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Verification
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ABSTRACT

In recent years, visual-based vehicle detection techniques have been extensively applied
to Intelligent Transportation System (ITS) to improve the efficiency and precision of
analyzing massive video information. The most common method is using background image
to extract foreground objects. However, thisimethod is not suitable for urban area where has
heavy traffic, and vehicles will move and stop frequently. The correctness of detection will
decrease dramatically. What’s more, background method cannot detect instantaneous situation
of traffic because it need learning time to construct background image. In this study, we
proposed a long-term and stable automatic vehicle detection system. We used AdaBoost
algorithm to train a vehicle classifier which can operate both at daytime and evening. The
classifier has high detection rate, but the false alarm rate is also relatively high, and the
content of false alarms is complicate too. Therefore, we also developed two false alarm
eliminating algorithms to reduce false alarm rate for daytime and evening respectively. We
utilized the features of vehicle under different lighting conditions. Then, these features
cooperate with algorithms, which need low computation power, to filter out false alarms
efficiently, and maintain reasonable operating speed to let the system can be applied to
real-time applications. Furthermore, we used switching algorithm to combine the two false
alarm eliminating algorithm into one system to achieve automatic detection. In the end, we

use survival algorithm to further stabilize and present the detection results, and applied the



system to real-time vehicle-counting application. For the MIT CBCL database, we compared
our system with PCA + ICA[18] and AdaBoost + PDBNN[29] these two methods. The
detection rate of PCA + ICA is 95% and false alarm rate is 0.002%. The detection rate of
AdaBoost + PDBNN is 91.93% and false alarm rate is 0.0031%. The detection rate of our
system is 96.27% and false alarm rate is 0.0015%. For proprietary testing videos which
contain both daytime and evening videos, we compared with GMM[34][35] and AdaBoost +
PDBNN these two methods. The average detection rate of GMM is 80.7% and average false
alarm rate is 35.3%. The average detection rate of AdaBoost + PDBNN is 72.5% and average
false alarm rate is 7%. The average detection rate of our system is 98% and false alarm rate is
3%. We can tell from experimental results that our proposed system can operate in real world

environment, and has real-time detection ability in the same time.
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Chapter 1
Introduction

1.1 Motivation

In recent years, image and video processing techniques have been applied to many
applications to improve safety and convenience of human’s life. For example, how to
efficiently monitor the traffic condition with advanced techniques is one of the most important
issues. Traditional traffic surveillance systems use analog equipment to detect vehicles and
gather information. To analyze the information, we have to check manually. This is inefficient
and time consuming. In the other hand, digital cameras are cheaper and techniques of
computer vision are improved, therefore visual-based. Intelligent Transportation System (ITS)
has attracted great attention recently. For instances, video-based automatic vehicle detection
system, vehicle behavior analysis system, traffic-monitoring system, etc. can be seen in many
applications and products.

The fundamental step of these applications is foreground object extraction. In
conventional method, background subtraction and temporal difference are the most used
techniques for foreground segmentation. However, there are some factors that may affect the
results of these two methods and make foreground extraction more difficult. For background
subtraction, this method relies on clean background image. The neater the background image
is, the more precise the result is. In some circumstances, the performance of background
subtraction is not good enough. For example, swaying trees might be treated as foreground
objects but actually they are part of the background. Moreover, the clean background image is
difficult to be built in a heavy traffic scene, because the frequency of foreground objects is

much higher than that of background. Although background subtraction is a simple and quick



method, the background information is prone to be tainted by still vehicles or the heavy traffic.
Temporal difference which relies on the motion and texture of objects might fail if the texture
of objects is not obvious or the objects keep still periodically. All these factors make

background subtraction and temporal difference unstable.

1.2 Objective

The objective of this study is to construct a high detection rate and low false alarm rate
automatic vehicle detection system by combining vehicle classifier with false alarm
eliminating system. We expect this approach would provide a better solution for vehicle
detection, and handle the problems encountered by conventional background-based detection
systems. Therefore, we propose to develop a vehicle detection system that has these
characteristics:

1) Can work without background information.

2) Can detect vehicle in a scene with heavy traffic.

3) Can operate both in daytime and evening.

4) Can be applied to real-time applications.

1.3 Organization

This thesis is organized as follows: Chapter Il gives an overview of related works about
this research and briefly explains their method. Chapter 111 presents and explains each module
of proposed system and details algorithm used in each module. Chapter IV shows
experimental results and performance comparison. Finally, the conclusions of this study are

stated in Chapter V.



Chapter 2
Related Works

One of the solutions for vehicle detection without background model is to exhaustively
search at all positions in the scene. But this solution is not suitable for real-time applications.
To solve this problem, most of the methods reported in the literature can be subdivided into
two steps as follow.

(1) Hypothesis Generation (HG): this step provides potential positions of vehicles in a
simple and rapid way resulting in a reduced area to confirm.

(2) Hypothesis Verification (HV): candidate regions from HG step are verified by using
some complex algorithms to validate the exact positions of vehicles and correctness.

We will introduce several related researches in following sections.

2.1 Hypothesis Generation' (HG) Methods

There are many HG approaches proposed by other researches. The goal of the HG step is
to quickly find candidate vehicle locations in a scene so that it can reduce the computational
requirements. HG is generally based on simple, low-level algorithms which hypothesize
potential locations of vehicles. The hypothesized locations from the HG step become the input
to the HV step, where some algorithms are performed to verify the correctness of the
hypotheses. Obviously, the main purpose of HG step is to filter out unqualified detection
results as many as possible while keeping overall detection rate as high as possible.

Because the rear-view or frontal-view of vehicles are generally symmetric in horizontal
direction, T. Zielke et al. [1], A. Kuehnle [2] and A. Bensrhair et al. [3] used symmetry as

main features to imply the existence of vehicles in their studies. S.D. Buluswar et al. [4] and



D. Guo et al. [5] used RGB and Lab color spaces respectively to extract vehicles from
background. Matthews et al. [6] used edge detection to find strong vertical edges. By
computing the vertical profile of the edge image and smoothing with triangular filter, the local
maximum peaks of the vertical profile indicates the left and right borders of a vehicle. C.
Demonceaux et al. [7] and A. Giachetti et al. [8] use optical flow to distinguish motion of
moving vehicles from the road motion and segment the vehicles.

Using single cue or feature for all conceivable scenarios seems to be impossible.
Therefore, combining different cues or features can produce more reliable results for many
situations. For examples, J. Collado et al. [9] combined shape, symmetry and shadow, K. She
et al. [10] used both color and shape, and J. Wang et al. [11] combined motion with
appearance. As the consequence, effective fusion mechanisms and useful features that are fast

and easy to compute are both important research issues.

2.2 Hypothesis Verification (HV) Methods

The input of HV step is the hypothesized vehicle locations generated from HG step. In
HV step, the correctness of these hypothesized vehicle locations are verified. A. Khammari et
al. [12] classified HV methods into two categories, namely template-based and
appearance-based.

Template-based methods compute the correlation between the input and the predefined
patterns of vehicle. M. Betke et al. [13] proposed a vehicle detection approach using
deformable gray-scale template matching. J. Ferryman et al. [14] used Principal Component
Analysis (PCA) on manually sampled data to form a deformable model, utilized this model to
confirm the detection results.

Appearance-based methods require training data of vehicle images to learn the

characteristics of vehicle appearance. Usually, training data of the non-vehicle class is also



modeled to improve performance. Each training sample is represented by local or global
features. Then, the decision boundary between the vehicle and non-vehicle classes are learned
either by training process (e.g., Support Vector Machine (SVM) [15]) or by modeling the
probability distribution of the features in each class (e.g., using the Bayes rule [16]). In [17],
wavelet transform was used for feature extraction and Support Vector Machines (SVMs) was
used for classification.

One of the most important issues in object detection is feature selection. In most cases, a
large quantity of features is employed because the important features are unknown in advance.
Furthermore, many of them are either redundant or even irrelevant. Therefore, it is necessary
to use only those features that have great separability power and ignore or pay less attention to
the rest. Consequently, a powerful feature selection algorithm is highly desirable.

R. Wang et al. [18] proposed avehicle detection system based on local features of three
vehicle sub-regions. They used PCA and Independent-Component Analysis (ICA) as method
of feature selection, and combine-PCA with-ICA.-Each sub-region of training data is projected
onto its associated eigenspace and independent basis space to generate a PCA weight vector
and an ICA coefficient vector respectively. A likelihood evaluation process is then performed
based on the estimated joint probability of the projection weight vectors and the coefficient
vectors. The PCA model the low-frequency components of vehicles, and ICA model the
high-frequency components of vehicles. The combination of PCA and ICA improve the
tolerance of variations in the illumination condition and vehicle pose.

P. Viola and M. J. Jones [19] proposed a novel feature selection algorithm for human
face detection. The algorithm will use training data to construct a cascade boosted classifiers.
Each layer in the cascade classifier rejects some input that do not contain interested object.
The feature they used is Haar-like feature, also called rectangular filter (verified by C.

Papageorgiou et al. [20]), and the training algorithm is AdaBoost machine learning algorithm



[21], which is used to select useful features in each layer. The integral image is used to
accelerate the calculation of Haar-like features. The cascaded structure makes the classifier
trained by AdaBoost suitable for real-time face-detection application.

Inspired by AdaBoost algorithm, P. Negri et al. [22] combined the Haar-like features and
the histograms of oriented gradient (HoG) with AdaBoost algorithm. The purpose of this
method is to use classifier composed of Haar-like features filter out easy negative inputs in the
early part of the fusion classifier. And in the later part of the fusion classifier, classifier
composed of HoG features generates a fine decision boundary to remove negative inputs
which are similar to vehicle, so that the fusion classifier achieved better performances than
either single classifier.

In this study, we use cascaded classifier trained by AdaBoost algorithm to generate
vehicle hypotheses. We proposed a.false alarm eliminating system using edge complexity for
daytime and histogram matching..and intensity .complexity for evening as hypothesis
verification method, and cooperate with-survival algorithm to stabilize the final results. In
hypothesis generation step, we do not care-about false alarm rate. In other words, Haar-like
features classifier is focusing on high detection rate and ignoring the false alarm rate. We
filter out most the false alarms in later step instead. By this three stages structure, namely high
detection rate vehicle classifier, false alarm eliminating system and stabilizer, our whole

vehicle detection system can achieve satisfactory performance.



Chapter 3
Vehicle Detection System

In this chapter, the structure of proposed system is defined. The system structure is
composed of three stages: vehicle detector, false alarm eliminator and stabilizer. Section 3.1
demonstrates the diagram of whole system and shows key modules of each stage. Section 3.2
explains the heart of vehicle detector, namely AdaBoost vehicle classifier, including concept
and details. Section 3.3 illustrates the process and methods of false alarm eliminator. Section

3.4 explains how the system stabilizes the detection results and also erases some false alarms.

3.1 System Overview

First of all, we transform the raw color tmage into a gray level image and the gray level
image is downsized by a simple downsampling algorithm for acceleration reason. After
resizing, the image is send to AdaBoost-vehicle detector to perform detection. Here, the
detector uses slicing window to detect vehicles and confirms the results by its cascaded
structure. The outputs of vehicle detector stage are candidate regions (CRs) of vehicles and
are also the inputs of false alarm eliminator stage. In the second stage, we firstly check the
erasing mode, namely daytime or evening. For daytime case, Canny edge operator [23] is
applied to each CR, and then the system examines the edge complexity to decide whether the
CR is vehicle or not. For evening case, system firstly calculates the histogram of each CR and
then uses the histogram to do histogram matching and intensity complexity checking to verify
the result. Both daytime and evening cases, all the results have to be examined by size filter to
filter out too big or too small CRs. The final step is stabilizer stage. In this stage, we use

survival algorithm to further ensure the CRs are vehicles and stabilize the detection results.



The diagram of whole system is shown in Figure 3-1.
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Figure 3-1 System diagram



3.2 Vehicle Detection using AdaBoost

This sub-system is the foundation of entire system, as mentioned in section 2.1, most
research efforts have focused on feature extraction and classification by learning or statistical
models. The most important issue in object detection is selecting a suitable set of features
which can soundly represent the implicit invariant of interested objects. An intuitive method
is to focus on the common components of interested objects. For example, contour, color,
symmetry, texture and etc. are commonly use perceptual features. These features can be used
alone or cooperatively to find interested objects in the searching area. Although these features
can be easily implemented, they also have several limitations. One of the limitations is that
these features are based on human’s perception and the physical nature of human’s perception
is usually not reliable enough for computer vision. What’s more, how to choose a suitable set
of features, no matter using single feature or.combining features, is also a very difficult
problem. Manually choosing is“time consuming and inefficient. Therefore, the efforts of
feature extraction have focused on statistical'and -machine learning area.

AdaBoost algorithm proposed by Y. Freund et al. [21] is one of machine learning
techniques and has been widely used for pattern recognition. AdaBoost algorithm combines
weak classifiers into one strong classifier by weighted voting mechanism, and it also showed
high performance in various fields. P. Viola et al [24] used AdaBoost algorithm to built a
pedestrian detector, which has progressively complex rejecting rules. In [19], AdaBoost
algorithm is originally applied to face detection and yields the best performance comparable
to previous researches. Like original idea, we want to use several features to describe a
vehicle and use these features to detect vehicles. Therefore, we use Haar-like features, which
will be introduced in section 3.2.1, to describe vehicle and use AdaBoost algorithm, which
will be explained in details in section 3.2.3, to select useful Haar-like features and combine

them into a strong classifier.



Our goal of this stage, namely AdaBoost vehicle detector, is to build a high detection rate
vehicle classifier. In other words, we used detection rate as prime criterion to decode whether
the performance of detector is good enough or not. The false alarm rate is treated as reference
information about the detector and left to false alarm eliminator and stabilizer to deal with.
We called this kind of training as non-converging training, which will be explained in section

3.2.5. The entire system is also designed and built under this concept.

3.2.1 Haar-like Features (Rectangle Features)

Haar basis functions (Haar-like features) used by Papageorgiou et al. [25] provide
information about the grey-level intensity distribution of two or more adjacent regions in an
image and is extended by Rainer Lienhart et al. [26]. Figure 3-2 shows the set of Haar-like
features, including original and extended.features. The output of a Haar-like feature on a
certain region of gray-level image is the sum of all pixels intensity in the black region being
subtracted from the sum of all pixels intensity in the white region. The sums of black and
white region are normalized by a coefficient in case of square measures of white and black
regions are different. In order to reduce computation time for the filters, P. Viola et al. [19]
introduced the integral image which is an intermediate representation for a input image. The
concept of integral image is illustrated in Figure 3-3(a), the value of the integral image at
point (X, y) is the sum of all the pixels above and to the left. In Figure 3-3(b), the sum of the
pixels within rectangle D can be computed with four array references. The value of the
integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is
A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be
computed as 4 + 1 — (2 + 3). Utilizing integral images, sum of a rectangular region can be
calculated by using only four references in the integral image. As a result, the difference of

two adjacent rectangular regions can be computed by using only six references in the integral
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image, eight in the case of the three-rectangle Haar-like features and nine for four-rectangle
Haar-like features.

Every Haar-like feature j is defined as f( j ) = (rj, wj, h;, X;, ;). where r;j is the type of
Haar feature, w; and h; are width and height of the Haar feature and (X;, y;) is its position in the

window. value,, ... = f(]), is the weighted sum of the pixels in white rectangles

subtracted from those of dark rectangles.

l. Edge features

Tm@®d

(a) (b} (c)

2. Line features E
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4, Special diagonal line feature

u

Figure 3-2 The Haar features [26]
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Figure 3-3 Integral image
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3.2.2 Weak Classifier

A weak classifier h(x, f, p, 0) consists of a Haar-like feature f (defined in 3.2.1), a

threshold (0) and a polarity (p) indicating the direction of the inequality in Equation 3-1.

1 if pf(x)<pé

. (3-1)
0 otherwise

h(x, f,p,H)z{

here x is a 22x18 sub-window of an image. For each feature j, AdaBoost algorithm is applied
to decide an optimal threshold 6; for which the classification error on training database
(containing positive and negative samples) is minimized. The process of threshold selection
for weak classifier is a brute force method. We can think of threshold of weak classifier as a
line that separate the positive sample from negative sample. The AdaBoost algorithm
examines every separating threshold to find out the optimal threshold. The threshold seleting
process is illustrated in Figure 3-4. By selecting the optimal threshold, the blue points
(positive samples) and red points (negative samples) can be separated with a lowest
classification error. Because one-weak classifier has only one threshold, its separating ability

is limited and that is why this kind of classifier being called weak classifier.

Optimal

/ Threshold

Figure 3-4 Selecting thresholds for weak classifiers
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3.2.3 AdaBoost Algorithm

In literature, some methods are commonly used for features selection. For example,
Principal Component Analysis (PCA) used in [14, 17, 18], Independent Component Analysis
(ICA) used in [18] and so forth. Compared with above methods, AdaBoost algorithm has
shown its capability to improve the performance of not only features selection but also
detection rate.

In the beginning, we have to prepare a feature set originated from the permutation of
Haar-like feature types, scales and positions. This features set is many times greater than the
number of pixels in the input image. Even though each Haar-like feature can be computed
very efficiently by integral image, computing the complete set is still extremely time
consuming and costly. AdaBoost algorithm uses this feature sets to generate weak classifiers
and finds precise hypotheses of vehicle by iteratively combining weak classifiers which, in

general, have moderate precision-into.a strong classifier defined in Equation 3-2.

T 1

coy=lt  ZEnIEZR (3-2)

0 otherwise
where h and C are the weak and strong classifiers respectively, and a is a weight coefficient
for each h.

Considering a 2D feature space is full of positive and negative training samples. At first,
AdaBoost algorithm chose a weak classifier with the highest accuracy in current training
round to split the training samples by its optimal threshold. As shown in Figure 3-5(a),
samples misclassified by previous weak learner are given more attention before adding next
weak classifier at next round. By increasing weights, the training process will focus on these
difficult samples, which cannot be correctly separated by single weak classifier. The idea of
how AdaBoost algorithm selects and combines weak classifiers into a strong classifier is

shown in Figure 3-5(b)(c)(d)(e)(f)(g). As shown in Figure 3-5(b), the misclassified blue points
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(positive samples) in right side of the black line and red points (negative samples) in left side
of the black line are emphasized in the next round as Figure 3-5(c). Similarly, the
misclassified blue points in left side of the second black line and red points in right side are
emphasized in the next round, as shown in Figure 3-5(d) and Figure 3-5(e). Finally, the strong
classifier is formed with a linear combination of weak classifiers shown in Figure 3-5(g), and
the boosting algorithm for selecting a set of weak classifiers to compose a strong classifier is

shown in Table 3-1.

Weak - Weights Increase
/ classifier 1

Negative Positive

O o. ®
O

o © ® O ..(. .“ .
® o O
® o © °.o O

Result of Round 1 Beginning of Round 2

(a)
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() (9)

Figure 3-5 The process of selecting and combining weak classifiers
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Table 3-1 The boosting algorithm for selecting and combining weak classifiers[29]

T hypotheses are constructed and each using a single feature. The final
hypothesis is a weighted linear combination of the T hypotheses where the
weights are inversely proportional to the training errors.
«  Given example images (X1, Y1), - - ., (Xn, Yn) Where y; = 0, 1 for negative
and positive examples respectively.
1 1

Wy, =
Initialize weights ~ 2M 2l fory; = 0, 1 respectively, where m and |
are the number of negatives and positives respectively.

Fort=1,...,T:
- Normalize the weights,
Wt,i
Wt,i <~ n
_ Wt,j

j=1
- Select the best weak classifier with respect to the weighted error

g=ming , ZWi|h(Xi1 f,p,0)- Yi|

- Define hy(x) = h(x, f;, py, 6;) where f; ,p; ,and 0; are the minimizers of
&t.
- Update the weights:

1-¢
Wi = Wt,iﬂt
where e; = 0 if example x; is classified correctly, e; = 1 otherwise,

&
ﬂt = 1_t
and &
The final strong classifier is:

T 1 T
C(X)= 1 ;a‘h‘(x)zgé%

0 otherwise

where a, :Iogi
t

3.2.4 Cascaded Classifier

A cascaded classifier is a linear combination of strong classifiers, and strong classifier is
composed of at least one weak classifier. P. Viola et al [19] also proposed a cascading
algorithm of AdaBoost described in Table 3-2. At each stage, if an input extracted by the
searching window is classified as vehicle, it is allowed to enter the next stage; otherwise, the

input is rejected immediately. Briefly, an input need to pass through all of the stages, then it
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can be labeled as vehicle; otherwise it is rejected by particular stage even if it enters the last

stage. Figure 3-6 demonstrates the schema of cascaded classifier.

Table 3-2 The training algorithm for building a cascaded detector[29]

User selects values for f, the maximum acceptable false positive rate per
layer and d, the minimum acceptable detection rate per layer.
User selects target overall false positive rate, Fearget.
P = set of positive examples
« N = set of negative examples
« Fp=1.0;Dp=1.0
- 1=0
« while Fi > Ftarget
- i< i+l
- ni=0Fi=F
- whileF>f x Fi4
*oon < ni+1
*  Use P and N to train a classifier with ni features using AdaBoost
*  Evaluate current cascaded classifier on validation set to determine
Fi and D..
*  Decrease threshold for the ith classifier until the current cascaded
classifier has a detection rate of at least d x Di.q (this also affects
Fi)
- N <0
- If Fi > Fearger then evaluate the current cascaded detector on the set of
non-face images and put any false detections into the set N

All Sub-
windows

Further
Processing

@ect Sub-win@

Figure 3-6 Structure of cascaded classifier.
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3.2.5 Non-Converging Training

As far as machine learning is concerned, training samples play a very important role in
the training process. There are many factors of training samples can affect the final
performance of classifier. For example, the amount of training samples, the complexity of
content in the training image and etc. Commonly, positive training samples contain similar
images of interested object. For instance, the positive training samples have similarity in the
phase of interested object, lighting condition, contour and so forth. When collecting positive
training samples, it is important to make the difference between each sample as low as
possible. In the other words, the main purpose of positive training samples is to provide
training algorithm the common features of interested object. On the other hand, negative
training sample is everything except interested object. In this study, the interested object is
vehicles and we focus on the front phase of vehicles.

Different from the normal concept of preparing training samples, we collected not only
similar samples but also dissimilar samples.-More precisely, we collected frontal-viewed
image of vehicles for positive samples and-the others for negative samples both from daytime
and evening. The samples have quite difference in lighting condition and have different
features. Figure 3-7 is some positive samples we collected, including daytime and evening

and Figure 3-8 is some samples of negative samples.
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Figure 3-7 Some positive training samples of (a) Daytime (b) Evening
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(b)

Figure 3-8 Some negative training samples of (a) Daytime (b) Evening

Generally, the complexity of training samples will affect the convergence of training

process. That means if the content of training samples is too difficult, the training process of



AdaBoost algorithm would not finish, namely non-converging. According to algorithm
described in Table 3-1, AdaBoost algorithm will pay more attention to the hard samples,
which is difficult to classify by single weak classifier. What’s more, by algorithm described in
Table 3-2, AdaBoost will build progressively complex decision rules in order to deal with
hard samples when the training process is going on, illustrated by Figure 3-9. As you can see
in Table 3-2, the outer while loop will continue until the Fi is small than Ftarget. Therefore, if
the training samples are too complex to classify, the training process will never stop. Besides,
the performance criterion of cascading algorithm is false alarm rate. In order to fit this
criterion, the training process will try to decrease false alarm and the detection rate will
decrease simultaneously.

Complexity
Easy < > Hard

Figure 3-9 Progressively complex decision rules of AdaBoost vehicle detector

Because we increased the complexity of training samples, it is not realistic to expect the
training process will converge. As the consequence, we use detection rate as prime criterion
instead. By the algorithm described in Table 3.2, the more layers the classifier has, the more
difficult the object is classified as a vehicle. Consequently, if we decrease the layer number of
classifier, the chance that the object be classified as a vehicle is higher. Therefore, what we
did here is to specify the training process will stop at particular layer number. It doesn’t
matter that the training procedure is not converge yet, we just want the classifier can detect as

many vehicles as possible. Concerning how many stages are enough, we use false alarm rate
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as assistant criterion. The statistical results will be presented in section 4.

3.3 False Alarm Eliminator

As mentioned in section 3.2, this stage of system is to handle the false alarms generated
from previous stage, namely AdaBoost vehicle detector. The first priority of false alarm
eliminator is to filter out false alarms as many as possible and affect detection rate as less as
possible. When decreasing false alarm rate, as mentioned in section 3.2.5, the detection rate is
affected simultaneously. Therefore, how to decrease false alarm rate and still keep detection
rate as high as possible in the same time is the primary issue in this step. Additionally, the
complexity of computation is also one of our concerns because we also want the system can
be applied to real-time applications. As . the results, we used less complex methods
cooperating with properties of vehicles to filter-out false alarms.

Because the system has to deal with the false alarms both from daytime and evening, the
false alarm eliminator has two schemes for daytime and evening respectively. For daytime
case, we use edge complexity, illustrated in section 3.3.1, to identify which candidate region
(CR) generated from AdaBoost vehicle detector is vehicle and which CR is not. As for
evening case, we use histogram matching and intensity complexity, explained in section 3.3.2,
to filter out false alarms and retain vehicle objects. In the end, both for daytime and evening
cases, the system will use size filter, introduced in section 3.3.3, to filter out too big or too
small CRs. For automatic detection reason, we also proposed a switching algorithm,
illustrated in section 3.3.4, to let the system decides which scheme to be used by itself. Figure

3-10 is the two schemes of false alarm eliminator.
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AdaBoost Size Further
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Evening Matching Complexity

Figure 3-10 Two schemes of false alarm eliminator

3.3.1 Edge Complexity

In the daytime, there are some_features can-be-used to describe a vehicles. For examples,
Luo-Wei Tsai et al [27] used color, edge and corner to identify vehicles in the static image
and A. Kuehnle et al [2] used the'symmetry. of.edge as features of vehicles. In this study, we
do not consider using color as one<of:the features because the Haar-like features used in
AdaBoost algorithm are operating on gray-level image. In the other words, the AdaBoost
vehicle detector we trained uses only gray-level information. Further, we do not use corner to
verify the results of AdaBoost vehicle detector. It is hard to discriminate vehicle objects from
non-vehicle objects by using corner only, because there are too many objects have similar
shape as vehicles. As the consequence, it is hard to eliminate the false alarms efficiently by
using the number of corners on the objects or the position information of corners. In our false
alarm eliminator, we chose edge as the main feature and use edge complexity [28] to identity

the false alarms.
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Figure 3-11 Some examples of edge image

First, we use Canny operator [23] to obtain the edge image of each CRs. Figure 3-11 is
some edge image examples. After acquiring the edge image, we do not use the whole edge
image to compute the edge complexity. Instead, we just utilize the bottom-half part of edge
image. It is because that the top-half part of CR is more likely to contain background objects
that will provide extra edge complexity and affect the accuracy. Therefore, we just look at the
bottom-half part of CR and compute the edge complexity here by Equation 3-3. The other
reason for just looking bottom-half part of CR:is that the head of vehicles is usually in the
bottom-half part of CR and the edge complexity here is discriminative if the CR is not vehicle

object. Figure 3-12 is an example of bottom-half part of vehicle object.

==

Mme = (3'3)

where mc is the edge complexity, n is the number of edge pixel and n is the number of pixel.

—

(@) (b)

Figure 3-12 Example of bottom-half part of (a) vehicle and (b) non-vehicle
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An CR is verified by Equation 3-4.

Ny < mg <1 (3-4)
where 1y and m3 are empirical thresholds for the purpose of effective verification.

By using edge complexity of the bottom-half part, the system can filter out some false

alarms, mostly the CRs which include the road, efficiently.

3.3.2 Histogram Matching and Intensity Complexity

Although the edge complexity can perform well in the daytime, its capability is
decreasing as time approaches evening. The main reason is that vehicles will turn on their
front lamps when the weather is-going darker and we only use the bottom-half part of
candidate region (CR), where the lamps locate, to compute edge complexity. Because of the
light comes from the lamps, the edge complexity of vehicles drop off dramatically causing its
discriminative ability being not suitable for evening case. In addition, the dark lighting
condition makes the color, contour and edge of vehicle become ambiguous. On the other hand,
the lighting lamps become the most obvious feature of vehicle in the evening. Consequently,
we use the lighting lamps as the main feature instead and utilize them to filter out false alarms.

Figure 3-13 is the example of edge image in the daytime and evening respectively.

(a) (b)

Figure 3-13 Example of edge image of (a) daytime and (b) evening
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There are two steps to identify the false alarms as illustrated in Figure 3-10. The system
uses histogram matching to filter out the false alarms, mostly are ground images, and use
intensity complexity to confirm the CRs being vehicle images or not. These two methods are
constructed into cascaded structure inspired by AdaBoost algorithm. By cascaded structure,
each step, namely histogram matching and intensity complexity, can deal with relative simple
problem and filter out false alarms efficiently.

First, Figure 3-14 demonstrates two images, namely a false alarm image (ground image

here) and a vehicle image, and their histogram image respectively.

(@) (b)

(c) (d)

Figure 3-14 (a) vehicle image (b) ground image (c) histogram of (a) (d) histogram of (b)

As you can see in Figure 3-14, because the lighting lamps, the histogram of vehicle is

25



different from ground’s. Unfortunately, the light come from lamps is also projecting on the
road causing the histogram of ground can sometimes be similar with the histogram of vehicle.
Besides, the intensity of vehicle body can also be confusing because other vehicle’s lamps
might project on the other vehicle. In the other words, we cannot be sure that the histogram
that we computed can represent the lamps. Therefore, we do not use the entire image to
compute the histogram and the range of histogram is not typical 0~255.

What we do here is similar to the idea of edge complexity. Because the lamps are usually
locating at the bottom-half part of candidate region (CR) and they are approximately
symmetric to the middle vertical line of CR, we utilize these properties to select sub-region to

computer histogram. Figure 3-15 illustrates the sub-region we chose.

Figure 3-15 Sub-region to compute histogram

It is important that the histogram we computed is almost generated from the intensity of
lamps. As Figure 3-15, we first look at bottom-half part of CR and reduce the range of left,
right and button boundary. The purpose of reducing the range of sub-region is to decrease the
impact of background image because the CRs always contain some background image. By
reducing the range of sub-region, we can more precisely locate at the position of lamps.

Secondly, we reassign the intensity of pixels around the middle vertical line and within the
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sub-region to zero. This is because the lamps are approximately symmetric to the middle
vertical line of CR. Therefore, we assume the pixels around the middle vertical line and
within the sub-region cannot represent the lamps and we do not want to include these pixels.
Thirdly, we only include the pixel whose intensity is high than 110 when computing the
histogram. By limiting the range of intensity, the difference between the false alarms and

vehicle objects can be enlarged. Figure 3-16 illustrates the result of our method.

(a) (b)

he

(c) (d)
Figure 3-16 (a) Vehicle image (b) Ground image (c) histogram of (a) (d) histogram of (b)

After computing the histogram of each CR, we compare histograms with our two target

histograms, which are selected from our training samples and tested by Equation 3-5.

27



_ Cov(XY) _ E(XY)— E(X)E(Y)
- Ox Oy - Ox Ty

(3-5)

where p is the correlation coefficient, X and Y are two random variables, E is the
expect value operator, Cov means covariance and o is standard deviations. The whole

procedure of histogram matching is illustrated in Figure 3-17.

histogram 1 histogram 2
uummim_
Yes Yes

False Alarms

Figure 3-17 Procedure of histogram matching

As Figure 3-17, the structure of histogram matching is also cascaded structure. It is
unrealistic to expect one histogram can handle most false alarms. Therefore we use cascaded
structure to filter out false alarms as many as possible. After all, we still has next step, namely
intensity complexity, and stabilizer to erase false alarms.

The next step is intensity complexity which is inspired by edge complexity and further
utilizes the histogram information. In the histogram matching step, we already have the
histogram of each CR and also the amount of pixels whose intensity range from 110 to 255.
Different from histogram matching step, which mostly filters out false alarms containing

ground image, the intensity complexity verifies the existence of lighting lamps and further
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confirms the CR is vehicle objects. The intensity complexity is computed by Equation 3-6.

me = (3'6)

=l =]

where n is the amount of pixels whose intensity is between 155 and 255 and n is the

number of pixels of sub-region which used to compute the histogram in histogram matching
step.

The purpose of intensity complexity is to examine the existence of lamps and further
confirm the CR is vehicle object. The falsification is by Equation 3-7. The idea here is similar
with edge complexity. In edge complexity step, we use the complexity to represent the head
of vehicles. As for intensity complexity, we use the complexity to represent the lamps. As
mentioned in histogram matching, we utilize:not only the intensity of bright pixels come from
lighting lamps but also the position of lamps. Therefore, we only select pixels whose intensity
range from 155 to 255 and location is within ‘the: assumed area to compute intensity
complexity.

m, <1 (3-7)

where n is empirical threshold.

The system uses the light lamps, which are the most obvious feature of vehicles in the
evening, to filter out the false alarms and remain the vehicles object instead of using edge

complexity. This scheme let the system can operate in evening.

3.3.3 Size Filter

When we use video as our input, one vehicle will continuously show up at different
positions and then disappear. What’s more, the vehicle has specific width at particular

position. As the consequence, we can filter out unreasonable candidate region (CR) whose
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width is too big or too small at its position by utilizing this property. Figure 3-18 illustrates

the concept and Equation 3-8 and Equation 3-9 are the computing formulas.

Yo o
hy
w
o P :
\h, "
YI N ]
h, Nl
N\
o
Figure 3-18 Width of vehicle at different position
scaleFactor = —2— ¢ (3-8)
¥1 %o
W, =W, + (y; — yp) X scaleFactor (3-9)

Besides using Equation 3-8 and Equation 3-9, we also set a tolerance rage for acceptable

width and the final filtering rule is Equation 3-10.

W, — € <widthof CR<W; + & (3-10)

where € is the empirical threshold for efficient falsification.

3.3.4 Switcher

Because we have two filtering scheme, the false alarm eliminator needs an algorithm to

decide what scheme should be used for automatic detection reason. The first priority is to
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decide using what feature to represent the passing time. As mentioned at section 3.3.2, we use
histogram matching and intensity complexity to filter out false alarms instead of using edge
complexity because the average value of CR’s edge complexity will decrease when the time
approaches evening. Therefore, we use nothing but edge complexity to detect the changing of

time. Figure 3-19 is the flow chart of switcher.

v

Check at
every 5 frame
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CRs
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value of all CRs edge | 5

complexity and
record the result

wlr No

Have
enough —
data

‘If Yes
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trend

v

Have
enough
trend
decision

| Yes

Daytime

Daytime of Evening
scheme : scheme
Evening

Figure 3-19 Flow chart of switcher
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The system will operate the switching every 5 frame. When the system is going to
compute the average edge complexity of CRs, we expect that there are enough CRs. This is
because the result is not precise enough when there are too less CRs. For example, if there is
only one CR, which might means there is only one vehicle in the scene and use edge
complexity of only one CR to decide the average value is increasing or decreasing, it is not
suitable. After all, we want to observe the trend of edge complexity to help us decide which
scheme to use. Therefore, we have to check if there are enough CRs. If there are enough CRs,
we compare the average value of CR’s edge complexity with the threshold by Equation 3-11
and record the result. We still have to record enough result in order to analysis the trend of
edge complexity.

—1, average value <1,
1, otherwise

treand = { (3-11)

where m; is the button threshold of edge-complexity, 1 means increasing and -1 means

decreasing.

After collecting enough data, we compute the number of 1 and -1 respectively, if the
number of 1 is bigger than -1’s, we consider that the trend is increasing, otherwise is
decreasing. Still, we do not judge only by one decision. The system won’t change the scheme
until there are enough trend decisions. In our system, we set the threshold to 3 decisions. It
means that if the switcher has 3 decreasing decision and current scheme is daytime, for
example, the switcher will change the scheme to evening. We combine the two schemes by
the algorithm explained above and let the whole system can operate both at daytime and

evening with automatic detection functionality.
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3.4 Stabilizer

The stabilizer is usable when the input is video and it is the final stage of our system.
There are two missions for this stage. One is to stabilize the detection results and the other is
to filter out the false alarm. When the input is the video, the system will operate on every
frame. Sometimes, the same vehicle is detected in current frame but is missing in next frame
and then is detected again. Even though there are no significant differences between
continuous frames, the missing situation will happen. This is because no matter the AdaBoost
vehicle classifier or the false alarm eliminator, all of them use threshold to detect and falsify.
Therefore, even if the value is higher or less than threshold by 0.001, the result is completely
different. As the consequence, the detection results might have the twinkling detection
rectangle and that is the problem we want to solve.

There are two steps of this stage, namely stabilizer. One is confirming step which is the
final method to erase false alarms and the other is tracking step which is used to solve
twinkling rectangle. The former-will be introduced in section 3.4.1 and the latter will be

explained in section 3.4.2.

3.4.1 Confirming Step

The final result we want to present is the detection rectangles which contain vehicles in
the current scene. Therefore, we have to make sure the content of detection rectangles is
vehicles and that is also the reason why we develop false alarm eliminator. But the false alarm
eliminator has its limitation, namely it sometime cannot filter out all the false alarms because
the threshold method as mentioned at section 3.4. As the consequence, we use survival
algorithm, which utilizes the fact that a vehicle will show up in the scene continuously when
the input is video, to make sure the detection rectangles is not false alarms. Figure 3-20 is the

flow chart of confirming step.
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Figure 3-20 The flow chart of confirming step
After the AdaBoost vehicle detector generates the candidate regions (CRs) and these
CRs are examined by false alarm eliminator, we check our survival list whether already has

the same CR or not. We use the distance of left-up corner to distinguish it. Figure 3-21

illustrates the idea.
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Figure 3-21 Two detection rectangles of the same vehicle

For each CR, we compute the distance between two left-up corners with every detection
rectangle in the survival list. If there is a distance less than maximum acceptable distance and
is also the minimum distance among all the rectangles in the survival list, we think of the CR
and the closest detection rectangle_ in the survival list are the same and we increase its hitting
number, which is explained in next paragraph. Otherwise, we add current CR into the survival
list.

The hitting number is the implementation of the survival concept. As mentioned at
section 3.4, a vehicle will show up in the scene continuously and then disappear. What’s more,
we operate the detection step at every frame. Therefore, a vehicle will be detected more than
once before disappearing. We accumulate the number of detection, namely the hitting number,
to distinguish the vehicles from the false alarms. If a CR is detected more than hitting number
threshold within specific frame interval, the CR is treated as vehicle object. By applying this
survival concept, we can further erase the false alarms which the false alarm eliminator cannot

handle and confirm the CR is actually the vehicle object.

3.4.2 Tracking Step

After confirming the detection rectangle is actually vehicle object, we draw this detection
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rectangle no matter that it is missed by AdaBoost vehicle detector or filtered out by false
alarm eliminator. As long as the detection rectangle is confirmed as vehicle object, the
detection rectangle will be drew until the vehicle is out of sight. By this step, we can avoid
twinkling detection rectangle. If the same detection rectangle is generated by AdaBoost
vehicle detector and pass the false alarm eliminator again, we update the position information
and size of this detection rectangle and then draw the detection rectangle. Otherwise, we draw
the detection rectangle by the information stored in survival list and use simple tracking

algorithm to update the position. Figure 3-22 is the diagram of this step.
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hit_thrd
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Adjust position Be hit i
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to Ada frame g
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No
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Rectangle
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Figure 3-22 Diagram of tracking step

Remember that we only draw the detection rectangle which is confirmed as vehicle

object. Therefore, we check the hitting number to make sure the result is correct. After every
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detection iteration, namely every frame finishes, we examine the survival condition of every
detection rectangle in the survival list. If the detection rectangle is out of sight or it does not

meet the survival criterion, the detection rectangle should be deleted.
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Chapter 4
Experimental Results

The vehicle detection system is implemented on a PC system. The CPU and RAM of the
PC is Intel Core 2 Duo @ 2.9G and 2GB RAM respectively. The integrated development
environment is Microsoft Visual Studio 2008 on Windows XP OS. The inputs are video files
(uncompressed AVI) or images (PPM format). These inputs were captured with a DV at
traffic intersection or testing samples which were used by other research.

Section 4.1 illustrates the training process of AdaBoost, including the training dataset
and the comparison of non-converging training at different layer number. Section 4.2 shows
the results of detection in static image with the comparison of other researches. The testing
images are obtained from a public testing database — MIT CBCL car database 1999. Section
4.3 demonstrates the experimental results of switcher. Section 4.4 illustrates the experimental

results of detecting vehicles in videos.

4.1 AdaBoost Training

We collected our training data by manually extracting samples from videos. There are
3431 positive samples and 11133 negative samples. Both the positive samples and negative
samples contain daytime and evening samples. All the training samples are transformed into
gray-level image. Because the samples are collected manually, they do not have the same size.
Therefore we normalized the sample to 22 x 18. The weak classifiers used here are the
permutation of the type, position and scale of 15 Haar-like features. Figure 4-1 demonstrates
some samples of positive and negative samples and Figure 4-2 is the flow chart of the training

process.
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Figure 4-1 Some samples of training samples
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Figure 4-2 Flow chart of AdaBoost training process

As mentioned at section 3.2.5,.we-used non-converging training method to train our

AdaBoost vehicle detector. Table 4-1 is the statistical result of different layer number. The

testing data is MIT CBCL car database. The criteria of performance measurement are defined

in Equation 4-1 and 4-2 [18].

Number of detected vehicles

Detection Rate = Recall =

Total number of vehicles

Number of false alarms

False Alarm Rate =

Total number of non—vehicle windows in testing data
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Table 4-1 Comparison between different AdaBoost vehicle detector

of layers
14 13 11 10 9 8
Number of
weak 592 477 318 263 210 179
classifiers
Detection
Rate 61.18% 68.63% 85.71% 94.41% 98.14% 98.76%
False Alarm
Rate 0% 0.00008% | 0.0008% | 0.0014% 0.003% 0.0058%

Obviously, the less number-of the layer is, the higher the detection rate is. It is because
when we decreased the number of .the layer,-we actually decreased the complexity of
AdaBoost decision rules. Look at the last two columns, namely AdaBoost vehicle detector
with 9 layers and 8 layers. Although, both of these two AdaBoost vehicle detector’s detection
rate are higher enough, they can be distinguish from each other by false alarm rate. When we
decrease the layer number from 9 to 8, the detection rate increases 0.62%, but the false alarm
rate also increases 0.0028%. The price of increasing only 0.62% detection rate is too high and
it also means that we have to deal with much more false alarms. Therefore, in this study, the

layer number of AdaBoost vehicle detector is 9.

4.2 Results of Detecting Vehicles in Static Image

In the MIT CBCL car database, each image was extracted from raw data and was scaled
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to the size 128x128 and aligned so that the car was in the center of the image. There are few
researches that provided the experimental result of public frontal-viewed car database. So far,
R. Wang et al. [18] provided their experimental result of MIT CBCL car database. We also
implemented the method proposed in J.F. Lee [29]. Therefore, we compared the experimental
result of [18] and [29] with that of the proposed system and the comparison results are
presented in Table 4-2 and some detection results are presented in Figure 4-3. Because the
MIT CBCL database consists of daytime image, we only use daytime scheme without size
filter, namely AdaBoost + edge complexity, to test the performance. The criteria of

performance measurement are also Equation 4-1 and 4-2.

Table 4-2 Performance comparison of MIT CBCL

PCA +ICA AdaBoost + PDBNN Proposed System
Detection Rate 95% 91.93% 96.27%
False Alarm Rate 0.002% 0.0031% 0.0015%
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Figure 4-3 Some detection results of MIT CBCL car database

4.3 Results of Switcher

First, we show that why we have to design a switching algorithm, Figure 4-4 is the
statistic charts of two false alarm eliminating schemes respectively. The purple line labeled
with Edge is the daytime scheme and the blue line labeled with Hist is the evening scheme.

The video sequence is in the time interval from daytime to evening.

Detection False Alarm
Rate (%) Rate (%)
100 30
/\
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95 25
Hist
90 20
85 15

80 10 ,,—\\
75
70 0 \

Time Time

n

Figure 4-4 Statistic charts of two false alarm eliminating schemes

As illustrated in Figure 4-4, the detection capability of daytime scheme is falling down
when time approached evening. Although the evening scheme has high detection rate in the
daytime but its false alarm rate is too high. Figure 4-4 explains why we need two schemes to
handle false alarms in different time interval and why we have switcher to combine these two

schemes. The Figure 4-5 demonstrates the result after integrating the switching algorithm.
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Figure 4-5 Statistic chart of integrating switcher

4.4 Results of Detecting Vehiclesin Video

In this section, the experimental results of detecting vehicles in videos are demonstrated.
We compared the result with J.F. Lee [29], namely AdaBoost + Probabilistic Decision-Based
Neural Network (PDBNN) and method which used Gaussian Mixture Model (GMM)[30][31]
to establish background image. The testing videos are composed of daytime and evening
traffic video and different scenes. Table 4-3 to Table 4-7 are the statistic results of testing
videos. We also present comparison of the frame per second (FPS). Table 4-3 to Table 4-5 are
comparison result of daytime testing videos and Table 4-6 to Table 4-7 are the comparison
result of evening testing videos. The detection rate and false alarm rate are computed by

Equation 4-3 and Equation 4-4 respectively.

number of detected vehicles

Detection rate(DR) = (4-3)

total number of vehicles

number of false alarm
False alarm rate(FA) =

(4-4)

total detected number
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Table 4-3 Performance comparison of video at scene 1 (Daytime)

Place Method Detected False alarms FPS Total
vehicles vehicles
GMM 110 7 20.745
Fifl ] (82.09% ) (5.98% )
A pfrs AdaBoost + 131 2 7.445 134
PDBNN (97.76%) (1.5%)
Proposed 133 2 17.265
system (99.25% ) (1.48%)
Table 4-4 Performance comparison of video at scene 2 (Daytime)
Place Method Detected False alarms FPS Total
vehicles vehicles
GMM 121 57 21.19
il (72.46%) ('32.02% )
Pl A AdaBoost + 153 3 4.52 167
PDBNN (91.62% ) (1.92%)
Proposed 163 8 16.35
system (97.6%) (4.54%)




Table 4-5 Performance comparison of video at scene 3 (Daytime)

Place Method Detected False alarms FPS Total
vehicles vehicles
GMM 103 110 21.28
il (81.75%) | (51.64%)
ok (g AdaBoost + 41 5 6.856 126
PDBNN (3254%) | (10.87%)
Proposed 124 2 18.417
system (98.41%) (1.59%)
Table 4-6 Performance comparison of video at scene 1 (Evening)
Place Method Detected False alarms FPS Total
vehicles vehicles
GMM 139 87 21.295
i T (79.89%) (38.5%)
R AdaBoost + 148 2 8.295 174
PDBNN (85.06% ) (1.14%)
Proposed 173 8 17.167
system (99.43%) (4.42%)
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Table 4-7 Performance comparison of video at scene 3 (Evening)

Place Method Detected False alarms FPS Total
vehicles vehicles
GMM 283 265 21.605
B (87.35%) | (48.36%)
ok (g AdaBoost + 180 45 5.37 324

PDBNN (55.56%) | (19.74%)

Proposed 310 10 19.466

system (95.68% ) (3.125%)

In the daytime, both method in [29] and our proposed system perform well. As for GMM,
because the scenes we used have heavy traffic.and contain vehicles and motorcycles in the
same time, it is hard for GMM ‘method to segment vehicle will and distinguish motorcycle
from vehicle. In the evening, our'system-is better than.[29] and [30][31] with higher detection
rate and acceptable false alarm rate. The detection rate of [29] decreased when time approach
evening because the edge of vehicle become ambiguous. For [30][31], problem generated by
motorcycles still exit. What’s more, the light come from lamps of vehicle generated more
trouble. As for operation speed, our proposed system is also faster than [29] and near
[30][31].

As illustrated in Table 4-3 to Table 4-7, the result is identical to our objective, namely
can be applied to real-time application. Figure 4-6 is some capture pictures of detection result.
The red rectangle is the result of proposed system and green rectangle is the result of [29] and

yellow rectangle is the result of GMM.
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(d)

Fig. 4-6 Capture pictures of video’s detection result
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Chapter 5
Conclusions and Future Work

Without using background information, the proposed vehicle detection system is more
stable and reliable. The three stages structure of system, namely AdaBoost vehicle detector,
false alarm eliminator and stabilizer, simplifies the problems which each stage has to conguer.
At AdaBoost vehicle detector stage, the prime priority is to detect vehicles as many as
possible both in daytime and evening. In the other words, AdaBoost vehicle detector only has
to focus on detection capability. We use non-converging training to achieve this goal. At the
false alarm eliminator stage, the top mission is to filter out the false alarms generated from
previous stage. We propose two schemes to deal with false alarms from daytime and evening
respectively and use switcher to integrate these two schemes. At stabilizer stage, the purpose
is to stabilize the detection results and further erase false alarms. Each stage of system has its
main functionality and can perform much-well when they are combined together. This paper
demonstrates a robust system for vehicle detection which can operate both in daytime and
evening and can be applied to real-time applications.

To further improve the performance of our system, some enhancements or trials can be
made in the future. Firstly, the system can be expanded to include rear-viewed and
side-viewed vehicles. Secondly, the detection ability can be improved to detect vehicles in
much darker situation. Thirdly, more complex and efficient tracking algorithm can be

integrated to the system because the current tracking algorithm used by stabilizer is simple.
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