2: Result of Phase 3: Average difficulty and Sorting 53

Section 4.2.3: Implement: Calculate Sorting Similarity 54

Section 4.2.4: Result of Phase 5: Sorting Similarity 56

Section 4.2.5: Conclusion ... 56

Section 4.3: Experiment Three ... 57

Section 4.3.1: Phase 1: Select Puzzle in Each Rank 57

Section 4.3.2: Result Phase 3: Calculate Branch and Dead Ends 58

Section 4.3.3: Result Phase 4: Compute Complexity 58

Section 4.3.4: Result Phase 5: Compare Rank Result 61

Section 4.3.5: Conclusion ... 62

Section 4.4: Experiment Four .. 62

Section 4.4.1: Phase 1: Select Training Sample .. 62

Section 4.4.2: Implement Phase 2: Parameter Tweak 63

Section 4.4.3: Result of Phase 2: Parameter Tweak 64

Section 4.4.4: Result of Phase 3: Calculate New Complexity 64

Section 4.4.5: Result of Phase 4: Compare Rank Result 67

Section 4.4.6: Conclusion ... 67

Chapter 5: Conclusion ... 68

Section 5.1: Complexity Sorting and Difficulty Mapping 68

Section 5.2: Measuring Digital Game Complexity .. 68

Appendix A: Puzzles in Experiments………………………………………………70

Appendix B: Collection of Pure Puzzle………………………………...………….72

Appendix C: More Result of Experiment One……………………………….……75

Appendix D: Calculate Branch and DeadEnds………………………………….…76

Appendix E: Game Data Format………………………..……………………..…...76

Appendix F: Puzzles in Experiment Two…………………..…………….…….…..80

Reference………………………………………………………..……………………82

vi

Table Index

Table 1 Max values in puzzle database. ... 46

Table 2 Complexity and Difficulty result. ... 53

Table 3 Result of match and sorting similarity. .. 56

Figure Index

Figure 1 Two type of DDA. ... 6

Figure 2 Concept Model of Puzzle developed by Scott Kim. ... 9

Figure 3 Five genres of puzzle .. 10

Figure 4 Emergence Phenomenon Example .. 15

Figure 5 Example of a puzzle Solution. .. 20

Figure 6 Example of tree search ... 21

Figure 7 Concept of minimum local search ... 26

Figure 8 Flow Chat of Simulated Annealing. .. 27

Figure 9 Game Taxonomy by Media. .. 31

Figure 10 Mental State in flow theory. .. 32

Figure 11 Cross Block’s Puzzle Game Space. .. 35

Figure 12 Branch and Dead End Calculating Process ... 36

Figure 13 BD-Complexity Calculating Model ... 36

Figure 14 Example of random generated process of puzzle “cross block”. 43

Figure 15 Calculate for Branch and Dead ends by using answer node. 44

Figure 16 Average Number of Branches of each step .. 45

Figure 17 Average Number of dead ends of each step .. 45

Figure 18 Average complexity of each step ... 48

Figure 19 Result of Average all solved step complexity. .. 48

Figure 20 More Detail of complexity mean in puzzle game space. 49

Figure 21 Average complexity before step 16. ... 49

Figure 22 Average complexity before step 11. ... 50

Figure 23 Ratio of basic difficulty in puzzle database. .. 51

Figure 24 Complexity Average of each Crossblock difficulty level 52

Figure 25 Complexity and Difficulty rank result ... 54

Figure 26 Sudoku Puzzles provides in TSA. .. 57

Figure 27 Average branch for each difficulty levels. .. 58

Figure 28 Average dead ends for each difficulty levels. ... 58

Figure 29 Average Degree of Complexity for Each Difficulty Level 59

Figure 30 Puzzle Samples Sorted by Complexity ... 60

Figure 31 Rank of complexity Sorting for each puzzle samples. 60

Figure 32 Process of select sample from puzzle database as sorting list. 61

file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835312
file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835313
file:///D:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv5.docx%23_Toc295835314
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386863
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386864
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386865
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386866
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386867
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386868
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386869
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386870
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386871
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386872
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386873
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386874
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386875
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386876
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386877
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386878
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386879
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386880
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386881
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386882
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386883
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386884
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386885
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386886
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386887
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386888
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386889
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386890
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386891
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386892
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386893
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386894

vii

Figure 33 Result of Sorting Similarity ... 61

Figure 34 Training sample select process... 63

Figure 35 Error and iteration of simulated annealing. ... 64

Figure 36 Result of parameter Band D adjusts over 1500 iteration. 64

Figure 37 Average complexity for each difficulty level after parameter tweak. 65

Figure 38 Complexity of each puzzle sample after parameter tweak. 65

Figure 39 Rank of complexity sorting after parameter tweak. 66

Figure 40 Sorting Similarity after training. ... 67

Code Index

Code 1 Data Structure Node. ... 22

Code 2 Implementation for BFS tree search algorithm. .. 22

Code 3 Implement for expand function. .. 23

Code 4 implement for graph search. ... 24

Code 5 Boltzman distribution for simulated annealing. .. 28

Code 6 Temperature decrease function for simulated annealing. 28

Code 7 Accept function for simulated annealing. .. 29

Code 8 Implement for random generate cross block. ... 42

Code 9 Implement normalize function for BD-Complexity Calculate Model 47

Code 10 Implement for sorting similarity. ... 55

Code 11 Implement for energy function in Simulated Annealing. 63

file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386895
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386896
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386897
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386898
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386899
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386900
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386901
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386902
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386852
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386853
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386854
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386855
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386856
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386857
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386858
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386859
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386860
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386861
file:///C:/workspace/Dropbox/workspace/MasterThesis/9857515_張景照_masterthesis_contentv6.docx%23_Toc297386862

1

Chapter 1: Introduction

How do we measure a puzzle‘s level of difficulty? Game designers may employ

their expertise and feedback from players to rank the puzzles they have designed.

They may also take a simpler but nevertheless systematic way to reach the goal, for

example, adopting a game-specific feature as criterion and sort the puzzles out. A

handy measurement is the shortest step required to solve the puzzle, the less steps

required, the easier the puzzle.

In practice, it may be fun enough for most gameplay, because players can reach

the flow experience (M. Czikszentmihalyi, 1998) when they conquer one puzzle after

another arranged in ascending level of difficulty. When the difference in difficulty is

not that clear, the game producer can put puzzles into categories of difficulty, e.g.,

easy, medium, and hard, to allow the players select their current goal and test their

skills. Obviously, there is a risk factor in such approach. When puzzles arranged in a

wrong order and the players are not capable of picking the right challenge for their

current skills, they may endure a long period of frustration and anxiety, so as to give

up the game. Therefore, it is desirable to have a way to ‗optimize‘ the gaming

experience by arranging puzzles in a smoothly ascending order of difficulty so that

most players can enjoy an uninterrupted challenge/skill upgrading experience.

Our goal of this research is to propose a general-purposed method to develop a

function that can arrange puzzles in ascending level of difficulty. However, before

trying to approach that goal, some questions need to be answered. The first is: what is

difficult?

2

Section 1.1: Background

” Game is a system in which players engage in an artificial conflict,

defined by rules that result in a quantifiable outcome.”──Rules of Play

(Katie Salen & Eric Zimmerman, 2003)

Section 1.1.1: Digital Game: What is difficult?

Based on flow theory, we know there has two key elements: Challenge and Skill.

In order to discuss about what is difficult, first, I give an assumption below:

Assumption 1: Challenge is a non-linear increase function relate to how many

obstacles are designed in game.

Assumption 2: Skill is a non-linear increase function relate to your performance

in the game.

As we known, flow theory point out when challenge meets skill, player is in

the state, called flow. What is this phrase means? Obviously, flow state equal to

proper difficulty for player. Degree of difficulty is highly related to challenge and skill.

Therefore, I give third assumption to define what is difficult:

Assumption 3: Difficult is a non-linear function relative to the combine of

challenge and skill.

 Furthermore, if we want to design the function describes above, C-style function

prototype may look like following:

1. float Challenge(int numberOfObstacle);

2. float Skill(int playerPerformance);

3. float Difficult(int challenge, int skill);

But, there comes some problem.

How to design difficult function? In order to do that, we must ask: what is the

relation between challenge and skill? Although we can say relation between

difficult and challenge is positive relation, difficult and skill are negative relation,

however, relation between challenge and skill are ambiguity. Try to consider

following example:

3

1. If we know both difficult and skill are high, then we can say challenge > skill,

because player feel game are difficult. Therefore, reduce obstacle in game

can decrease difficulty.

2. If we know both difficult and challenge are low, then we can say challenge <

skill, because player feel game are easy. Therefore, add obstacle in game can

increase difficulty.

3. But, if both challenge and skill are high or low, how can we say? It just

means challenge just meet player‘s skill, and has a “proper difficulty”, there

seems doesn‘t has any relation between challenge and skill.

 If we want to figure out relation between challenge and skill, and then calculate

out difficult will be first task. But, there will be some trouble. Why? Since difficult is

an objective concept depends on how people feeling about, thus, if we want to tell it

degree, we must compare with player‘s previous experience.

 For example, when we read the introduction or manual of a game, there doesn‘t

emerges any feeling call ―difficult‖.──although we may feel the complexity of game

rule──After we get into the game, finally, we can tell the degree of difficult compare

to other similar game or problems.

Of course, some apparatus, like Eye Tracking, SCR (Skin Conductance

Response), EEG (Electroencephalography), to collect physical reply when playing the

game that can used to data mining on people‘s cognitive level of feeling to help us

find out what is difficult. For example, there are some research trying to find out

player experience to explain the degree of playability for a game (Lennart E. Nacke et

al., 2009; Lennart Nacke & Craig A. Lindley, 2008). Of course, it may be used to

measure the degree of difficult, but these methods have too much disadvantage when

apply in real game design (you can‘t always ask player to equip physical apparatus

when they play the game), therefore, goes beyond our research, so we don‘t want to

dig into this method for discuss about difficulty.

 Before close this section, here is summary: we can‘t design difficult function

without knowing the relation between challenge and skill, if we want to know this

relation, we must use some subjective method to measure the player‘s feeling, such as

Eye Tracking, SCR, or EEG, to decide this dynamic relation.

 From discussion above, we know difficult is a relative concept that based on

4

player past experience. And then, next problem we want to focus on is: how do we

manipulate such concept in digital game? In next section, I will introduce a technique,

Dynamic Difficult Adjust (DDA), which trying to create flow state by adjusts difficult

based on player‘s skill.

Section 1.1.2: Digital Game: Dynamic Difficult Adjust

Static difficulty is a popular method that almost single player game uses it for

player to adjust game difficulty. For example, in FTG or STG, we can always set

difficulty into Very Easy, Easy, Normal, Hard or Very Hard in system setting. But,

there exists several problems when we look this method from the viewpoint of flow

theory. First, difficult must manually set before game start by game designer. Second,

difficult is fixed while playing. Third, therefore, it can‘t auto-adjust according to

player skill, that may trouble in crate flow state. Four, the most important, the feeling

of difficult is relative to game designer but not player. From the reason describe above,

there comes the research, call Dynamic Difficult Adjust (DDA).

DDA is based on flow theory. It core concept is to adjust difficult according to

player skill that try to adjust the game to “proper difficulty” for player. Therefore,

how to design challenge and skill function are important for this method. As we

defined previous, calculate obstacle in a game maybe an easy task for challenge

function, but how do we measure player performance for skill function? Fortunately,

every game must have a quantifiable outcome. Like game play score or player

remaining health, it is useful to help us to decide player performance.

If player skill > challenge, then add obstacle in game can increase difficulty. If

player skill < challenge, then reduce obstacle in game can decrease difficulty. Notice,

how well of skill function designed effects the performance of DDA. And skill

function is affected by the game design. Successful game design must bring

meaningful play to player. Katie Salen and Eric Zimmerman‘s (2003) book ―Rules of

Play, chapter3”, define meaningful play as descriptive and evaluative:

The descriptive definition addresses the mechanism by which all games create

meaning through play. The evaluative definition helps us understand why some games

provide more meaningful play than others.

The descriptive definition of meaningful play: Meaningful play in a game

emerges from the relationship between player action and system outcome; it is the

5

process by which a player takes action within the designed system of a game and the

system responds to the action. The meaning of an action in a game resides in the

relationship between action and outcome.

The evaluative definition of meaningful play: Meaningful play is what occurs

when the relationships between actions and outcomes in a game are both discernable

and integrated into the larger context of the game.

Discernability means that a player can perceive the immediate outcome of an

action. Integration means that the outcome of an action is woven into game system as

a whole.

From descriptive definition above, we know player performance can be measure

through the relationship between action and outcome, if game generate good outcome,

means player has good performance in game.

In addition to, evaluative definition indicate where we can find player‘s

performance. Discernability means outcome of action takes in game can help DDA to

adjust difficult immediately. Integration means outcome of action takes in game can

help DDA to generate next game level according to player overall performance. I call

former as Immediate Difficult Adjust (IDA), which try to create an even game──but,

beatable──according to player agency and tension of game. And later as Content

Difficult Adjust (CDA), which combine Procedural Content Generation (PCG)

technique──means use program to auto-generate game content──to consider

overall difficult balance to generate levels. I summarize these two DDA methods in

Figure 1.

6

There have some DDA example:

1. Hunicke Robin and Chapman Vernell (2004) have applied DDA to FPS,

Half Life, use IDA to adjust difficult.

2. Ben Weber (2010), in his project “Infinite Mario with dynamic difficulty

adjustment” use CDA to generate new level according to player

performance.

I don‘t want to go into detail of DDA because it will take several pages to discuss

it, but I think it is important to understand how to manipulate the feeling of difficult in

this research.

Although we introduce much about DDA, but there still have an ambiguity on

challenge and skill function. Before we design these two functions, we must consider

following situation in order to decide detail implements method:

1. How players are affected by obstacles? For example, the powerful

monster always increases the challenge and healing potions can decrease.

2. How player performance measured by actions they takes in game? In

some game systems, players receive more positive performance feedback

when they choose certain actions over others.

Next, let‘s examine more about how to building challenge and skill function from

the view point of player modeling.

Figure 1 Two type of DDA.

7

Section 1.1.3: Digital Game: Player Modeling and DDA

The purpose of player modeling is trying to find out the relationship between

obstacles, player action, and player feeling about game in order to do content creation

task. In Pedersen‘s research, they collect following three data to validate how player

feeling about an action game, Infinite Mario Bros (C. Pedersen, J. Togelius, & G. N.

Yannakakis, 2010):

1. Controllable Feature: like number of gaps and average width of gaps, spatial

diversity of gaps…etc., that can be controlled by game designer or level

generate program. This part is related to obstacle.

2. Gameplay characteristics: like number of jump, time you complete the level,

item you collected…etc., that can only be collected when a player play the

game. This part is related to the action of player takes in game.

3. Questionnaire: After finish a pair of level, player is asked to rank the games

in order of emotional preference. Pedersen define following six emotions:

Fun, Challenge, Frustration, Predictability, Anxiety, and Boredom. Their

questionnaire may looks like this: 1. Level A has more challenge then level B.

2. Both games were equally challenge. 3. Neither of two game felt challenge.

According to collected data, they calculated correlation coefficient. Therefore,

we can actually tell the degree of obstacle or actions affects player mental state in

―Infinite Mario Bros‖. For example: whether player complete level has ―-0.5‖

negative relation and average of gap width has ―0.5‖ positive relation to challenge.

For detail experiment and result, you can find it in their research paper ―Modeling

Player Experience for Content Creation‖ (C. Pedersen, et al., 2010). Based on the

degree of relations, DDA will perform more accurately according to player skill.

There has much Player Modeling application, like create personalized race track in

racing game (Ratan K. Guha, Erin Jonathan Hastings, & Kenneth O. Stanley, 2009;

Togelius. J., De Nardi, & Lucas, 2007), and adapt agent behavior to human player

(Kang. Yilin & Tan. Ah-Hwee, 2010).

Here, we finally come into our topic. Is puzzle game can apply such method for

sorting difficulty? What is controllable feature? And what is gameplay characteristic?

How do we design our questionnaire in order to measure the relationship between

obstacles, player action, and player feeling about game? For answer the question, we

must ask: 1. what is puzzle? 2. What‘s difference between other digital games?

8

Section 1.1.4: Puzzle Game: What is Puzzle? ──

Meaning of Play

 It is a good start point to quote from Scott Kim‘s (2003, 2008) presentation slide

on Game Development Conference (GDC), ―The Puzzlemaker’s Survival Kit‖: “A

puzzle is a problem that is fun to solve──as opposed to everyday “problems”── and

has a right answer ──as opposed to a game (no answer) or a toy (no goal).” This

definition not only explains what puzzle is but also describe the motivation of why

people play it. From the definition, we know puzzle is a problem but different from

everyday problems we encounters. Although problem means something trouble and

undesired, however, we will feel fun to solve it.

 Why? Scott Kim (2003) describe: “puzzle game symbolizes our desire to find

order in the universe.”. When we see something in disorder states, people always

want to control it── that is why puzzles display itself as complex forms and simple

forms after being solved. Furthermore, as James Paul Gee (2005) says: puzzle supply

order, control and workable environment, therefore, ―goal‖ and ―right answer‖ are

proved in puzzle worlds, not like a toy, puzzles are encouraging us to solve and

control those problems. ──Lusory attitude, the term mentioned by Bernard Suits

(2005), in the book “The Grasshopper: Games, Life and Utopia” can also explain the

attitude we face the ―puzzle problems‖.

 What is Lusory attitude? Lusory comes from the word ―ludo‖, in latin means

play, describe the attitude of players required to enter a game (Katie Salen & Eric

Zimmerman, 2003). In the puzzle, it is the attitude we confront the complex of puzzle

emerges from rules. For example, although we can just rearrange puzzle that simply

eliminate it complexity, but people still play it according to game operation rule.

 From description above, we already know what is puzzle and attitude people face

it. And then, there comes a key problem: what is different between puzzle and other

digital game? From Scott Kim‘s definition, he says game is no answer and puzzle has

a right answer. What is it mean? Quote from Chris Crawford (1984), we can give such

conclusion: game requires player to build their solution, but puzzle requires player to

find out designer‘s solution. Therefore, we may still feel fun when play other

digital-game again and again, but only few times for a puzzle.──a game is fun if

there exists uncertainty──because for other digital-game, player doesn‘t know

whether they can complete the level, but for a puzzle, they will remember how to

solve it in the few time of play the same level.

9

 So far in this section, I introduce about the meaning of play, it is important

concept for designing meaningful game. Next, let‘s examine about the component in

puzzle game.

Section 1.1.5: Puzzle Game: What is Puzzle? ──

Component

 From Figure 2, Scott Kim (2003) separates game and puzzle as two different

concepts, as mentioned in previous section, game and puzzle has different meaning of

play. But, by introduce situation component, we can fit puzzles into a game. Situation

gives a goal that driven player to solve the puzzle; it explains background by using

story or a set of operation rule for player to comprehend it is a ―game‖. Without

situation component, puzzle can‘t be a game. Situation guides us to handle the

problem. The problem, different from everyday problems we encounter, it looks like a

maze that has many choices and dead ends reside in it. Choice confuses player to

realize which road is correct, and dead ends prevent they from solution. But different

from ―real maze‖, it requires player using insight──the ability to find out which

choice is correct and quickly ignore dead ends.──to solve the puzzle. The solution is

applied on application in game. The use of Situation and Application component is

depending on the genres of puzzle.

Figure 2 Concept Model of Puzzle developed by Scott Kim.

10

 In Figure 3, we can see Scott Kim (2008) has separated five genres of puzzle:

Action, Story, Construction and Competitive and Pure puzzle. Basically, different

puzzle will require player different skill, for example:

1. In Action Puzzle, like Tetris, it requires player eye-hand coordination skill to

handle the game.

2. In Story Puzzle, like Machinarium (Amanita Design, 2009) it give a story

before each puzzle start in order to create immersion situation for player, but

player needs the ability to organize overall story in order to identify which

key item are used to solve the problems in game.

3. In Construction Puzzle, like Incredible Machine, it requires player Physics

knowledge in order to know whether your machine can work properly to

solve the problem.

4. In Competitive Puzzle, like Boggle, it needs both eye-hand coordination and

knowledge of English vocabulary in order to beat out others and win the

game.

 Remember, the research goal of this thesis is to sort puzzle according to their

difficulty. Therefore, this research only focus on pure puzzle, because puzzles that

require math logic rather than physical skills or other types of knowledge, like action,

therefore it is easier to design difficult measure function compare to other genre of

puzzle. You can refer to Appendix to know the rule of “Cross Block” and “Sudoku”

Figure 3 Five genres of puzzle

11

that used in this research.

Section 1.1.6: Puzzle Game: Difficult Measure and Sorting

 In this section, I want to answer the question raised at Section 1.1.3: Is puzzle

game can apply DDA for sorting difficult? What is controllable feature? And what is

gameplay characteristic? How do we design our questionnaire in order to measure the

relationship between obstacles, player action, and player feeling about game?

 Of course, it is possible to apply DDA for a puzzle game if we can calculate

difficult, but there exists some problem in practical use.

1. For controllable feature, choices and dead ends is obstacle in puzzle but not

easy to control it compare to other game. In puzzle, because these two

features always emerge from the logic rule of game system, we can‘t find out

a proper number of obstacles easily, it will cost much time to dynamic adjust

difficult for puzzle. For example, in Cross Block, number of choice and dead

ends emerge from the square interaction with other square, therefore, it need

much time for auto-generate program to find out proper number of

controllable feature for next level.

2. For gameplay characteristic, we can‘t get accurate data from player. Because

meaning of play for a puzzle is to find out a solution, therefore, player tend to

know how to solve it if they already solves the problem that same as pervious.

Therefore, use time or retry as characteristic for measure performance, will

trouble with large variance of collected data for same puzzle that cause

analysis difficult.

3. For questionnaire, it is difficult to design question to find out relationship

between each obstacle and action, because player feel about the puzzle by

their whole emerge pattern but not individual object.

 Remember, difficult function is depending on the challenge and skill function,

but every player has different skill every time they play puzzle, therefore ―optimal

arrange‖ of puzzle will change every time for every player. Let‘s summary we had

discussed so far: difficult is a relative concept that based on player past experience

and can‘t be measure directly; if we want to apply DDA to puzzle game, it will also

have some trouble in increase obstacle and measure player performance to dynamic

adjust proper difficult for a player.

12

 If such ―optimal arrange‖ is difficult to achieve, why don‘t we sort puzzle by

some criterion and map it to static difficult (Very Easy, Easy, Normal, Hard and Very

Hard)? Because puzzle has the property of emergence that is some kind of complex

system, therefore, the goal of this research will focus on how to measure complexity,

at the same time, design a method to approximate it to difficult function (static

difficult). Compare to DDA, this method is more practical to real puzzle game

design process, that we doesn‘t need to consider player skill dynamically, and

resorting and rescore puzzle‘s difficult according to their performance.

 My argument here is trying to separate the concept more clearly between

Difficulty and Complexity that will more convenience for us to further discuss the

topic.

From the aspect of research in task difficulty and task complexity discussion,

many papers separate these two terms as different concept: complexity as objective

measure and difficulty as subjective. (C. D. Güss, E. Glencross, Ma. T. Tuason, L.

Summerlin, & F. D. Richard, 2004; J. Kim, 2005; P. Robinson, 2001)

 Similar as our argument above, Jeonghyun Kim (2005) further divided difficulty

into two group: first is expected difficulty, which is the percept of difficulty before

you start the task; and second is experienced difficulty, which is the feeling after you

finish the task.

 Next, I want to introduce complexity theory and it relation to puzzle game, which

is an essential concept in this research.

Section 1.1.7: Puzzle Game: Complexity Theory

 Complexity Theory has two kinds of meaning: one is Computational Complexity,

and another is the study of Complex System. In this section, I will briefly introduce

these two fields and their relation to puzzle game.

A. Computational Complexity

 Computational Complexity is the study of theoretical computer science and

mathematics that focus on how efficiency to handle a problem (M. Sipser, 1997;

Sanjeev Arora & Boaz Barak, 2009). For example, there have three famous type of

computational efficiency problem NP, NP-Complete and NP-Hard, indicate whether it

13

can be solved within linear time; furthermore, there also exists the problem about

space efficiency: PSPACE, PSPACE-Complete and PSPACE-Hard, indicate whether

it can be solved with limited space. Give an overview, there have some research may

like: Reduce Time Complexity By an Algorithm for solving a puzzle(R. E. Korf, M.

Reid, & S. Edelkamp, 2001), analysis Complexity of Search a Graph (N. Megiddo, S.

L. Hakimi, M. R. Garey, D. S. Johnson, & C. H. Papadimitriou, 1988) and a reduction

method for handle games(R. A. Hearn, 2006).

 Puzzle is very suitable for further study in this field, because it require player to

choose a sequence of action in order to solve it that has many interesting feature for

calculate model. Quote from Robert Aubrey Hearn (2006), in his research,

Computational Complexity of a puzzle can classify into following category: ―If a

game is a one-player puzzle with a bounded length, odds are it is NP-Complete.” and

“Indeed, unbounded puzzles are often PSPACE-Complete.”

 Bounded and unbounded puzzle means whether it has a restrict length to solve it.

In unbounded puzzle we can always go back to previous state, therefore it has no

restrict length. Both of them need exponential time to compute a solution, but they are

different in whether we can use polynomial space to verify a specific action sequence

is correct. Because Savitch‘s (1970) theorem had proofed that NP-SPACE = PSPACE,

therefore we can solve any puzzle problem with polynomial space. The main research

direction in this filed is how to solve a puzzle more computational and space

efficiently. Is computational effort relate to complexity of puzzle and can use for

sorting purpose? I think it is not a good idea, because Computational Time and Space

problem, your machine will run a long time or crash due to memory lacking when

compute a very complex puzzle.

B. Complex System and Emergence

 What is complex system? Although this filed has been studied in modern

computer science for a long time, but it is one of profound problem that people tends

to understand in past several thousand years. Aristotle (384 BC – 322 BC), a noted

Greek philosopher, who first organized the concept in his questions about

Metaphysica: “The whole is more than the sum of its parts.”, that actually indicate the

most important property of complex system.

 Jeremy Campbell (1982) looks this ―whole phenomenon‖ from the aspect of

information, language, and DNA, says that when system beyond a ―complex barrier‖,

14

entirely new principle will come into play. The principle, call emergence, may allow a

system to self-organizing, replicating, learning, or adaptive itself to environment.

 Penny Sweetser (2007) has summarized some common property for a complex

system: Elements, Interactions, Formation, Diversity, Environment, and Activities. In

other word, if there exist a set of elements, that will inter-interact with a set of rule in

an environment for specific purpose, their interaction process has large state space,

element will reorganize itself over time changed, and then it is a complex system. The

first deep exploration about emergence is from John Holland‘s (1999) book

―Emergence: From Chaos to Order‖, shows many example about how emergence

arise from complexity.

 When a system is emergence, it means we can‘t predict it high level behavior or

structure of system from observer lower level. But, not all of system is complex.

Christopher Langton (1995) provides four level of complexity for understand system:

Fixed, Periodic, Complex, and Chaotic. The boundary between Periodic and Complex

is complexity barrier; between Complex and Chaotic is edge of chaos. Beyond

complexity barrier means system will have emergence phenomenon, but if it complex

reaches chaotic level, this phenomenon will disappear. Following two “Cross Block”

puzzle levels in Figure 4 shows complex and chaotic level of puzzle:

15

 It shows emergence phenomenon in the “Cross Block” puzzle, that both choice

and dead ends will increase when it beyond complexity barrier and dead ends will

decrease when reach chaotic level.

 The study has widespread research in many fields, such as Information

Complexity on Communication System (C. E. Shannon, 1948), Artificial Life

(Adamatzky. Andrew, 2010; Christopher G. Langton, 1995), Biological System

(Gerald M. Edelman & Joseph A. Gally, 2001), Economic System and Human Society

(Holling, 2001)…etc. We can‘t survey all of those fields here for understand what is

complexity, since it will diverse our discussion to focus on puzzle game. With a

general idea, quote from Penny Sweetser (2007), we simply define complexity as

following meaning :“Complexity is a measure of the difficulty involved in

understanding a system.”

 What means to understanding the puzzle? If someone can solve a puzzle level,

we say he/she understand it. How do we measure complexity of a puzzle? From

previous discuss, we know insight is important skill to solve a puzzle, and there has

two components will affect it: choice and dead ends. But, because they are emergence

phenomenon in the puzzle, therefore we can‘t directly control it. How do we calculate

it? From computational complex theory we discuss, it will fail when we want to

expand search space in a puzzle. In chapter 4.1, I will introduce our approximate

method.

(a) Chaotic Level (a) Complex Level

Figure 4 Emergence Phenomenon Example

(a) Complex level of puzzle that has high complexity. (b) Chaotic level of puzzle that with

no complexity (no dead ends) that every square can interaction with each other to form a basic

element that can be canceled by player.

16

Section 1.2: Motivation: Challenge in Puzzle
Game Sorting

 Basically, we can classify difficult model into two classes: dynamic difficult and

static difficult. There has several challenge of measure dynamic difficult in puzzle

game: First, because puzzle game have emergence property, therefore it is difficult to

control obstacle. Second, we must design a method to distinguish those puzzles which

players already know their answer in order to measure player‘s skill correctly. Third,

it is difficult to find out relation between each object, because the difficulty of puzzle

is ―whole‖ not individual obstacle. Therefore, in this research, we will only focus on

how to measure complexity and map it into static difficult.

Section 1.3: Motivation: Mobile Game, Market
and Puzzle Game

 Recently, mobile game market has dramatically growth, especially when Apple

releases their cutting-edge product: iphone and ipod, there has more and more

company starting their game project on mobile platform. According to Apple‘s official

news, the number of App Store──an online software download service for Apple‘s

product (iPhone, iPod, iPod Touch), which launch on July 10, 2008

(Apple).──downloads already exceeds 10 billion, furthermore, it is worth noting that

TOP 10 of popular iPhone paid Application, 9 is games (Robin Wauters, 2011). Hence,

the market in the mobile game has large amount potential benefit. There has a

research shows that Mobile app market will be worth $25 billion U.S. dollar By 2015,

compare to 2010 is $ 6.8 billion (Sarah Perez, 2011).

 My research is focus on puzzle game, which is very suitable for mobile platform,

because it has short play session and player can stop it at any time without punishment

compare to other hard core game. In fact, “The games that are popular on the mobile

platform are mostly casual games”(Elina M.I. Koivisto, 2006)

 Puzzle is a kind of casual game, which is popular in the mobile game. Just as

introduce on background, there have five different genres. But, we only focus on pure

puzzle, which doesn‘t have any other additional element, since it convenience for our

research on calculate and sorting complexity.

 Barry Clarke (1994) in his book, ―Puzzles for Pleasure‖ collect large number of

puzzle and classify into two category according to their difficulty: Popular Puzzle and

17

Advanced Puzzle. Popular Puzzle requires modest insight and engagement that suit

for every people; Advanced Puzzle for those puzzle-solving manias, who think

Popular Puzzle too easy. In past time, designer tends to use their own sense to rank the

puzzle they design. If we can tell which puzzle is Popular, which is Advanced and tell

the degree of it complexity that relative to others, it will very helpful for puzzle game

design process.

Section 1.4: Goal

 The purpose of this research is to design a general method that can sort pure

puzzle according to their complexity. In order to grasp more accurate purpose of this

research, here comes the summary about Difficulty and Complexity that described in

background.

 Difficulty is a subjective and relative concept that based on player past

experience. Both challenge and player skill will affect it, but because measure player

skill in puzzle is difficult, therefore, we use complexity instead of difficulty for

sorting purpose.

 Complexity is an objective concept that is the measure of difficulty involved in

understanding a system. In puzzle game, how difficult for a player to understand a

puzzle depends on their insight to a puzzle. As introduced in previous section, insight

will be affected by choice and dead ends, therefore, this research only uses these two

criterions for complexity measure, furthermore, design a method that can approximate

complexity to human sorting (difficulty).

Section 1.5: Contribution

 Puzzle is a popular game type in mobile platform, which have short play session

time that is very suitable for time killing. As describe in motivation section, there has

more and more company starting their game project on mobile platform. But, there

exists a trouble for design a puzzle game: How do we decide arrange of puzzle? In the

past research, they are focus on how to solve a puzzle more efficiently in term of

computational and space complexity. However, it is not necessary for real game

application. Although all puzzle need to validation a solution, but if it cost too much

time, then it is not practical. The focus of this research is on complexity sorting,

which takes practical into account, is more essential for puzzle game designer.

18

Because almost all puzzle game can auto-generate by program, we can simply

generate large number of levels, therefore how to pick out a set of appropriate

complexity levels is very important topic.

Our result will be a calculate model, which can calculate complexity for any pure

puzzle. If you have a solving program and a solving sequence, then our model can tell

the score and rank base on all puzzles in the puzzle database.──It is very convenience

for puzzle game designer to analysis what is difficult in puzzle.

19

Chapter 2: Literature Review

 This chapter mainly focuses on some basic technique, theories and method that

are related to our experiment method. You can skip this part if you already familiar

with it.

Section 2.1: Tree Search

 Formulate game as tree search problem is very popular technique in the field of

Game AI. Programmer always apply this method to create ―intelligent‖ in game, for

example, in two-player game like go, chess or Othello, we create intelligent opponent

to compete with human player; in RTS, like AOE, StarCraft, we let game agent find

out an optimal path from ―A‖ point to ―B‖ point to reduce effort of player control; in

puzzle game, like Sokoban, Sudoku, try to find out and validate a solution sequence to

give the hint for player.

 Although I describe some application of tree search above, but I still doesn‘t

explain what it is. What is tree search in term of programming? It is a problem solving

technique by discrete and expanding possible state of problem in order to find out a

solution. ―Problem‖ and ―Solution‖ are two essential concepts in this method. Russel

(2002) in his book list four element to define what is Problem:

1. Initial State: like concept model of puzzle I mentioned in chapter 1, it is the

entry of maze.

2. Successor Function: a set of action-state pair, record which action can lead to

which state. In tree search problem, it is branch or choice.

3. Goal Test: test whether our goal is achieve. It can be explicit, if current state

is on certain state we already list in goal list; or it can be implicit, if certain

condition of current state is achieve.

4. Path Cost: the cost from initial state to current state, it can be simply define

as time, distance or number of action executed, depend on your application.

 The Solution is a set of action sequence that can lead problem from initial state to

goal state. Figure 5 is an example of Solution in Cross Block Puzzle:

20

Initial State, Path Cost = 0

Action 2: (4, 5) (9, 5)

Path Cost = 1

Action 2: (1, 1) (1, 10)

Path Cost = 2

Action 3: (4, 3) (4, 9)

Path Cost = 3

Action 4: (1, 10) (7, 10)

Goal State, Path Cost = 4

Figure 5 Example of a puzzle Solution.

21

 The core idea of tree search is to explore over all state space of problem in order

to found out a solution. Like it name, when you explored the state, you will find it

similar to the branch of tree, see Figure 6.

 How

do we design such algorithm? Because ―state‖ only store representational dimension

of problem, therefore we need other data structure to record other information, such as

path cost f, depth of tree search, current state come from which state(parent), which

state current state can go (child), almost all literature call this kind of data structure as

―node‖. You can simply use adaptive pattern or wrapper pattern, from design

pattern(Erich Gamma, Richard Helm , Ralph Johnson, & John M. Vlissides, 1994), to

including such information for state, the C++ code like Code 1:

Figure 6 Example of tree search

22

 Have node as basic data structure, our tree search implementation looks like

Code 2 and Code 3: algorithm from Russell‘s (2002) book, chapter 3.

Code 1 Data Structure Node.

Code 2 Implementation for BFS tree search algorithm.

23

In this algorithm, only thing you must do is to design your State class and

successor function because it various depends on application detail. But still, it have

some problem if there have some action that can go back to same state that previous

had expanded, then program will fail to explore over all state space because same stae

will be expanded again and again. In order to solve such problem, we must introduce

a list that can record state that already be expanded. The algorithm is called graph

search in Russell‘s book. Code 4 is my implementation:

Code 3 Implement for expand function.

24

There have three main variations for search algorithm: Depth-First Search (DFS),

Breadth-First Search (BFS) and Uniform-Cost Search (UCS), all of them are different

at which node is expanded first. BFS expands the node from beginning of fringe; DFS

expands from back; and UCS expands from lowest cost.

 Also, they have different benefit in solving the problem. BFS and UCS can find

optimal solution, but because all nodes must keep in memory, therefore space will be

a big problem; else, although DFS doesn‘t have memory problem, but it can‘t find

optimal solution and not suitable for those problems which total depth too high or

unlimited.

 Therefore, there comes the method to improve the problem describe above, like

Iterative Deepening Search. By gradually deeper search depth, our search tree can

improve space problem cause in BFS. Another improving technique like A*, is using

heuristic as cost measure, can reduce large amount of node doesn‘t need to be

Code 4 implement for graph search.

25

expanded that can increase searching performance.

 But the algorithm in this section only suit for one player game, for those

two-player game problems like go or chess, we need apply min-max or alpha-beta.

We don‘t introduce two-player game tree search, because it is not relate to this

research, but it core idea is same in this section.

Section 2.2: Local Search

 Although tree search is a powerful problem solving method, but there still exists

some weak point, for example, if we want to solve a problem that with very large state

space, then it will always cost too much time to find a solution or crashed because run

out of memory. It is not very efficiency for those problems, which only wants to find

an acceptable goal state but not their solution path, such as 8-queen problem, therefore,

here comes another algorithm in computer science, call Local Search.

 What is Local Search? It is an optimization technique by only consider current

state and gradually move to their better neighbor state and finally find an acceptable

goal state. The term optimization in this method doesn‘t mean it will always find a

global optimal, but because we can always find an approximated optimize state, call

local minimum/maximum or local optimal.

 Before starting search, we must design an objective function to measure the

goodness of current state. How do we define what is ―better state‖ will affect we try to

find is local minimum or local maximum. If we feed training sample into objective

function to tell program what is good and what is wrong, then it is a kind of machine

learning. Like genetic algorithm, neural network…etc., all of them are local search.

 Figure 7 shows the concept of local minimum search describe above that adapted

from (Russell. S. & P. Norvig., 2002) chapter 4:

26

 Of course, it is the best result if we can find global minimum, however, local

search algorithm always stuck on following three places: local minimum, flat and

shoulder. There doesn‘t any solution to remove this problem, but instead, we have a

principle to get a better result: ―If at first you don‘t succeed, try, try again.‖(Russell. S.

& P. Norvig., 2002), by randomly initialize state, you will get a chance to approach

best result over state space.

Section 2.3: Simulated Annealing

 Because classical local search algorithm tends to stuck on local optimal,

therefore if we can jump out local then it seem easier to find a better solution.

Simulated Annealing that are is such kinds of algorithm. By introduce some

probability to do random walk over state space, and then it can help us to jump out

local minimum / maximum state. The concept ―annealing‖ come from physical says

that it “is the process used to temper or harden metals and glass by heating them to a

high temperature and then gradually cooling them, thus allowing the material to

coalesce into a low-energy crystalline state.”(Russell. S. & P. Norvig., 2002)

Figure 7 Concept of minimum local search

27

 Figure 8 is the flow chart of Simulated Annealing:

 First step is randomly generating our state, it is because we want to increase

opportunity to find global optimal, and then we calculate energy of current state,

because this algorithm is local minimum search, therefore we can also call this energy

function as cost function. You must design this function depends on your application.

Next, try to test if current state is good enough, if so, and then it is an optimized state

and return it; else, try to adjust current state and test if we can accept this new state in

current temperature.

Randomly

initialized state

Stop?

Calculate Energy

(or call Cost)

 Is Accept?

newState =

disturb(currentState)

currentState =

newState

Decrease

Temperature

Return

 Optimized State

Yes

Yes

No

No

Figure 8 Flow Chat of Simulated Annealing.

28

 Temperature is a core concept in this method, it will affect whether we can

accept new state. It will accept new state by following rule, call Metropolis

criterion(Kai-Ju Chen & Kou-Yuan Huang, 2007):

1. First, Set deltaE = new state energy – old state energy.

2. If deltaE >= 0, then accept it immediately.

3. Else, using current temperature Tk to compute probability pt in Boltzman

distribution and randomly generate a random probability r.

4. If r <= pt, then accept it, else reject.

 Boltzman function is a function to simulate the probability of transforming

physical state in certain temperature. It is defined by Code 5:

 When temperature Tk is high, then we will tend to change our state in spite of it

is a bad state compare to old state. Until temperature continue decrease down to

certain number, and then state will keep to a stable and find a local optimal. You can

try same temperature many times. Code 6 is my implement for temperature decrease

function:

 And is Code 7 is my implement for accept function:

Code 5 Boltzman distribution for simulated annealing.

Code 6 Temperature decrease function for simulated annealing.

29

 The program used in this research is adapted from (Kai-Ju Chen & Kou-Yuan

Huang, 2007; Kou-Yuan Huang & Ying-Liang Chou, 2008), by design our state as

mathematical from, and gradually adjust its parameter, then we can get a set of

optimal parameter.

Code 7 Accept function for simulated annealing.

30

Section 2.4: Pseudo-Random and Real-Random

What is Pseudo-Random? In computer, we can‘t really generate Real-Random

number because it is run by deterministic process. If you feed same random seed

(used to calculate) for random program to generate random number, you will find

your program generates same random sequence as pervious run and this number

sequence will repeat again and again as a period length.

Because we can predict number generated by program if it algorithm is known,

therefore, we call computer-generated random number as Pseudo-Random. In

computer science, there has much research introduce many algorithms about how to

approximate real-random.

Mersenne Twister (MT) is a most popular Pseudo-Random method nowadays that

developed by Makoto Matsumoto and Takuji Nishimura (1998). Its name is come the

fact that period length in algorithm will be a Mersenne prime (𝑀𝑝 = 2𝑝 − 1). In this

research, we adapt a MT variation call MT19937 which has long period (219937 − 1)

and can generate 32-bit integer, for our random process.

Section 2.5: Game, Digital Game and Media

What is game? Beginning works may be trace back to Johan Huizinga in 1954. He

was analysis what is game and it meaning from the aspect of philosophy. According to

his works, Homo Ludens (Johan Huizinga, 1954), says that game will be a game if it

satisfy following three feature:

1. Voluntary: Participator must with his/her own will to join the game.

2. Unreality: The content of game must achieve some fantasy content.

3. Separation and Regional limitation: game exist a boundary between reality and

fantastic, call magic circle in Rules of Play(Katie Salen & Eric Zimmerman,

2003).

What is digital game? It is the game that integrate with many different media, like

word, picture, music…etc. We can separate all digital-game and non-digital game as

Figure 9:

31

Digital Game:

 Computer Game: use computer as game media.

 Console Game: use TV as game media like X-BOX, PS3.

 Handheld Game: use small device as game media like iPhone, PSP.

Non-Digital Game:

 Board Game: mainly use physical tool pencil, paper, or card …etc., as play

media like Monopoly, Carcassonne, usually as indoor activity.

 Sport: use player‘s own physical body to compete power for each other.

 Ground Game: Opposite to board game, it is an outdoor activity. Game like

Hide and seek, hopscotch, and geocaching may be classified into this

category.

 But Taxonomy for each game are not fixed, for example, Wii-sport is successful

in combining Console Game and Sport as new play style.

Figure 9 Game Taxonomy by Media.

32

Section 2.6: Flow Theory

 In psychology, flow means optimal experience when challenge meets skill. The

term are propose by Czikszentmihalyi (1998). Figure 10 is mental state refer in flow

theory:

„

 It worthy to note that flow condition only occur in high challenge and high skill,

where low challenge and low skill are considered as Apathy, means player doesn‘t

care about whether they can get good performance in the game.

Section 2.7: Three-part rule model

The model are proposed by Katie Salen and Eric Zimmerman (2003). They divide

game rule into three parts:

1. Operational rules: structure of a game, how can we operate the games. We

must first know the legal input for a game, and then can start gameplay.

Operational rules have some property as following:

a. It must be an unambiguous and explicit, for example, write down on the

manual.

b. It must share among all players that everybody can access to it without any

information loss.

c. It must be fixed and repeatable, so it can helps us to identify and confirm

Figure 10 Mental State in flow theory.

33

every game instance we play are actually same.

d. It must make binding among player that if they break the rule they may

pay some penalty that will reduce their fun experience, therefore player

may more likely to play the game according to the rules. Although there

have some situation that will make player to do some cheat, but the

problem doesn‘t relate to this research, so we don‘t discuss cheat problem

here. You can refer to Mia Consalvo (2007) works about cheat in games to

get more detail idea.

2. Constituative rules: It is logic part of games. How to explain game outputs and

select a set of legal inputs is essential part of gameness. When a better

explanation can be made, then better you will play the game. Player is required

to learn how to ―insight‖ this rules in order to win. If we want to design or

analysis gameness for a game, Constituative rule is most important part we

must care, because it will emerge large amount of play strategy. For example,

in ―Cross Block‖, Constituative rule is number of ―Cross Out‖ and wining

condition.

3. Implicit rules: like the social norm, it doesn‘t explicitly write down on the

game manual, but everybody will obey the rule voluntarily. For example,

when play the chess or Go, it will break implicit rules when one player hide

game board from his/her opponent. This rule will always change depends on

environment when you play the game. There may have some implicit rule

become operation rule in different environment.

By the description above, we conclude that Constituative rules are the source

which brings the feeling of difficulty to players.

34

Chapter 3: Method

 This research separate into following four experiments:

 Experiment One: Experiment on Puzzle Game Space for Complexity

Measure using “Cross Block”.

 Experiment Two: Validate results between Complexity and Difficulty

Using “Cross Block”.

 Experiment Three: Validate results between Complexity and Difficulty

using “Sudoku”.

 Experiment Four: Approximate Complexity to Difficulty, using “Sudoku”

The first two is preliminary experiment, which want to validate some property of

puzzle game. And another two is our main experiment, which validate the correct rate

of puzzle difficult sorting.

Section 3.1: Experiment One

 As describe in chapter 1, Difficulty and Complexity in this research is two

different concepts. Complexity is objective according to puzzle itself and Difficulty is

subjective according to player past experience.

 Generally speaking, the more solved step a puzzle required the more difficulty

and complexity a puzzle may be. But, is this assumption true? According to the

concept model of puzzle game developed by Scott Kim, introduced in chapter 1, we

known there have two attribute of puzzle will affect insight: choice, also call branch in

this research, and dead ends. I use these two criterions to measure complexity of

puzzle.

 In order to validate the result, first, I want to introduce how to calculate

complexity. Because this research uses “Cross Block” that game board size equal to

10 * 10 as experiment puzzle (refer to chapter 1.1.6), therefore, here coming two

Property need to validate:

 Complexity Property 1: When solved step increase, puzzle‘s complexity

should increase.

 Complexity Property 2: When cross_out is about half of game board, then it

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5).

35

 If result corresponds to both Property, then we can say complexity calculate

model in this research is successful. By generate large number of puzzle levels and do

statistic to observe whether overall Puzzle Game Space is corresponding property.

What is Puzzle Game Space? It indicates every possible state in a puzzle game.

 Here have 5 phases in this experiment:

 Phase 1: Random generate large enough samples for each solved step. Like

Figure 11, only sample puzzle levels in game board Size = 10 * 10.

 Phase 2: Calculate branch and dead ends for each puzzle levels. Generally

speaking, expand all node will get more accurate result. But I don‘t do that.

Why? Because there has many puzzles is NP-Complete problem. It takes too

much time, and either impossible to calculate for some complex puzzle. If we

only expand answer node (from random generate process, we know it), we can

reduce problem to linear time. Like Figure 12.

Figure 11 Cross Block’s Puzzle Game Space.

36

 Phase 3: Calculate branch and dead end‘s sample mean for each solved step.

 Phase 4: Calculate complexity for each puzzle levels, you can see the method

I propose in Figure 13. Normalize function in this model can help us explain

result of complexity and doing parameter adjust.

 Phase 5: Calculate complexity‘s sample mean for each step.

Figure 12 Branch and Dead End Calculating Process

Figure 13 BD-Complexity Calculating Model

37

 I will show the result in Section 4.1: for validate Complexity Property 1 & 2.

 But, there still need furthermore validate process about the difference between

Complexity and Difficulty. Therefore, in next experiment, we use ―Sudoku” puzzle to

validate the result and shows the ability of our method can handle different puzzle.

38

Section 3.2: Experiment Two

 The purpose of this experiment is to validate correct rate of complexity sorting

by compare result in experiment one to human difficulty evaluation of puzzle. Here

has 5 phases in this experiment.

 Phase 1: Select the puzzle levels from Puzzle Database with proper

complexity distribution for human evaluation.

 In order to validate the result of complexity, first, we must choose a set of puzzle

that have proper complexity distribute over puzzle game space. In experiment one, we

will generate a set of puzzle and calculate their complexity value with both parameter

B and D = 1. Because complexity value will be normalized, therefore, we can simply

separate into five basic difficulty groups as following:

 0 ~ 0.125 (Very Easy)

 0.125~0.25 (Easy)

 0.25 ~ 0.5 (Normal)

 0.5 ~ 0.75 (Hard)

 0.75 ~ 1.0(Very Hard)

 Although Boundary between each basic difficulty doesn‘t be validated, however

it is convenience enough for us to choose the puzzle. By random select the puzzle

levels from those four groups, we can get a set of puzzle with proper difficulty

distribution.

 Phase 2: Evaluate difficulty by real human player.

 Collect data from player, with following process:

1. When player completing (even give up) one puzzle level, let them give a

difficulty score between 0 ~ 100.

2. When player finishing all puzzle levels (even there exist some give up

levels), let them rescore all puzzle difficulty again.

 First score data wants to see whether player will affect their evaluation about

difficulty when complete more and more puzzle.

39

 Second score data wants to compare ranking result that the experiment one

generated. By average all collect data, we compute arrangement familiar ratio that can

tell how successful the experiment one is.

 Phase 3: Average difficulty that evaluated by real human and sorting the

result.

 Phase 4: Calculate sorting similarity between Difficulty and Complexity with

small puzzle base.

 Phase 5: Calculate sorting similarity between Difficulty and Complexity with

large puzzle base.

 The different between Phase 4 and Phase 5 is number of puzzle in puzzle

database. Small puzzle base means we only use experiment puzzle set that are picked

in phase 1 to compute complexity; large puzzle base means we will consider all

puzzle over puzzle space that are generated in experiment one to compute complexity

for each puzzle. Generally speaking, large puzzle base has more accurate complexity

value and sorting.

Section 3.3: Experiment Three

 We use the Sudoku puzzle that provided by Taiwan Sudoku Association (TSA)

(W. Kuang-Chen (巫光楨), 2008) to validate our result. In the website, they statistic

solve rate, time used to solved for each “Sudoku” puzzles and separate it to 5 ranks

that can corresponding to basic difficulty: very easy, easy, normal, hard, and very

hard.

 Phase 1: select proper amount of puzzle in each rank.

 Phase 2: find a solution sequence for each puzzle, we use solving program in

TSA (W. Kuang-Chen (巫光楨), 2008).

 Phase 3: Using solution sequence to calculate branch and dead ends for each

puzzle.

 Phase 4: compute complexity for each puzzle.

 Phase 5: compare rank result by website and complexity rank by calculate

sorting similarity.

40

Section 3.4: Experiment Four

 In this experiment, I will use simulated annealing to tweak parameter B and D in

Figure 4.3. By feeding training data collected in experiment three, we can improve

our complexity sorting result

 Phase 1: Random select training sample from TSA‘s ―Sudoku‖ puzzle.

 Phase 2: Use simulated annealing to tweak parameter B and D.

 Phase 3: Calculate new complexity.

 Phase 4: Compare rank result.

41

Chapter 4: Experiment

Section 4.1: Experiment One

 In this section, I want to validate following two complexity property by generate

large enough puzzle sample over Puzzle Game Space:

 Complexity Property 1: When solved step increase, puzzle‘s complexity

should increase.

 Complexity Property 2: When cross_out is about half of game board, then it

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5).

 Chapter 3.1 had already introduced experiment phase for experiments, in this

section, I will go into detail about how to implement it in this research and shows the

result.

Section 4.1.1: Phase 1: Random Generated Puzzle

 Using ―Cross Block‖ as experiment game, and set game board size as 10*10,

program can random-generated up most to 100 squares puzzle. Here is the number of

puzzle that used in my experiments.

 Puzzle in each cross_out‘s solved step = 100

 Puzzle in each cross_out(solved step 2~20) : 19 * 100 = 1900

 Total Puzzle Amount(cross_out_2 ~ cross_out_9): 1900 * 8 = 15200

 We don‘t generate cross_out_1, cross_out_10 and Solved Step 1 because it

dead ends is 0 and meaningless to be a puzzle.

 After remove repeat puzzles, we get Total Puzzle Amount: 15155.

Section 4.1.2: Implement Phase 1: Random Generated

Puzzle

 By consider all puzzles as some kind of state, this research we use GameState

class to record game board and it property, like branch, dead ends...etc. Function

prototype for generate puzzle looks like following:

 void buildDatabase(int nGame, int maxStep, int crossOut).

42

 There have 3 parameters:

 nGame : How much puzzle do you want to generate for each step?

 maxStep: How long of puzzle you desire? If game board size can‘t contain more

steps then program assigned, it will simply generate it max step. For example, if

we assign maxStep as 20, but our puzzle instance can only generate no more than

15 steps puzzle, in such situation, the program will generate 15 steps.

 crossOut: how much block you can cancel with each step? For game board size

= 10, it range is 1 ~ 10.

 Intuitively, cross out 1, 10 and step=1 are meaningless, therefore we generate it

from step 2. Refer to Code 8:

 Vector ―states‖ is our puzzle database for store generated puzzle. And, int sizex

and sizey indicate our game board size.

 But, what is the mechanism of the function randomGenerate(crossOut, step)?

Figure 14 shows the process of randomGenerate function: Cross out = 5, solved step =

4.

Code 8 Implement for random generate cross block.

43

Section 4.1.3: Implement Phase 2: Calculate Branch and

Dead Ends

 Generally speaking, expand all node will get more accurate result. But I don‘t do

that in this research, why? Because there has many puzzles is NP-Complete problem.

It takes too much time, and either impossible to calculate for some complex puzzle. If

we only expand answer node (from random generate process, we know it), we can

reduce problem to linear time. Figure 15 shows our calculate process.

Step 6 Step 6

Step 6 Step 6

Figure 14 Example of random generated process of puzzle “cross block”.

44

 For detail implement code, please refer to appendix.

Figure 15 Calculate for Branch and Dead ends by using answer node.

45

Section 4.1.4: Result of Phase 3: Branch and Dead End

 From the results Figure 16 and Figure 17, we can see both Branch and Dead

Ends are increase when solved step increase.

Figure 16 Average Number of Branches of each step

Figure 17 Average Number of dead ends of each step

46

Section 4.1.5: Implement Phase 4: Calculate Complexity

 Calculate model used in this research are refer in chapter 3, notice that both

Branch and Dead Ends are normalized because we need a method to control their

weighting.

 How to implement normalize function? Because weighting between Branch and

Dead Ends are different for complexity measure, therefore normalize function can

help us doing parameter adjust for these two criterions. For complexity, it helps us to

explain result. We can simply divide by max value in Puzzle Database generated in

phase 1, like following:

 Normalize(Branch) = Branch / MAX(All Branch in Puzzle Database);

 Normalize(DeadEnds) = DeadEnds / MAX(All Dead Ends in Puzzle

Database);

 Normalize(Complexity) = (Complexity + MAX(All Complexity in Puzzle

Database) in case parameter B and D is negative) / MAX(All Complexity in

Puzzle Database);

 In this experiment, we set parameter B and D as 1 for simple, and then all

max value is summarized in Table 1:

Code 9 is the implement for complexity calculate model.

Table 1 Max values in puzzle database.

47

Code 9 Implement normalize function for BD-Complexity Calculate Model

48

Section 4.1.6: Result of Phase 5: Complexity Sample Mean

 From Figure 18, we can see it validates our Complexity Property 1: when solved

step increase, puzzle‘s complexity should increase.

 Next, in order to show more clear evidence about Complexity Property 2, Figure

19 is the average complexity over all steps.

Figure 18 Average complexity of each step

Figure 19 Result of Average all solved step complexity.

49

 From result, we can see cross_out_4 is most complexity one, it is because

Property 1 is true, therefore the result above is affected.

 From the Figure 20, we can see not all cross_out game can reach solved step 20,

therefore we decrease solved step to step 16 and step 11, and then we can see our

Complexity Property 2 is proved: When cross_out is about half of game board, then it

complexity should be highest. In this experiment is cross_out_5 (10 / 2 = 5). Refer to

Figure 21 and Figure 22.

Figure 20 More Detail of complexity mean in puzzle game space.

Figure 21 Average complexity before step 16.

50

Figure 22 Average complexity before step 11.

51

Section 4.1.7: Conclusion

 Figure 23 shows the result of puzzle‘s complexity generated in phase 1 that

classify into five groups of basic difficulty. Although boundaries between groups were

not validated, the results are shown here as a convenient way to illustrate the

distribution of puzzles in terms of difficulty level.

 The results indicate that approximately one-half of the puzzle levels generated by

the program could be classified as very easy. According to complexity theory, when a

system goes beyond a ―complexity barrier‖, a behavior pattern will be emergent. In

puzzle games, this pattern is represented by the numbers of branches and dead ends,

which increase exponentially. In Crossblock, the boundary value between periodic

and complexity system is approximately 0.125, which occupy about half of puzzle in

puzzle database, when value beyond it and goes higher, then branch and dead ends

will increase dramatically more and more. Figure 24 shows the average complexity of

each difficulty level that supports our observation. Why? Try to consider following

facts:1.Complexity interval between very easy and easy is 0.18 - 0.053=0.127;

2.Between normal and hard is 0.37 – 0.18 = 0.19; 3.between normal and hard is 0.59 –

0.37 = 0.22; 4.between hard and very hard is 0.8 – 0.59 = 0.21.

 As shown in first three, their complexity interval is gradually increased that

means it must beyond a ―complexity barrier‖, and when complexity level is ―very

hard‖, we know system almost reach ―chaotic level‖ which must have highest

complexity value and will gradually decrease it complexity, that why interval between

hard and very hard stop to increase.

Total Puzzle Amount: 15155

Figure 23 Ratio of basic difficulty in puzzle database.

52

 This experiment is about Puzzle Game Space not about correct rate of puzzle

levels sorting. Although I had proved both Complexity Property in this section for

“Cross Block”, but we still need further result to show that the method proposed in

this research is practical for real puzzle game sorting problem. In next experiment I

will validate the correct rate between Complexity and Difficulty.

Figure 24 Complexity Average of each Crossblock difficulty level

53

Section 4.2: Experiment Two

Section 4.2.1: Phase 1: Select Puzzle Levels

 In this experiment, I want to test if human can really tell the difficulty if all

puzzle levels have close complexity. Therefore I select 10 puzzles that all complexity

in easy group and fixed those puzzles when release to player. In this research, we have

17 human evaluation data.

Section 4.2.2: Result of Phase 3: Average difficulty and

Sorting

 Table 2 is the result of puzzle‘s complexity and difficulty in this Test Experiment.

We can see the difference between Small Base and Large Base more clearly, that

max value in database will affect our normalize function, all puzzle‘s complexity in

Experiment Test that compute by large base are in very easy and easy group. Because

what we want to know is their sorting correct rate, therefore sorting those puzzles

according to the value in table above, we can get the rank for each puzzle. Like Figure

25:

Table 2 Complexity and Difficulty result.

54

 Actually, we get different sorting rank for small base, large base and human, it is

not convenience for us to compare the result by figure. Therefore, we must design a

method that can tell the sorting similarity rate between each rank list.

Section 4.2.3: Implement: Calculate Sorting Similarity

 Here is my implement method for sorting similarity:

 Set if we have two sorted puzzle lists: listA and listB, all puzzles in lists are

same but sorted by different method.

 set listA is sorted by complexity

 set listB is sorted by difficulty(human or static difficult)

 If puzzle‘s rank in two lists is same, then similarity add 1

 If puzzle‘s rank in two lists is different, then similarity add (1 – different of

two list) / list size

 Finally, before return the value, divided it by rank list size in order to

normalize result.

 Code 10 is actual implement code for sorting similarity:

Figure 25 Complexity and Difficulty rank result

55

Code 10 Implement for sorting similarity.

56

Section 4.2.4: Result of Phase 5: Sorting Similarity

 We compare two rates for two ranked lists in Table 3. First is the percentage of

match, it means number of same rank in both. Second is Similarity, it means how

similar sorted of two lists.

 We can see small base and large base actually have different rank because max

value in database will affect normalize function. Furthermore, compare to small base,

large base has higher sorting similarity rate between human. Finally, we compare each

people‘s sorting similarity, their sorting similarity only reaches 68%, it seem

surprising that every people have different feeling about difficulty when puzzle have

near complexity levels.

Section 4.2.5: Conclusion

 In this experiment, we see when puzzle have near complexity, then people tends

to have different rank because of different skill they have. Therefore, I think the

ability that can classify a puzzle into basic difficulty is more important than tell their

actual degree.

Table 3 Result of match and sorting similarity.

57

Section 4.3: Experiment Three

 In this experiment, I want to validate the correct rate of complexity sorting by

using Sudoku that had been classified by other method. You can find the puzzle

sample we used in TSA(W. Kuang-Chen (巫光楨), 2008).

Section 4.3.1: Phase 1: Select Puzzle in Each Rank

 Like Figure 26, every puzzle in TSA is marked with a difficulty level. Number of

―★‖ of a puzzle indicates difficult rank calculated by TSA, they classify all Sudoku

into 5 ranks.

 Every puzzle is marked with a difficulty level. Number of ★indicates how

difficult it is, upmost to five star. Meaning in each column: puzzle id, puzzle, number

of challenge, number of success solved, solved rate, average time, newest record,

fastest record, start challenge the puzzle.

 The method used by TSA to measure difficult of a ―Sudoku‖ is to evaluate

number of solve technique that a puzzle solving program require. The more difficulty

technique a puzzle required, and then the puzzle is more difficult. But, because we

don‘t know whether the difficult level that marked by TSA is really correct or not,

therefore when choice the puzzle from it, we must take care of this issue. Fortunately,

TSA also provide solved rate in the column five for each puzzle, therefore we can

choice the puzzle based on this value that will reflect their difficulty more correctly. In

Figure 26 Sudoku Puzzles provides in TSA.

58

this experiment, we select 100 Sudoku puzzle for each difficult level. (5 * 100 = 500

puzzles)

Section 4.3.2: Result Phase 3: Calculate Branch and Dead

Ends

 Before calculate complexity for each puzzle, we must decide parameter B and D.

By observe result in Figure 27 and Figure 28, we know branch is positive relation and

dead ends is somehow negative relation (normal and hard are not) when difficulty

increase, therefore, we set B as 1 and D as -1.

Section 4.3.3: Result Phase 4: Compute Complexity

Figure 27 Average branch for each difficulty levels.

Figure 28 Average dead ends for each difficulty levels.

59

 By using complexity calculate model describe in chapter 3, we get the result in

Figure 29:

 We can see complexity is increase according to difficulty level. Therefore, our

method is successful to approximate difficulty of puzzle at minimum requirement.

How about overall success for each puzzle? Let examine more detail about

complexity we calculate in Figure 30:

Figure 29 Average Degree of Complexity for Each Difficulty Level

60

 It just put every puzzle into a rank from left to right in Figure 31, and we can see

this method is weak on those puzzles have both high or low branch and dead ends

which means our complexity calculation will become too high or too low. Another

problem may be the puzzle in normal and hard, we can‘t classify the puzzle in these

two groups clearly──I think both of problems is caused by the property of our

method. Because we simply combine branch and dead ends as a polynomial, therefore

the method used to calculate branch and dead ends will affect result very large. In

this experiment, we only introduce a heuristic that simply skip ―unique method‖ step,

which every novice player will know this technique, when we doing calculation. In

order to get more concrete result, we may need to figure out more concrete heuristic

when calculate branch and dead ends.

Figure 30 Puzzle Samples Sorted by Complexity

Figure 31 Rank of complexity Sorting for each puzzle samples.

61

Section 4.3.4: Result Phase 5: Compare Rank Result

 Because there five marked level difficulty in our puzzle database, therefore we

can randomly select one sample from each difficulty level (total 5puzzles) as listA,

sort it by our complexity as listB, and then we can compute sorting similarity between

these two lists. Select process like Figure 32:

 By repeat large enough iteration of this comparing process, then we can validate

the correct of our method. Figure 33 is the similarity result that iterates over 50000

times:

Figure 32 Process of select sample from puzzle database as sorting list.

Average: 0.8

Figure 33 Result of Sorting Similarity

62

 It shows that our sorting looks quite good on most of case, but there still have

space for improve. I will try to adjust parameter B and D by machine learning to find

out best result of complexity sorting.

Section 4.3.5: Conclusion

 This experiment shows the ability of the method we propose can calculate

different type of puzzle games. But because different puzzle have different emergent

phenomena on their branch and dead ends, therefore sorting correctness will

dependent on play feature of different game. By separate all pure puzzle game as

following three types: Movement type puzzle like “Sokoban”, Elimination type

puzzle like “Cross Block” and Fill Out type puzzle like “Sudoku”.I think most

suitable puzzle game for apply the method we propose is Elimination and Movement

type. Because possibility of action that player can operate is too large, that generate

more exception than other two types of puzzle.

 In appendix, I collect more puzzle games according to this classification.

Although complexity measure for Fill Out type puzzles in this “Sudoku” experiment

doesn‘t perform as good as previous “Cross Block” experiment, but I think it is good

enough for real application.

Section 4.4: Experiment Four

 In this experiment, we use simulated annealing to adjust our parameter B and D

in order to get more correct complexity evaluation for experiment three.

Section 4.4.1: Phase 1: Select Training Sample

 Because simulated annealing is a machine learning technique, therefore, we need

training sample before beginning our tuning program. Figure 34 is our training

samples select process: we randomly make 1000 training sample from puzzle database

63

Section 4.4.2: Implement Phase 2: Parameter Tweak

 Because our purpose is to improve sorting similarity, therefore we can implement

our energy method for simulated annealing as Code 11:

 Because the concept of simulated annealing is to reduce energy (or error, cost)

when repeat training iteration, therefore we minus 1 before returning the result.

Figure 34 Training sample select process.

Code 11 Implement for energy function in Simulated Annealing.

64

Section 4.4.3: Result of Phase 2: Parameter Tweak

 Figure 35 is the result of training process, our adjustion is successfully converge

error (1 – similarity) to 0.13.

 Figure 36 shows the parameter that are adjusted over iteration in this training

iteration:

 Finally, we get B = 18.1952 and D = 2.02334 is one of state that has lowest error.

The result may be changed when we start another training iteration.

Section 4.4.4: Result of Phase 3: Calculate New Complexity

 Figure 37 is the result of average complexity for each difficulty levels, we can

Figure 35 Error and iteration of simulated annealing.

18.1952

2.02334

Figure 36 Result of parameter Band D adjusts over 1500 iteration.

65

see their value is more close between each level compare to the result in experiment

three:

 But it is actually improved it result, especially for those low complexity puzzle in

each level. Figure 38 and Figure 39 shows detailed sorting result:

Figure 37 Average complexity for each difficulty level after parameter tweak.

Figure 38 Complexity of each puzzle sample after parameter tweak.

66

Figure 39 Rank of complexity sorting after parameter tweak.

67

Section 4.4.5: Result of Phase 4: Compare Rank Result

 Figure 40 shows average sorting similarity is improved from 0.8 to 0.86.

Section 4.4.6: Conclusion

 From the result, we can see although our method is quite simple, but it is a

general method that can be used to measure difficult for different puzzle. Although

there still have some error, but I think if we can figure out complexity measure

heuristic for each different puzzle game, then it sorting correct rate will be improved.

Average: 0.86

Figure 40 Sorting Similarity after training.

68

Chapter 5: Conclusion

Section 5.1: Complexity Sorting and Difficulty
Mapping

 Determining game difficulty is a challenging issue requiring detailed

understanding of game parameters. For puzzle games, Scott Kim has identified

branches and dead ends as universal puzzle components; in this project we tried to use

the two features to measure puzzle complexity. According to our experiment results,

the proposed method holds potential as an efficient method for mapping complexity to

static difficulty. We used simulated annealing to identify optimal parameters, but our

final sorting similarity data still suffered from a 14% error rate. Since different

puzzles have different emergent phenomena on their branches and dead ends, correct

sorting depends on play features that differ across different games. To achieve more

accurate results using our proposed method, it is therefore necessary to use

game-specific features when calculating numbers of branches and dead ends in order

to improve the fit between our process and behavior patterns (e.g., the ability to

quickly filter out bad choices and dead ends).

 For example, in Sudoku, there exist some solving techniques to help us solve the

problem, like Last Digit, Hidden Single in Box…etc.,. In order apply those technique

into our complexity calculate process, it is necessary to find out their emergent

phenomena on branch and dead ends that can help us to identify which node we need

to expand or count. We believe, more difficult technique a puzzle has, means higher

complexity value it will.

 However, the use of game-specific features contradicts our goal of creating a

method that can be used for all puzzle games. Therefore our plans include designing a

more sophisticated complexity calculation model that considers a wider range of

search tree behavior features—for example, backtracking rates (indicating incorrect

choices) or number of cycled nodes.

Section 5.2: Measuring Digital Game Complexity

 Does our proposed method can apply to other games? Generally speaking, our

proposed model can always apply to any kind of task──if we formulate target

problem as search tree form, and then branch and dead ends can be calculated to

measure complexity of the task. But, there may cause some problems when we want

69

to map complexity to difficulty, because there have much games require player many

different kind of skill that will diverse subjective feeling about difficulty. For example,

Tetris may require player eye-hand coordination, but not all people can follow the

speed of falling object; and boggle will require player English ability, player who

familiar with English will have obvious advantage.

 Therefore, our complexity measuring result will limited to certain high skill

player group and meaningless to others. Because for those players that without certain

skill or knowledge can‘t even start play the games. Furthermore, for those medium

skill players, game specific skill and knowledge will always be the source of difficulty.

Because different player will have different skill, thus, diverse feelings about

difficulty trouble us from map complexity to static difficulty. Therefore, we must try

to find out a method to combine complexity and game-specific feature first. For

example, in Tetris, how do we measure the challenge of falling object‘s speed? And,

how do we combine challenge with complexity into a formula? But, as we discuss

before, it will break generality of our model.

70

Appendix A: Puzzles in Experiments

B.1: Cross Block

 Cross Block is kind of pure puzzle that invented by DJ Trousdale(DJ Trousdale,

2009), where it goal is to clear all square on game board by drawing vertical or

horizon line.

 Example of Cross Block, each line must equal to specific cross out number. (a)

Cross out 2 squares at one time, it requires 2 steps to solve. (b) Cross out 7 squares at

one time, it requires 8 steps to solve.

 Generally, we can simply increase difficulty for this puzzle, by putting more

squares into game board. Like example in Figure 1.5, when solved step increase, then

it difficulty also increase. Although there exists some exception, but we don‘t discuss

about the detail here. I will show overall puzzle game space results in chapter 4.1 for

Cross Block. Next, let‘s return to our problem: How to measure the difficult for a

puzzle?

(a) (b)

71

B.2: Sudoku

 Another puzzle I will use in my experiment is “Sudoku” that is a very

famous puzzle.

 The goal of ―Sudoku‖ is to fill all square with a number 1 ~ 9, but constrain with

following rule: 1. the number in each row and column can‘t repeat. 2. The number in

each 3*3 box region can‘t repeat. For example in above figure, here have 9 box

regions that marked with yellow and white color.

Example of Sudoku Puzzle

72

Appendix B: Collection of Pure Puzzle

 In this appendix, I simply collect some puzzle from internet according to

following classification: movement type, fill out type, elimination type.

B.1: Elimination Type

Marble Solitaire Minim

NingPo Mahjong

73

B.2: Movement Type

Exorbis 2 Flashmaz

Mummy Maze Open Doors 2

Telescope Rush Hour

Sliding Puzzle Sokoban

74

B.3: Fill Out Type

3D Logic 2 Cross word

75

Appendix C: More Result of Experiment One

76

Appendix D: Calculate Branch and DeadEnds

Appendix E: Game Data Format

Following data are format example I store that used in my experiment.

E.1: Cross Block

[id]

4782

[cross out]

2

[sizex]

10

[sizey]

10

[game state]

Implement Branch and Dead Ends calculate function for Cross Block.

77

(3,5)(8,5)

(6,2)(10,2)

(3,8)(3,10)

(5,6)(5,10)

(8,7)(8,10)

(9,1)(10,1)

(9,6)(10,6)

(3,6)(6,6)

[solved step]

8

[nDeadEnd]

3

[nBranch]

72

[complexity]

0.0749239

E.2: Sudoku

[id]

5311b

[sizex]

9

[sizey]

9

[game state]

030902005000400026002000030900004000005080400000500009050000300180007

000400308060

[nBranch]

3894

[nDeadEnd]

173

[complexity]

0

[challenge]

118

[success challenge]

30

78

[time]

18:34

[solve sequence]

1:宮摒餘解--(8,3)=3,

2:宮摒餘解--(3,4)=8,

3:宮摒餘解--(5,6)=9,

4:區塊數對唯餘解--(7,6)=1,

5:區塊數對唯餘解--(7,4)=2,

6:數對唯餘解--(8,4)=6,

7:宮摒餘解--(9,2)=2,

8:數對摒除解--(5,2)=6,

9:數對摒除解--(4,3)=8,

10:單元宮摒餘解--(7,9)=8,

11:數對摒除解--(4,8)=5,

12:數對摒除解--(4,7)=6,

13:數對摒除解--(8,9)=4,

14:數對唯餘解--(8,8)=9,

15:宮摒餘解--(8,7)=2,

16:唯一解--(8,5)=5,

17:數對唯餘解--(9,5)=9,

18:數對唯餘解--(7,5)=4,

19:數對唯餘解--(9,3)=7,

20:數對唯餘解--(7,1)=6,

21:數對唯餘解--(9,9)=1,

22:唯一解--(7,3)=9,

23:唯一解--(7,8)=7,

24:數對唯餘解--(5,8)=1,

25:數對唯餘解--(5,4)=7,

26:數對唯餘解--(4,4)=1,

27:數對唯餘解--(4,2)=7,

28:唯一解--(9,7)=5,

29:宮摒餘解--(1,3)=6,

30:宮摒餘解--(6,7)=7,

31:宮摒餘解--(3,9)=7,

32:宮摒餘解--(6,8)=8,

33:唯一解--(1,8)=4,

34:宮摒餘解--(3,2)=4,

35:宮摒餘解--(6,3)=4,

79

36:唯一解--(2,3)=1,

37:宮摒餘解--(6,2)=1,

38:唯一解--(2,2)=9,

39:宮摒餘解--(3,7)=9,

40:宮摒餘解--(1,7)=1,

41:唯一解--(2,7)=8,

42:宮摒餘解--(1,1)=8,

43:唯一解--(1,5)=7,

44:宮摒餘解--(2,1)=7,

45:唯一解--(3,1)=5,

46:數對唯餘解--(3,6)=6,

47:數對唯餘解--(6,6)=3,

48:數對唯餘解--(2,6)=5,

49:數對唯餘解--(4,5)=2,

50:數對唯餘解--(4,9)=3,

51:數對唯餘解--(5,9)=2,

52:數對唯餘解--(5,1)=3,

53:唯一解--(6,1)=2,

54:唯一解--(6,5)=6,

55:唯一解--(2,5)=3,

56:唯一解--(3,5)=1,

[/solve sequence]

80

Appendix F: Puzzles in Experiment Two

Following puzzle had used in experiment two:

81

82

Reference

Adamatzky. Andrew. (2010). Game of Life Cellular Automata: Springer-Verlag

New York Inc.

Amanita Design (Producer). (2009). machinarium. Retrieved from

http://machinarium.net/demo/

Apple. App Store Retrieved Jun 23, 2011, from

http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3

D25204%26ign-mscache%3D1

B. R. Clarke. (1994). Puzzles for Pleasure. Cambridge, England: Cambridge

University Press

Ben Weber. (2010). Infinite Mario with dynamic difficulty adjustment

Retrieved April, 2011, from

http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_ada

ptive_mario, http://www.youtube.com/watch?v=kYbKNAmZ1z4

Bernard suits. (2005). The Grasshopper: Games, Life and Utopia: Broadview

Press.

C. Crawford. (1984). Art of Computer Game Design. New York:

McGraw-Hill/Osborne Media.

C. D. Güss, E. Glencross, Ma. T. Tuason, L. Summerlin, & F. D. Richard. (2004).

Task Complexity and Difficulty in Two Computer-Simulated

Problems:Cross-cultural Similarities and Differences. Paper presented at

the Proc. 26th Annual Conf. Cognitive Science Society, Mahwah.

C. E. Shannon. (1948). A Mathematical Theory of Communication. Bell System

Technical Journal, 27, 379-423, 623-656.

C. Pedersen, J. Togelius, & G. N. Yannakakis. (2010). Modeling Player Experience

for Content Creation. IEEE Trans. Computational Intelligence and AI in

Games, 2(1), 54-67.

Christopher G. Langton (Ed.). (1995). Artificial Life: An Overview: Cambridge:

MIT Press.

DJ Trousdale (Producer). (2009). Cross block. Retrieved from

http://djtrousdale.com/games/crossblock/

Elina M.I. Koivisto. (2006). Mobile Games 2010. Paper presented at the

CyberGames '06: Proceedings of the 2006 international conference on

Game research and development

Erich Gamma, Richard Helm , Ralph Johnson, & John M. Vlissides. (1994). Design

Patterns: Elements of Reusable Object-Oriented Software

Addison-Wesley.

http://machinarium.net/demo/
http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3D25204%26ign-mscache%3D1
http://app-store.appspot.com/?url=viewGrouping%3Fmt%3D8%26id%3D25204%26ign-mscache%3D1
http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario
http://users.soe.ucsc.edu/~bweber/dokuwiki/doku.php?id=infinite_adaptive_mario
http://www.youtube.com/watch?v=kYbKNAmZ1z4
http://djtrousdale.com/games/crossblock/

83

Gerald M. Edelman, & Joseph A. Gally. (2001). Degeneracy and complexity in

biological systems. Paper presented at the Proceedings of the National

Academy of Sciences of the United States of America.

H. Robin, & C. Vernell. (2004). AI for dynamic difficulty adjustment in games.

Paper presented at the Proc. of the Challenges in Game AI Workshop,

Nineteenth National Conf. on Artificial Intelligence, San Jose.

Holling, C. S. (2001). Understanding the Complexity of Economic, Ecological, and

Social Systems. Ecosystems, 4(5), 390-405. doi:

10.1007/s10021-001-0101-5

J. Kim. (2005). Task Difficulty in Information Searching Behavior: Expected

Difficulty and Experienced Difficulty. Paper presented at the Proc. 5th

ACM/IEEE-CS Joint Conf., New York.

James Paul Gee. (2005). Why Video Games Are Good for Your Soul: Common

Ground

Jeremy Campbell. (1982). Grammatical Man: Information, Entropy, Language,

and Life New York: Simon & Schuster.

Johan Huizinga. (1954). Homo Ludens—Study of the play-element in culture.

John H. Holland. (1999). Emergence: From Chaos to Order: Basic Books

Kai-Ju Chen, & Kou-Yuan Huang. (2007). Simulated Annealing for Pattern

Detection and Seismic Application. Proceedings of international Joint

Conference on Neural Networks.

Kang. Yilin, & Tan. Ah-Hwee. (2010). Learning Personal Agents with Adaptive

Player Modeling in Virtual Worlds. Paper presented at the 2010

IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology.

Katie Salen, & Eric Zimmerman. (2003). Rules of Play: Game Design

Fundamentals. Cambridge: MIT Press.

Kou-Yuan Huang, & Ying-Liang Chou. (2008). Simulated annealing for

hierarchical pattern detection and seismic application. International Joint

Conference on Neural Networks(IJCNN 2008).

Lennart E. Nacke, Anders Drachen, Kai Kuikkaniemi, Joerg Niesenhaus, Hannu J.

Korhonen, Wouter M. van den Hoogen, . . . Yvonne A. W. de Kort. (2009).

Playability and Player Experience. Breaking New Ground: Innovation in

Games, Play, Practice and Theory. Proceedings of DiGRA 2009.

Lennart Nacke, & Craig A. Lindley. (2008). Flow and immersion in first-person

shooters measuring the player's gameplay experience. Proceeding Future

Play '08 Proceedings of the 2008 Conference on Future Play: Research,

Play, Share

84

M. Czikszentmihalyi. (1998). Finding Flow: The psychology of engagement with

everyday life. New York: Basic Books

M. Sipser. (1997). Introduction to the Theory of Computation: PWS Publishing.

Makoto Matsumoto, & Takuji Nishimura. (1998). Mersenne Twister: A

623-Dimensionally Equidistributed Uniform Pseudo-Random Number

Generator. ACM Transactions on Modeling and Computer Simulation

(TOMACS) - Special issue on uniform random number generation 8(1).

Mia Consalvo. (2007). Cheating: Gaining Advantage in Videogames, Chap 4.

Gaining Advantage: How Videogame Players Define and Negotiate

cheating.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, & C. H. Papadimitriou.

(1988). The Complexity of Searching a Graph. Journal of the Asmciation

for Computing Machinery, 35(1), 18-44.

P. Robinson. (2001). Task Complexity, Task Difficulty, and Task Production:

Exploring Interactions in a Componential Framework. Applied Linguistics,

22(1), 27-57.

Penny Sweetser. (2007). Emergence in Games: Charles River Media.

R. A. Hearn. (2006). Games, puzzles, and computation. Ph.D. dissertation,

Massachusetts Institute of Technology, Massachusetts.

R. E. Korf, M. Reid, & S. Edelkamp. (2001). Time complexity of

iterative-deepening-A*. Artificial Intelligence, 129(1-2).

Ratan K. Guha, Erin Jonathan Hastings, & Kenneth O. Stanley. (2009). Automatic

Content Generation in the Galactic Arms Race Video Game

Computational Intelligence and AI in Games, IEEE Transactions on 1, 4.

Robin Wauters. (2011). Boom - Apple's App Store Hits 10 Billion Downloads

Retrieved April, 2011, from

http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billi

on-downloads/

Russell. S., & P. Norvig. (2002). Artificial Intelligence:A Modern Approach Second

Edition: Prentice Hall.

S. Kim. (2003). The art of puzzle design:The Puzzlemaker's Survival Kit

Retrieved May, 2011, from

http://www.scottkim.com/thinkinggames/index.html

S. Kim. (2008). The art of puzzle design: Mathematics as a Creative Art Retrieved

April, 2011, from http://www.scottkim.com/thinkinggames/index.html

Sanjeev Arora, & Boaz Barak. (2009). Computational Complexity: A Modern

Approach: Cambridge University Press.

Sarah Perez. (2011). Mobile App Market: $25 Billion by 2015 Retrieved April,

http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billion-downloads/
http://techcrunch.com/2011/01/22/boom-apples-app-store-hits-10-billion-downloads/
http://www.scottkim.com/thinkinggames/index.html
http://www.scottkim.com/thinkinggames/index.html

85

2011, from

http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-

billion-by-2015.php

Togelius. J., De Nardi, R., & Lucas, S. M. (2007). Towards automatic personalised

content creation in racing games. Computational Intelligence and Games,

2007. CIG 2007. IEEE Symposium on (1-5 April 2007), 252 - 259.

W. Kuang-Chen (巫光楨). (2008). Taiwan Sudoku Association Retrieved May,

2011, from http://sudoku.org.tw/

Walter J. Savitch. (1970). Relationships between nondeterministic and

deterministic tape complexities. Journal of Computer and System

Sciences.

http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-billion-by-2015.php
http://www.readwriteweb.com/mobile/2011/01/mobile-app-market-25-billion-by-2015.php
http://sudoku.org.tw/

