

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

樹 的 模 擬 與 碰 撞 處 理

Animating Trees with Collision Handling

研 究 生：陳奕辰

指導教授：黃世強 教授

中 華 民 國 一 百 年 十 一 月

樹的模擬與碰撞處理

Animating Trees with Collision Handling

研 究 生：陳奕辰 Student：Yi-Chen Chen

指導教授：黃世強 Advisor：Sai-Keung Wong

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

November 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年十一月

樹的模擬與碰撞處理

研究生：陳奕辰 指導教授：黃世強 教授

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

摘要

在這篇論文中，我們提出了一個建立樹模型的方法，並且以物理方法模擬樹

的運動。我們也提出了一個新方法，處理模擬過程中樹模型自身的碰撞問題。在

前置處理的過程中，我們隨機產生樹的模型，並且用矯正的方式避免樹葉跟枝幹

彼此穿透。為了模擬樹在風中的運動，我們以物理方法模擬樹葉和樹枝的擺動。

在模擬的過程中，我們收集所有在樹模型中發生碰撞的樹葉和樹枝，並對它們施

加排斥力以避免它們互相穿透。我們也建立了一個針對樹模型的 k-DOP階層架

構，改善模擬的速度。從實驗結果來看，我們成功地讓樹在模擬過程中一直處在

沒有穿透的狀態。

i

Animating Tree with Collision Handling

Student: Yi-Chen Chen Advisor: Sai-Keung Wong

National Chiao Tung University

Institute of Multimedia Engineering

Abstract

In this thesis, we propose a method to model tree models. A physically-based method

is used to animate trees. We also presented a novel method to solve the collision prob-

lem of the tree models during the simulation. In the preprocessing phase, we generate

the tree model randomly and apply a correction method to prevent the intersection be-

tween branches and leaves. To simulate the motion of a tree, we adopt a physically based

approach for modeling the motion behavior of tree branches and leaves. At the runtime

stage, we collect all the proximal primitive pairs and apply response force so as to avoid

the penetration between leaves and branches. Besides, we adopt k-DOP hierarchies of the

tree models to accelerate the collision detection process. The experimental results show

that the tree models can be simulated in a collision-free state.

ii

Acknowledgements

First, I would like to thank my advisor, Dr. Sai-Keung Wong for his leading in the

past two years. He always taught me how to do a good research patiently and gave me

many suggestions that help me a lot to complete this thesis. Also thanks that he cared

about my health all the time and gave many advices for improving my health. I would

also like to thank my thesis committee members, Dr. I-Chen Lin and Dr. Chuan-kai Yang,

who evaluated my thesis.

Thanks to all my lab mates for their comments and helps. They are so friendly so that

I can have a pleasant learning environment. Finally, I would like to give many thanks to

my family and all my friends for the giving of supports and encouragements when I was

frustrated.

Yi-Chen Chen

October 2011

iii

Contents

摘要 i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vi

List of Tables viii

List of Algorithms ix

1 Introduction 1

1.1 Motivation . 2

1.2 Overview . 3

1.3 Contribution . 4

1.4 Organization . 4

2 Related Work 5

3 Tree Models 8

3.1 The structures of Branches and Leaves 8

3.2 Tree Modeling Process . 10

3.3 Voxel-based Acceleration Method . 14

iv

4 Animation of Tree Models 16

4.1 Force Computation . 16

4.2 Motion Computation . 18

4.3 Parallel Processing . 19

5 Collision Handling 21

5.1 Collision Detection . 21

5.2 Collision Response . 23

5.3 The Acceleration Structure . 25

5.4 Parallel Processing . 31

6 Results 32

6.1 Tree Models . 32

6.2 Tree Animation . 35

6.3 Collision Handling . 37

6.4 Parallel processing . 40

7 Conclusion and Future Work 45

7.1 Conclusion . 45

7.2 Future Work . 45

Bibliography 47

v

List of Figures

1.1 The process of our method. 3

3.1 The structure of a branch. 8

3.2 The structure of a stem. 9

3.3 The structure of a leaf. 9

3.4 The structure of a tree without leaves. 11

3.5 The schematic diagram of deleting the useless stem. 11

3.6 The tree with/without leaves. 12

3.7 The conventional diagram of the voxel structure in 2D. Two primitives

must be collision free if the voxels they are registered are not adjacent. . . 15

4.1 The restoration force of a stem. The rest position will change in every

time step. 17

4.2 The movement of the stems. The total angular displacement of the child

is the sum of the angular displacement of the parent and the angular dis-

placement of itself . 19

4.3 The independent relationships of the branches. Group1, group2, group3

and group4 are independent with each other. 20

5.1 The safe distance of the leaf. 22

5.2 The direction of the response force. 23

5.3 The response force is transferred to the parent of the colliding primitives. 24

5.4 Representative stem. 25

5.5 The BVH of the tree. 28

vi

5.6 The process of collision handling. 30

6.1 The tree models with different size. 33

6.2 The random generated tree models. 34

6.3 The tree models are affected by different winds. 36

6.4 The defoliation phenomena. 37

6.5 The snapshots of the animating tree model with and without collisions

handling. 38

6.6 The average cost time (sec) of the collision handling using k-DOPs with

different orientations. 39

6.7 The comparison of the time (sec) of collision processing between using

single-thread and multi-thread. 42

6.8 The cost (sec) of each component of the simulation using 14-DOP. 43

vii

List of Tables

6.1 The time (sec) of preprocessing stage. BB: the time of building branches,

BL: the time of building leaves, RS: the time of reducing redundant stems,

BK: the time of building BVH, BV: the time of building voxels. 35

6.2 The animation time (sec) of different tree models. UB: the average time

of updating the branches, UL: the average time of updating the leaves. . . 37

6.3 The average time (sec) of collision handling. UK: the time of updating

BVH, TV: the time of traversing BVH, CD: the time of collision detection

and giving response. 39

6.4 The comparisons of the average time (sec) of updating the information of

primitives between using single thread and multi-thread. UB: the time of

updating branches, UL: the time of updating leaves. 40

6.5 The comparisons of the average time (sec) of updating BVH between us-

ing single thread and multi-thread . 41

6.6 The detail time (sec) of each component of the runtime stage using 14-

DOP. UL: the time of updating leaves, UB: the time of updating branches,

CD: the time of collision detection and giving response, TV: the time of

traversing BVH, UK: the time of updating BVH. 44

6.7 The frame rate (frames per second) of the animations 44

viii

List of Algorithms

1 The algorithm of generating branches 13

2 The algorithm of generating leaves . 14

3 The algorithm of finding the representative stems in each levels 27

4 The algorithm of building BVH . 28

ix

Chapter 1

Introduction

In computer animations or games, there are great efforts for producing beautiful

scenes by showing or animating the natural trees. Thus, tree simulation is attracted much

attention in computer graphics. Many approaches have been proposed to model trees or

simulate their motion. Handling the interactions of a tree itself is a challenging problem

due to the complex geometry of the tree which consists of thousands of branches and

leaves. Many techniques do not handle collisions or simply apply collision detection to a

tree with a simple structure.

In order to avoid the penetrations between leaves and branches, we need apply col-

lision detection on the tree model. By handling collisions, we can simulate trees more

realistic. Collision detection is an important technology in computer graphics. We briefly

describe the collision detection method. In computer graphics, an object is composed by

triangles. The position information of the triangles is used to compute whether or not there

is any collision between objects. Collision detection is a time consuming job so that many

methods were proposed to accelerate the performance of it. One of these methods is using

bounding volume hierarchies (BVH). A bounding volume of an object is a closed volume

and all triangles of the object are enclosed within the volume. A BVH is a tree structure.

A leaf node of BVH is a bounding volume bound the basic element such as a triangle.

Each inter node of the BVH is also a bounding volume which bound all the children nodes

of it. If two nodes of BVHs do not overlap, the children nodes of these two nodes must

1

not overlap too. By traversing the BVHs of two objects, we can determine whether or

not these two objects collide. Typically, a four-stage process is employed for performing

collision detection: (1) construction of bounding volume hierarchies (preprocessing); (2)

updating bounding volume hierarchies; (3) traversing pairs of bounding volume hierar-

chies and collecting potentially colliding pairs; (4) checking whether or not the elements

of these pairs collide.

Our choice of bounding volume is discrete orientation polytope (k-DOP) [KHM+98]

which is a convex polytope resulting from intersection of the half spaces bounded by k

planes. k-DOP can bound a object more tight than other kinds of bounding volumes. We

use k-DOP to approximately determine whether or not the leaves or the stems collide

rather than check the triangles of the objects. We also construct a k-DOP BVH for the tree

model which take leaves and stems as the basic elements to accelerate the performance of

simulation.

1.1 Motivation

Simulating natural tree is an important topic in computer graphics. There are many

applications of tree simulation in animations and games. For example, Rio is a famous

animationmovie which themain scene is located in the forest of Rio. There are full of trees

in many scenes of the movies. Wemay take a close look of trees in some situations such as

the camera following a bird shuttling within the branches or watching a worm climbing on

a branch. We can notice the penetrations between the leaves and branches if the collisions

are not processed. Due to the complex geometry of the tree, few of researches handle

the collisions within the tree. Our focus is on modeling tree without intersection and the

collision handling of the tree model. We handle collisions within the tree model and keep

the frame rate acceptable.

2

1.2 Overview

We define the leaves and the stems as the primitives of the tree. Our method is divided

into several stages. In the preprocessing stage, the tree model and the k-DOP BVH for

it are built. In each time step of the simulation, we update the k-DOP BVH first. Then,

the potentially colliding pairs of the tree models are found using k-DOP BVH. We give

response force to resolve collisions for the colliding pairs. After that, the force exerting

on the stems and leaves are computed. We use the computed force and the response force

to compute the future position of primitives. Finally, we update the position of primitives

to the next time step. The process is shown in Figure 1.1.

Figure 1.1: The process of our method.

3

1.3 Contribution

Our major contributions are:

1. We propose a method for tree modeling. We make sure that there is no intersection

between leaves and branches.

2. We propose a simple method to avoid the penetrations between leaves and branches

of the tree during simulation process.

3. We present a novel k-DOP BVH for the tree model to improve the performance.

1.4 Organization

The remaining chapters of the thesis are organized as follows. Chapter 2 reports the

related works about the researches of tree. Later, our tree modeling method is present in

Chapter 3. Chapter 4 describes the method animating the tree model. Chapter 5 introduces

our approach for handling the collisions during simulation, and we show our experimental

results in Chapter 6. Finally, Chapter 7 presents the conclusion and future work.

4

Chapter 2

Related Work

Many methods have been proposed for modeling trees. Lindenmayer and Prusinkei-

wicz applied L-Systems to build tree models [PL91]. Oppenheimer used the geometric

notion of the fractal self-similarity to present a fractal model of branching objects and

it used bump mapping to simulate the texture of the bark. [Opp86]. After that, some

researches took the influences of the environment into account for generating the tree

model. In [HBM03], Hart, Baker and Michaelraj calculated the mass of each branch dur-

ing the process of the growth of the tree to balance the tree model and phototropism was

introduced as the parameter in the calculation of the growth process, the shape of the tree

model was also affected by the sunlight. In [VHFBVR04], the environment illumination

was took into account in the growth simulation by calculating intensity and mean direction

of the light sources.

In order to simulate the interactions of plants with the environment, multifarious

methods are introduced. Some researches used physically-based methods to simulate the

animation, such as the methods introduced by [WWG06], [AK06], [ZST+06], [SO99] and

[DCL+09]. However, physically-based methods may take a lot of computations because

these methods need to compute the forces and integrate dynamical equations over time.

Weber and Penn simulated the wind sway effect by re-computing the rotation angles

of the stem according the wind-speed every frames [WP95]. A hybrid approach was in-

vestigated in [GCF01] which a physics-based method was performed if it was needed or a

5

procedural method was performed. In [SZCZ05], the bending effect of the branches was

achieved by the method called vertex weighting and the branch angle could be gotten by

the equations they proposed.

Some researches were based on the spectral methods. For example, a tree motion

analysis was performed for capturing themotion patterns of trees in [Sta97] and [DRBR09].

In [OFT+03], a technique was presented for generating the leaf and branch motions based

on "1/f beta noise" which were derived based on the observation of a variety of natural

phenomena. Later in [OTF+04], the spring model was added with the method based on

"1/f beta noise" to enhance the reality of the motions. In [CGZ+05] and [HKW09], the

motions of the branches were pre-computed in frequency space.

Some other researches were trying to generate the motion data in the preprocessing

stage. In [VHDFVR06], the motion of the tree was derived from a small set of motion

data got from a physically-based driven tree animation. Later, a data-driven approach

that synthesized tree animations from a set of pre-computed motion data was present in

[ZZJ+07].

Wong focused on modeling the small plants to present the softness of the foliage by

using several segments to construct the foliage. [WD04]. In [HFC09], a pseudo-dynamics

model that can handle motion of a curved beam in turbulence and the deformation of the

leaveswas presented. The computations took the influence of natural frequency and damp-

ing ratio into account. In [YSWS09], a frequency decomposition approach was proposed

for dynamic animation of tree models. The motion of tree branches was simulated in a

low frequency, and the motion of leaves was simulated in a high-frequency in the angular

shell space. In [DCL+09], the wind model was modeled by the stastical curves to make

the animation more realistic. In [OK10], the Navier-Stokes equations which described the

motions of fluid substances were used to model the wind field.

Besides the animation topic, there were researches about the interactions of the tree

itself or the interactions with the outer objects. In [LGF+06], a method was proposed for

combining spatial decomposition and oriented bounding box to solve the self-collision

problem of the broad-leaf plant. By restricting the rotation angle of the stems, many col-

6

lisions were avoided. In [Web08], a fast method was developed for employing separable

projections and streamlined mechanics to simulate the motion of tree, and could handle

the collisions with solid obstacles. The interaction between tree branches and raindrops

was modeled in [YHYW10].

There were many researches accelerated the performance by implementing on GPU

or employing the parallel technology. In [HKW09], the performance was improved by

implementing in the vertex shader. In [Web08], the system could be divided into two

independent parts so that they used CPU to process these two parts parallelly. In [OK10]

and [YSWS09], the process was accelerate by using CUDA which is a parallel computing

architecture of GPU.

7

Chapter 3

Tree Models

In order to simulate the tree in a non-penetration state, we should avoid the situation

that the leaves and the branches intersect initially. In this section, we present our approach

for building up the tree models which ensure there is no intersection between branches and

leaves. We will introduce the structure of a branch model and a leaf model first and then

introduce the process of modeling tree. After introducing how to model trees, we will

introduce a voxel-based acceleration method which is used to accelerate the process of

modeling tree. The detail will be described in the following sections.

3.1 The structures of Branches and Leaves

Figure 3.1: The structure of a branch.

8

We employ the structure of the branch and the leaf pattern proposed in [WWG06]. It

is easy to implement and suitable to apply to our method for collision handling. As shown

in Figure 3.1, a branch is composed by several stems. Each stem is modeled as a cylinder

which is discretized into triangles as shown in Figure 3.2.

Figure 3.2: The structure of a stem.

We use the width information of the stem to form the points of the top polygon and the

bottom polygon as shown in Figure 3.2. These points will be used to form the triangles.

We can control the number of edges of the top polygon and the bottom polygon to decide

the fineness of the cylinder.

Figure 3.3: The structure of a leaf.

The structure of a leaf model is shown in Figure 3.3. The venations of the leaf are

9

composed by stems. We model the blade of the leaf by a set of triangles formed by the

endpoints of the venations. The stem that connects the branch and the leaf blade is called

root of the leaf. By this kind of modeling method, we support with irregular leaf patterns.

3.2 Tree Modeling Process

The overall process is divided into three-stages: (1)building branches; (2)building

leaves; (3)removing redundant stems. We adopt a breadth-first method to generate branches.

In the beginning, the root of the tree is generated at depth one. Then we use the stems of

the current level to generate child stems at the next depth level. The information of the

child stem is computed based on the information of parent with certain fuzziness such as

width, length, weight and some parameters used in the dynamic system. The magnitudes

of parameters of a stem are usually smaller than the ones of its parent. The orientation

of the child is determined by rotating the orientation of parent a small angle. In order to

prevent the branches growing in an abnormal lightning shaped manner, we limit the an-

gle between a child and its parent smaller than 30 degrees. Each stem will generate one

to three children randomly. If the number of the children more than one, we increase the

distance between the tips of the children by increasing the length of the generated children

to make sure there has enough room to build the next generation of the children. In this

way, the chance is decreased for the next generations colliding with each other. Figure 3.4

shows the structure of a portion of the tree.

When a new stem is created, we check whether or not the new stem collides with the

existing stems. To do so, we bound each stem with a k-DOP when the stem is built. If the

k-DOP of the new stem stemnew overlap with the k-DOP of any other stems stemexist,

the triangles of stemnew and stemexist should be further check if there is any intersection

between them. If so, stemnew is removed from the tree. In the case that the radius of the

removed stem is larger than a threshold, there will be an obvious incision at the tip of the

branch. To avoid it, we traverse from the removed stem back until a branching stem is

encountered and we removed the visited stem as shown in Figure 3.5.

10

Figure 3.4: The structure of a tree without leaves.

Figure 3.5: The schematic diagram of deleting the useless stem.

Notice that collision detection is not performed between the parent and siblings of

stemnew. This is because they are connected with each other. When the width of the

stem is smaller than a threshold, we treat this stem as the start point of the small branches

stemsb. The width, weight and rigidity of the offspring of stemsb are set much smaller

than the ones of stemsb. The leaves will be built on the tip of the small branches. we mark

the stems which may generate leaves.

After generating the branches, we pick out those stems which have been marked to

generate leaves. The orientation and the size of a leaf are also affected by its parent stem.

The orientation of mid-venaitons are computed first by rotating the orientation of parent

stem a small angle. Then we use the cross product of the orientation of parent stem and the

orientation of leaf root to determined the orientation of parallel-venations. After building

11

the venations of the leaf, the tip of the venations are used to form triangles of the blade.

The leaf is divided into two parts: root and remaining portion. In doing so, we can se-

lect the parts of a leaf for collision detection. For example, we do not perform collision

detection between the root of the leaf and the parent stem of the leaf because they are con-

nected. But the parent stem of the leaf and the blade of the leaf should be applied collision

detection. Similarly, we do not perform collision detection between the root of the leaf

and the siblings of the root. For this reason, we bound the two parts of the leaf with k-

DOP individually. Like stem, when a leaf is created, we check if there is any intersection

between the new leaf and the existing primitives. If the new leaf intersects with others,

we delete it. If not, we add it to our tree model. Figure 3.6 shows the appearance of our

tree models with 8606 stems and 7821 leaves. The algorithm of generating branches and

leaves are shown in Algorithm 1 and Algorithm 2.

Figure 3.6: The tree with/without leaves.

After building the branches and leaves, we need a follow-up process. Some leaves do

not build successfully due to intersection, There are some marked stems do not have any

leaves. These stems are small and do not affect the appearance of the tree. For this reason,

we removed marked stems to increase the performance of our system. We traverse back

from the removed stem until a branching stem is encountered and all the visited stems are

removed.

12

Algorithm 1 The algorithm of generating branches
1: create two list: generationcurrent and generationnext

2: define widths as the smallest width of stems

3: define widthsb as the threshold of generating small branches.

4: create a root of the tree and push the root into generationcurrent

5: while The size of generationcurrent > 0 do

6: for i = 0 to the size of generationcurrent-1 do

7: if the width of generationcurrent[i] < widths then

8: continue

9: end if

10: decide the number of the children numchild of generationcurrent[i]

11: for j = 0 to numchild-1 do

12: set up the information of child[j]

13: build child[j]

14: build the k-DOP of child[j]

15: if child[j] collide with existing stems then

16: delete child[j]

17: else

18: if the width of child[j] < widthsb then

19: set child[j] as the start point of small branches.

20: end if

21: push child[j] into generationnext

22: end if

23: if generationcurrent[i] do not have child and is a stem of small branches then

24: mark the stem to indicate it may generate leaves.

25: end if

26: end for

27: end for

28: set generationnext as generationcurrent.

29: end while

13

Algorithm 2 The algorithm of generating leaves
1: stemsmark: the stems may generate leaves

2: leafnum: the max number of leaves that a stem can generate.

3: for each stem in stemsmark do

4: for i = 0 to leafnum do

5: set the information of the leaf[i]

6: build the skeleton of the leaf[i]

7: build the triangles of the leaf[i]

8: build the k-DOP of the leaf[i]

9: if leaf[i] collides with existing primitives of the tree then

10: delete leaf[i]

11: else

12: push leaf[i] into the leaf list of the tree

13: end if

14: end for

15: end for

3.3 Voxel-based Acceleration Method

In the modeling process, we check collisions between the new generated primitive

and each exist primitive. Because the cost of the collision detection, the time of generating

tree models can be up to several minutes. We use a voxel-based acceleration method to

accelerate the modeling process.

A voxel is a volume element, representing a value on a regular grid in three dimen-

sional space. We partition a space that is big enough to enclose any kind of tree models

we generate into a set of regular voxels. All primitives of the tree will be registered in one

of these voxels. Each voxel is associated with two lists. One list records the stems that the

center points of the centerlines are inside the voxel and the other one records the leaves

that the center points of the mid-venations are inside the voxel.

The size of a voxel is decided according to the size of the biggest primitive. In our

14

implementation, a voxel is a cube and it is big enough to bound the biggest primitive. As

shown in Figure 3.7, we use half the length of the centerline of the biggest stem and the

bottom radius of the biggest stem to compute a length SR. The length of the edges of a

voxel is the double of SR. In this way, we make sure that no matter where the primitive

is located in the registered voxel, the portion of the primitive that is beyond the registered

voxel can be bounded by half the adjacency voxel. Therefore, if two voxels voxela and

voxelb are not adjacency, the primitives which are registered in voxela and voxelb are

collision free (Figure 3.7).

Figure 3.7: The conventional diagram of the voxel structure in 2D. Two primitives must

be collision free if the voxels they are registered are not adjacent.

We define the voxel that contain the new created primitive primivitenew as voxelreg,

and define the voxels that are adjacent to voxelreg as voxeladj . We can use the position of

primivitenew to get voxelreg and voxeladj from the voxel array conveniently. If we want

to know whether or not primivitenew collide with others, we only need to check collisions

between primivitenew and the primitives that are registered in the voxel voxelreg and the

voxels voxeladj . By this way, we reduce the cost of the collision detection in the modeling

process.

15

Chapter 4

Animation of Tree Models

The movement of a tree is achieved by animating all stems. The movement of a stem

is caused by the rotation of its parent and the force exerting on it. We compute the amount

of the force exerting on the stem first. Then we use the force to get the rotation amount of

the stem. After that, we update the orientation of the stem from root to the tip of branches.

We refer the method introduced in [WWG06] and make some modifications to animate

our tree models. In the following sections, we will describe the method in details.

4.1 Force Computation

The movement of the branch is caused by the rotation of stems that composed it. To

compute the amount of the rotation of the stem, we need to compute the forces exerting

on the stem first. The five different kinds of forces including wind force, gravity force,

restoration force, transfer force and response force are considered.

Wind force F⃗W and gravity force F⃗G are the forces come from the environment. We

simply define a direction vector as the wind force. The gravity force is calculated using

the following equation:

F⃗G = mg⃗, (4.1)

wherem is the mass of the stem, and g⃗ is the gravitational constant.

Restoration forceFRestore is an internal forcewhich attempts to recover the orientation

16

of a stem to its rest position. Our manner for computing restoration force is different

with the method introduced in [WWG06]. Here we use the spring force to achieve the

restoration effect.

F⃗Restore = −kr
P − Prest

||P − Prest||
, (4.2)

where P is the current position of the end point of the stem,Kr is the rigidity of the stem

and Prest is the rest position of the end point of the stem. Prest changes as the parent of

stem rotates. That is, the stem try to keep the angle between the stem and the parent of the

stem the same with the one that the tree just created.

Figure 4.1: The restoration force of a stem. The rest position will change in every time

step.

In a nature environment, the movement of the children of the stem should also affect

the stem. Therefore, the transfer force F⃗T is computedwhich is used for the stems affecting

the movement of their parents.

F⃗T = KtKr

n∑
i=1

(
F⃗ i
W + F⃗ i

G + F⃗ i
T

)
, (4.3)

whereKt andKr are constants for representing transitivity and rigidity, respectively; n is

the number of children of the current stem. The two forces F⃗ i
W and F⃗ i

G are the wind force

and the gravity force of their i-th child. The force F⃗ i
T is the transfer force of the i-th child

caused by its children.

17

The last kind of force response force F⃗Response is used to separate the colliding prim-

itives. The response force will be introduced together with our collision handling method

in the later chapter.

Because the skeleton of a leaf is composed by stems like branch, the computation

methods of most forces are equal to the ones used for branch. But there is still a little

difference due to their different shapes. The transfer force is ignored in a leaf because the

influence of the transfer force is negligible in the leaf. The computation of the wind force

F⃗ venation
W exerting on the venations should involves with the normals of the triangles of

the leaf because the affected area of a leaf is quite different if winds come from different

directions.

F⃗ venation
W = CW n⃗w⃗ · n⃗, (4.4)

where CW is a user defined constant for controlling the magnitude of the wind force, n⃗ is

the normal vector of the end point of a venation and w⃗ is the wind direction vector.

The total force exerting on the stem (include the venations of leaves) without colli-

sions is the sum of the forces:

F⃗ stem = F⃗W + F⃗G + F⃗T + F⃗Restore. (4.5)

4.2 Motion Computation

We compute the angular displacement using the force we get in last section. First, the

torque τ⃗ is computed using the equation:

τ⃗ =
(
o⃗ri ∗ len

)
× F⃗ stem, (4.6)

where o⃗ri is the unit orientation of the stem and len is the length of the stem.

Next, we get the angular acceleration α⃗ and the angular velocity ω⃗ by the following

equations :

α⃗ =
τ⃗

m ∗ len2
, (4.7)

ω⃗t+∆t = ω⃗t + α⃗ ∗∆t, (4.8)

18

where ω⃗t+∆t is the angular velocity of the stem at next time step, and ω⃗t is the angular

velocity at current time step. It should be noted that the angular velocity ω⃗stem decreases

at each time step due to damping effect.

ω⃗t = ω⃗t ∗ (1−Kd) , (4.9)

whereKd is the user defined constant representing damping factor.

Finally, the angular displacement ∆R⃗ is calculated by the following equation:

∆R⃗ = ω⃗t ∗∆t+ α⃗ ∗∆t2 +∆R⃗parent, (4.10)

where∆R⃗parent is the angular displacement of the parent of current stem. The orientation

of all stems (including venations of leaves) are updated using ∆R⃗.

Figure 4.2: The movement of the stems. The total angular displacement of the child is the

sum of the angular displacement of the parent and the angular displacement of itself

4.3 Parallel Processing

We employ CPU multi-thread technique to accelerate the computation of the anima-

tion. In the thesis, we use four threads to accelerate the simulation.

The tree is divided into two parts: branches and leaves. For branches, there is a

property that the stems do not have parent-child relationship are independent. We use this

19

property to update the information of branches parallel. We choose the stems in the same

branching level as the start points of the updating process of threads because the offspring

of these stems are independent as shown in Figure 4.3. To make sure the number of the

start points of the updating process is more than the number of the threads, we traverse

from the root of the tree until reach the branching level which has a sufficient number of

stems.

Figure 4.3: The independent relationships of the branches. Group1, group2, group3 and

group4 are independent with each other.

For leaves, the information of each leaf is independent to the other leaf. We divide

leaves into four groups and distribute them to the four threads.

In each time step, we update the information of the stems from the root to the start

points of the traversal using single thread. After that, four threads are used to update the

information of the remaining stems. After updating the branches, the leaves are updated

parallel.

20

Chapter 5

Collision Handling

5.1 Collision Detection

In order to keep the tree model in a collision-free state during simulation, collision

detections are applied. The basic method to do this job is checking if there is any inter-

section between the pairs of triangles of two primitives. But it is a time consuming job.

Instead of checking the pairs of triangles of two primitives, we use the distance between

the collision primitives and the kDOPs of them to approximately determine whether or

not they collide.

Two primitives that are collision free in the current time step may penetrate in the next

time step. To prevent this situation, we compute safe distance for each primitive to detect

collisions earlier. If the shortest distance of two primitives is smaller than the sum of the

safe distance of two primitives, then it implies that these two primitives may collide in

the next time step. We define the shortest distance between two primitives as the shortest

distance between the centerlines of the mid-venations of the leaves (or the centerline of

the stems).

The calculation of the safe distance is described as follows. The safe distance of a stem

is the sum of the bottom radius of it and the buffer distance computed by us. The buffer

distance is the max displacement of the primitive in a time step. In our implementation, we

limit the max amount of the angular displacement of the primitive in a time step. We use

21

this max angular displacement to compute the max displacement of the primitive in a time

step. The safe distance of a leaf is computed depending on the different situation because

the shape of a leaf is irregular. The stem of mid-venations midsd that has the shortest

distance with the other primitive will be found out first. Each stem of mid-venations is

connected with two or four parallel venations. The longest length parlong of these parallel

venations which is connected with midsd is recorded. The safe distance of the leaf is the

sum of parlong and the buffer distance of the leaf (Figure 5.1).

Figure 5.1: The safe distance of the leaf.

Two primitives are treated as a colliding pair when meet the following conditions: (1)

The k-DOPs of two primitives overlap. (2)The shortest distance between two primitives

is smaller than the sum of the safe distance. The accuracy of the collision detection is

determined by the safe distance and the enclosed range of the k-DOPs. When the k-DOPs

of two primitives overlap, we further check if the distance between primitives is smaller

than the sum of the safe distance. If so, we treat these two primitives as a colliding pair. It

is worth mentioning that even the second condition is satisfied, we do not apply collision

detection to the primitives if the k-DOPs do no overlap. In this way, we cannot detect

collisions earlier using safe distance. To make safe distance has sense, the k-DOPs are

enlarged by changing the minimum and the maximum value of each k-DOPs axis. We

increase the maximum value by adding the buffer distance of the primitive to the value,

and decrease the minimum value by subtracting the buffer distance of the primitive to the

22

value.

After collecting the primitives which about to collide, we give these primitives re-

sponse force to separate them. The computationmethod of the response forces is described

in next section.

5.2 Collision Response

Two colliding primitives may not be separated by the response force in one time step

because a primitive may affected by many primitives colliding with it. To stop two prim-

itives keeping moving toward each other, we need a force which is inversely proportional

to the distance between two primitives. For this reason, we use a spring force to give

response. The amount of the force is decided according to the distance between two prim-

itives if the current distance is smaller than the rest length of the spring.

We set the rest length of the spring as the sum of safe distance of two colliding prim-

itives. We take the shortest distance between the colliding primitives as the current length

of spring. The two vectors that formed by two centers of the k-DOPs of the primitives are

set to be the directions of the response force (Figure 5.2).

Figure 5.2: The direction of the response force.

Our response force is addressed by the following equation:

F⃗Response = D⃗irResponse ∗Ks ∗ (Disshortest −Dissafe) , (5.1)

23

WhereKs is the user defined constant to adjust the amount of the force, and D⃗irResponse is

the direction of the response force. Disshortest and Dissafe represent the current distance

between two primitives and the rest length of the spring respectly.

Even if the direction of the response force is correct, the parents of the primitives

may pull the primitives so that the primitives still move in wrong direction. To solve the

problem, the response force is also applied to the parents of the primitives so that we can

decide at the parent to let the primitives separate. The response force is transferred until

reach the common ancestor of two colliding primitives as shown in Figure 5.3.

Figure 5.3: The response force is transferred to the parent of the colliding primitives.

If the stem is colliding with the other primitive, the total force of the stem and the

ancestors is:

F⃗ stem =
(
F⃗W + F⃗G + F⃗T + F⃗Restore

)
∗ P1 + F⃗Response ∗ P2, (5.2)

whereP1 andP2 are the weights to adjust the percentage between the original force and the

response force. If the stem is far from the colliding primitives, the value of P1 increases

and the value of P2 decreases. Otherwise, the value of P1 decreases and the value of P2

increases. The value of P1 and P2 can be set according to the preferences of the users.

24

5.3 The Acceleration Structure

Even our method only need to check whether or not the k-DOPs overlap, the compu-

tation amount is still very large if we check collisions between primitives one by one. So

we construct a k-DOP BVH for the tree models to accelerate the process.

In general, there are twomethods to consturct BVH: top-down and bottom-upmethod.

Top-down methods proceed by partitioning the input set into two subsets, bounding them

in the chosen bounding volume, then keep partitioning (and bounding) recursively until

each subset consists of only a single primitive. Bottom-up methods start with the input set

as the primitives and then group two of them to form a new internal node, proceed in the

same manner until everything has been grouped under a single node. In our method, we

design a BVH for the tree models which is different with the BVH generated by general

method. We build the BVH based on the structure of the tree rather than based on the

distribution of the primitives. For the animated tree, there is a property that the offspring

of a stem will move with the stem. To reduce the case that the k-DOP is enlarged due to

the relative movement of the primitives, we group the offspring of a stem into a k-DOP. By

doing so, we decrease the chance that two connected primitives are bounded by different

k-DOPs. We define the stem that all offspring are bounded in a k-DOP as a representative

stem as shown in Figure 5.4.

Figure 5.4: Representative stem.

25

In our approach, only the representative stem and the children of it are the connected

primitives that are bounded by different k-DOPs. Therefore, the overlap between the k-

DOP of the representative stem and the k-DOP bounds the offspring of this representative

stem is ignored. We find all representative stems first and then use these stems to form

the BVH from the root of the tree.

To reduce the time of building BVH, some representative stems are already predefined

during the modeling process. These predefined stems will be used to find the other repre-

sentative stems. The stems we pick as representative stems during the modeling process

are: (1)the stems Rstemsb1 that the width are first smaller than the user defined thresh-

old; (2)the stems Rstemsb2 that treated as the start point of small branches; (3)the stems

Rstemsb3 have leaves. The stems ofRstemsb2 are the offspring of the ones ofRstemsb1.

Therefore, the k-DOPs bounds the offspring of Rstemsb2 must be the child nodes of the

ones bounds the offspring of Rstemsb1. For the same reason, the k-DOPs bounds the off-

spring ofRstemsb3 must be the child nodes of the ones bounds the offspring ofRstemsb2.

The leaf node of the hierarchy is the k-DOPs of the stems and the leaves. A leaf node that

bounds the stem may be included by the k-DOPs at any levels but the one bounds the leaf

must be included by the ones bounds the offspring of Rstemsb3.

We use Rstemsb1 to find the representative stems of higher levels. We traverse back

from the stems of Rstemsb1 to find the ancestors which are the branching stems. The

parents of these branching stems are treated as the candidate stemsc of new representative

stem. Because the stem with the biggest width must be the common ancestor of most

stems, we choose the stem with biggest width stembw in stemsc as new representative

stem. We mark the stems in Rstemsb1 which are offspring of the stembw to indicate they

will be bounded by the new k-DOP. Then we keep using the stems inRstemsb1 which are

not marked to find new stemsc and take the stem with biggest width as new representative

stem. The finding process for the representative stems in the new level are done if the stems

of Rstemb1 are all marked. The algorithm of finding the representative stems is shown in

Algorithm 3.

26

Algorithm 3 The algorithm of finding the representative stems in each levels
1: Rstemscl: the representative stems of current level

2: Rstemsnl: the representative stems of new level

3: stemsc: the list contains the candidates of the representative stems of new level

4: numhl: a constant limits the number of the representative stems of highest level.

5: while true do

6: while There is a stem in Rstemscl not be marked do

7: for each stem in Rstemscl do

8: find out the ancestor of the stem which is a branching stem stembr

9: push the parent of stembr into stemsc

10: end for

11: choose the stem with biggest width stembw in stemsc and push it intoRstemsnl

12: mark the stems of Rstemscl which are offspring of stembw.

13: end while

14: set Rstemsnl as Rstemsc1

15: if The size of Rstemscl is smaller than numhl then

16: exist the while loop

17: end if

18: end while

We use these representative stems to build the BVH. To form the k-DOP that bound

all the offspring of the representative stem, we traverse from the representative stems of

the highest level and we collect the child nodes of the k-DOP in a depth-first manner. We

push the k-DOPs of the visited primitives into the child list of the new k-DOP. If the visited

primitive is the representative stem of next level, we build the k-DOPs of next level and

push it into the child list first. Then, we stop traversing deeper and returning to the most

recent node that have not been visited. After the collection of the child nodes for the new

k-DOPs is done, we use the information of these child nodes to build the new k-DOPs.

The structure of the BVH is shown in Figure 5.5. The algorithm of building the BVH is

shown in Algorithm 4. We can use this BVH to find collision pairs efficiently.

27

Figure 5.5: The BVH of the tree.

Algorithm 4 The algorithm of building BVH
1: Rstemshl: the representative stems of highest level

2: for each stem in Rstemshl do

3: traverse in depth-first manner.

4: while the process of the traversal is not finished do

5: push the k-DOPs of the visited primitives into the child list.

6: if the visited primitive is the representative stem of next level then

7: build the BVH of next level.

8: push the root of the BVH of next level into the child list

9: stop traversing deeper and return to the most recent node that have not been

visited

10: end if

11: end while

12: use the information of the child nodes to build the k-DOP of highest level.

13: end for

28

The manner of traversing BVH is described as follows. For each k-DOP, we maintain

an overlap list to record the k-DOPs overlap with it. We choose a k-DOP kDOPhl in the

highest level and collect the k-DOPs overlap with it in the same level. If the k-DOP which

overlaps with kDOPhl is the one that bounds the representative stem of kDOPhl, we do

not push it into the overlap list. For each child of kDOPhl, we collect the k-DOPs that

overlap with it in the same level. These child nodes only need to be checked if there is

any overlaps with the sibling of it and the child nodes of the k-DOPs of the overlap list

of kDOPhl,. After handling the children of kDOPhl, we then go to handle next level.

The process continues until the collections of the overlap list of all primitives bounded

inside kDOPhl are done. These potentially colliding pairs are further checked whether the

distance between primitives is smaller than the sum of the safe distance. If so, the response

force introduced in the section 5.2 is applied to these colliding primitives. kDOPhl and

all children of it will not be used in the following process of the traversal because the

collision events that associated with the primitives inside the kDOPhl are solved. When

all k-DOPs in the highest level are traversed, all collisions are handled.

The whole process is shown in Figure 5.6.

29

Figure 5.6: The process of collision handling.

30

5.4 Parallel Processing

We employ CPU multi-thread technique to accelerate the process of updating BVH.

We divide the BVH into two parts: leaf nodes and inter nodes.

The leaf nodes of the BVH are the k-DOPs of stems and leaves. In order to balance

the workload of the threads, we update the k-DOPs of stems and leaves separately. We

divide the k-DOPs of stems into four groups and distribute them to the threads to update

parallel. Then the k-DOPs of the leaves are updated like the ones of stems.

The BVH is a tree structure. If there is no parent-child relationship between two

nodes, these two nodes are independent. For this reason, the offspring of the first level

k-DOPs are independent to each other. Therefore, we take the k-DOPs in the first level as

the start points of the updating process. We divide the k-DOPs in the first level into four

groups and distribute them to the threads.

In each time step, the threads update the inter nodes in a bottom-up manner after the

leaf nodes are updated.

31

Chapter 6

Results

In the experimentation, we built and simulated some tree models by a computer with

Intel(R) Core(TM)2 Quad Processor Q6600, 4.00GB RAM , NVIDIA Geforce 9600 GT

GPU. We rendered the tree models using OpenGL. We compared the cost time of the

simulations in detial in this chapter.

6.1 Tree Models

In the thesis, we built random produced tree models for simulations which the stems

and the leaves do not intersect with each other. We used five tree models to do our ex-

periment in this chapter. The screen shots of these five tree models from smallest one to

the most complex one were shown in Figure 6.1. The other random generated tree models

were also shown in Figure 6.2.

We recorded the cost time of each step in the preprocessing stage: (1)The time of

building branches; (2)The time of building leaves; (3)The time of reducing redundant

stems. (4)The time of building BVH. (5)The time of building voxels. Table 6.1 showed

comparisons of these time between different tree models.

In Table 6.1, we compare the time of building primitives of the tree with and without

using voxel-based acceleration method. The result showed that we successfully reduce

the cost of the collision detection in the modeling process.

32

Figure 6.1: The tree models with different size.

33

Figure 6.2: The random generated tree models.

34

treeA treeB treeC treeD treeE

The numbers of stems 597 2721 6470 11134 14615

The numbers of leaves 749 3320 7821 12850 16607

BB
with acceleration 0.0194 0.106 0.347 0.1 1.838

without acceleration 0.0232 0.241 1.541 9.185 17.985

BL
with acceleration 0.2991 1.569 4.625 13.922 29.571

without acceleration 0.3257 3.498 29.282 91.032 153.309

RS 0.0005 0.003 0.011 0.015 0.021

BK 0.0076 0.032 0.085 0.129 0.171

BV 0.0019 0.0007 0.0004 0.0003 0.0002

Table 6.1: The time (sec) of preprocessing stage. BB: the time of building branches, BL:

the time of building leaves, RS: the time of reducing redundant stems, BK: the time of

building BVH, BV: the time of building voxels.

Because the space enclosed by voxels was fixed, the time of building voxels was

depending on the size of a voxel. As the size of the tree became bigger, the size of a

voxel became bigger and the total number of the voxels decreased. Therefore, the time of

building voxels decreased as the size of the tree increased.

We observed that the cost of building leaves was the main cost in the preprocessing

stage. This was because the k-DOPs of leaves had larger opportunity to overlap with other

primitives than the ones of stems. The k-DOPs of these leaves overlap and these leaves

are required for further check so as to determine whether or not the triangles of the leaves

intersect with the other.

6.2 Tree Animation

The time step of our simulation was defined as 0.03. The uniform wind flow was

defined as the external force field. We took some snapshots of the animating tree model

under the effects of different winds. To see the swing direction of branches and leaves

35

clearly, the simulation snapshots of the simple tree model with 597 stems and 749 leaves

was shown in Figure 6.3.

Figure 6.3: The tree models are affected by different winds.

We recorded the cost time of updating primitives' information. The costs of comput-

ing forces, updating the orientation of the primitive and updating the information of the

triangles were included. The time of animating tree models was compared in Table 6.2.

The result showed that the animation time was approximately proportional to the numbers

of the primitives of the tree.

We also implemented the defoliation phenomena as shown in Figure 6.4. User can

make interaction with the tree model by pressing a key to make some leaves fall down.

When a leaf was marked as a fallen leaf, we separated it from the tree model and treated

it as a deformable object that moved independently.

36

treeA treeB treeC treeD treeE

The numbers of stems 597 2721 6470 11134 14615

The numbers of leaves 749 3320 7821 12850 16607

UB 0.004 0.018 0.044 0.075 0.099

UL 0.019 0.085 0.201 0.329 0.427

Table 6.2: The animation time (sec) of different tree models. UB: the average time of

updating the branches, UL: the average time of updating the leaves.

Figure 6.4: The defoliation phenomena.

6.3 Collision Handling

We showed the scenes of the animating tree models with and without collision han-

dling in Figure 6.5. We could see that there was no intersections between the primitives

of the tree using our method.

Our method for collision handling could be divided into three parts: (1)updating the

k-DOPs BVH; (2)traversing BVH; (3)collision detection and giving response. We defined

37

Figure 6.5: The snapshots of the animating tree model with and without collisions han-

dling.

the time spent in the first part as UK, the time spent in the second part as TV and the time

spent in the third part as CD. These cost time was affected by the orientations of the

k-DOP used in the simulation. The culling effect in the process of traversing BVH is

better when the orientations of the k-DOP increase; However, the cost time of building

the k-DOP and overlap test will increase too. We compared the time spent in these parts

using k-DOPs with different k. The comparisons were shown in Table 6.3. In the case

using 6-DOPs BVH to handle collisions, TV and CD were larger than the results using

higher orientations k-DOPs. This was because that the culling effect of 6-DOPwas smaller

than higher orientations k-DOP. The number of nodes that needed to be traversed was

larger than using higher orientations k-DOP. For the same reason, the number of collision

detections was larger than using higher orientations k-DOP too.

We merged UK, TV and CD to compare the difference of using different k-DOPs

directly. The comparison was shown in Figure 6.6. The result showed that the 6-DOPs

has the best performance in our experiments. We could learn from the histogram that the

cost in updating k-DOPs BVH was larger than the benefit brought by the culling effect of

the higher orientations k-DOPs in our case.

38

k-DOP treeA treeB treeC treeD treeE

UK

6-DOP 0.0043 0.0192 0.0452 0.0757 0.0972

14-DOP 0.0065 0.0292 0.0686 0.1141 0.1475

18-DOP 0.0076 0.0335 0.0787 0.1314 0.171

26-DOP 0.0106 0.0469 0.1103 0.1843 0.2389

TV

6-DOP 0.0025 0.013 0.032 0.064 0.085

14-DOP 0.0019 0.01 0.025 0.048 0.064

18-DOP 0.0018 0.01 0.024 0.046 0.059

26-DOP 0.0019 0.01 0.024 0.046 0.059

CD

6-DOP 0.0007 0.003 0.007 0.014 0.019

14-DOP 0.0003 0.001 0.003 0.006 0.007

18-DOP 0.0003 0.001 0.003 0.006 0.008

26-DOP 0.0002 0.001 0.002 0.005 0.006

Table 6.3: The average time (sec) of collision handling. UK: the time of updating BVH,

TV: the time of traversing BVH, CD: the time of collision detection and giving response.

Figure 6.6: The average cost time (sec) of the collision handling using k-DOPs with dif-

ferent orientations.

39

6.4 Parallel processing

In this section, we showed the comparisons of the time spent in simulations between

using single thread and multi-thread. The comparison of the animating time was shown

in Table 6.4. Because our tree model was not a balance tree, the workload of each thread

may be not the same. Therefore, the acceleration degree of the time of updating branches

was unstable.

tree model single thread multi-thread acceleration rate

UB

treeA 0.004 0.002 2

treeB 0.018 0.006 3

treeC 0.044 0.016 2.75

treeD 0.075 0.0225 3.33

treeE 0.099 0.03 3.3

UL

treeA 0.019 0.006 3.17

treeB 0.085 0.023 3.69

treeC 0.201 0.054 3.72

treeD 0.329 0.087 3.78

treeE 0.427 0.111 3.85

Table 6.4: The comparisons of the average time (sec) of updating the information of prim-

itives between using single thread and multi-thread. UB: the time of updating branches,

UL: the time of updating leaves.

The comparisons of the time of updating BVH were shown in Table 6.5. As the

workload increased, the efficiency of parallel processing increased. Because the workload

of each thread that dealt with the part of updating internal nodes of BVHwas not the same,

the acceleration rate was affected slightly.

40

tree model single thread multi-thread acceleration rate

6-DOP

treeA 0.0043 0.0022 1.95

treeB 0.0192 0.009 2.13

treeC 0.0452 0.021 2.15

treeD 0.0757 0.035 2.16

treeE 0.0972 0.043 2.26

14-DOP

treeA 0.0065 0.003 2.17

treeB 0.0292 0.012 2.43

treeC 0.0686 0.028 2.45

treeD 0.1141 0.043 2.65

treeE 0.1475 0.053 2.78

18-DOP

treeA 0.0076 0.003 2.53

treeB 0.0335 0.013 2.58

treeC 0.0787 0.03 2.62

treeD 0.1314 0.047 2.8

treeE 0.171 0.058 2.95

26-DOP

treeA 0.0106 0.004 2.65

treeB 0.0469 0.017 2.76

treeC 0.1103 0.04 2.78

treeD 0.1843 0.06 3.07

treeE 0.2389 0.073 3.27

Table 6.5: The comparisons of the average time (sec) of updating BVH between using

single thread and multi-thread

We further compared the time of the collision handling process after accelerating by

parallel processing using different k-DOPs. The results was shown in Figure 6.7.

We learned from the experiment that the 14-DOPs had the best performance than the

others. The time saved by the k-DOP BVH with larger k overtook the cost of updating

itself after the acceleration of updating BVH. The superiority of the k-DOPs with higher

41

Figure 6.7: The comparison of the time (sec) of collision processing between using single-

thread and multi-thread.

42

orientations became more obvious as the number of the k-DOPs need to be updated in-

creased. When the numbers of primitives exceed about 15000, the performance using

6-DOPs became worst among these different kinds k-DOPs.

We put the cost of each component of the simulation together to see which component

had largest cost in Figure 6.8. The detail data was shown in Table 6.6.

Figure 6.8: The cost (sec) of each component of the simulation using 14-DOP.

We observed that the time of updating the information of leaves still be the main cost

of the simulation after accelerating by using multi-thread.

We added the time of runtime stage to get the frame rate of the animations. Table 6.7

shows the frame rate of tree animations.

43

UL UB CD TV UK

treeA 0.006(46%) 0.002(15%) 0.0003(2%) 0.0019(14%) 0.003(23%)

treeB 0.023(44%) 0.006(11%) 0.001(2%) 0.01(20%) 0.012(23%)

treeC 0.054(43%) 0.016(13%) 0.003(2%) 0.025(20%) 0.028(22%)

treeD 0.087(42%) 0.023(11%) 0.006(3%) 0.048(23%) 0.043(21%)

treeE 0.111(42%) 0.03(11%) 0.007(3%) 0.064(24%) 0.053(20%)

Table 6.6: The detail time (sec) of each component of the runtime stage using 14-DOP. UL:

the time of updating leaves, UB: the time of updating branches, CD: the time of collision

detection and giving response, TV: the time of traversing BVH, UK: the time of updating

BVH.

treeA treeB treeC treeD treeE

6-DOP 70.349 18.001 7.284 4.246 3.281

14-DOP 72.892 18.971 7.831 4.748 3.709

18-DOP 72.307 18.517 7.806 4.65 3.648

26-DOP 70.043 17.367 7.323 4.463 3.524

Table 6.7: The frame rate (frames per second) of the animations

44

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have presented a method to handle the interactions of a tree in a

windy environment. We build the tree models which are collision-free. We use the k-

DOPs to cull-out the primitive pairs those need not to be further checked. We also use a

voxel-based acceleration method to accelerate the process of building tree. A physically-

based method is applied for animating the trees. During the simulation, we proposed a

novel method to handling collisions within the tree. We maintain a k-DOP BVH during

the simulation process to collect all the potentially colliding pairs and resolve collisions

for the colliding pairs.

The experimental results show that our method animates the tree model naturally

and successfully resolve the collision events between the primitives during the simulation

process.

7.2 Future Work

We had made an attempt to employ GPU to accelerate our method but the perfor-

mance was not satisfactory. In our method, the update of a primitive must wait for the

results of it's parent so that we cannot update all primitives at a time. The information

45

used in updating a primitive cannot be reused by another one. We need to transfer all

information of the primitives from CPU to GPU. The amount of data for transferring is

huge. In addition, the computation of updating the information of a primitive is involved

with simple computation. The cost of transferring data between CPU and GPU is much

higher than the benefit brought by parallel processing in our case. In the future, we would

like to investigate a different strategy to implement our method on GPU.

We also want to improve the realistic of the appearance of our tree models. Our stems

and leaves are modeled by using few triangles so that their surfaces can not modeled in a

natural way. This can be discovered easily when we take a close look. Wewant to improve

it in the future.

In our collision handling, we simply push away the colliding leaves without comput-

ing their deformation. In the future, we want to simulate the detail deformation of the leaf

due to collisions. Also, the accurate collision detection between the primitives is still a

challenge for us.

Finally, We want to model the various wind model. We would like to simulate the

stems being destroyed due to the strong wind loading and handle the collisions of broken

branches and the defoliations.

46

Bibliography

[AK06] Y. Akagi and K. Kitajima. Computer animation of swaying trees based on

physical simulation. Computers & Graphics, 30(4):529--539, 2006.

[CGZ+05] Y.Y. Chuang, D.B. Goldman, K.C. Zheng, B. Curless, D.H. Salesin, and

R. Szeliski. Animating pictures with stochastic motion textures. In ACM

Transactions on Graphics (TOG), volume 24, pages 853--860, 2005.

[DCL+09] L. Ding, C. Chongcheng, T. Liyu, W. Qinmin, and X. Wenqiang. In-

teractive physical based animation of tree swaying in wind. In 2009 10th

ACIS International Conference on Software Engineering, Artificial Intelli-

gences, Networking and Parallel/Distributed Computing, pages 623--628,

2009.

[DRBR09] Julien Diener, Mathieu Rodriguez, Lionel Baboud, and Lionel Reveret.

Wind projection basis for real-time animation of trees, mar 2009.

[GCF01] T.D. Giacomo, S. Capo, and F. Faure. An interactive forest. In Proceed-

ings of the Eurographic workshop on Computer animation and simulation,

pages 65--74, 2001.

[HBM03] J.C. Hart, B. Baker, and J. Michaelraj. Structural simulation of tree growth

and response. The Visual Computer, 19(2):151--163, 2003.

[HFC09] S. Hu, T. Fujimoto, and N. Chiba. Pseudo-dynamics model of a cantilever

beam for animating flexible leaves and branches in wind field. Computer

Animation and Virtual Worlds, 20(2-3):279--287, 2009.

47

[HKW09] R. Habel, A. Kusternig, and M. Wimmer. Physically guided animation of

trees. In Computer Graphics Forum, volume 28, pages 523--532, 2009.

[KHM+98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Ef-

ficient collision detection using bounding volume hierarchies of k-dops.

IEEE Transactions on Visualization and Computer Graphics, 4(1):21--36,

1998.

[LGF+06] W. Li, W. Guo, G. Feng, Y. Meng, and M. Li. Broad-leaf Virtual Plant. In

IEEE International Conference on Industrial Technology, pages 734--738,

2006.

[OFT+03] S. Ota, T. Fujimoto, M. Tamura, K.Muraoka, K. Fujita, and N. Chiba. 1/f\

beta Noise-Based Real-Time Animation of Trees Swaying inWind Fields.

2003.

[OK10] N.J. Oliapuram and S. Kumar. Realtime forest animation in wind. In Pro-

ceedings of the Seventh Indian Conference on Computer Vision, Graphics

and Image Processing, pages 197--204, 2010.

[Opp86] P.E. Oppenheimer. Real time design and animation of fractal plants and

trees. In ACM SiGGRAPH Computer Graphics, volume 20, pages 55--64,

1986.

[OTF+04] S. Ota, M. Tamura, T. Fujimoto, K. Muraoka, and N. Chiba. A hybrid

method for real-time animation of trees swaying in wind fields. The Visual

Computer, 20(10):613--623, 2004.

[PL91] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants

(The Virtual Laboratory). 1991.

[SO99] T. Sakaguchi and J. Ohya. Modeling and animation of botanical trees for

interactive virtual environments. In Proceedings of the ACM symposium

on Virtual reality software and technology, pages 139--146, 1999.

48

[Sta97] J. Stam. Stochastic dynamics: Simulating the effects of turbulence on flex-

ible structures. In Computer Graphics Forum, volume 16, pages C159--

C164, 1997.

[SZCZ05] P.A. Singh, N. Zhao, S.C. Chen, and K. Zhang. Tree animation for a 3d

interactive visualization system for hurricane impacts. In IEEE Interna-

tional Conference on Multimedia and Expo, pages 598--601, 2005.

[VHDFVR06] W. VanHaevre, F. Di Fiore, and F. Van Reeth. Physically-based driven tree

animations. In Eurographics Workshop on Natural Phenomena, pages 75-

-82, 2006.

[VHFBVR04] W. Van Haevre, F.D. Fiore, P. Bekaert, and F. Van Reeth. A ray den-

sity estimation approach to take into account environment illumination in

plant growth simulation. In Proceedings of the 20th spring conference on

Computer graphics, pages 121--131, 2004.

[WD04] J.C.Wong and A. Datta. Animating real-time realistic movements in small

plants. In Proceedings of the 2nd international conference on Computer

graphics and interactive techniques in Australasia and South East Asia,

pages 182--189, 2004.

[Web08] J.P. Weber. Fast simulation of realistic trees. Computer Graphics and

Applications, IEEE, 28(3):67--75, 2008.

[WP95] J.Weber and J. Penn. Creation and rendering of realistic trees. In Proceed-

ings of the 22nd annual conference on Computer graphics and interactive

techniques, pages 119--128, 1995.

[WWG06] G.Wu, L.Wenhui, and F. Guanghui. Physically based animation of broad-

leaf plant. IJCSNS, 6(2A):198, 2006.

[YHYW10] M. Yang, M.C. Huang, G. Yang, and E.H.Wu. Physically-based animation

for realistic interactions between tree branches and raindrops. In Proceed-

49

ings of the 17th ACM Symposium on Virtual Reality Software and Tech-

nology, pages 83--86, 2010.

[YSWS09] M. Yang, B. Sheng, E. Wu, and H. Sun. Multi-resolution tree motion

synthesis in angular shell space. In Proceedings of the 8th International

Conference on Virtual Reality Continuum and its Applications in Industry,

pages 47--52, 2009.

[ZST+06] L. Zhang, C. Song, Q. Tan, W. Chen, and Q. Peng. Quasi-physical simula-

tion of large-scale dynamic forest scenes. Advances in Computer Graph-

ics, pages 735--742, 2006.

[ZZJ+07] L. Zhang, Y. Zhang, Z. Jiang, L. Li, W. Chen, and Q. Peng. Precomputing

data-driven tree animation. Computer Animation and Virtual Worlds, 18

(4-5):371--382, 2007.

50

