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運用複雜度及亮度分佈檢測之建立在 Boos t ing 基礎上的車輛偵測 

學生：柯弼文  指導教授：林進燈 教授                                                     

 

國立交通大學 多媒體工程研究所碩士班 

摘 要       

近年來，為了提高分析大量影像資料的效率與準確度，影像式的車

輛偵測技術廣泛應用在智慧型運輸系統中，且相關研究以及應用也愈來

愈多。目前使用最廣泛的方式是利用背景減出前景的方式來偵測目標

物，然而在都市區域交通流量大且車輛走走停停的區域，使用建立背景

方式的準確度會大幅下降，此外，也需要時間建立背景，而無法即時反

應目前的車輛偵測結果。在本研究中，我們提出了一個可長時間並且穩

定的自動化車輛偵測系統，利用 AdaBoost 訓練一個可適用在白天以及

傍晚的車輛分類器，此分類器擁有高偵測率，但誤判率也相對比較高，

且被誤判的內容也相對複雜，因此我們建立了一套可針對白天以及傍晚

兩種情況去濾除誤判的系統，我們利用車體在不同光線條件下的特徵，

配合計算量小的演算法來有效的濾除誤判，並同時維持整體系統運做速

度，使其可以運用在即時應用上，此外，我們也透過切換機制將兩種濾

除方式合而為一，來達到自動偵測的目的。最後，系統利用生存演算法

將偵測結果做進一步的穩定與呈現，並且應用在車輛計數的應用上。對

公開的 MIT CBCL 資料庫測試，我們比較了使用 PCA + ICA[18]、
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AdaBoost + PDBNN[29]以及我們提出的方法，PCA + ICA 的偵測率為

95%，誤報率為 0.002%，AdaBoost + PDBNN 的偵測率為 91.93%，誤

報率為 0.0031%，我們的系統可達到 96.27%的偵測率，0.0015%的誤報

率；也同時對我們蒐集的影片做測試，包含白天及傍晚的影片，比較對

象有使用 GMM 建背景[34][35]和 AdaBoost + PDBNN 這兩種方式，使

用背景方式的平均偵測率為 80.7%，平均誤報率 35.3%，AdaBoost + 

PDBNN 的平均偵測率為 72.5%，誤報率為 7%，我們的系統的平均偵測

率為 98%，平均誤報率為 3%。由實驗結果可以看出，我們提出的系統

可以適用於現實環境中，並且可以達到即時偵測的效果。
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ABSTRACT 

In recent years, visual-based vehicle detection techniques have been extensively applied 

to Intelligent Transportation System (ITS) to improve the efficiency and precision of 

analyzing massive video information. The most common method is using background image 

to extract foreground objects. However, this method is not suitable for urban area where has 

heavy traffic, and vehicles will move and stop frequently. The correctness of detection will 

decrease dramatically. What’s more, background method cannot detect instantaneous situation 

of traffic because it need learning time to construct background image. In this study, we 

proposed a long-term and stable automatic vehicle detection system. We used AdaBoost 

algorithm to train a vehicle classifier which can operate both at daytime and evening. The 

classifier has high detection rate, but the false alarm rate is also relatively high, and the 

content of false alarms is complicate too. Therefore, we also developed two false alarm 

eliminating algorithms to reduce false alarm rate for daytime and evening respectively. We 

utilized the features of vehicle under different lighting conditions. Then, these features 

cooperate with algorithms, which need low computation power, to filter out false alarms 

efficiently, and maintain reasonable operating speed to let the system can be applied to 

real-time applications. Furthermore, we used switching algorithm to combine the two false 

alarm eliminating algorithm into one system to achieve automatic detection. In the end, we 

use survival algorithm to further stabilize and present the detection results, and applied the 
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system to real-time vehicle-counting application. For the MIT CBCL database, we compared 

our system with PCA + ICA[18] and AdaBoost + PDBNN[29] these two methods. The 

detection rate of PCA + ICA is 95% and false alarm rate is 0.002%. The detection rate of 

AdaBoost + PDBNN is 91.93% and false alarm rate is 0.0031%. The detection rate of our 

system is 96.27% and false alarm rate is 0.0015%. For proprietary testing videos which 

contain both daytime and evening videos, we compared with GMM[34][35] and AdaBoost + 

PDBNN these two methods. The average detection rate of GMM is 80.7% and average false 

alarm rate is 35.3%. The average detection rate of AdaBoost + PDBNN is 72.5% and average 

false alarm rate is 7%. The average detection rate of our system is 98% and false alarm rate is 

3%. We can tell from experimental results that our proposed system can operate in real world 

environment, and has real-time detection ability in the same time. 

. 
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Chapter 1  

Introduction 

 
1.1 Motivation 

In recent years, image and video processing techniques have been applied to many 

applications to improve safety and convenience of human’s life. For example, how to 

efficiently monitor the traffic condition with advanced techniques is one of the most important 

issues. Traditional traffic surveillance systems use analog equipment to detect vehicles and 

gather information. To analyze the information, we have to check manually. This is inefficient 

and time consuming. In the other hand, digital cameras are cheaper and techniques of 

computer vision are improved, therefore visual-based Intelligent Transportation System (ITS) 

has attracted great attention recently. For instances, video-based automatic vehicle detection 

system, vehicle behavior analysis system, traffic monitoring system, etc. can be seen in many 

applications and products. 

The fundamental step of these applications is foreground object extraction. In 

conventional method, background subtraction and temporal difference are the most used 

techniques for foreground segmentation. However, there are some factors that may affect the 

results of these two methods and make foreground extraction more difficult. For background 

subtraction, this method relies on clean background image. The neater the background image 

is, the more precise the result is. In some circumstances, the performance of background 

subtraction is not good enough. For example, swaying trees might be treated as foreground 

objects but actually they are part of the background. Moreover, the clean background image is 

difficult to be built in a heavy traffic scene, because the frequency of foreground objects is 

much higher than that of background. Although background subtraction is a simple and quick 
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method, the background information is prone to be tainted by still vehicles or the heavy traffic. 

Temporal difference which relies on the motion and texture of objects might fail if the texture 

of objects is not obvious or the objects keep still periodically. All these factors make 

background subtraction and temporal difference unstable. 

 

1.2 Objective 

The objective of this study is to construct a high detection rate and low false alarm rate 

automatic vehicle detection system by combining vehicle classifier with false alarm 

eliminating system. We expect this approach would provide a better solution for vehicle 

detection, and handle the problems encountered by conventional background-based detection 

systems. Therefore, we propose to develop a vehicle detection system that has these 

characteristics: 

1) Can work without background information. 

2) Can detect vehicle in a scene with heavy traffic. 

3) Can operate both in daytime and evening. 

4) Can be applied to real-time applications. 

 

1.3 Organization 

This thesis is organized as follows: Chapter II gives an overview of related works about 

this research and briefly explains their method. Chapter III presents and explains each module 

of proposed system and details algorithm used in each module. Chapter IV shows 

experimental results and performance comparison. Finally, the conclusions of this study are 

stated in Chapter V. 
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Chapter 2  

Related Works 

 
One of the solutions for vehicle detection without background model is to exhaustively 

search at all positions in the scene. But this solution is not suitable for real-time applications. 

To solve this problem, most of the methods reported in the literature can be subdivided into 

two steps as follow. 

(1) Hypothesis Generation (HG): this step provides potential positions of vehicles in a 

simple and rapid way resulting in a reduced area to confirm.  

(2) Hypothesis Verification (HV): candidate regions from HG step are verified by using 

some complex algorithms to validate the exact positions of vehicles and correctness. 

We will introduce several related researches in following sections. 

 

2.1 Hypothesis Generation (HG) Methods 

There are many HG approaches proposed by other researches. The goal of the HG step is 

to quickly find candidate vehicle locations in a scene so that it can reduce the computational 

requirements. HG is generally based on simple, low-level algorithms which hypothesize 

potential locations of vehicles. The hypothesized locations from the HG step become the input 

to the HV step, where some algorithms are performed to verify the correctness of the 

hypotheses. Obviously, the main purpose of HG step is to filter out unqualified detection 

results as many as possible while keeping overall detection rate as high as possible. 

Because the rear-view or frontal-view of vehicles are generally symmetric in horizontal 

direction, T. Zielke et al. [1], A. Kuehnle [2] and A. Bensrhair et al. [3] used symmetry as 

main features to imply the existence of vehicles in their studies. S.D. Buluswar et al. [4] and 
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D. Guo et al. [5] used RGB and Lab color spaces respectively to extract vehicles from 

background. Matthews et al. [6] used edge detection to find strong vertical edges. By 

computing the vertical profile of the edge image and smoothing with triangular filter, the local 

maximum peaks of the vertical profile indicates the left and right borders of a vehicle. C. 

Demonceaux et al. [7] and A. Giachetti et al. [8] use optical flow to distinguish motion of 

moving vehicles from the road motion and segment the vehicles. 

Using single cue or feature for all conceivable scenarios seems to be impossible. 

Therefore, combining different cues or features can produce more reliable results for many 

situations. For examples, J. Collado et al. [9] combined shape, symmetry and shadow, K. She 

et al. [10] used both color and shape, and J. Wang et al. [11] combined motion with 

appearance. As the consequence, effective fusion mechanisms and useful features that are fast 

and easy to compute are both important research issues. 

 

2.2 Hypothesis Verification (HV) Methods 

The input of HV step is the hypothesized vehicle locations generated from HG step. In 

HV step, the correctness of these hypothesized vehicle locations are verified. A. Khammari et 

al. [12] classified HV methods into two categories, namely template-based and 

appearance-based. 

Template-based methods compute the correlation between the input and the predefined 

patterns of vehicle. M. Betke et al. [13] proposed a vehicle detection approach using 

deformable gray-scale template matching. J. Ferryman et al. [14] used Principal Component 

Analysis (PCA) on manually sampled data to form a deformable model, utilized this model to 

confirm the detection results. 

Appearance-based methods require training data of vehicle images to learn the 

characteristics of vehicle appearance. Usually, training data of the non-vehicle class is also 
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modeled to improve performance. Each training sample is represented by local or global 

features. Then, the decision boundary between the vehicle and non-vehicle classes are learned 

either by training process (e.g., Support Vector Machine (SVM) [15]) or by modeling the 

probability distribution of the features in each class (e.g., using the Bayes rule [16]). In [17], 

wavelet transform was used for feature extraction and Support Vector Machines (SVMs) was 

used for classification. 

One of the most important issues in object detection is feature selection. In most cases, a 

large quantity of features is employed because the important features are unknown in advance. 

Furthermore, many of them are either redundant or even irrelevant. Therefore, it is necessary 

to use only those features that have great separability power and ignore or pay less attention to 

the rest. Consequently, a powerful feature selection algorithm is highly desirable. 

R. Wang et al. [18] proposed a vehicle detection system based on local features of three 

vehicle sub-regions. They used PCA and Independent Component Analysis (ICA) as method 

of feature selection, and combine PCA with ICA. Each sub-region of training data is projected 

onto its associated eigenspace and independent basis space to generate a PCA weight vector 

and an ICA coefficient vector respectively. A likelihood evaluation process is then performed 

based on the estimated joint probability of the projection weight vectors and the coefficient 

vectors. The PCA model the low-frequency components of vehicles, and ICA model the 

high-frequency components of vehicles. The combination of PCA and ICA improve the 

tolerance of variations in the illumination condition and vehicle pose. 

P. Viola and M. J. Jones [19] proposed a novel feature selection algorithm for human 

face detection. The algorithm will use training data to construct a cascade boosted classifiers. 

Each layer in the cascade classifier rejects some input that do not contain interested object. 

The feature they used is Haar-like feature, also called rectangular filter (verified by C. 

Papageorgiou et al. [20]), and the training algorithm is AdaBoost machine learning algorithm 
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[21], which is used to select useful features in each layer. The integral image is used to 

accelerate the calculation of Haar-like features. The cascaded structure makes the classifier 

trained by AdaBoost suitable for real-time face-detection application. 

Inspired by AdaBoost algorithm, P. Negri et al. [22] combined the Haar-like features and 

the histograms of oriented gradient (HoG) with AdaBoost algorithm. The purpose of this 

method is to use classifier composed of Haar-like features filter out easy negative inputs in the 

early part of the fusion classifier. And in the later part of the fusion classifier, classifier 

composed of HoG features generates a fine decision boundary to remove negative inputs 

which are similar to vehicle, so that the fusion classifier achieved better performances than 

either single classifier. 

In this study, we use cascaded classifier trained by AdaBoost algorithm to generate 

vehicle hypotheses. We proposed a false alarm eliminating system using edge complexity for 

daytime and histogram matching and intensity complexity for evening as hypothesis 

verification method, and cooperate with survival algorithm to stabilize the final results. In 

hypothesis generation step, we do not care about false alarm rate. In other words, Haar-like 

features classifier is focusing on high detection rate and ignoring the false alarm rate. We 

filter out most the false alarms in later step instead. By this three stages structure, namely high 

detection rate vehicle classifier, false alarm eliminating system and stabilizer, our whole 

vehicle detection system can achieve satisfactory performance.  
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Chapter 3  

Vehicle Detection System 
 

In this chapter, the structure of proposed system is defined. The system structure is 

composed of three stages: vehicle detector, false alarm eliminator and stabilizer. Section 3.1 

demonstrates the diagram of whole system and shows key modules of each stage. Section 3.2 

explains the heart of vehicle detector, namely AdaBoost vehicle classifier, including concept 

and details. Section 3.3 illustrates the process and methods of false alarm eliminator. Section 

3.4 explains how the system stabilizes the detection results and also erases some false alarms. 

 

3.1 System Overview 

First of all, we transform the raw color image into a gray level image and the gray level 

image is downsized by a simple downsampling algorithm for acceleration reason. After 

resizing, the image is send to AdaBoost vehicle detector to perform detection. Here, the 

detector uses slicing window to detect vehicles and confirms the results by its cascaded 

structure. The outputs of vehicle detector stage are candidate regions (CRs) of vehicles and 

are also the inputs of false alarm eliminator stage. In the second stage, we firstly check the 

erasing mode, namely daytime or evening. For daytime case, Canny edge operator [23] is 

applied to each CR, and then the system examines the edge complexity to decide whether the 

CR is vehicle or not. For evening case, system firstly calculates the histogram of each CR and 

then uses the histogram to do histogram matching and intensity complexity checking to verify 

the result. Both daytime and evening cases, all the results have to be examined by size filter to 

filter out too big or too small CRs. The final step is stabilizer stage. In this stage, we use 

survival algorithm to further ensure the CRs are vehicles and stabilize the detection results. 
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The diagram of whole system is shown in Figure 3-1. 

 

Figure 3-1 System diagram 
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3.2 Vehicle Detection using AdaBoost 

This sub-system is the foundation of entire system, as mentioned in section 2.1, most 

research efforts have focused on feature extraction and classification by learning or statistical 

models. The most important issue in object detection is selecting a suitable set of features 

which can soundly represent the implicit invariant of interested objects. An intuitive method 

is to focus on the common components of interested objects. For example, contour, color, 

symmetry, texture and etc. are commonly use perceptual features. These features can be used 

alone or cooperatively to find interested objects in the searching area. Although these features 

can be easily implemented, they also have several limitations. One of the limitations is that 

these features are based on human’s perception and the physical nature of human’s perception 

is usually not reliable enough for computer vision. What’s more, how to choose a suitable set 

of features, no matter using single feature or combining features, is also a very difficult 

problem. Manually choosing is time consuming and inefficient. Therefore, the efforts of 

feature extraction have focused on statistical and machine learning area. 

AdaBoost algorithm proposed by Y. Freund et al. [21] is one of machine learning 

techniques and has been widely used for pattern recognition. AdaBoost algorithm combines 

weak classifiers into one strong classifier by weighted voting mechanism, and it also showed 

high performance in various fields. P. Viola et al [24] used AdaBoost algorithm to built a 

pedestrian detector, which has progressively complex rejecting rules. In [19], AdaBoost 

algorithm is originally applied to face detection and yields the best performance comparable 

to previous researches. Like original idea, we want to use several features to describe a 

vehicle and use these features to detect vehicles. Therefore, we use Haar-like features, which 

will be introduced in section 3.2.1, to describe vehicle and use AdaBoost algorithm, which 

will be explained in details in section 3.2.3, to select useful Haar-like features and combine 

them into a strong classifier. 
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Our goal of this stage, namely AdaBoost vehicle detector, is to build a high detection rate 

vehicle classifier. In other words, we used detection rate as prime criterion to decode whether 

the performance of detector is good enough or not. The false alarm rate is treated as reference 

information about the detector and left to false alarm eliminator and stabilizer to deal with. 

We called this kind of training as non-converging training, which will be explained in section 

3.2.5. The entire system is also designed and built under this concept. 

 

3.2.1 Haar-like Features (Rectangle Features) 

Haar basis functions (Haar-like features) used by Papageorgiou et al. [25] provide 

information about the grey-level intensity distribution of two or more adjacent regions in an 

image and is extended by Rainer Lienhart et al. [26]. Figure 3-2 shows the set of Haar-like 

features, including original and extended features. The output of a Haar-like feature on a 

certain region of gray-level image is the sum of all pixels intensity in the black region being 

subtracted from the sum of all pixels intensity in the white region. The sums of black and 

white region are normalized by a coefficient in case of square measures of white and black 

regions are different. In order to reduce computation time for the filters, P. Viola et al. [19] 

introduced the integral image which is an intermediate representation for a input image. The 

concept of integral image is illustrated in Figure 3-3(a), the value of the integral image at 

point (x, y) is the sum of all the pixels above and to the left. In Figure 3-3(b), the sum of the 

pixels within rectangle D can be computed with four array references. The value of the 

integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is 

A + B, at location 3 is A + C, and at location 4 is A + B + C + D. The sum within D can be 

computed as 4 + 1 − (2 + 3). Utilizing integral images, sum of a rectangular region can be 

calculated by using only four references in the integral image. As a result, the difference of 

two adjacent rectangular regions can be computed by using only six references in the integral 
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image, eight in the case of the three-rectangle Haar-like features and nine for four-rectangle 

Haar-like features. 

Every Haar-like feature j is defined as f( j ) = (rj, wj, hj, xj, yj), where rj is the type of 

Haar feature, wj and hj are width and height of the Haar feature and (xj, yj) is its position in the 

window. )( jfvaluesubtracted  , is the weighted sum of the pixels in white rectangles 

subtracted from those of dark rectangles. 

 

 

Figure 3-2 The Haar features [26] 

 

   

(a)                             (b) 

Figure 3-3 Integral image 
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3.2.2 Weak Classifier 

A weak classifier h(x, f, p, θ) consists of a Haar-like feature f (defined in 3.2.1), a 

threshold (θ) and a polarity (p) indicating the direction of the inequality in Equation 3-1. 



 


otherwise

pxpfif
pfxh

0

)(1
),,,(


  (3-1) 

here x is a 22x18 sub-window of an image. For each feature j, AdaBoost algorithm is applied 

to decide an optimal threshold θj for which the classification error on training database 

(containing positive and negative samples) is minimized. The process of threshold selection 

for weak classifier is a brute force method. We can think of threshold of weak classifier as a 

line that separate the positive sample from negative sample. The AdaBoost algorithm 

examines every separating threshold to find out the optimal threshold. The threshold seleting 

process is illustrated in Figure 3-4. By selecting the optimal threshold, the blue points 

(positive samples) and red points (negative samples) can be separated with a lowest 

classification error. Because one weak classifier has only one threshold, its separating ability 

is limited and that is why this kind of classifier being called weak classifier. 

 

Figure 3-4 Selecting thresholds for weak classifiers 
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3.2.3 AdaBoost Algorithm 

In literature, some methods are commonly used for features selection. For example, 

Principal Component Analysis (PCA) used in [14, 17, 18], Independent Component Analysis 

(ICA) used in [18] and so forth. Compared with above methods, AdaBoost algorithm has 

shown its capability to improve the performance of not only features selection but also 

detection rate.  

In the beginning, we have to prepare a feature set originated from the permutation of 

Haar-like feature types, scales and positions. This features set is many times greater than the 

number of pixels in the input image. Even though each Haar-like feature can be computed 

very efficiently by integral image, computing the complete set is still extremely time 

consuming and costly. AdaBoost algorithm uses this feature sets to generate weak classifiers 

and finds precise hypotheses of vehicle by iteratively combining weak classifiers which, in 

general, have moderate precision into a strong classifier defined in Equation 3-2. 














otherwise

xh
xC

T

t

t

T

t

tt

0

2

1
)(1

)( 11


 (3-2) 

where h and C are the weak and strong classifiers respectively, and α is a weight coefficient 

for each h. 

Considering a 2D feature space is full of positive and negative training samples. At first, 

AdaBoost algorithm chose a weak classifier with the highest accuracy in current training 

round to split the training samples by its optimal threshold. As shown in Figure 3-5(a), 

samples misclassified by previous weak learner are given more attention before adding next 

weak classifier at next round. By increasing weights, the training process will focus on these 

difficult samples, which cannot be correctly separated by single weak classifier. The idea of 

how AdaBoost algorithm selects and combines weak classifiers into a strong classifier is 

shown in Figure 3-5(b)(c)(d)(e)(f)(g). As shown in Figure 3-5(b), the misclassified blue points 
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(positive samples) in right side of the black line and red points (negative samples) in left side 

of the black line are emphasized in the next round as Figure 3-5(c). Similarly, the 

misclassified blue points in left side of the second black line and red points in right side are 

emphasized in the next round, as shown in Figure 3-5(d) and Figure 3-5(e). Finally, the strong 

classifier is formed with a linear combination of weak classifiers shown in Figure 3-5(g), and 

the boosting algorithm for selecting a set of weak classifiers to compose a strong classifier is 

shown in Table 3-1. 

 

(a) 

   

(b)                          (c) 
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(d)                         (e) 

   

(f)                          (g) 

Figure 3-5 The process of selecting and combining weak classifiers 

 

 

 

 

 

 

 

 

 

 



 

16 

Table 3-1 The boosting algorithm for selecting and combining weak classifiers[29] 

 

 

3.2.4 Cascaded Classifier 

A cascaded classifier is a linear combination of strong classifiers, and strong classifier is 

composed of at least one weak classifier.  P. Viola et al [19] also proposed a cascading 

algorithm of AdaBoost described in Table 3-2. At each stage, if an input extracted by the 

searching window is classified as vehicle, it is allowed to enter the next stage; otherwise, the 

input is rejected immediately. Briefly, an input need to pass through all of the stages, then it 

T hypotheses are constructed and each using a single feature. The final 

hypothesis is a weighted linear combination of the T hypotheses where the 

weights are inversely proportional to the training errors. 

• Given example images (x1, y1), . . . , (xn, yn) where yi = 0, 1 for negative 

and positive examples respectively. 

• Initialize weights lm
w i
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 for yi = 0, 1 respectively, where m and l 

are the number of negatives and positives respectively. 
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– Define ht(x) = h(x, ft, pt, θt) where ft ,pt ,and θt are the minimizers of 
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• The final strong classifier is: 
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can be labeled as vehicle; otherwise it is rejected by particular stage even if it enters the last 

stage. Figure 3-6 demonstrates the schema of cascaded classifier. 

 

Table 3-2 The training algorithm for building a cascaded detector[29] 

 

 

 

Figure 3-6 Structure of cascaded classifier. 

• User selects values for f, the maximum acceptable false positive rate per 

layer and d, the minimum acceptable detection rate per layer. 

• User selects target overall false positive rate, Ftarget. 

• P = set of positive examples 

• N = set of negative examples 

• F0 = 1.0; D0 = 1.0 

• i = 0 

• while Fi > Ftarget 

– i ← i + 1 

– ni = 0; Fi = Fi-1 

– while Fi > f × Fi-1 

* ni ← ni + 1 

* Use P and N to train a classifier with ni features using AdaBoost 

* Evaluate current cascaded classifier on validation set to determine 

Fi and Di. 

* Decrease threshold for the ith classifier until the current cascaded 

classifier has a detection rate of at least d × Di-1 (this also affects 

Fi) 

– N ← 0 

– If Fi > Ftarget then evaluate the current cascaded detector on the set of 

non-face images and put any false detections into the set N 
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3.2.5 Non-Converging Training 

As far as machine learning is concerned, training samples play a very important role in 

the training process. There are many factors of training samples can affect the final 

performance of classifier. For example, the amount of training samples, the complexity of 

content in the training image and etc. Commonly, positive training samples contain similar 

images of interested object. For instance, the positive training samples have similarity in the 

phase of interested object, lighting condition, contour and so forth. When collecting positive 

training samples, it is important to make the difference between each sample as low as 

possible. In the other words, the main purpose of positive training samples is to provide 

training algorithm the common features of interested object. On the other hand, negative 

training sample is everything except interested object. In this study, the interested object is 

vehicles and we focus on the front phase of vehicles. 

Different from the normal concept of preparing training samples, we collected not only 

similar samples but also dissimilar samples. More precisely, we collected frontal-viewed 

image of vehicles for positive samples and the others for negative samples both from daytime 

and evening. The samples have quite difference in lighting condition and have different 

features. Figure 3-7 is some positive samples we collected, including daytime and evening 

and Figure 3-8 is some samples of negative samples. 

                 

                 

(a) 
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(b) 

Figure 3-7 Some positive training samples of (a) Daytime (b) Evening 

 

                 

                 

(a) 

                 

                  

(b) 

Figure 3-8 Some negative training samples of (a) Daytime (b) Evening 

 

Generally, the complexity of training samples will affect the convergence of training 

process. That means if the content of training samples is too difficult, the training process of 
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AdaBoost algorithm would not finish, namely non-converging. According to algorithm 

described in Table 3-1, AdaBoost algorithm will pay more attention to the hard samples, 

which is difficult to classify by single weak classifier. What’s more, by algorithm described in 

Table 3-2, AdaBoost will build progressively complex decision rules in order to deal with 

hard samples when the training process is going on, illustrated by Figure 3-9. As you can see 

in Table 3-2, the outer while loop will continue until the Fi is small than Ftarget. Therefore, if 

the training samples are too complex to classify, the training process will never stop. Besides, 

the performance criterion of cascading algorithm is false alarm rate. In order to fit this 

criterion, the training process will try to decrease false alarm and the detection rate will 

decrease simultaneously. 

 

Figure 3-9 Progressively complex decision rules of AdaBoost vehicle detector 

 

Because we increased the complexity of training samples, it is not realistic to expect the 

training process will converge. As the consequence, we use detection rate as prime criterion 

instead. By the algorithm described in Table 3.2, the more layers the classifier has, the more 

difficult the object is classified as a vehicle. Consequently, if we decrease the layer number of 

classifier, the chance that the object be classified as a vehicle is higher. Therefore, what we 

did here is to specify the training process will stop at particular layer number. It doesn’t 

matter that the training procedure is not converge yet, we just want the classifier can detect as 

many vehicles as possible. Concerning how many stages are enough, we use false alarm rate 
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as assistant criterion. The statistical results will be presented in section 4. 

 

3.3 False Alarm Eliminator 

As mentioned in section 3.2, this stage of system is to handle the false alarms generated 

from previous stage, namely AdaBoost vehicle detector. The first priority of false alarm 

eliminator is to filter out false alarms as many as possible and affect detection rate as less as 

possible. When decreasing false alarm rate, as mentioned in section 3.2.5, the detection rate is 

affected simultaneously. Therefore, how to decrease false alarm rate and still keep detection 

rate as high as possible in the same time is the primary issue in this step. Additionally, the 

complexity of computation is also one of our concerns because we also want the system can 

be applied to real-time applications. As the results, we used less complex methods 

cooperating with properties of vehicles to filter out false alarms. 

Because the system has to deal with the false alarms both from daytime and evening, the 

false alarm eliminator has two schemes for daytime and evening respectively. For daytime 

case, we use edge complexity, illustrated in section 3.3.1, to identify which candidate region 

(CR) generated from AdaBoost vehicle detector is vehicle and which CR is not. As for 

evening case, we use histogram matching and intensity complexity, explained in section 3.3.2, 

to filter out false alarms and retain vehicle objects. In the end, both for daytime and evening 

cases, the system will use size filter, introduced in section 3.3.3, to filter out too big or too 

small CRs. For automatic detection reason, we also proposed a switching algorithm, 

illustrated in section 3.3.4, to let the system decides which scheme to be used by itself. Figure 

3-10 is the two schemes of false alarm eliminator. 
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Figure 3-10 Two schemes of false alarm eliminator 

 

3.3.1 Edge Complexity 

In the daytime, there are some features can be used to describe a vehicles. For examples, 

Luo-Wei Tsai et al [27] used color, edge and corner to identify vehicles in the static image 

and A. Kuehnle et al [2] used the symmetry of edge as features of vehicles. In this study, we 

do not consider using color as one of the features because the Haar-like features used in 

AdaBoost algorithm are operating on gray-level image. In the other words, the AdaBoost 

vehicle detector we trained uses only gray-level information. Further, we do not use corner to 

verify the results of AdaBoost vehicle detector. It is hard to discriminate vehicle objects from 

non-vehicle objects by using corner only, because there are too many objects have similar 

shape as vehicles. As the consequence, it is hard to eliminate the false alarms efficiently by 

using the number of corners on the objects or the position information of corners. In our false 

alarm eliminator, we chose edge as the main feature and use edge complexity [28] to identity 

the false alarms. 
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Figure 3-11 Some examples of edge image 

 

First, we use Canny operator [23] to obtain the edge image of each CRs. Figure 3-11 is 

some edge image examples. After acquiring the edge image, we do not use the whole edge 

image to compute the edge complexity. Instead, we just utilize the bottom-half part of edge 

image. It is because that the top-half part of CR is more likely to contain background objects 

that will provide extra edge complexity and affect the accuracy. Therefore, we just look at the 

bottom-half part of CR and compute the edge complexity here by Equation 3-3. The other 

reason for just looking bottom-half part of CR is that the head of vehicles is usually in the 

bottom-half part of CR and the edge complexity here is discriminative if the CR is not vehicle 

object. Figure 3-12 is an example of bottom-half part of vehicle object. 

                                (3-3) 

where mc is the edge complexity,  is the number of edge pixel and n is the number of pixel. 

 

    

(a)                                (b) 

Figure 3-12 Example of bottom-half part of (a) vehicle and (b) non-vehicle 
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An CR is verified by Equation 3-4. 

                                      (3-4) 

where  and  are empirical thresholds for the purpose of effective verification. 

By using edge complexity of the bottom-half part, the system can filter out some false 

alarms, mostly the CRs which include the road, efficiently. 

 

3.3.2 Histogram Matching and Intensity Complexity 

Although the edge complexity can perform well in the daytime, its capability is 

decreasing as time approaches evening. The main reason is that vehicles will turn on their 

front lamps when the weather is going darker and we only use the bottom-half part of 

candidate region (CR), where the lamps locate, to compute edge complexity. Because of the 

light comes from the lamps, the edge complexity of vehicles drop off dramatically causing its 

discriminative ability being not suitable for evening case. In addition, the dark lighting 

condition makes the color, contour and edge of vehicle become ambiguous. On the other hand, 

the lighting lamps become the most obvious feature of vehicle in the evening. Consequently, 

we use the lighting lamps as the main feature instead and utilize them to filter out false alarms. 

Figure 3-13 is the example of edge image in the daytime and evening respectively. 

   

(a)                        (b) 

Figure 3-13 Example of edge image of (a) daytime and (b) evening 
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There are two steps to identify the false alarms as illustrated in Figure 3-10. The system 

uses histogram matching to filter out the false alarms, mostly are ground images, and use 

intensity complexity to confirm the CRs being vehicle images or not. These two methods are 

constructed into cascaded structure inspired by AdaBoost algorithm. By cascaded structure, 

each step, namely histogram matching and intensity complexity, can deal with relative simple 

problem and filter out false alarms efficiently.  

First, Figure 3-14 demonstrates two images, namely a false alarm image (ground image 

here) and a vehicle image, and their histogram image respectively. 

 

          

(a)                               (b) 

          

(c)                             (d) 

Figure 3-14 (a) vehicle image (b) ground image (c) histogram of (a) (d) histogram of (b) 

 

As you can see in Figure 3-14, because the lighting lamps, the histogram of vehicle is 
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different from ground’s. Unfortunately, the light come from lamps is also projecting on the 

road causing the histogram of ground can sometimes be similar with the histogram of vehicle. 

Besides, the intensity of vehicle body can also be confusing because other vehicle’s lamps 

might project on the other vehicle. In the other words, we cannot be sure that the histogram 

that we computed can represent the lamps. Therefore, we do not use the entire image to 

compute the histogram and the range of histogram is not typical 0~255. 

What we do here is similar to the idea of edge complexity. Because the lamps are usually 

locating at the bottom-half part of candidate region (CR) and they are approximately 

symmetric to the middle vertical line of CR, we utilize these properties to select sub-region to 

computer histogram. Figure 3-15 illustrates the sub-region we chose. 

 

            

Figure 3-15 Sub-region to compute histogram 

 

It is important that the histogram we computed is almost generated from the intensity of 

lamps. As Figure 3-15, we first look at bottom-half part of CR and reduce the range of left, 

right and button boundary. The purpose of reducing the range of sub-region is to decrease the 

impact of background image because the CRs always contain some background image. By 

reducing the range of sub-region, we can more precisely locate at the position of lamps. 

Secondly, we reassign the intensity of pixels around the middle vertical line and within the 
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sub-region to zero. This is because the lamps are approximately symmetric to the middle 

vertical line of CR. Therefore, we assume the pixels around the middle vertical line and 

within the sub-region cannot represent the lamps and we do not want to include these pixels. 

Thirdly, we only include the pixel whose intensity is high than 110 when computing the 

histogram. By limiting the range of intensity, the difference between the false alarms and 

vehicle objects can be enlarged. Figure 3-16 illustrates the result of our method. 

 

          

(a)                                 (b) 

          

(c)                                (d) 

Figure 3-16 (a) Vehicle image (b) Ground image (c) histogram of (a) (d) histogram of (b) 

 

After computing the histogram of each CR, we compare histograms with our two target 

histograms, which are selected from our training samples and tested by Equation 3-5. 
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                                 (3-5) 

where ρ  is the correlation coefficient, X and Y are two random variables, E is the 

expect value operator, Cov means covariance and σ is standard deviations. The whole 

procedure of histogram matching is illustrated in Figure 3-17. 

 

 

Figure 3-17 Procedure of histogram matching 

 

As Figure 3-17, the structure of histogram matching is also cascaded structure. It is 

unrealistic to expect one histogram can handle most false alarms. Therefore we use cascaded 

structure to filter out false alarms as many as possible. After all, we still has next step, namely 

intensity complexity, and stabilizer to erase false alarms. 

The next step is intensity complexity which is inspired by edge complexity and further 

utilizes the histogram information. In the histogram matching step, we already have the 

histogram of each CR and also the amount of pixels whose intensity range from 110 to 255. 

Different from histogram matching step, which mostly filters out false alarms containing 

ground image, the intensity complexity verifies the existence of lighting lamps and further 
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confirms the CR is vehicle objects. The intensity complexity is computed by Equation 3-6. 

                                              (3-6) 

where  is the amount of pixels whose intensity is between 155 and 255 and n is the 

number of pixels of sub-region which used to compute the histogram in histogram matching 

step. 

The purpose of intensity complexity is to examine the existence of lamps and further 

confirm the CR is vehicle object. The falsification is by Equation 3-7. The idea here is similar 

with edge complexity. In edge complexity step, we use the complexity to represent the head 

of vehicles. As for intensity complexity, we use the complexity to represent the lamps. As 

mentioned in histogram matching, we utilize not only the intensity of bright pixels come from 

lighting lamps but also the position of lamps. Therefore, we only select pixels whose intensity 

range from 155 to 255 and location is within the assumed area to compute intensity 

complexity. 

                                                       (3-7) 

where η  is empirical threshold. 

The system uses the light lamps, which are the most obvious feature of vehicles in the 

evening, to filter out the false alarms and remain the vehicles object instead of using edge 

complexity. This scheme let the system can operate in evening. 

 

3.3.3 Size Filter 

When we use video as our input, one vehicle will continuously show up at different 

positions and then disappear. What’s more, the vehicle has specific width at particular 

position. As the consequence, we can filter out unreasonable candidate region (CR) whose 
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width is too big or too small at its position by utilizing this property. Figure 3-18 illustrates 

the concept and Equation 3-8 and Equation 3-9 are the computing formulas. 

 

Figure 3-18 Width of vehicle at different position 

 

                                            (3-8) 

                                 (3-9) 

Besides using Equation 3-8 and Equation 3-9, we also set a tolerance rage for acceptable 

width and the final filtering rule is Equation 3-10. 

                                 (3-10) 

where ε is the empirical threshold for efficient falsification. 

 

3.3.4 Switcher 

Because we have two filtering scheme, the false alarm eliminator needs an algorithm to 

decide what scheme should be used for automatic detection reason. The first priority is to 
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decide using what feature to represent the passing time. As mentioned at section 3.3.2, we use 

histogram matching and intensity complexity to filter out false alarms instead of using edge 

complexity because the average value of CR’s edge complexity will decrease when the time 

approaches evening. Therefore, we use nothing but edge complexity to detect the changing of 

time. Figure 3-19 is the flow chart of switcher. 

 

Figure 3-19 Flow chart of switcher 
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The system will operate the switching every 5 frame. When the system is going to 

compute the average edge complexity of CRs, we expect that there are enough CRs. This is 

because the result is not precise enough when there are too less CRs. For example, if there is 

only one CR, which might means there is only one vehicle in the scene and use edge 

complexity of only one CR to decide the average value is increasing or decreasing, it is not 

suitable. After all, we want to observe the trend of edge complexity to help us decide which 

scheme to use. Therefore, we have to check if there are enough CRs. If there are enough CRs, 

we compare the average value of CR’s edge complexity with the threshold by Equation 3-11 

and record the result. We still have to record enough result in order to analysis the trend of 

edge complexity. 

                                  (3-11) 

where  is the button threshold of edge complexity, 1 means increasing and -1 means 

decreasing.  

After collecting enough data, we compute the number of 1 and -1 respectively, if the 

number of 1 is bigger than -1’s, we consider that the trend is increasing, otherwise is 

decreasing. Still, we do not judge only by one decision. The system won’t change the scheme 

until there are enough trend decisions. In our system, we set the threshold to 3 decisions. It 

means that if the switcher has 3 decreasing decision and current scheme is daytime, for 

example, the switcher will change the scheme to evening. We combine the two schemes by 

the algorithm explained above and let the whole system can operate both at daytime and 

evening with automatic detection functionality. 
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3.4 Stabilizer 

The stabilizer is usable when the input is video and it is the final stage of our system. 

There are two missions for this stage. One is to stabilize the detection results and the other is 

to filter out the false alarm. When the input is the video, the system will operate on every 

frame. Sometimes, the same vehicle is detected in current frame but is missing in next frame 

and then is detected again. Even though there are no significant differences between 

continuous frames, the missing situation will happen. This is because no matter the AdaBoost 

vehicle classifier or the false alarm eliminator, all of them use threshold to detect and falsify. 

Therefore, even if the value is higher or less than threshold by 0.001, the result is completely 

different. As the consequence, the detection results might have the twinkling detection 

rectangle and that is the problem we want to solve. 

There are two steps of this stage, namely stabilizer. One is confirming step which is the 

final method to erase false alarms and the other is tracking step which is used to solve 

twinkling rectangle. The former will be introduced in section 3.4.1 and the latter will be 

explained in section 3.4.2. 

 

3.4.1 Confirming Step 

The final result we want to present is the detection rectangles which contain vehicles in 

the current scene. Therefore, we have to make sure the content of detection rectangles is 

vehicles and that is also the reason why we develop false alarm eliminator. But the false alarm 

eliminator has its limitation, namely it sometime cannot filter out all the false alarms because 

the threshold method as mentioned at section 3.4. As the consequence, we use survival 

algorithm, which utilizes the fact that a vehicle will show up in the scene continuously when 

the input is video, to make sure the detection rectangles is not false alarms. Figure 3-20 is the 

flow chart of confirming step. 
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Figure 3-20 The flow chart of confirming step 

 

After the AdaBoost vehicle detector generates the candidate regions (CRs) and these 

CRs are examined by false alarm eliminator, we check our survival list whether already has 

the same CR or not. We use the distance of left-up corner to distinguish it. Figure 3-21 

illustrates the idea. 
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Figure 3-21 Two detection rectangles of the same vehicle 

 

For each CR, we compute the distance between two left-up corners with every detection 

rectangle in the survival list. If there is a distance less than maximum acceptable distance and 

is also the minimum distance among all the rectangles in the survival list, we think of the CR 

and the closest detection rectangle in the survival list are the same and we increase its hitting 

number, which is explained in next paragraph. Otherwise, we add current CR into the survival 

list. 

The hitting number is the implementation of the survival concept. As mentioned at 

section 3.4, a vehicle will show up in the scene continuously and then disappear. What’s more, 

we operate the detection step at every frame. Therefore, a vehicle will be detected more than 

once before disappearing. We accumulate the number of detection, namely the hitting number, 

to distinguish the vehicles from the false alarms. If a CR is detected more than hitting number 

threshold within specific frame interval, the CR is treated as vehicle object. By applying this 

survival concept, we can further erase the false alarms which the false alarm eliminator cannot 

handle and confirm the CR is actually the vehicle object. 

 

3.4.2 Tracking Step 

After confirming the detection rectangle is actually vehicle object, we draw this detection 
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rectangle no matter that it is missed by AdaBoost vehicle detector or filtered out by false 

alarm eliminator. As long as the detection rectangle is confirmed as vehicle object, the 

detection rectangle will be drew until the vehicle is out of sight. By this step, we can avoid 

twinkling detection rectangle. If the same detection rectangle is generated by AdaBoost 

vehicle detector and pass the false alarm eliminator again, we update the position information 

and size of this detection rectangle and then draw the detection rectangle. Otherwise, we draw 

the detection rectangle by the information stored in survival list and use simple tracking 

algorithm to update the position. Figure 3-22 is the diagram of this step. 

 

  

Figure 3-22 Diagram of tracking step 

 

Remember that we only draw the detection rectangle which is confirmed as vehicle 

object. Therefore, we check the hitting number to make sure the result is correct. After every 



 

37 

detection iteration, namely every frame finishes, we examine the survival condition of every 

detection rectangle in the survival list. If the detection rectangle is out of sight or it does not 

meet the survival criterion, the detection rectangle should be deleted. 
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Chapter 4  

Experimental Results 

 
The vehicle detection system is implemented on a PC system. The CPU and RAM of the 

PC is Intel Core 2 Duo @ 2.9G and 2GB RAM respectively. The integrated development 

environment is Microsoft Visual Studio 2008 on Windows XP OS. The inputs are video files 

(uncompressed AVI) or images (PPM format). These inputs were captured with a DV at 

traffic intersection or testing samples which were used by other research. 

Section 4.1 illustrates the training process of AdaBoost, including the training dataset 

and the comparison of non-converging training at different layer number. Section 4.2 shows 

the results of detection in static image with the comparison of other researches. The testing 

images are obtained from a public testing database – MIT CBCL car database 1999. Section 

4.3 demonstrates the experimental results of switcher. Section 4.4 illustrates the experimental 

results of detecting vehicles in videos. 

 

4.1 AdaBoost Training 

We collected our training data by manually extracting samples from videos. There are 

3431 positive samples and 11133 negative samples. Both the positive samples and negative 

samples contain daytime and evening samples. All the training samples are transformed into 

gray-level image. Because the samples are collected manually, they do not have the same size. 

Therefore we normalized the sample to 22 x 18. The weak classifiers used here are the 

permutation of the type, position and scale of 15 Haar-like features. Figure 4-1 demonstrates 

some samples of positive and negative samples and Figure 4-2 is the flow chart of the training 

process. 
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(a-1) 

       

       

(a-2) 

(a) Positive samples of (a-1) Daytime (a-2) Evening 

 

       

       

 (b-1) 

       

       

(b-2) 

(b) Negative samples of (b-1) Daytime (b-2) Evening 

Figure 4-1 Some samples of training samples 
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Figure 4-2 Flow chart of AdaBoost training process 

 

As mentioned at section 3.2.5, we used non-converging training method to train our 

AdaBoost vehicle detector. Table 4-1 is the statistical result of different layer number. The 

testing data is MIT CBCL car database. The criteria of performance measurement are defined 

in Equation 4-1 and 4-2 [18]. 

                       (4-1) 

 

            (4-2) 
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Table 4-1 Comparison between different AdaBoost vehicle detector 

# of layers  

14 

 

13 

 

11 

 

10 

 

9 

 

8 

Number of 

weak 

classifiers 

 

592 

 

477 

 

318 

 

263 

 

210 

 

179 

Detection 

Rate 

 

61.18% 

 

68.63% 

 

85.71% 

 

94.41% 

 

98.14% 

 

98.76% 

False Alarm 

Rate 

 

0% 

 

0.00008% 

 

0.0008% 

 

0.0014% 

 

0.003% 

 

0.0058% 

 

Obviously, the less number of the layer is, the higher the detection rate is. It is because 

when we decreased the number of the layer, we actually decreased the complexity of 

AdaBoost decision rules. Look at the last two columns, namely AdaBoost vehicle detector 

with 9 layers and 8 layers. Although, both of these two AdaBoost vehicle detector’s detection 

rate are higher enough, they can be distinguish from each other by false alarm rate. When we 

decrease the layer number from 9 to 8, the detection rate increases 0.62%, but the false alarm 

rate also increases 0.0028%. The price of increasing only 0.62% detection rate is too high and 

it also means that we have to deal with much more false alarms. Therefore, in this study, the 

layer number of AdaBoost vehicle detector is 9. 

 

4.2 Results of Detecting Vehicles in Static Image 

In the MIT CBCL car database, each image was extracted from raw data and was scaled 
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to the size 128x128 and aligned so that the car was in the center of the image. There are few 

researches that provided the experimental result of public frontal-viewed car database. So far, 

R. Wang et al. [18] provided their experimental result of MIT CBCL car database. We also 

implemented the method proposed in J.F. Lee [29]. Therefore, we compared the experimental 

result of [18] and [29] with that of the proposed system and the comparison results are 

presented in Table 4-2 and some detection results are presented in Figure 4-3. Because the 

MIT CBCL database consists of daytime image, we only use daytime scheme without size 

filter, namely AdaBoost + edge complexity, to test the performance. The criteria of 

performance measurement are also Equation 4-1 and 4-2. 

 

Table 4-2 Performance comparison of MIT CBCL 

 PCA + ICA AdaBoost + PDBNN Proposed System 

Detection Rate 95% 91.93% 96.27% 

False Alarm Rate 0.002% 0.0031% 0.0015% 
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Figure 4-3 Some detection results of MIT CBCL car database 

4.3 Results of Switcher 

First, we show that why we have to design a switching algorithm, Figure 4-4 is the 

statistic charts of two false alarm eliminating schemes respectively. The purple line labeled 

with Edge is the daytime scheme and the blue line labeled with Hist is the evening scheme. 

The video sequence is in the time interval from daytime to evening. 

 

Figure 4-4 Statistic charts of two false alarm eliminating schemes 

 

As illustrated in Figure 4-4, the detection capability of daytime scheme is falling down 

when time approached evening. Although the evening scheme has high detection rate in the 

daytime but its false alarm rate is too high. Figure 4-4 explains why we need two schemes to 

handle false alarms in different time interval and why we have switcher to combine these two 

schemes. The Figure 4-5 demonstrates the result after integrating the switching algorithm. 
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Figure 4-5 Statistic chart of integrating switcher 

 

4.4 Results of Detecting Vehicles in Video 

In this section, the experimental results of detecting vehicles in videos are demonstrated. 

We compared the result with J.F. Lee [29], namely AdaBoost + Probabilistic Decision-Based 

Neural Network (PDBNN) and method which used Gaussian Mixture Model (GMM)[30][31] 

to establish background image. The testing videos are composed of daytime and evening 

traffic video and different scenes. Table 4-3 to Table 4-7 are the statistic results of testing 

videos. We also present comparison of the frame per second (FPS). Table 4-3 to Table 4-5 are 

comparison result of daytime testing videos and Table 4-6 to Table 4-7 are the comparison 

result of evening testing videos. The detection rate and false alarm rate are computed by 

Equation 4-3 and Equation 4-4 respectively. 

                           (4-3) 

                              (4-4) 
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Table 4-3 Performance comparison of video at scene 1 (Daytime) 

Place Method Detected 

vehicles 

False alarms FPS Total 

vehicles 

 

台中市 

大墩路 

GMM 110 

( 82.09% ) 

7 

( 5.98% ) 

20.745  

 

134 AdaBoost + 

PDBNN 

131 

( 97.76% ) 

2 

( 1.5% ) 

7.445 

Proposed 

system 

133 

( 99.25% ) 

2 

( 1.48% ) 

17.265 

 

Table 4-4 Performance comparison of video at scene 2 (Daytime) 

Place Method Detected 

vehicles 

False alarms FPS Total 

vehicles 

 

新竹市 

東光路 

GMM 121 

( 72.46% ) 

57 

( 32.02% ) 

21.19  

 

167 AdaBoost + 

PDBNN 

153 

( 91.62% ) 

3 

( 1.92% ) 

4.52 

Proposed 

system 

163 

( 97.6% ) 

8 

( 4.54% ) 

16.35 
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Table 4-5 Performance comparison of video at scene 3 (Daytime) 

Place Method Detected 

vehicles 

False alarms FPS Total 

vehicles 

 

新竹市 

光復路 

GMM 103 

( 81.75% ) 

110 

( 51.64% ) 

21.28  

 

126 AdaBoost + 

PDBNN 

41 

( 32.54% ) 

5 

( 10.87% ) 

6.856 

Proposed 

system 

124 

( 98.41% ) 

2 

( 1.59% ) 

18.417 

 

Table 4-6 Performance comparison of video at scene 1 (Evening) 

Place Method Detected 

vehicles 

False alarms FPS Total 

vehicles 

 

台中市 

大墩路 

GMM 139 

( 79.89% ) 

87 

( 38.5% ) 

21.295  

 

174 AdaBoost + 

PDBNN 

148 

( 85.06% ) 

2 

( 1.14% ) 

8.295 

Proposed 

system 

173 

( 99.43% ) 

8 

( 4.42% ) 

17.167 
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Table 4-7 Performance comparison of video at scene 3 (Evening) 

Place Method Detected 

vehicles 

False alarms FPS Total 

vehicles 

 

新竹市 

光復路 

GMM 283 

( 87.35% ) 

265 

( 48.36% ) 

21.605  

 

324 AdaBoost + 

PDBNN 

180 

( 55.56% ) 

45 

( 19.74% ) 

5.37 

Proposed 

system 

310 

( 95.68% ) 

10 

( 3.125% ) 

19.466 

 

In the daytime, both method in [29] and our proposed system perform well. As for GMM, 

because the scenes we used have heavy traffic and contain vehicles and motorcycles in the 

same time, it is hard for GMM method to segment vehicle will and distinguish motorcycle 

from vehicle. In the evening, our system is better than [29] and [30][31] with higher detection 

rate and acceptable false alarm rate. The detection rate of [29] decreased when time approach 

evening because the edge of vehicle become ambiguous. For [30][31], problem generated by 

motorcycles still exit. What’s more, the light come from lamps of vehicle generated more 

trouble. As for operation speed, our proposed system is also faster than [29] and near 

[30][31].  

As illustrated in Table 4-3 to Table 4-7, the result is identical to our objective, namely 

can be applied to real-time application. Figure 4-6 is some capture pictures of detection result. 

The red rectangle is the result of proposed system and green rectangle is the result of [29] and 

yellow rectangle is the result of GMM. 
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(a) 

   

(b) 

   

(c) 

   

(d) 

Fig. 4-6 Capture pictures of video’s detection result 
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Chapter 5  

Conclusions and Future Work 

 
Without using background information, the proposed vehicle detection system is more 

stable and reliable. The three stages structure of system, namely AdaBoost vehicle detector, 

false alarm eliminator and stabilizer, simplifies the problems which each stage has to conquer. 

At AdaBoost vehicle detector stage, the prime priority is to detect vehicles as many as 

possible both in daytime and evening. In the other words, AdaBoost vehicle detector only has 

to focus on detection capability. We use non-converging training to achieve this goal. At the 

false alarm eliminator stage, the top mission is to filter out the false alarms generated from 

previous stage. We propose two schemes to deal with false alarms from daytime and evening 

respectively and use switcher to integrate these two schemes. At stabilizer stage, the purpose 

is to stabilize the detection results and further erase false alarms. Each stage of system has its 

main functionality and can perform much well when they are combined together. This paper 

demonstrates a robust system for vehicle detection which can operate both in daytime and 

evening and can be applied to real-time applications. 

To further improve the performance of our system, some enhancements or trials can be 

made in the future. Firstly, the system can be expanded to include rear-viewed and 

side-viewed vehicles. Secondly, the detection ability can be improved to detect vehicles in 

much darker situation. Thirdly, more complex and efficient tracking algorithm can be 

integrated to the system because the current tracking algorithm used by stabilizer is simple. 
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