

國立交通大學

多媒體工程研究所

碩士論文

利用特殊字元編碼的新資訊隱藏技術與其於網際網路

上之應用

A Study on New Data Hiding Techniques Using Special

Character Codes and Their Applications on the Internet

研 究 生：王以安

指導教授：蔡文祥 教授

中華民國一百年六月

利用特殊字元編碼的新資訊隱藏技術

與其於網際網路上之應用

A Study on New Data Hiding Techniques Using Special Character Codes

and Their Applications on the Internet

研 究 生：王以安 Student: Yi-An Wang

指導教授：蔡文祥 Advisor: Prof. Wen-Hsiang Tsai

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年六月

i

利用特殊字元編碼的新資訊隱藏技術與其於網際網路

上之應用

研究生：王以安 指導教授：蔡文祥 博士

國立交通大學多媒體工程研究所

摘要

隨著電腦和網路科技的發展，越來越多人透過網路來進行通訊，所以有必要

保護網際網路上通訊訊息的安全性。以此，本論文提出了四種資訊隱藏的方法，

用來對部落格、電子佈告欄系統(BBS)及電子郵件三種受歡迎的網路應用進行秘

密通訊或文章驗證。

對於部落格，本研究利用不可視的特殊美國標準資訊交換碼(ASCII)控制碼

組成的驗證訊號來識別部落格文章是否有被更改，達到文章驗證的功能。在電子

公佈欄方面，本研究提出了兩種資訊隱藏的方法，分別是利用不可視的大五碼

(Big-5)字元碼以及特殊的大五碼的空白碼來組成秘密資訊，此兩種方法透過電子

公佈欄做媒介，都可用以進行祕密通訊以及文章驗證。最後，對於電子郵件，本

研究提出了一個利用特殊八位元萬國碼(UTF-8)的空白碼的資訊隱藏技術，可用

來驗證電子郵件，以偵測任何對受保護之郵件的惡意竄改。

上述所提應用都是利用這些特殊字元碼在各個應用平台上的不可視性，來隱

藏秘密資訊而不被察覺，並將特殊字元編碼所構成的秘密訊息藏入原始文章當中，

達到資訊隱藏的目的，而且所隱藏的秘密資訊皆可在之後正確地還原回來。

最後本論文也提供了相關的實驗結果，來證明所提方法的可行性。

ii

A Study on New Data Hiding Techniques Using

Special Character Codes and Their Applications on

the Internet

Student: Yi-An Wang Advisor: Wen-Hsiang Tsai

Institute of Multimedia Engineering, College of Computer Science

National Chiao Tung University

ABSTRACT

With the progress of computer and networking technologies, communication via

the Internet has become more and more popular nowadays, and so security protection

of communication messages on the Internet has become a necessity. In this study, four

data hiding methods for covert communication or article authentication are proposed

for use on three Internet applications, namely, the blog, BBS, and email.

For the blog, a new article authentication method based on one of the proposed

data hiding techniques is proposed, which uses invisible ASCII control codes to

construct authentication signals to verify whether a blog article is tampered with or

not. For the BBS, two data hiding techniques are proposed. One uses invisible Big-5

codes, and the other uses special Big-5 space codes, for embedding message data

imperceptibly. Each of the two techniques may be used to accomplish covert

communication as well as BBS article authentication. Finally, for email, a data hiding

technique via the use of special UTF-8 codes is proposed for webmail authentication,

so that malicious tampering with a protected email may be found out.

In all the applications mentioned above, the invisibility of the proposed special

codes on appropriate platforms of Internet applications is utilized to achieve the aim

iii

of hiding data imperceptibly. A stego-article is generated by embedding the secret

message information composed of the adopted special codes into the ends of the text

lines of a cover article. The hidden secret information can be recovered correctly later.

Experimental results showing the feasibility of the proposed methods are also

included.

iv

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and

support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this

thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory

in the Institute of Computer Science and Engineering at National Chiao Tung

University for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks to his dear family for their

lasting love, care, and encouragement.

v

CONTENTS
ABSTRACT (IN CHINESE) .. i

ABSTRACT (in English) ... ii

ACKNOWLEDGEMENTS ... iv

CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. x

Chapter 1 Introduction .. 1

1.1 Motivation and Background ... 1

1.1.1 Motivation of Study .. 1

1.1.2 Introduction to Used Media .. 2

1.2 Overview of Related Works ... 4

1.3 Overview of Proposed Methods ... 5

1.3.1 Definitions of Terms .. 5

1.3.2 Brief Description of Proposed Methods .. 6

1.4 Contributions .. 9

1.5 Thesis Organization .. 9

Chapter 2 Review of Related Works and Character Coding Formats 10

2.1 Previous Studies on Data Hiding Techniques Using Special Character

Codes .. 10

2.1.1 Review of Data Hiding Techniques via Text Documents 11

2.1.2 Review of Data Hiding Techniques for Internet Applications 12

2.1.3 Review of Other Techniques and Summary 14

2.2 Review of Related Character Coding Formats ... 14

2.2.1 Review of ASCII Format .. 14

2.2.2 Review of Big-5 Format .. 15

2.2.3 Review of UTF-8 Format .. 16

Chapter 3 Authentication of Blog Articles by Invisible ASCII Control Codes . 19

3.1 Introduction and Problem Definition ... 19

3.2 Major Idea of Proposed Method by Use of Invisible ASCII Control Codes

 20

3.2.1 Use of Special Character Codes .. 20

3.2.2 Necessity of Distributing Embedded Codes Evenly at Line Ends to

vi

Reduce Suspicion .. 23

3.2.3 Construction of End Signals .. 25

3.3 Authentication Signal Generation and Embedding Process 25

3.4 Authentication Signal Extraction and Blog Verification Process 28

3.5 Experimental Results.. 30

3.6 Summary .. 31

Chapter 4 Covert Communication via the BBS Using Special BIG-5 Codes 37

4.1 Introduction and Problem Definition ... 37

4.2 Major Ideas of Proposed Methods by Use of Special Big-5 Codes 38

4.2.1 Data Hiding by Invisible Big-5 Codes .. 38

4.2.2 Data Hiding by Special Big-5 Space Codes 42

4.3 Proposed Algorithm for Data Embedding .. 46

4.4 Proposed Algorithm for Data Extraction .. 49

4.5 Experimental Results.. 51

4.6 Summary .. 52

Chapter 5 BBS Article Authentication by Special BIG-5 Codes 58

5.1 Introduction and Problem Definition ... 58

5.2 Major Idea of Proposed Method by Use of Special Big-5 Codes 59

5.3 Authentication Signal Generation and Embedding Process 59

5.4 Authentication Signal Extraction and Verification Process 61

5.5 Experimental Results.. 63

5.6 Summary .. 64

Chapter 6 Email Authentication by Special UTF-8 Space Codes 71

6.1 Introduction and Problem Definition ... 71

6.2 Major Idea of Proposed Method by Use of Special UTF-8 Codes 72

6.3 Authentication Signal Generation and Embedding Process 76

6.4 Authentication Signal Extraction and Verification Process 79

6.5 Experimental Results.. 81

6.6 Adaptability of Proposed Method for Authentication of Blog Articles ... 81

6.7 Summary .. 82

Chapter 7 Conclusions and Suggestions for Future Works 90

7.1 Conclusions .. 90

7.2 Suggestions for Future Works .. 91

References .. 93

vii

LIST OF FIGURES

Figure 1.1 The login screen and a normal article on a bbs. 3

Figure 1.2 An instance of blogs. .. 4

Figure 1.3 Two popular email systems. (a) G-mail. (b) Hotmail. 4

Figure 2.1 Example of data hidden using white space [3]. (a) Normal text. (b)

White space encoded text. .. 11

Figure 2.2 An experimental result found in lee and tsai [10]. (a) Cover file seen in

adobe reader 8.1.2 window. (b) Stego-file seen in adobe reader 8.1.2

window with message “this is a covert communication method”

embedded. ... 12

Figure 2.3 An experimental result found in lee and tsai [12]. (a) Cover text seen in

the window of the ie. (b) Stego-text (with message about “cartesian

coordinates” embedded) seen in the window of the ie. 13

Figure 2.4 Big-5 coding format. ... 16

Figure 2.5 An example of utf-8 coding [17]. ... 17

Figure3.1 Some examples of highlighted blog articles with secret codes embedded

in them on (a) mozilla firefox and (b) google chrome. 23

Figure 3.2 Some examples of highlighted blog articles with secret codes embedded

in them in ie. (a) The stego-article with secret codes embedded in order.

(b) The stego-article with secret codes embedded evenly using the

proposed method. .. 25

Figure 3.3 Flowchart of proposed authentication signal generation and embedding

process. ... 28

Figure 3.4 Flowchart of the proposed authentication signal extraction and blog

article verification process. ... 29

Figure 3.5 An example of experimental results. (a) An original blog article. (b) A

user interface used to generate authentication signal and protected blog

article. (c) The protected blog article with an authentication signal

embedded. (d) The authentication report with the message

“authentication is successful.” (e) A protected blog article with a temped

word. (f) The verification result of the tempered blog article. 33

Figure 3.6 Another example of experimental results. (a) An original blog article. (b)

The user interface with a secret key “nctu”. (c) The protected blog article

with an authentication signal embedded. (d) The authentication result by

using the correct secret key. (e) The authentication result by using a

wrong secret key. .. 35

viii

Figure 4.1 Stego-articles with some embedded invisible big-5 symbols displayed on

(a) pcman, (b) kkman, (c) pietty, and (d) the telnet connection program,

respectively. .. 40

Figure 4.2 Stego-articles with secret messages embedded displayed on some

well-known bbs’s. (a) on pcman. (b) on kkman. (c) on pietty. (d) on the

telnet connection program. ... 45

Figure 4.3 Flow chart of proposed process of embedding secret messages. 47

Figure 4.4 Flow chart of proposed data extraction process 50

Figure 4.5 An example of experimental results. (a) A normal article displayed on

the pcman with our program in the upper right. (b) Data embedding

process: type a secret key and a secret message, select a hiding method,

highlight a cover article, and press the hiding-button to generate a stego

article with the secret message embedded. (c) The displayed stego-article

with the secret message embedded on the pcman. (d) Data extraction

process: extract the secret massage by the use of using the correct secret

key, select the same method, and press the extraction-button. (e) Result

of using a wrong key to extract the secret message. (f) An extracted

wrong message. .. 53

Figure 4.6 Another example of experimental results. (a) Another normal article. (b)

Embedding a secret message by method 2, using special big-5 space

codes. (c) Stego-article with the secret message embedded. (d) Extracted

correct secret massage. ... 56

Figure 5.1 Flowchart of proposed authentication signal generation process. 60

Figure 5.2 Flow chart of proposed bbs article verification process. 62

Figure 5.3 An example of experimental results. (a) A generation and sending

process of a protected bbs mail. (b) A protected bbs mail displayed on

the pcman. (c) A protected bbs article authenticated with a correct secret

key. (d) A protected bbs article authenticated with a wrong key. 65

Figure 5.4 Another example of experimental results. (a) A generation and sending

process of a protected bbs article. (b) A protected bbs article displayed

on the pcman. (c) An authentication result of a protected bbs article with

a correct secret key. (d) An authentication result of a protected bbs article

tampered by replacing a word. ... 67

Figure 5.5 An experimental result displayed on the kkman. (a) A normal bbs mail.

(b) A protected bbs mail. ... 69

Figure 5.6 An experimental result displayed on the telnet connection program. (a) A

normal bbs mail. (b) A protected bbs mail. ... 70

Figure 6.1 A highlighted stego-email with secret symbols embedded (a) just in

ix

order or (b) evenly using the proposed method. 75

Figure 6.2 Flowchart of proposed authentication signal generation and embedding

process. ... 77

Figure 6.3 Flowchart of the proposed authentication signal extraction and email

verification process. .. 80

Figure 6.4 An example of experimental results. (a) An original email will be send

through the g-mail webmail platform. (b) Our program with a secret key

typed. (c) A protected email. (d) A protected email highlighted by a

mouse. (e) The authentication result by using the correct secret key. (f)

The authentication result by using a wrong secret key 83

Figure 6.5 The appearances of (a) a protected email and (b) its highlighted form

displayed on ie .. 86

Figure 6.6 An example of experimental results. (a) An original article will be

publish on blog. (b) Our program with a secret key typed. (c) A protected

blog article. (d) The authentication result by using the correct secret key.

(e) A protected blog article tampered by replacing a word. (f) The

authentication result of the tampered blog article. 87

x

LIST OF TABLES

Table 2.1 ASCII code chart. .. 15

Table 2.2 UTF-8 encoding format. ... 17

Table 3.1 ASCII control codes and description [1]... 21

Table 3.2 Encoding table for used invisible ascii control codes. 23

Table 4.1 Encoding table for used invisible big-5 codes. ... 41

Table 4.2 Encoding table for used special big-5 space codes. 43

Table 6.1 Encoding table for used utf-8 codes. ... 73

1

Chapter 1

Introduction

1.1 Motivation and Background

1.1.1 Motivation of Study

Good media for information communication to promote social developments are

indispensable nowadays. Ever since paper was invented, knowledge dissemination

and science advancement have progresses every day. Today, at the time of

breakthroughs in information communication, the Internet has become an extremely

important medium.

However, the Internet is just like a double-edged sword. When we communicate

information on the Internet, we may be pleased to see the surprising propagation

velocity and the great capability of the network. However, we are also putting the

information in danger in the meantime. To exchange information on the Internet safely,

the use of the data hiding technique is a solution, which was intensively studied in the

past decade.

One of the applications of data hiding is steganography, which is one form of

covert communication. Unlike cryptography, the imperceptibility of steganography

conceals the behavior of secret transmission so that the risk for the secret to be

detected by malicious users decreases. Besides, authentication is also an application

of data hiding. It aims to verify the integrity and fidelity of data. As it is hard to

prevent malicious users from intercepting and tampering with information on the

Internet, an authentication process is necessary for many communication applications.

2

In the previous studies, the proposed data hiding techniques mostly were applied

to document files, such as pictures, videos, and text files. These methods hide

information in controllable items like data structures, special file syntax, and even file

headers. However, studies on data hiding for some popular Internet applications, such

as the BBS, blog, and email, are few and even not found yet. Because these Internet

applications use non-conventional media, the above-mentioned controllable items are

not found in them. These applications just accept typed words or uploaded pictures

given by users. For these reasons, it is desired to design new data hiding techniques

for them in this study. Specifically, we want to develop covert communication or

authentication techniques for these Internet applications.

1.1.2 Introduction to Used Media

In this study, it is desired to propose data hiding techniques for three kinds of

Internet applications, including the BBS, blog, and email. We briefly introduce them

subsequently.

1.1.2.1 Introduction to the BBS

The BBS (bulletin board system) is a kind of Internet forum; it is popularly used

in Taiwan, Hong Kong, and China. An instance of the BBS is like Figure 1.1.

In Taiwan, the number of users on the most popular BBS site, PTT [2], can reach

60 to 150 thousand at any time. The BBS is a text-type internet forum and its screen

view is presented simply by monochrome or chromatic text. Users can ask various

questions, discuss any matter, interact with one another, and even send BBS mails

mutually. Furthermore, journalists also write reports by adopting some conspicuous

articles from the BBS.

3

Figure 1.1 The login Screen and a normal article on a BBS.

1.1.2.2 Introduction to Blog

Weblog is a term coined by combining two words, web and log. Later, because

someone jokingly broke the word weblog into the phrase we blog, the term “blog” is

coined. Blog is a type of website or part of a website, and is usually maintained by an

individual or a management team with regular entries of commentary, descriptions of

events, or other material such as graphics or video. Visitors can interact on a blog by

leaving comments and even messaging each other via widgets, and it is this

interactivity that distinguishes them from other static websites. A typical blog

combines text, images, and links to other blogs, web pages, and other media related to

its topic. A typical blog is shown in Figure 1.2.

http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/Web_page

4

Figure 1.2 An instance of blogs.

1.1.2.3 Introduction to Email

Electronic mail, commonly called email or e-mail, is a method of exchanging

digital messages from an author to one or more recipients. Today, almost everyone

has not only a real address to send and receive mails but also a virtual address for

emails. Existing email systems are based on a store-and-forward model. Hence, email

servers are responsible to accept, forward, store, and deliver messages, so that users

can send or receive emails at any time. An email can include a message subject, a

message body, and some attached small files like pictures and text documents. There

are many popular email websites such as g-mail, hotmail, and yahoo mail on the

Internet, and two instances are shown in Figure 1.3.

(a) (b)

Figure 1.3 Two popular email systems. (a) G-mail. (b) Hotmail.

1.2 Overview of Related Works

Data hiding is a technique proposed to embed concerned data in a cover medium

with little or no change on the appearance of the medium, so people in most cases will

http://en.wikipedia.org/wiki/Digital

5

not notice the existence of the hidden data. Many techniques have been proposed in

recent years for hiding data. However, in this study, we think that hiding data by

special character codes is a more appropriate method for internet applications such as

the BBS, blog, and email. In Chapter 2, we will review some techniques of data

hiding using special character codes for text documents and internet applications. In

addition, we will also review the related character coding formats there, including the

ASCII code, Big-5 code, and Unicode formats.

1.3 Overview of Proposed Methods

1.3.1 Definitions of Terms

The definitions of some related terminologies used in this study are described as

follows.

1. Cover media: cover media, such as images, documents, or videos, are files into

which data can be embedded.

2. BBS: the BBS is a popular internet forum for people.

3. Cover article: a cover article is an article into which data can be embedded.

4. Stego-article: a stego-article is an article with some data embedded in it.

5. Protected article: a protected article is an article into which an authentication

signal is embedded.

6. Cover email: a cover email is an email into which data can be embedded.

7. Stego-email: a stego-email is an email with some data embedded in it.

8. Protected email: a protected email is an email into which an authentication signal

is embedded.

6

1.3.2 Brief Description of Proposed Methods

1.3.2.1 Proposed Method for Authentication of Blog Articles

An authentication method for verifying the integrity and fidelity of blog articles

via the use of invisible ASCII control codes is proposed in this study. The idea of

embedding data in emails is introduced first by Lee and Tsai [1] via Outlook Express

and IE under the operating system of the traditional Chinese version of Microsoft

Windows XP, service pack 2, 2002. Their method is based on the use of unused ASCII

codes. Secret data are encoded by these special ASCII control codes and embedded

into cover emails by inserting the data into the text line ends of emails. We use this

idea to hide data in blog articles under the same operating system except that the

service pack is version 3 instead of 2. It was discovered that the special ASCII codes,

when displayed in many kinds of blog articles by the most popular browsers such as

Google Chrome, Mozilla Firefox, and IE, are invisible or look just like spaces,

achieving an effect of steganography. Such invisible ASCII control codes were found

out in this study by a systematic test of all the ASCII codes on various Internet

browsers and blogs.

To apply the idea to authentication of blog articles, we use a given cover blog

article to produce authentication a signal, and hide the signal in the original cover

blog article, resulting in a stego-article. Through the authentication process, we can

verify whether the protected blog article has been tampered with or not by comparing

the authentication signal extracted from the stego-article with those computed from

the original cover blog article in the stego-article. The detailed authentication process

and the related data embedding and extraction algorithms will be described in Chapter

3.

7

1.3.2.2 Proposed Method for Covert Communication via

The BBS

Two new methods for data hiding using special Big-5 codes via the BBS with

Big-5 servers are proposed for covert communication in this study. One is

implemented under the operating system of the traditional Chinese version of

Microsoft Windows XP, service pack 3, 2002. And the other can be applied under

most general operating systems.

Because the ASCII control codes are utilized to implement some system

functions, we cannot hide data by the same method used for blog articles mentioned

above. Through continually testing and observation in our experiments, we discovered

that by the transcoding of different text coding systems with Big-5 and Unicode

formats, some special Big-5 codes are invisible when they are displayed on popular

BBS browsers such as PCMan, KKMan, and Pietty. So we use these special Big-5

codes for data hiding in the BBS in the first method. More specifically, we insert the

invisible Big-5 codes into the text line ends, which do not change the meanings of the

sentences in the cover article, neither cause any noticeable difference to the reader.

Furthermore, we develop a second new method to hide data by the use of some

special Big-5 space codes. These codes are defined in the Big-5 standard format, so

that the proposed method can be used generally in most operating systems.

By the two methods, the embedded secret data are all hard to be discerned.

Hence, the proposed methods can be used for covert communication. The detailed

embedding and extraction processes of the proposed methods will be described in

Chapter 4.

8

1.3.2.3 Proposed Method for BBS Authentication

We propose also a technique for BBS authentication in this study by the idea

used in the above-mentioned two methods of data hiding in the BBS. There is much

important information, like goods orders, meeting places, business transactions, etc.,

on the BBS or in BBS mails, so it is necessary sometimes to conduct authentication

of such BBS articles or mails. This activity is called BBS authentication in this study.

The proposed method for this purpose will be described in Chapter 5.

1.3.2.4 Proposed Method for Email Authentication

A new method for email authentication by the use of special UTF-8 space codes

is proposed in this study. To reach the goal of email authentication, firstly we also

tried to implement the method proposed by Lee and Tsai [1], i.e., data hiding in emails

by using the unused ASCII control codes. However, in using webmails like the g-mail,

hotmail, and yahoo mail, when sending an email, the unused ASCII control codes will

be removed or changed into general white spaces. Because this obviously is not

appropriate for data hiding in the webmail, we propose the use of special UTF-8 space

codes to achieve the aim in this study. The idea is inspired from one of the

above-mentioned methods: the data hiding technique for the BBS using special Big-5

space codes. Today, almost all webmail servers are built using the Unicode UTF-8

format as their text coding systems. It is a computing industry standard for consistent

encoding, representation, and handling of text expressed in most of the world’s

writing systems, and has codes corresponding to the special Big-5 space codes which

are used in the proposed method for data hiding in the BBS mentioned previously.

Thus, we can find the special UTF-8 space codes to hide data in the webmail and use

the result for email authentication. The detailed processes will be described in Chapter

6.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Writing_system

9

1.4 Contributions

Some contributions made in this study are listed in the following.

1. For the first time blog articles are used as cover media for data hiding

applications.

2. For the first time the BBS is used as a cover medium for data hiding applications.

3. An authentication method for verification of integrity and fidelity of blog articles

by the use of invisible ACSII control codes is proposed.

4. A new data hiding technique using invisible Big-5 codes is proposed for the two

applications of covert communication via the BBS as well as BBS authentication.

5. A new data hiding technique using special Big-5 space codes is proposed for the

two applications of covert communication via the BBS as well as BBS

authentication.

6. A new data hiding technique using special UTF-8 space codes is proposed for

email authentication.

1.5 Thesis Organization

In the remainder of this thesis, related works about data hiding using special

character codes and the used character coding formats are reviewed in Chapter 2. In

Chapter 3, the proposed authentication method for verification of integrity and fidelity

of blog articles is described. And the proposed methods for covert communication via

the BBS as well as BBS authentication are described in Chapters 4 and 5, respectively.

In Chapter 6, the proposed method for email authentication by the use of special

UTF-8 space codes is described. Finally, conclusions and some suggestions for future

works are given in Chapter 7.

10

Chapter 2

Review of Related Works and

Character Coding Formats

2.1 Previous Studies on Data Hiding

Techniques Using Special

Character Codes

With prosperity of the computer network, the Internet has become a very popular

medium for information communication. A lot of important information is

interchanged on the Internet all the time. Especially, on text-typed Internet

applications like the BBS, blog, and email, people communicate messages, discuss

private matters, publish articles, and even do business. But article created or sent in

these activities might be tampered with illegally by hackers on the line. Therefore, it

is necessary to protect these articles. In this study, we design data hiding techniques to

achieve this purpose by covert communication and authentication on the Internet

applications.

Articles on the Internet applications belong to soft-copy texts [3]. In recent years,

some methods of data hiding via text documents have been proposed, like using file

headers [4], file structures, and file features [5]. However, the Internet applications are

not conventional media, so these controllable items are not found in them. Hence, we

implement data hiding techniques on them by embedding special character codes. In

the past, some data hiding methods about using character codes have been proposed.

Wayner [6] proposed a method to use the context-free grammar to create secret text

11

messages in cover files for covert communication; the secret message is not

embedded in the cover file directly. And a receiver extracts the hidden message by

parsing. A constraint is that the cover text should be a meaningful message; otherwise,

a reader will doubt it. Bender et al. [3] proposed the use of infrequent additional

spaces to form secret data and transmitted them in soft-copy texts, including

inter-sentence spacing, end-of-line spacing, and inter-word spacing in texts. For

example, one space between words is taken to represent a “0” and two spaces a “1.”

An illustration of the method is shown in Figure 2.1.

Data hiding techniques via special character codes are also used for some

popular text documents and Internet applications. A survey of them is conducted in

this chapter.

(a) (b)

Figure 2.1 Example of data hidden using white space [3]. (a) Normal text. (b) White

space encoded text.

2.1.1 Review of Data Hiding Techniques via Text

Documents

Every day, numerous text documents are interchanged on the Internet. It is hard

to prevent malicious users from intercepting and tampering with them, so developing

data hiding techniques to protect important information on them is necessary.

For the XML which is a set of rules for encoding documents in machine-readable

form, Inoue et al. [7] proposed a technique to embed secret data by inserting white

http://en.wikipedia.org/wiki/Machine-readable

12

spaces in tags. Representation of a tag is accomplished by including either some white

spaces before the close bracket, or no white space [8]. By inserting or deleting spaces,

they can embed the data preserving all meanings of original documents. For the PDF

which is a popular file format with independency of different computer platforms,

data hiding techniques can also be attained by using equivalent white space codes or

invisible ASCII codes, as proposed by Lai and Tsai [9] and Lee and Tsai [10] An

experimental result found in Lee and Tsai [10] is shown in Figure 2.2. And even for

software programs like the Visual C
++

 and C
++

 Builders, three ways to hide data using

invisible ASCII control codes were proposed by Lee and Tsai [11], including 1)

alternative space coding, 2) line-end space coding, and 3) null space coding.

(a) (b)

Figure 2.2 An experimental result found in Lee and Tsai [10]. (a) Cover file seen in

Adobe Reader 8.1.2 window. (b) Stego-file seen in Adobe Reader 8.1.2

window with message “This is a covert communication method”

embedded.

2.1.2 Review of Data Hiding Techniques for Internet

Applications

Although many information hiding techniques have been proposed in recent

13

decades, methods about hiding data in Internet applications directly are very few. Lee

and Tsai [12] and Huang and Tsai [13] proposed some techniques for data hiding by

embedding special codes in HTML files to substitute for the original white spaces in

the files, and an experimental result found in Lee and Tsai [12] is shown in Figure 2.3.

In these cases, message data were hidden in HTML files so that these files became

stego-media for secret communication or secret sharing when the HTML files are

displayed on the Internet. However, these methods are indirect data hiding techniques

for Internet applications. In another paper published by the same authors, Lee and Tsai

[1], a direct data hiding technique was proposed to embed secret data into email text

line ends using special ASCII control codes. These special ASCII control codes are

invisible when displayed on the screen and so will not affect a user’s reading of the

resulting email.

(a)

(b)

Figure 2.3 An experimental result found in Lee and Tsai [12]. (a) Cover text seen in

the window of the IE. (b) Stego-text (with message about “Cartesian

coordinates” embedded) seen in the window of the IE.

14

2.1.3 Review of Other Techniques and Summary

For some text documents, data hiding methods using not only special character

codes but also special file syntax or file features have been proposed. Chang and Tsai

[14] used pseudo-spaces, the specific string “ ,” to encode copyright data into

the text of an HTML file; duplicated the copyright data to enhance the robustness

against HTML manipulations; and combined the blank character code and the HTML

special syntax to hide data. Zhong, et al. [15] proposed a data hiding method for PDF

documents by adjusting the positions of the text characters slightly to embed the

secret data. They also hid data by combining character codes and certain special file

features.

In conclusion, the text-typed Internet applications and text documents are good

choice as a covert channel for data hiding because they are commonly used for

information exchanges in daily works and for communication on the Internet. Some

data hiding techniques applied on different kinds of text document formats have been

proposed over the past decade. However, studies on data hiding via the Internet

applications like the BBS, blog, and email are very few and even not found yet, so we

will propose new data hiding techniques and related applications for them in this

study.

2.2 Review of Related Character

Coding Formats

2.2.1 Review of ASCII Format

The American Standard Code for Information Interchange, ASCII, is a

http://tw.wrs.yahoo.com/_ylt=A8tUwZfEvq1NoFwANpFr1gt.;_ylu=X3oDMTBydTdmYjgyBHNlYwNzcgRwb3MDMQRjb2xvA3R3MQR2dGlkAw--/SIG=12iqhuqng/EXP=1303260996/**http%3a/www.c-motion.com/v3dwiki/index.php%3ftitle=ASCII_Format

15

character-encoding scheme based on the ordering of the English alphabet. ASCII

codes are used to represent text in computers, communications equipment, and other

devices that use text. A standard ASCII code is composed of seven bits and usually

expressed as two hexadecimal numbers. The first edition of the standard was

published in 1963, a major revision in 1967, and the most recent update in 1986 [16].

The ASCII codes include 128 characters: 33 are non-printing control characters (now

mostly obsolete), 94 are printable characters, and the space which is considered as an

invisible graphic. All the ASCII codes are listed in Table 2.1.

As computer technology spreads throughout the world, many coding standards

have been developed to facilitate the expression of non-English alphabets. However,

these character coding standards, such as the Unicode and Big-5, all include the

ASCII codes as the kernel set. Now, almost all web servers are built with the Unicode.

Therefore, in many current Internet applications, the properties of the ASCII codes are

still preserved.

Table 2.1 ASCII code chart.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT L F VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

2.2.2 Review of Big-5 Format

The Big-5 or Big5 is a character encoding method used in Taiwan, Hong Kong,

http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Order_%28mathematics%29
http://en.wikipedia.org/wiki/English_alphabet
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Control_character
http://en.wikipedia.org/wiki/Space_%28punctuation%29
http://en.wikipedia.org/wiki/Chinese_character_encoding
http://en.wikipedia.org/wiki/Taiwan
http://en.wikipedia.org/wiki/Hong_Kong

16

and Macau for Traditional Chinese characters. When the Unicode has not been

developed yet, many different language coding standards existed in various countries

under old operating systems like MS-DOS. Now, under the current operating systems

such as Windows XP and Window 7, all internal messages are interchanged using the

Unicode and all the different language coding standards such as Big-5 and ASCII can

be supported. In the recent years, the most often used Big-5 version is defined in

Microsoft Windows Codepage 950 (CP950) [17]. A standard Big-5 code is a

double-byte character set and the structure is shown in Figure 2.4.

First byte (“lead byte”) Second byte

First byte (“lead byte”) Second byte

0x81 to 0xfe 0x40 to 0x7e, 0xa1 to 0xfe

Figure 2.4 Big-5 coding format.

Though most of the current Internet applications do not support Big-5 coding, for

the BBS which is a very popular kind of forum in Taiwan, China, and Hong Kong, the

Big-5 is still the major character coding system for BBS servers.

2.2.3 Review of UTF-8 Format

UTF-8 (8-bit Unicode Transformation Format) is a multibyte character encoding

style for the Unicode. And the Unicode is a computing industry standard for

consistent encoding, representation, and handling of text expressed in most of the

world’s writing systems. It is developed in conjunction with the Universal Character

b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1

1

http://en.wikipedia.org/wiki/Macau
http://en.wikipedia.org/wiki/Traditional_Chinese_character
http://www.microsoft.com/globaldev/reference/dbcs/950.htm
http://en.wikipedia.org/wiki/DBCS
http://en.wikipedia.org/wiki/Variable-width_encoding
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Technical_standard
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Writing_system
http://en.wikipedia.org/wiki/Universal_Character_Set

17

Set standard and published in book form as The Unicode Standard [18]. The success

of the use of the Unicode to unify character set coding has led to its widespread and

predominant use in the internationalization and localization of computer software.

The standard has been implemented in many recent technologies, including the XML,

the Java programming language, the Microsoft .NET Framework, and many modern

operating systems. The Unicode can be implemented by different character encodings,

and the UTF-8 is the most commonly used one. Unlike the original Unicode which is

a double-byte character set, the UTF-8 is a variable-length encoding scheme, with

each character represented by one to four bytes. The UTF-8 encoding format is shown

in Table 2.2 and an example is shown in Figure 2.5 [17].

Table 2.2 UTF-8 encoding format.

Code point range Binary code point UTF-8 bytes Annotations

U+0000 to

U+007F
0xxxxxxx 0xxxxxxx

the range of ASCII

the highest bit of the byte is 0

U+0080 to

U+07FF

00000yyy

yyxxxxxx

110yyyyy

10xxxxxx

the first byte starts with 110

the following byte starts with 10

U+0800 to

U+FFFF

zzzzyyyy

yyxxxxxx

1110zzzz

10yyyyyy

10xxxxxx

the first byte starts with 1110

the following bytes start with 10

U+010000 to

U+10FFFF

000wwwzz

zzzzyyyy

yyxxxxxx

11110www

10zzzzzz

10yyyyyy

10xxxxxx

the first byte starts with 11110

the following bytes start with 10

Figure 2.5 An example of UTF-8 coding [17].

http://en.wikipedia.org/wiki/Internationalization_and_localization
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/.NET_framework
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/UTF-8

18

The UTF-8 has many advantages. For example, every valid ASCII character is

also a valid UTF-8 encoded Unicode character with the same binary value, so old

systems and software with the ASCII encoding format can make no change or just a

few slight modifications to be used further. Therefore, it is gradually becoming a

top-priority character coding system for e-mail, website, and other Internet

applications.

19

Chapter 3

Authentication of Blog Articles by

Invisible ASCII Control Codes

3.1 Introduction and Problem

Definition

3.1.1 Introduction

In this chapter, we will specifically introduce the proposed data hiding method

for authentication of blog articles. In Section 3.1.2, the problem definition is described,

and the major idea of the proposed data hiding method for authentication is described

in Section 3.2. In Section 3.3, we present the technique we propose to generate an

authentication signal and the process to embed it. In Section 3.4, a process for

extraction and verification of the authentication signal is proposed. Experimental

results showing the feasibility of the proposed method are shown in Section 3.5.

Finally, a brief summary is given in Section 3.6.

3.1.2 Problem Definition

Blog is a virtual channel, which allows people to express feelings, and many

public figures like politicians and entertainers also advertise political philosophies or

raise awareness by interacting with their fans on the blog. Some blog articles are

important messages worth long-time recording. Hence, to check the integrity and

fidelity of articles on the blog to see whether they have been attacked or not is

20

important. For this purpose, we propose a data hiding technique for authentication of

blog articles in this study.

For public figures, the proposed method offers significant functions. For example,

their blogs are often managed by a management team, and everyone in the team has

the authority to publish or modify the contents of the blogs. It results that if a

malicious person tampers with the content of an article or even posts a fake message

on a celebrity’s blog, the members of the management team cannot take action as

soon as possible, because they may think that the change is made by another member

of the team. By the proposed method, they can rapidly authenticate the integrity and

fidelity of the blog articles, preventing the negative advertising effect brought by

malicious tampering. And for people who manage their blogs by themselves, the

method not only can save their time spent on literally tedious checking of the

authenticity of their articles published before, but also can let other people, who do

not have the authority to modify the blog articles, help the work of authenticating

them if they are given the keys to enter the system. The major idea of the proposed

method is specifically introduced in the next section.

3.2 Major Idea of Proposed Method by

Use of Invisible ASCII Control

Codes

3.2.1 Use of Special Character Codes

On the blog, as mentioned in Chapter 2, users can only type simple words and

upload some small files like pictures and short videos. Many controllable items

21

facilitating data hiding, like data structures, special file syntax, and file headers,

cannot be found on the blog, so we use some special character codes to achieve the

goal of data hiding in this study.

Specifically, we hide data in the blog using invisible ASCII control codes. Part of

the ASCII codes from 00 through 1F, namely, the ASCII control codes, were

originally designed to control some computer peripheral devices such as teletypes,

tape drivers, printers, etc. All the ASCII control codes are listed in Table 3.1 [1]. Now,

because of the rapid development of new peripheral hardware technologies, however,

the ASCII control codes are rarely used for their original purposes, except the codes

for text display control, like 0A and 08 with the meanings of line feed and backspace,

respectively.

Table 3.1 ASCII control codes and description [1].

Dec Hex Char Description Dec Hex Char Description

0 0 NUL null character 16 10 DLE data link escape

1 1 SOH start of header 17 11 DC1 device control 1

2 2 STX start of text 18 12 DC2 device control 2

3 3 ETX end of text 19 13 DC3 device control 3

4 4 EOT end of transmission 20 14 DC4 device control 4

5 5 ENQ Enquiry 21 15 NAK negative acknowledge

6 6 ACK acknowledge 22 16 SYN synchronize

7 7 BEL bell (ring) 23 17 ETB end transmission block

8 8 BS Backspace 24 18 CAN cancel

9 9 HT horizontal tab 25 19 EM end of medium

10 A LF line feed 26 1A SUB substitute

11 B VT vertical tab 27 1B ESC escape

12 C FF form feed 28 1C FS file separator

13 D CR carriage return 29 1D GS group separator

14 E SO shift out 30 1E RS record separator

15 F SI shift in 31 1F US unit separator

22

Furthermore, through continuous tests and observations in our experiments, we

discovered that some of the control codes are invisible or just shown as white spaces

when they appear in a blog article on many popular web browsers under certain

software environments. In addition, almost all of the current web servers today use the

UTF-8 standard as the system text coding format, and the properties and features of

the ASCII codes are completely included as the kernel set; the UTF-8 codes equate

exactly to the ASCII codes for code values smaller than 128.

In this study, it is desired to use the invisible ASCII control codes in the UTF-8

to embed data in blog articles without causing noticeable artifacts under the popular

software environments of Google Chrome, Mozilla Firefox, IE, and the operating

system of the traditional Chinese version of Microsoft Windows XP, service pack 3,

2002. To achieve this aim, we divide a secret message into 2-bit segments, then map

them to the corresponding special ASCII control codes which are discovered through

continuous testing mentioned previously, and embed them as well as some end signals

into a cover article. Table 3.2 shows the used special ASCII codes and the mapping

relationship devised in this study for this purpose.

In more detail, we use the four ASCII codes of 1C, 1D, 1E, and 1F, which, when

displayed, look just as nothing on the web browsers of Mozilla Firefox and Google

Chrome. Two examples are shown in Figure 3.1, where Figure 3.1(a) shows a result

displayed in Firefox in which the embedded codes at the line ends cannot be

highlighted, while Figure 3.1(b) shows a result displayed in Chrome in which the

spaces between the ends of all text lines and the right end of the blog article window

are all highlighted when the entire article is highlighted, no matter whether there are

embedded codes at line ends or not. Both cases have no worry about leaking

embedded characters at text line ends. However, in IE, these codes are displayed as

white spaces. This causes the codes to be visible to the user, and so decreases the

23

security of the embedded message using the codes. A solution is proposed in this

study, which is discussed next.

Table 3.2 Encoding table for used invisible ASCII control codes.

Bit stream (binary) 00 01 10 11 End signal

ASCII code (Hexadecimal) 1C 1D 1E 1F 1F0A

(a) (b)

Figure3.1 Some examples of highlighted blog articles with secret codes embedded in

them on (a) Mozilla Firefox and (b) Google Chrome.

3.2.2 Necessity of Distributing Embedded Codes

24

Evenly at Line Ends to Reduce Suspicion

As mentioned previously, in IE, when all the text of a blog is highlighted, the

embedded special character codes will appear to be white spaces, thus leaking the

secret hidden in the blog article. This secret leakage phenomenon is even clearer when

all the special codes are embedded at the line ends in sequential orders, starting from

the first line, because then long blank spaces will appear at the ends of the beginning

lines, like the example shown in Figure 3.2(a). This phenomenon will tend to arouse

the attacker’s suspicion.

One way to solve this problem, as proposed in this study, is to distribute the

embedded codes evenly into all the line ends in order not to create long blank spaces

at the ends of the beginning lines. More specifically, we embed different numbers of

special ASCII codes in accordance with the variable lengths of the text lines in the

blog article. That is, if a text line is longer, then we embed less codes, and vice versa.

To implement this idea, we estimate the size of the data embedding slot at each text

line end, and compute accordingly the required number of special codes embeddable

at the end of each line. Then, we sequentially embed the codes into the blog article

according to the computed numbers. A stego-article with special codes embedded in

this way is shown in Figure 3.2(b), in which the special codes are seen to have been

embedded evenly at the line ends. The detailed hiding method will be described in

Section 3.3.

25

(a) (b)

Figure 3.2 Some examples of highlighted blog articles with secret codes embedded in

them in IE. (a) The stego-article with secret codes embedded in order. (b)

The stego-article with secret codes embedded evenly using the proposed

method.

3.2.3 Construction of End Signals

The previously-mentioned end signal used in this study is composed of two

ASCII control codes, 1F and 0A, which together specify a unique signal for

unambiguous identification of the line end. The code 0A appears at each text line end,

originally purely for the use as a line feed signal. However, because in the proposed

method end signals are only embedded at text line ends, we can just create them by

merging the two existing codes 1F and 0A instead of finding a new one.

In summary, by the use of a secret key and the proposed data hiding technique,

we can produce a protected blog article with a barely imperceptible authentication

signal embedded in it for detection of any falsification incurred by malicious users.

3.3 Authentication Signal Generation

and Embedding Process

In this section, we describe the proposed process to generate an authentication

26

signal and embed it into a blog article. An illustration of the process is shown in

Figure 3.3. When the stego-article is displayed on the blog, it is desired that the article

body can fit the width of the blog article window. For this, first we fold longer article

lines into shorter ones, leaving at least eight characters at each line end as a data

embedding slot. Next, we remove from the folded blog article all the line feed signals

so that the verification process described in the next section will not be interfered by

redundant line feed signals. The modified blog article and a secret key then are used

to generate an authentication signal using a hash function and the exclusive-OR

operation. Subsequently, the authentication signal is divided into 2-bit segments.

Finally, we map them into corresponding special ASCII control codes, and embed

them into the text line ends accompanied with end signals to obtain a protected blog

article. The detail is described in the following.

Algorithm 3.1 Authentication signal generation and embedding process.

Input: a secret key K, a hash function f (such as MD5), and a blog article B to be

protected.

Output: a protected blog article

Steps.

1. Fold sequentially each text line li with a length larger than 60 units (with a unit

meaning the length of an ASCII code displayed on the blog) in blog article B into

a 60-unit line by inserting a line feed, denoted as LF, occupying zero unit, and

represented by ASCII code 0A, after the original 60th character in li to generate

a folded article, denoted as F.

2. Compute the size Li of the data embedding slot at the end of each text line li in F

by:

Li = 68 the length of li,

27

which means that the maximum number of characters that can be inserted at the

end of li.

3. Remove all the line feed signals in F, use the result and the secret key K as inputs

to the hash function f to generate two 128-bit digests Fand K, respectively, and

return all the removed LF signals back into their original positions in F.

4. Compute the exclusive-OR value F⊕K to obtain a 128-bit authentication signal

S.

5. Separate the bits of S into 64 two-bit segments t1, t2, …, t64.

6. Map t1 through t64 into invisible ASCII control codes p1 through p64, respectively,

according to Table 3.2 and let N1 = N2 = 64 for use as parameters in subsequent

steps.

7. Scan F from the first line to find the line, say the i-th, with the longest slot and

calculate the number ni of invisible ASCII control codes embeddable in the i-th

line in the following way:

(1) if Li 1, then increment ni by 1, decrement Li by 1, decrement N1 by 1, and

perform Step 7 again;

(2) if Li = 1 or N1 = 0, then perform Step 8.

8. Embed the symbols p1, p2, …, p64 sequentially into F, starting from the first line

in the following way:

(1) Scan li to find the line feed LF, remove it, sequentially embed ni symbols in li

at the end, decrement N2 by ni, and append an end signal, in which an LF is

included, to the end of the embedded symbols.

(2) If the last line is processed, and if N2 0, then embed the remaining

symbol/symbols below F as one or more blank lines in the following way.

8.1 Embed as many symbols as possible into a new line sequentially before

the length of the line (in units) becomes larger than 67, and append an

28

end signal to the line end.

8.2 If all symbols are embedded, then continue; otherwise, repeat Step 8.1

again.

9. Take the final version of F as the desired protected blog article B'.

It is possible that the symbols of the authentication signal cannot be embedded in

the text line ends completely. This might happen when the blog article is too short. In

this case, more lines are appended to the end of the article, all being empty, and the

remaining symbols then are all embedded into them, as done in Step 8 of the above

algorithm.

Hash function f
Authentication

signal S

Fold each long text line to the

appropriate length

Secret key K

Original blog article B

Mapping

Divide S into several 2-bit

segments t1, t2…, tk

Compute the size of each data

embedding slot after each text line

Calculate the required number of

special ASCII control codes in each

text line

Embed the special

ASCII control codes to

the text line ends

Invisible ASCII control codes encoding tableProtected blog article B

Figure 3.3 Flowchart of proposed authentication signal generation and embedding

process.

3.4 Authentication Signal Extraction

29

and Blog Verification Process

The proposed authentication signal verification scheme can be used to verify the

integrity and fidelity of a protected blog article, and the detailed secret data extraction

process for blog authentication is illustrated in Figure 3.4. First, we extract the special

ASCII codes embedded in the protected blog article and transform them to be an

authentication signal S. Then, we use the same secret key and hash function as those

used in Algorithm 3.1 to transform the blog article, in which all the secret data and the

line feed signals are removed, into a verification signal T. Finally, by comparing the

two signals S and T, we can decide whether the protected blog article has been

modified or not. The detailed algorithm is described in the following.

Mapping

Hash function f

Extract the special ASCII control

codes embedded in B

Remove the special ASCII control

codes embedded in B

Transform those special ASCII control

codes according to the encoding table

Authentication

signal S

Verification

signal T

Compare S with T
An authentication

report R

Protected blog article B

Invisible ASCII control codes encoding table

Secret key K

Figure 3.4 Flowchart of the proposed authentication signal extraction and blog article

verification process.

Algorithm 3.2 Authentication signal extraction and blog article verification.

30

Input: a secret key K and a hash function f both being the same as those used in

Algorithm 3.1; and a protected blog article B.

Output: an authentication report R

Steps.

1. Check each line li in the protected blog B′ sequentially, starting from the first line;

and extract the special ASCII control codes embedded in front of the end signal in

li.

2. Concatenate all the extracted special ASCII codes sequentially into a set of 64

codes, p1, p2, …, p64.

3. Map p1 through p64 to corresponding two-bit segments t1, t2, …, t64 according to

Table 3.2.

4. Concatenate t1 through t64 into a 128-bit authentication signal S.

5. Use the secret key K as an input to the hash function f to generate a 128-bit digest

K

6. Remove all the secret data and line feed signals from the blog article, and use the

result as an input to the hash function f to generate a 128-bit digest B

7. Compute the exclusive-OR value B⊕K to get a 128-bit verification signal T.

8. Compare S and T, resulting in the following two cases.

(1) If S = T, then regard the input B as unmodified and mark it so in the

authentication report R.

(2) If S T, then regard B as modified and mark it so in R.

9. Output the authentication report R.

3.5 Experimental Results

Several experiments using the proposed algorithms about authentication of blog

31

articles have been conducted. The algorithms were implemented using the language of

Microsoft Visual C#. We wrote blog articles on a public blog system, and these

articles can be displayed on popular web browsers such as Google Chrome, Mozilla

Firefox, and IE. In this section, we show some experimental results displayed on

Google Chrome.

In Figure 3.5(a), an original blog article displayed on the web browser of Google

Chrome is shown. And the user interface is shown in Figure 3.5(b). By entering a

secret key, we generated an authentication signal and embedded it in the original

article, resulting in a protected blog article as shown in Figure 3.5(c). If the protected

article is not modified, the mark “Authentication is successful.” will be shown on the

authentication report like Figure 3.5(d). However, if a malicious user tries to tamper

with the protected article, yielding a modified blog article, people who have the same

secret key can verify the integrity and fidelity of it. A tampered article and the

corresponding verification result are shown in Figures 3.5(e) and 3.5(f), respectively.

And Figure 3.6 shows another example of our experimental results displayed on the

web browser of Mozilla Firefox. In this figure, we obtain an authentication report by

using the correct secret key and a wrong secret key, respectively, and get the different

results. These experimental results show that, using the proposed method, we can

verify whether a blog article has been tampered with or not successfully.

3.6 Summary

In this chapter, a method for authentication of the integrity and fidelity of blog

articles using a new data hiding technique has been proposed. Authentication signals

of the form of invisible ASCII control codes are generated using a folded version of a

given blog article. They are embedded sequentially in the folded article according to

32

pre-computed numbers of secret symbols in the lines. Even in the most unfavorable

web browser IE, the embedding result is good to arouse no suspicion. A secret key

was used also to randomize the content of the authentication signal so that malicious

users cannot forge easily the text content and the corresponding authentication signal.

The proposed method is reliable to protect blog article from being tampered with, as

proved by the experimental results.

(a)

(b)

33

Figure 3.5 An example of experimental results. (a) An original blog article. (b) A

user interface used to generate authentication signal and protected blog

article. (c) The protected blog article with an authentication signal

embedded. (d) The authentication report with the message

“Authentication is successful.” (e) A protected blog article with a temped

word. (f) The verification result of the tempered blog article.

(c)

(d)

34

Figure 3.5 An example of experimental results (continued). (a) An original blog

article. (b) A user interface used to generate authentication signal and

protected blog article. (c) The protected blog article with an authentication

signal embedded. (d) The authentication report with the message

“Authentication is successful.” (e) A protected blog article with a temped

word. (f) The verification result of the tempered blog article.

(e)

(f)

Figure 3.5 An example of experimental results (continued). (a) An original blog

article. (b) A user interface used to generate authentication signal and

protected blog article. (c) The protected blog article with an authentication

signal embedded. (d) The authentication report with the message

35

“Authentication is successful.” (e) A protected blog article with a temped

word. (f) The verification result of the tempered blog article.

(a)

(b)

Figure 3.6 Another example of experimental results. (a) An original blog article. (b)

The user interface with a secret key “NCTU”. (c) The protected blog

article with an authentication signal embedded. (d) The authentication

result by using the correct secret key. (e) The authentication result by

using a wrong secret key.

36

(c)

(d)

(e)

Figure 3.6 Another example of experimental results (continued). (a) An original blog

article. (b) The user interface with a secret key “NCTU”. (c) The protected

blog article with an authentication signal embedded. (d) The

authentication result by using the correct secret key. (e) The authentication

result by using a wrong secret key.

37

Chapter 4

Covert Communication via the BBS

Using Special Big-5 Codes

4.1 Introduction and Problem

Definition

4.1.1 Introduction

In this chapter, we will specifically introduce the proposed data hiding methods

for covert communication via the BBS. The problem definition is described in the

Section 4.1.2. And in Section 4.2, the basic ideas of the proposed methods are

described. Detailed data embedding and extraction algorithms are presented in

Sections 4.3 and 4.4, respectively. In Section 4.5, experimental results showing the

feasibility of the methods are given. Lastly, we briefly summarize the work we have

done in Section 4.6.

4.1.2 Problem Definition

The BBS (bulletin board system) is a popular interaction platform for discussions,

entertainments, shopping, etc. Every day, numerous articles are published on BBS’s.

Thus, it is an appropriate channel for covert communication. Furthermore, BBS

administrators have the supreme authority to read or delete any article and even read

private mails or messages on the BBS, so covert communication via the BBS is not

only appropriate but also necessary. The aim of this kind of covert communication is

38

to send secret messages through the articles published on the BBS without arousing

suspicions of hackers. Accordingly, we develop two techniques for covert

communication via the BBS by the use of special Big-5 codes in this study. They are

introduced in the following sections.

4.2 Major Ideas of Proposed Methods

by Use of Special Big-5 Codes

In this study, we propose two data hiding methods for covert communication via

the BBS. One is to use invisible Big-5 codes; the other is to use special Big-5 space

codes, and we generally call the two kinds of codes we use special Big-5 codes.

4.2.1 Data Hiding by Invisible Big-5 Codes

To achieve the goal of data hiding in BBS articles, at the beginning of this study

we have tried the technique of using invisible ASCII codes mentioned previously in

Chapter 3, because the ASCII codes are compatible with the Big-5 codes as the kernel

set. However, invisible ASCII control codes are utilized to implement some system

functions on the BBS, so we have to develop new data hiding technique.

The first proposed new data hiding method via the BBS is to use invisible Big-5

codes. In Taiwan, many BBS’s like the PTT and the school BBS sites are built on the

servers with the Big-5 coding format, so the proposed first technique is appropriate

for them. Nowadays, most of the popular operating systems such as Windows XP and

Windows 7 use the Unicode format as their text coding systems, because the Unicode

is a universal and complete standard format. No matter what coding formats are used

for text, they will be transformed into the appearance of the Unicode format by these

39

operating systems when they are displayed on the screen. Taking Windows XP as an

example. In this operating system which contains many different conversion tables for

transcoding between various text coding formats and the Unicode, all text with the

Big-5 format on the BBS will be displayed on the screen with the Unicode format by

referring to the CodePage 950 which is a transcoding table between the Big-5 and the

Unicode [17].

For this reason, we tried to find the mapping relationship between all Big-5

codes and Unicode codes, and discovered that some special Big-5 codes, which

originally represent certain rarely-used Chinese characters or Japanese characters, are

invisible, and look just like white spaces when these codes are transcoded into the

Unicode format and displayed on the BBS. This phenomenon resulted from the fact

that these corresponding Unicode codes are located in the Unicode Private Use Area,

which ranges from code E000 to code E8FF and does not contain any character

assignment so that no character code chart is provided for this area.

However, on some popular BBS browsers such as PCMan and Pietty, to facilitate

users to read and type some special characters, certain above-mentioned special Big-5

codes are presented as their original appearances through the simulated Unicode

compensation plan implemented by the BBS browser software. So, through

continuous tests and observations in our experiments on popular BBS browsers

including PCMan, KKMan, Pietty, and the basic telnet connection program provided

by Windows XP, we have found 185 special Big-5 codes useful for our study, and we

supplemented the 185 codes to a total of 256 symbols by padding a white space after

each of the first 71 ones of them. The appearances of embedding some of these

symbols in BBS articles on the above-mentioned browsers are shown in Figure 4.1.

And the codes are listed in Table 4.1. Note that we have created an end signal which

is composed of a special Big-5 code, FEAE, and the original white space.

40

(a) (b)

(b) (d)

Figure 4.1 Stego-articles with some embedded invisible Big-5 symbols displayed on

(a) PCMan, (b) KKMan, (c) Pietty, and (d) the telnet connection program,

respectively.

41

Table 4.1 Encoding table for used invisible Big-5 codes.

0 8F 53 31 9C D9 62 9D BE 93 C8 A6 124 FB 47 155 FC AA

1 90 F6 32 9C E4 63 9D BF 94 C8 A7 125 FB 48 156 FC AB

2 90 F7 33 9C E7 64 9D C1 95 C8 A8 126 FB 4B 157 FC B8

3 90 F9 34 9D 5F 65 9D C2 96 C8 A9 127 FB 4F 158 FC C8

4 90 FA 35 9D 60 66 9D C3 97 C8 AA 128 FB 50 159 FC CD

5 91 C7 36 9D 61 67 9D C4 98 C8 AB 129 FB 54 160 FC E0

6 91 C8 37 9D 62 68 9D C5 99 C8 AC 130 FB 59 161 FC EC

7 91 CF 38 9D 63 69 9D C6 100 C8 AD 131 FB 61 162 FC EE

8 91 D0 39 9D 6A 70 9D C7 101 C8 AE 132 FB 62 163 FD 44

9 91 D8 40 9D 6D 71 9D CC 102 C8 AF 133 FB 68 164 FD 4B

10 91 D9 41 9D 6E 72 9D D3 103 C8 B0 134 FB 71 165 FD 78

11 91 DA 42 9D 6F 73 9D D4 104 FA 45 135 FB 74 166 FD A8

12 91 DF 43 9D 70 74 9D D6 105 FA 46 136 FB 75 167 FD C2

13 91 E1 44 9D 78 75 9D DF 106 FA 47 137 FB 77 168 FD EA

14 91 E2 45 9D 79 76 9D E0 107 FA 48 138 FB 79 169 FE 46

15 91 E3 46 9D A1 77 9D E6 108 FA 49 139 FB 7B 170 FE 47

16 91 E4 47 9D A2 78 9D E8 109 FA 4A 140 FB A4 171 FE 55

17 91 E5 48 9D A3 79 9D E9 110 FA 4C 141 FB AC 172 FE 58

18 91 E7 49 9D A4 80 9D EA 111 FA 4D 142 FB B1 173 FE 59

19 91 EF 50 9D A5 81 9D EB 112 FA 4E 143 FB B9 174 FE 65

20 91 FD 51 9D A6 82 9D EC 113 FA 50 144 FB BB 175 FE 69

21 91 FE 52 9D A7 83 9F 53 114 FA 51 145 FB C0 176 FE 6B

22 92 65 53 9D A8 84 9F 54 115 FA 52 146 FB DE 177 FE 6C

23 98 FB 54 9D A9 85 A0 47 116 FA 53 147 FB E3 178 FE 70

24 98 FD 55 9D AA 86 A0 7D 117 FA 56 148 FB EE 179 FE 72

25 98 FE 56 9D AB 87 A0 A1 118 FA 58 149 FB F4 180 FE 73

26 99 FB 57 9D AC 88 A0 A6 119 FA 59 150 FB F9 181 FE A5

27 9B DE 58 9D AD 89 A0 FD 120 FA 5A 151 FC 4A 182 FE A9

28 9B DF 59 9D AE 90 C8 7A 121 FA 5B 152 FC 50 183 FE AB

29 9B E3 60 9D AF 91 C8 A4 122 FA 60 153 FC 70 184 FE AE

30 9C D7 61 9D BD 92 C8 A5 123 FA 63 154 FC A3

(Note: codes No. 185 through 255 are generated by combining the first 71 special

Big-5 codes with the original white space. And the end signal is composed of the

special Big-5 code FE AE and the original white space.)

42

4.2.2 Data Hiding by Special Big-5 Space Codes

We have also proposed another data hiding technique for the BBS by the use of

some special Big-5 space codes. In this method, two kinds of Big-5 codes are used,

one being the original white space code and the other a Big-5 space code. Because the

two codes are both included in the Big-5 standard, and appear to be invisible when

they are displayed on BBS browsers, we can use them to achieve the aim of data

hiding in the BBS under most general operating systems by assembling them in a

proper order.

On the BBS, many users are accustomed to publishing articles with alternate

blank lines and this habit facilitates us to hide secret messages after the line feed code

of each line end. So, we tried to devise an appropriate scheme to efficiently utilize the

two mentioned invisible codes for the largest utilization ratio of the blank spaces in

each line.

More specifically, there are two kinds of character lengths on the BBS. One

occupies a unit which is defined to be the same as the unit mentioned in Algorithm 3.1,

like the original white space; and the other is two-unit long, like the special Big-5

space code. For the variability and efficiency of using the Big-5 symbols for data

hiding, we allow them to be a special Big-5 code, a combination of a special Big-5

code and a white space, or a combination of a special Big-5 code and several white

spaces, as shown in Table 4.2, which we mention as an encoding table for the used

special Big-5 space codes. Here, efficiency is judged by the average required number

of units for hiding one bit.

In our study, we only use four types (except the end signal) of symbols,

including:

type 1: , type2: , type3: , and type4: .

43

Though we can create more types of symbols following the same symbol-creating

logic by padding more white space codes after the symbol , yet we can prove that

the 4-symbol codes created in Table 4.2 have the largest efficiency of symbols, as

discussed next.

Table 4.2 Encoding table for used special Big-5 space codes.

Assume that the probability for each symbol to appear is identical, and that a

symbol can represent n embedded bits. And let ui and pi specify the occupied units

and the appearance probability of the i-th type of symbols like those defined in Table

4.2, respectively. Then, the efficiency E of the symbols is defined by the following

equation:

 E = npu i

i

i

n

/)(
2

1

. (1)

Also, under the assumption that all the symbols have equal appearance probabilities,

we may substitute ui and pi in (1) above with their real values to obtain

1 1 1

() [2 3 (2 1)]/
2 2 2

n

n n n
E f n n (2)

which can be reduced easily to be

Bit stream (binary) 00 01 10 11 End signal

Special Big-5 codes

(embedded symbol)

Occupied units two three four five two

(Note:

: special Big-5 space code. : original white space code. : line feed code.)

44

 nnf n 2/)32()((3)

and differentiated to get

1 1 2()

() [(2) 2 2 6]/ 4n ndf n
g n n n n

dn

 . (4)

Setting g(n) = 0 in (4) above results in the following equation:

1 1(2) 2 2 6 0n nn n (5)

which can be solved to get the extreme value for n. However, because the number of

bits must be an integer and such an integer satisfying Eq. (5) is inexistent, we must

take n to be 2 for g(n) to be closest to zero. Alternatively, from Eq. (3) we have f(n) =

5/2, 7/4, and 11/6 for n = 1, 2, and 3, respectively. Since 5/2 7/4 11/6, we see that

n = 2 indeed is an optimal value to make f(n) minimum, i.e., to yield the smallest

average required number of units, 7/4, for hiding one bit. This completes the proof

that the 4-symbol codes (except the end signal) listed in Table 4.2 are optimal, yield

the largest efficiency of coding.

Some examples of BBS articles in which secret messages are embedded by the

proposed method are given in Figure 4.2. By the way, we created the end signal

composed of a special Big-5 space code and a line feed code rather than a white space

code and a line feed code, since all white spaces between any other code and the line

feed will be removed when an article is published on the BBS.

Because secret messages embedded by the two proposed methods are almost

imperceptible on the BBS even when a user highlights BBS articles by a mouse, we

can use the methods to achieve the goal of covet communication on the BBS. The

45

detailed algorithms about embedding and extraction of the secret message are

described specifically in the subsequent sections.

 (a) (b)

 (c) (d)

Figure 4.2 Stego-articles with secret messages embedded displayed on some

well-known BBS’s. (a) On PCMan. (b) On KKMan. (c) On Pietty. (d) On

the telnet connection program.

46

4.3 Proposed Algorithm for Data

Embedding

In this section, first the process of covert communication via the BBS by using

the two proposed methods is illustrated by a flow chart shown in Figure 4.3. In the

process, first we fold longer article lines into shorter ones, leaving at least eight

characters at each line end as a data embedding slot. Next, we use a secret key as a

seed to randomize the content of a secret message which we want to embed in a cover

article for covert communication. Then, we map the randomized message to

corresponding invisible symbols according to the user’s choice. If method 1 as

mentioned previously is chosen, we conduct the mapping by referring to Table 4.1;

otherwise, when method 2 is chosen, we replace each special Big-5 space code in the

cover article with two original white space codes so that the process of data extraction

in the next section can be performed correctly, and conduct the mapping by referring

to Table 4.2. Finally, we sequentially embed the symbols obtained from the mapping

into the folded article to obtain a stego-article with the randomized secret message

hidden imperceptibly.

The algorithm for conducting this process is described in the following, in which

a line in a BBS article means a number of characters in a row with an LF appended to

the end of the line.

Algorithm 4.1 Data embedding for covert communication.

Input: a secret message S, a secret key K, and a cover BBS article B.

Output: a stego-article

Steps.

47

Randomization

Secret

message S

Special Big-5 codes encoding table 1

Choose a hiding method
 Generate a series of invisible

symbols t1, t2…, tk

For Windows

(method 1)
For general O.S.

(method 2)

Replace each Big-5 space code

in the cover article with two

original white space codes

Random

message S

Mapping

 Generate a series of invisible

symbols p1, p2…, pk

Cover article B

Secret key K

Special Big-5 codes encoding table 2

Stego-article B

Mapping
Embed those invisible

symbols to the text line ends

Fold each long text line to the

appropriate length

Compute the size of each slot

after each text line

Figure 4.3 Flow chart of proposed process of embedding secret messages.

1. Fold sequentially each text line li with a length larger than 70 units (with a unit

meaning the length of an ASCII code displayed on the BBS) in BBS article B into

a 70-unit line by inserting a line feed, denoted as LF and occupying zero unit,

after the original 70th character in li to generate a folded article, denoted as F.

2. Compute the size Li of the data embedding slot at the end of each text line li in F

by:

Li = 78 the length of li,

which means that the maximum number of characters that can be inserted at the

end of li.

48

3. Use the secret key K as a seed to generate a sequence Q of random numbers.

4. Randomize the input secret message S with Q to get a randomized message S

5. Choose a method to hide S:

(1) If method 1 is chosen, then perform Step 6.

(2) If method 2 is chosen, then go to Step 9.

6. (Method 1) Separate the bits of S into 8-bit segments and map them to invisible

symbols t1, t2, …, tk, respectively, according to Table 4.1.

7. Let |l| be the total number of lines, |T| be the total number of t1 through tk, and Ut1,

Ut2, …, Utk be the numbers of units occupied by t1 through tk, respectively.

8. Embed the invisible symbols obtained in Step 6 sequentially into the folded

article F from the first line (that is, take the index number i of li and the index

number k of tk both to be 1 initially), and then conduct the following steps.

8.1 If i |l|, then perform one of the following three operations at the end of li;

otherwise, perform Step 8.2.

(1) If k |T| and Li Utk 2, then embed tk in the data embedding slot of li,

decrement Li by Utk, increment k by 1, and repeat Step 8.1 again.

(2) If k |T| and Li Utk 2, then scan li to find the line feed LF, remove

it, embed an end signal in the data embedding slot of li, increment i by

1, and repeat Step 8.1 again.

(3) If k |T|, then embed an end signal in the data embedding slot of li, and

go to Step 13.

8.2 Embed the remaining symbol/symbols below F as one or more blank lines

with an end signal appended at each line end, and go to Step 13.

9. (Method 2) Replace each special Big-5 code in the folded article F with two

white space codes.

10. Separate the bits of S into 2-bit segments and map them to invisible symbols p1,

49

p2, …, pk, respectively, according to Table 4.2.

11. Let |l| be the total number of lines, |P| be the total number of p1 through pk, and

Up1, Up2, …, Upk be the numbers of units occupied by p1 through pk,

respectively.

12. Embed the invisible symbols sequentially into the folded article F from the first

line (that is, take the index number i of li and the index number k of pk both to be

1 initially), and then conduct the following steps.

12.1 If i |l|, then perform one of the following three operations at the end of li;

otherwise perform Step 12.2.

(1) If k |P| and Li Upk 2, then embed pk in the data embedding slot of

li, decrement Li by Upk, increment k by 1, and repeat Step 12.1 again.

(2) If k |P| and Li Upk 2, then scan li to find the line feed LF, remove

it, embed an end signal in the data embedding slot of li, increment i by

1, and repeat Step 12.1 again.

(3) If k |P|, then embed an end signal in the data embedding slot of li,

and perform Step 13.

12.2 Embed the remaining symbol/symbols below F as one or more blank lines

with an end signal at each line end, and continue.

13. Take the final version of F as the desired stego-BBS article

4.4 Proposed Algorithm for Data

Extraction

In this section, we will specifically introduce the process for extraction of secret

data. A flow chart of the process is shown in Figure 4.4. First, we extract the invisible

symbols embedded in a stego-article. Next, according to the adopted different

50

methods of embedding the invisible symbols, we conduct different processes. If

method 1 is used, we map the symbols into 8-bit segments by referring to Table 4.1;

otherwise, when method 2 is used, we map the symbols into 2-bit segments by

referring to Table 4.2. Then, we concatenate the segments into a random message.

Finally, by using the same key which is used for embedding the message, we can

recover the correct secret message. The detailed algorithm for extraction of the secret

message is described in the following.

Secret

message S

Special Big-5 codes encoding table 2

Extract the invisible

symbols embedded in B

Mapping

Which method is used for covert

communication ?

Stego-article B

Concatenate the

segments into Q

Transform the invisible symbols

t1, t2…, tk into 8-bit segments

 Transform the invisible symbols

p1, p2…, pk into 2-bit segments

Reorder SBy secret key K

Secret key K

For Windows

(method 1)

For general O.S.

(method 2)

Mapping

Special Big-5 codes encoding table 1

Figure 4.4 Flow chart of proposed data extraction process

Algorithm 3.2 Data extraction for covert communication.

Input: a stego-BBS article and the secret key K used in Algorithm 3.1

Output: a secret message S.

51

Steps.

1. Check each line li in the stego-BBS article B sequentially, starting from the first

line; and extract the invisible symbols embedded in front of the end signal in li.

2. Transform the extracted symbols according to the different method used for

embedding the secret message to be extracted.

(1) If method 1 is used, map them into 8-bit segments t1, t2, …, tk, respectively,

by referring to Table 4.1.

(2) If method 2 is used, map them into 2-bit segments p1, p2, …, pk,, respectively,

by referring to Table 4.2.

3. Concatenate the extracted segments into a random message Q.

4. Use the secret key K to reorder Q to obtain a result as the desired secret message

S.

4.5 Experimental Results

A series of experiments have been conducted to test the proposed algorithms for

covert communication via the BBS under the popular software environments of

PCMan, KKMan, Pietty, and the operating system of the traditional Chinese version

of Microsoft Windows XP, service pack 3, 2002. In the following, we show some

experimental results.

A normal BBS article displayed on the PCMan is shown in Figure 4.5(a), and

shown at the top right of this figure is a start-button generated by our program

designed for covert communication. When we generally surf the BBS articles, the

program generates the small start-button first. However, when we want to publish a

stego-article for covert communication, it can be expanded to be a bar for writing a

secret key and a secret message, as shown in Figure 4.5(b). Specifically, we just have

52

to select a hiding method, highlight a cover article by a mouse, and press the

hiding-button also shown in Figure 4.5(c). In this way, we obtained a stego-BBS article

with a secret message embedded, and the appearance of the stego-article is shown in

Figure 4.5(d). Later, we extracted the secret message by typing the correct secret key,

selecting the same method, highlighting the stego-article, and pressing the

extraction-button as shown in Figure 4.5(e). On the other hand, as shown in Figure

4.5(f), when the typed secret key was wrong, the correct secret message was obtained.

Another example of our experimental results is shown in Figure 4.6.

4.6 Summary

In this chapter, two new methods of data hiding using special Big-5 codes in

BBS articles have been proposed for covert communication. One is appropriate for

the operating systems with the Unicode standard as the kernel set and using the

CodePage 950 as their transcoding table between the Big-5 and the Unicode; and the

other is appropriate for most general operating systems. And both were implemented

completely in this study. The secret message hidden in a BBS article is not easy to be

observed from the appearance. Even through a malicious user knows the proposed

algorithms and tries to extract the secret from a stego-BBS article, the secret message

can still be protected by a secret key. Furthermore, all experimental results show the

feasibility of the proposed methods.

53

(a)

(b)

Figure 4.5 An example of experimental results. (a) A normal article displayed on the

PCMan with our program in the upper right. (b) Data embedding process:

type a secret key and a secret message, select a hiding method, highlight a

cover article, and press the hiding-button to generate a stego article with

the secret message embedded. (c) The displayed stego-article with the

secret message embedded on the PCMan. (d) Data extraction process:

extract the secret massage by the use of using the correct secret key, select

the same method, and press the extraction-button. (e) Result of using a

wrong key to extract the secret message. (f) An extracted wrong message.

54

(c)

(d)

Figure 4.5 An example of experimental results (continued). (a) A normal article

displayed on the PCMan with our program in the upper right. (b) Data

embedding process: type a secret key and a secret message, select a hiding

method, highlight a cover article, and press the hiding-button to generate a

stego article with the secret message embedded. (c) The displayed

stego-article with the secret message embedded on the PCMan. (d) Data

extraction process: extract the secret massage by the use of using the

correct secret key, select the same method, and press the extraction-button.

(e) Result of using a wrong key to extract the secret message. (f) An

extracted wrong message.

55

(e)

(f)

Figure 4.5 An example of experimental results (continued). (a) A normal article

displayed on the PCMan with our program in the upper right. (b) Data

embedding process: type a secret key and a secret message, select a hiding

method, highlight a cover article, and press the hiding-button to generate a

stego article with the secret message embedded. (c) The displayed

stego-article with the secret message embedded on the PCMan. (d) Data

extraction process: extract the secret massage by the use of using the

correct secret key, select the same method, and press the extraction-button.

(e) Result of using a wrong key to extract the secret message. (f) An

extracted wrong message.

56

(a)

(b)

Figure 4.6 Another example of experimental results. (a) Another normal article. (b)

Embedding a secret message by method 2, using special Big-5 space

codes. (c) Stego-article with the secret message embedded. (d) Extracted

correct secret massage.

57

(c)

(d)

Figure 4.6 Another example of experimental results (continued). (a) Another normal

article. (b) Embedding a secret message by method 2, using special Big-5

space codes. (c) Stego-article with the secret message embedded. (d)

Extracted correct secret massage.

58

Chapter 5

BBS Article Authentication by

Special Big-5 Codes

5.1 Introduction and Problem

Definition

5.1.1 Introduction

In this study, we also studied the topic of BBS article authentication, and the

detail is described in this chapter. The problem definition is given in Section 5.1.2,

and the major idea of the proposed method for BBS article authentication is given in

Section 5.2. In Sections 5.3 and 5.4, the processes for generating a protected BBS

article and for verifying the integrity of it are described, respectively. In Section 5.5,

we show some experimental results to prove the feasibility of the proposed methods.

At last, we give a brief summary for this chapter in Section 5.6.

5.1.2 Problem Definition

Through the technique of covert communication proposed in the previous

chapter, we are able to prevent private messages from being browsed by illicit users

on the BBS. However, because the user ID and password are unsafe on the Internet,

hackers or malicious users may crack passwords to tamper with the contents of BBS

articles, resulting in unpredictable consequences. Moreover, for BBS administrators,

in their jurisdictions, they can read or delete all the articles and mails, and even

59

tamper with the articles or send fake mails, on the BBS. Thus, authentication of BBS

articles is also a necessary technique for BBS applications.

5.2 Major Idea of Proposed Method by

Use of Special Big-5 Codes

In this study, we reach the aim of BBS authentication by the

previously-mentioned data hiding techniques which use special Big-5 space codes. In

the previous chapter, we proposed two methods for covert communication via BBS

articles. Covert communication is a technique which needs higher imperceptibility,

and the two methods proposed previously both can accomplish this requirement.

However, for article authentication, the required imperceptibility of an authenticated

message is relatively low; even if the message is discovered illegally, any tampering

with the message content will still result in a wrong verification result. Thus, we also

can use the two methods to achieve the goal of BBS authentication.

5.3 Authentication Signal Generation

and Embedding Process

In this section, we specifically describe the proposed process of generating a

protected BBS article. After an authentication signal of a BBS article is obtained, we

can regard it as a secret message and embed it in the original article by Algorithm 4.1

described previously in Chapter 4. A flow chart of the proposed authentication signal

generation process is given in Figure 5.1. First, we fold the longer text lines in a BBS

article, which we want to protect, into shorter ones, leaving at least eight characters at

the end of each line as a data embedding slot. Then, if method 2 mentioned in the last

60

chapter, which uses special Big-5 space codes, is selected to hide data, we replace

each Big-5 space code in the cover article with two white space codes. Next, we

remove from the folded BBS article all the line feed signals so that the verification

process described in the next section will not be interfered by redundant line feed

signals. The modified BBS article and a secret key then are used to generate an

authentication signal using a hash function and the exclusive-OR operation. Finally,

we can regard the signal as a secret message and hide it in the folded article using the

proposed data embedding process in Algorithm 4.1 with the same secret key to obtain

a protected BBS article. The detailed algorithm is described in the following.

Fold each long text line to

the appropriate length

Choose a hiding method

For Windows

(method 1)

For general O.S.

(method 2)

Replace each Big-5 space code

in the cover article with two

original white space codes

Authentication

signal S

Secret key K

Hash function f

Original article B

To Algorithm 4.1

Figure 5.1 Flowchart of proposed authentication signal generation process.

Algorithm 5.1 Authentication signal generation and embedding process.

Input: a secret key K, a hash function f (such as MD5), and a cover BBS article B.

Output: a protected BBS article B

Steps.

1. Fold sequentially each text line li with a length larger than 70 units (with a unit

meaning the length of an ASCII code displayed on the BBS) in BBS article B into

61

a 70-unit line by inserting a line feed, denoted as LF and occupying zero unit,

after the original 70th character in li to generate a folded article, denoted as F.

2. Choose one of the two previously-described hiding methods to embed secret data

in the folded article by one of the following ways:

(1) if method 1 is selected, then perform Step 4;

(2) if method 2 is selected, then perform Step 3.

3. Replace each special Big-5 code in the folded article F with two white space

codes.

4. Remove all the line feed signals in F, use the result and the secret key K as inputs

to the hash function f to generate two 128-bit digests Fand K, respectively, and

return all the removed LF signals back into their original positions in F.

5. Compute the exclusive-OR value F⊕K to obtain a 128-bit authentication signal

S.

6. Regard S as a secret massage and embed it in the cover article using the proposed

data hiding process in Algorithm 4.1 to obtain a protected BBS article as output.

5.4 Authentication Signal Extraction

and Verification Process

The detail of the proposed authentication signal verification scheme is described

in this section. First, we use a protected BBS article as input to the proposed data

extraction process in Algorithm 4.2 with the secret key used in Algorithm 5.1 to

obtain a secret massage, and regard it as the authentication signal S of the article. Next,

we can use the same key and hash function to transform the BBS article, after all the

secret symbols and the line feed signals in it are removed, into a verification signal T.

Finally, we decide whether the protected blog article has been modified or not by

62

comparing the two signals S and T. A flow chart for the process is illustrated in Figure

5.2, and the detailed algorithm is given in the following.

Authentication

signal S

Hash function f
Remove the invisible

symbols embedded in B

Verification

signal T

Compare S with T
An authentication

report R

Secret key K

Protected BBS article B

From Algorithm 4.2

Figure 5.2 Flow chart of proposed BBS article verification process.

Algorithm 5.2 Authentication signal extraction and BBS article verification.

Input: a secret key K and a hash function f both being the same as those used in

Algorithm 5.1; and a protected BBS article B.

Output: an authentication report R.

Steps.

1. Use the protected BBS article B as input to the proposed data extraction process

in Algorithm 4.2 with the secret key K to obtain a secret massage, and regard it as

the authentication signal S of the article.

2. Remove all the secret symbols and line feed signals from the BBS article, and use

the result, as an input to the hash function f to generate a 128-bit digest B

63

3. Use the secret key K as an input to the hash function f to generate a 128-bit digest

K

4. Compute the exclusive-OR value B⊕K to get a 128-bit verification signal T.

5. Compare the authentication signal S and T, resulting in the following two cases.

(3) If S = T, then regard the input B as unmodified and mark it so in the

authentication report R.

(4) If S T, then regard B as modified and mark it so in R.

6. Output the authentication report R.

5.5 Experimental Results

We have conducted experiments to prove the feasibility of the proposed BBS

authentication scheme under the same software environments used in Chapter 4. In

the following, we will illustrate some examples of our experimental results.

As shown in Figure 5.3(a), we generated a protected BBS mail by the use of a

secret key, and its appearance displayed on the PCMan is shown in Figure 5.3(b).

Later, a receiver of the mail verified whether a BBS mail is a fake or not by using the

same secret key, as shown in Figure 5.3(c). However, if the key is wrong, then the

authentication result will fail as shown in Figure 5.3(d).

In another example, we generated and published a protected BBS article like

Figure 5.4(a) and its appearance is shown in Figure 5.5(b). The correct verification

result by using the right secret key is shown in Figure 5.5(c). However, as shown in

Figure 5.5(d), we tampered with the protected article by replacing a number “500” of

the content with another number “900,” so that we obtained a wrong authentication

result. Other examples of our experimental results are given in Figures 5.6 and 5.7, in

which normal articles and protected articles are displayed on the KKMan and the

64

telnet connection program, respectively.

From these experimental results, it can be seen that the proposed method indeed

can be used to authenticate BBS articles.

5.6 Summary

In this chapter, a scheme for authentication of BBS articles by using the two

proposed data hiding methods for covert communication described previously in

Chapter 4 is proposed. We regard an authentication signal generated from a folded

cover article as a secret message and hide it through the embedding process

previously-described in Algorithm 4.1 into the folded BBS article to obtain a

protected article. Later, the protected BBS article is authenticated by comparing the

authentication signal obtained from the extraction process described in Algorithm 4.2

with the verification signal computed from the protected BBS article directly. And

through the various experiments conducted in this study, we can prove the feasibility

of the proposed method.

By the way, it is mentioned that we implement the two data hiding methods for

covert communication and authentication, respectively, in a single program. By using

the program, we can easily use the two different techniques to achieve the purpose of

protecting BBS articles, conducting secret communication, or both of them.

65

(a)

(b)

Figure 5.3 An example of experimental results. (a) A generation and sending process

of a protected BBS mail. (b) A protected BBS mail displayed on the

PCMan. (c) A protected BBS article authenticated with a correct secret

key. (d) A protected BBS article authenticated with a wrong key.

66

(c)

(d)

Figure 5.3 An example of experimental results (continued). (a) A generation and

sending process of a protected BBS mail. (b) A protected BBS mail

displayed on the PCMan. (c) A protected BBS article authenticated with a

correct secret key. (d) A protected BBS article authenticated with a wrong

key.

67

(a)

(b)

Figure 5.4 Another example of experimental results. (a) A generation and sending

process of a protected BBS article. (b) A protected BBS article displayed

on the PCMan. (c) An authentication result of a protected BBS article

with a correct secret key. (d) An authentication result of a protected BBS

article tampered by replacing a word.

68

(c)

(d)

Figure 5.4 Another example of experimental results (continued). (a) A generation and

sending process of a protected BBS article. (b) A protected BBS article

displayed on the PCMan. (c) An authentication result of a protected BBS

article with a correct secret key. (d) An authentication result of a protected

BBS article tampered by replacing a word.

69

(a)

(b)

Figure 5.5 An experimental result displayed on the KKMan. (a) A normal BBS mail.

(b) A protected BBS mail.

70

(a)

(b)

Figure 5.6 An experimental result displayed on the telnet connection program. (a) A

normal BBS mail. (b) A protected BBS mail.

71

Chapter 6

Email Authentication by Special

UTF-8 Space Codes

6.1 Introduction and Problem

Definition

6.1.1 Introduction

In this chapter, the detail of the proposed email authentication method and the

corresponding data hiding technique will be introduced. In Section 6.1.2, the problem

definition is described, and the major idea of the proposed method is described in

Section 6.2. In Section 6.3, we specifically describe the process of generating a

protected email with an authentication signal embedded, and in Section 6.4, the

proposed email verification process is described. In Section 6.5, some experimental

results are given to show the feasibility of the proposed method. In Section 6.6, an

example for proving the adaptability of the proposed method for authentication of

blog articles is given. Finally, a brief summary is given in Section 6.7.

6.1.2 Problem Definition

Nowadays, with the rapid development of the Internet, people often

communicate with others through emails. Specifically, a newly-developed type of

email, the webmail, can be sent, read, and received at any place as long as an

internet-browser, which can connect to the network without the need of other specific

72

client software, is available. Furthermore, emails can even be read directly on

webmail platforms rather than be loaded to client servers. This trend will be more

prominent in the coming era of cloud computing. Due to the convenience of webmail,

people are accustomed to use it as the most popular type of email.

On the other hand, it is hard to prevent malicious users from intercepting and

tampering with the content of emails or cracking user passwords to send fake emails.

Therefore, an authentication scheme for verifying the fidelity and integrity of emails

is important. To this aim, we propose a data hiding technique for email authentication

in this study, and the detail is described in the subsequent sections.

6.2 Major Idea of Proposed Method by

Use of Special UTF-8 Codes

In Chapter 3, we described how we fulfill authentication of blog articles on

popular web browsers by using special ASCII control codes which become invisible

after being embedded into blog articles. With this success, naturally we tried to

implement the same data hiding technique on webmails for email authentication.

However, for some popular webmail platforms such as G-mail, when we send a

stego-email with some special ASCII control codes embedded, all the codes will be

removed so that nothing can be extracted later for verification of the mail.

Nevertheless, we tried further to hide data by the method proposed in Chapters 4 and

5. It was used there to achieve the goals of covert communication via BBS articles

and authentication of BBS articles, using special invisible Big-5 code. This time these

special codes can be preserved after undergoing the mail sending and receiving

processes conducted on webmail platforms, but unfortunately for some popular web

browsers like Mozilla Firefox and Google Chrome, these codes are revealed and

73

appear as special patterns provided by them. For example, the special Big-5 code

“FDEA” is transcoded to the corresponding Unicode code “E25F” and displayed

graphically on the Firefox and Chrome as and , respectively. Thus the above

two data hiding methods are not appropriate for webmail authentication, either.

Finally, we tried the use of some special UTF-8 space codes to achieve the aim

of email authentication. This time we succeeded. The idea is inspired from the data

hiding technique for the BBS using special Big-5 space codes. Specifically, we found

the UTF-8 code “E38080” useful for our purpose here, which is transcoded from a

Big-5 space code and is a standard Unicode code. Because it is located in the normal

character area with a space chart, and is invisible when it is displayed on browsers, we

can combine it with white spaces to become special symbols for use in data hiding in

emails. The used UTF-8 codes and the devised code mapping relationship are listed in

Table 6.1.

Table 6.1 Encoding table for used UTF-8 codes.

The process of embedding these secret symbols is similar to the hiding procedure

used for blog authentication presented in Chapter 3, except that we embed the initial

 (special space) before all symbols in each data embedding slot to be a start

signal. It can assist us in finding the starting position of the secret symbols embedded

Bit stream

(binary)
0 1

Start

signal

End

signal

Special UTF-8 codes

(embedded symbol)

(Note: : Special UTF-8 space code. : Original white space code.

: Line feed code)

74

in each line when we conduct the verification process.

We also have to use the distributional embedding method mentioned in Chapter

3 to disperse all secret symbols at the ends of the text lines. The reason is that, when

we read a protected email on a web browser, if we highlight the article content of the

email by a mouse, then the embedded secret symbols will appear at the text line ends

as some white spaces. This phenomenon will become an undesirable leakage of the

embedded authentication signal. Two examples for highlighting a stego-email on the

IE are shown in Figure 6.1, where Figure 6.1(a) shows the case of hiding the secret

symbols at the line ends just in normal order and Figure 6.1(b) shows the case of

embedding the symbols evenly at the line ends.

The imperceptibility of these symbols composed of UTF-8 space codes is

relatively lower than the secret symbols used in the previous chapters. However, these

symbols are still idoneous to be used for email authentication. They do not disturb

users to read emails at all, and even if malicious users work out our hiding method,

they still cannot arbitrarily tamper with a protected email and escape from our

verification. Furthermore, this method is appropriate for most operating systems and

even compatible with other text-styled Internet applications, because all the used

secret symbols are composed of UTF-8 codes. These codes are defined in the standard

Unicode format with normal charts, and nowadays almost all websites use the UTF-8

standard as their text encoding format. Thus, in the proposed method special UTF-8

space codes are used to embed data for email authentication. The detailed processes

implementing the method are described in the next sections.

75

(a)

(b)

Figure 6.1 A highlighted stego-email with secret symbols embedded (a) just in order

or (b) evenly using the proposed method.

76

6.3 Authentication Signal Generation

and Embedding Process

The proposed process for generating an authentication signal and embedding it

into an email is described in this section. In Figure 6.2, an illustration of the process is

shown, and this process is appropriate for most popular webmail platforms. First, we

fold longer email article lines into shorter ones, leaving some character spaces at each

line end as a data embedding slot, and replace each UTF-8 space code (if it exists) in

the article with an approximately equal-length combination of four white space codes.

(The length of a UTF-8 space is approximately equal to the length of four white

spaces displayed in webmails.) Next, we remove from the folded email article all the

line feed signals so that the verification process described in the next section will not

be interfered by redundant line feed signals. The modified email article and a secret

key then are used to generate an authentication signal using a hash function and the

exclusive-OR operation. Subsequently, we map each bit of the authentication signal

into our devised secret symbols one by one according to a table (Table 6.1). Finally,

these secret symbols are embedded into the text line ends accompanied with end

signals to obtain a protected email. The detailed procedure is described in Algorithm

6.1 below.

Algorithm 6.1 Authentication signal generation and embedding process.

Input: a secret key K, a hash function f (such as MD5), and an email E to be

protected.

Output: a protected email

Steps.

77

Hash function f

Authentication

signal S

Fold each long text line to the

appropriate length

Original email E

Mapping

Compute the size of each

data embedding slot after

each text line

Embed the secret symbols

to the text line ends

Protected email E

e

e
UTF-8 space codes encoding table

Secret key K

Replace each UTF-8 space code in

the cover article with four original

white space codes

Calculate the required number of

secret symbols in each text line

Protected email E

Figure 6.2 Flowchart of proposed authentication signal generation and embedding

process.

1. Fold sequentially each text line li with a length larger than 60 units (with a unit

meaning the length of an ASCII code displayed on web browsers) in email E into

a 60-unit line by inserting a line feed, denoted as LF and occupying zero unit,

after the original 60th character in li to generate a folded article, denoted as F.

2. Replace each UTF-8 space code (if it exists) in F with an approximately

equal-length combination of four white space codes.

3. Compute the size Li of the data embedding slot at the end of each text line li in F

by:

Li = 90 the length of li,

which means the maximum number of characters that can be inserted at the end

of li.

4. Remove all the line feed signals in F, use the result and the secret key K as inputs

to the hash function f to generate two 128-bit digests Fand K, respectively, and

78

return all the removed LF signals back into their original positions in F.

5. Compute the exclusive-OR value F⊕K to obtain a 128-bit authentication signal

S, and let N1 and N2 both denote the total number of bits of S.

6. Map sequentially each bit of the authentication signal into secret symbols p1,

p2, …, p128, according to Table 6.1.

7. Scan F from the first line to find the line, say the i-th, with the longest slot and

calculate the number ni of secret symbols embeddable in this i-th line in the

following way:

(1) if Li 4, then increment ni by 1, decrement Li by 2, decrement N1 by 1, and

perform Step 7 again;

(2) if Li 4 or N1 = 0, then perform Step 8.

8. Embed the symbols p1 through p128 sequentially into F, starting from the first line,

in the following way.

(1) Scan li to find the line feed LF, replace it with a start signal, sequentially

embed ni symbols in li at the end, decrement N2 by ni, and append an end

signal, in which an LF is included, to the end of the embedded symbols.

(2) If the last line is processed, and if N2 0, then embed the remaining

symbol/symbols below F as one or more blank lines in the following way.

8.1 Embed as many symbols as possible into a new line sequentially before

the length of the line (in units) becomes larger than 87, insert a start

signal at the line start, and append an end signal to the line end.

8.2 If all symbols are embedded, then continue; otherwise, repeat Step 8.1

again.

9. Take the final version of F as the desired protected email

In Step 2 of the above algorithm, because it is possible that the UTF-8 space

79

appears in an original cover email, we need to replace it with a combination of four

white space codes, which is approximately equal-length to a UTF-8 space, so that the

verification process described in the next section can be conducted correctly.

6.4 Authentication Signal Extraction

and Verification Process

The proposed email authentication signal extraction and verification process is

described in this section. First, we extract the secret symbols embedded in the

protected email and transform them into an authentication signal S. Then, we use the

same secret key and hash function as those used in Algorithm 6.1 to transform the

email, in which all the secret data and the line feed signals are removed, into a

verification signal T. Finally, we can verify the integrity and fidelity of the email by

comparing the two signals S and T. The main process is similar to the authentication

process of blog articles mentioned in Algorithm 3.2, except that when we conduct the

extraction step for secret symbols, first we must find the start signals before other

symbols in the text lines so that we can differentiate each white space code appearing

in the email, which is typed in the original cover email or appended to be a secret

symbol. A flow chart of the proposed process is shown in Figure 6.3, and the detailed

algorithm is given in Algorithm 6.2.

Algorithm 6.2 Authentication signal extraction and blog article verification.

Input: a secret key K and a hash function f both being the same as those used in

Algorithm 6.1; and a protected email E.

Output: an authentication report R.

Steps.

80

Mapping

Hash function f

Extract the secret symbols

embedded in E

Remove the secret symbols

embedded in E

Transform those secret symbols

according to the encoding table

Authentication

signal S

Verification

signal T

Compare S with T
An authentication

report R

Secret key K

UTF-8 space codes encoding table

Protected email E

e

Figure 6.3 Flowchart of the proposed authentication signal extraction and email

verification process.

1. Check each line li in the protected email E′ sequentially, starting from the first

line; find the start signal; and extract the subsequent secret symbols embedded in

front of the end signal in li.

2. Concatenate all the extracted secret symbols sequentially into a set of 128 codes,

p1, p2, …, p64.

3. Map each of p1 through p64 to a corresponding bit 0 or 1, according to Table 6.1.

4. Concatenate these bits into a 128-bit authentication signal S.

5. Use the secret key K as an input to the hash function f to generate a 128-bit digest

K

6. Remove all the secret data and line feed signals from the email, and use the result

as an input to the hash function f to generate a 128-bit digest E

7. Compute the exclusive-OR value E⊕K to get a 128-bit verification signal T.

81

8. Compare S and T, resulting in the following two cases.

(5) If S = T, then regard the input E as unmodified and mark it so in the

authentication report R.

(6) If S T, then regard E as modified and mark it so in R.

9. Output the authentication report R.

6.5 Experimental Results

Some examples of our experimental results are given in this section. We tried to

generate protected emails using the proposed method through many popular webmail

platforms such the G-mail, hotmail, and yahoo mail; and all the experimental results

prove that the proposed email authentication scheme is feasible.

In Figure 6.4(a), we tried to send an email through the webmail platform G-mail

on Chrome, and we use Algorithm 6.1 with a secret key as input to transform the

email into a protected email. The appearances of the interface of the algorithm and a

protected email are shown in Figures 6.4(b) and 6.4(c), and the highlighted protected

email is shown in Figure 6.4(d). Later, when the protected email was received, we

verified the integrity and fidelity of it by the use of a correct secret key, as shown in

Figure 6.4(e). However, if the wrong key is typed as shown Figure 6.4(f), then the

verification will fail and be marked to be so in the authentication report. And the

appearances of the protected email and a highlighted form of it displayed on the IE

are shown in Figure 6.5.

6.6 Adaptability of Proposed Method

for Authentication of Blog Articles

In Section 6.2, we mentioned that the proposed hiding method by the use of

82

UTF-8 space codes is not only appropriate for email authentication but also feasible

for other text-styled Internet applications. Thus, in this section, we provide an

example of our experimental results by implementing the proposed method to

accomplish authentication of blog articles.

In Figure 6.6(a), we tried to publish a protected blog article by our method with a

secret key as shown in Figure 6.6(b). And the appearance of the protected blog article

is shown in Figure 6.6(c). We can verify whether the protected blog article is modified

by malicious users by the proposed method with a correct secret key, as shown in

Figure 6.6(d). And as shown in Figure 6.6(e), if the protected article is modified, we

will obtain a wrong authentication result even if a correct secret key is typed.

6.7 Summary

In this chapter, we propose an authentication method for emails by a new data

hiding technique using special UTF-8 space codes, which is inspired from the

proposed method by the use of special Big-5 space codes described previously in

Chapter 4. The method is appropriate for many operating systems, because all the

used secret symbols are composed of UTF-8 codes which are defined in the standard

Unicode format with normal charts. And through the experimental results, we can

prove the feasibility of the proposed method for authentication of emails on many

popular webmail platforms and other Internet applications such as blog article

authentication.

83

(a)

(b)

Figure 6.4 An example of experimental results. (a) An original email will be send

through the G-mail webmail platform. (b) Our program with a secret key

typed. (c) A protected email. (d) A protected email highlighted by a

mouse. (e) The authentication result by using the correct secret key. (f)

The authentication result by using a wrong secret key

84

(c)

Figure 6.4 An example of experimental results (continued). (a) An original email will

be send through the G-mail webmail platform. (b) Our program with a

secret key typed. (c) A protected email. (d) A protected email highlighted

by a mouse. (e) The authentication result by using the correct secret key.

(f) The authentication result by using a wrong secret key.

85

(d)

(e)

(f)

Figure 6.4 An example of experimental results (continued). (a) An original email will

be send through the G-mail webmail platform. (b) Our program with a

secret key typed. (c) A protected email. (d) A protected email highlighted

by a mouse. (e) The authentication result by using the correct secret key.

(f) The authentication result by using a wrong secret key.

86

(a)

(b)

Figure 6.5 The appearances of (a) a protected email and (b) its highlighted form

displayed on IE

87

(a)

(b)

Figure 6.6 An example of experimental results. (a) An original article will be publish

on blog. (b) Our program with a secret key typed. (c) A protected blog

article. (d) The authentication result by using the correct secret key. (e) A

protected blog article tampered by replacing a word. (f) The

authentication result of the tampered blog article.

88

(c)

(d)

Figure 6.6 An example of experimental results (continued). (a) An original article

will be publish on blog. (b) Our program with a secret key typed. (c) A

protected blog article. (d) The authentication result by using the correct

secret key. (e) A protected blog article tampered by replacing a word. (f)

The authentication result of the tampered blog article.

89

(e)

(f)

Figure 6.6 An example of experimental results (continued). (a) An original article

will be publish on blog. (b) Our program with a secret key typed. (c) A

protected blog article. (d) The authentication result by using the correct

secret key. (e) A protected blog article tampered by replacing a word. (f)

The authentication result of the tampered blog article.

90

Chapter 7

Conclusions and Suggestions for

Future Works

7.1 Conclusions

In this study, we have proposed several new data hiding techniques for Internet

applications, including the blog, BBS, and email. These techniques are useful for

applications like covert communication, authentication, etc.

For the blog, we have proposed a new article authentication method by the use of

the proposed data hiding technique which uses invisible ASCII control codes for

authentication signal generation. Specifically, the signal is generated from a folded

cover article with a secret key, and is embedded in a distributional hiding order into a

folded version of the input article to obtain a verifiable blog article. Then, by

comparing the extracted authentication signal with a verification signal computed

from the stego-article, a given blog article can be authenticated to decide whether it

has been tampered with or not.

For the BBS, two hiding methods have been proposed. One is based on the use

of invisible Big-5 codes, and the other on the use of special Big-5 space codes. We

use the two methods to encode a secret message and embed the resulting secret

symbols into a folded article to achieve the goal of covert communication via the BBS.

According to the experimental results, the secret message hidden in a BBS article is

not observable from the appearance, and it was also proposed to enhance the security

of the proposed method by adding a user-defined secret key to randomize the content

of the secret message, so that a malicious user cannot easily extract the secret even

91

when he/she knows the proposed algorithm. Furthermore, we also use the two

proposed methods to accomplish BBS article authentication, and our experimental

results prove the feasibility of the proposed methods.

For email, an authentication scheme based on a method which uses special

UTF-8 space codes has been proposed. The embedded secret symbols devised by

combining the used UTF-8 space codes appear at text line ends with some white

spaces, if the article contents of emails are highlighted by a mouse. However, these

symbols are still idoneous to be used for email authentication, because they do not

disturb users to read emails at all. And even if malicious users work out the proposed

hiding method, they still cannot arbitrarily tamper with a protected email and escape

from the verification. The authentication process is similar to that used for blog article

authentication. And through our experimental results, it is proven that the proposed

data hiding method can be used for authentication of not only the email but also other

Internet applications such as the blog.

7.2 Suggestions for Future Works

According to our experience obtained in this study, several suggestions for future

works are listed in the following.

1. The data hiding methods proposed in this study may be improved by

randomizing the embedding order of the secret symbols at text line ends.

2. The data hiding methods proposed in this study may be improved by

randomizing the mapping mode between bit strings of a secret message and

the used secret symbols.

3. The data hiding methods proposed in this study can be used for more

applications, such as metadata association, secret sharing, and so on.

92

4. The data hiding method for email authentication proposed in this study can

be used on more Internet applications like the facebook and twitter.

5. Multimedia contents such as pictures and videos allowed on the blog or

email could be used as cover channels to design new data hiding techniques.

6. The proposed authentication methods by the use of invisible ASCII control

codes and special UTF-8 space codes may be implemented on the blog and

email of the type of mobile phone applications.

7. Studies about recovery of attacked contents of protected articles may be

tried.

8. More investigations about possible applications of the proposed methods

can be conducted.

93

References

[1] I. S. Lee and W. H. Tsai, “Data hiding in emails and applications by unused

ASCII control codes,” Journal of Information Technology and Applications, Vol.

3, No. 1, pp. 13-24, Sept. 2008.

[2] BBS browser: http://pcman.openfoundry.org/. PTT address: telnet://ptt.cc,

founded in Sept. 1995.

[3] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,”

IBM System Journal, Vol. 35, Nos. 3 & 4, Feb. 1996.

[4] G. Cantrell and D. D. Dampier, “Experiments in hiding data inside the file

structure of common office documents: a steganography application,”

Proceedings of 2004 International Symposium on Information and

Communication Technologies, pp. 146-151, Las Vegas, Nevada, U. S. A., 2004.

[5] T. Y. Liu and W. H. Tsai. "Quotation authentication: a new approach and efficient

solutions by data hiding and cascaded hashing techniques," IEEE Transactions

on Information Forensics and Security, Vol. 5, No. 4, pp. 945-954, Dec. 2010.

[6] P. Wayner, “Strong theoretical steganography,” Cryptologia, Vol. XIX/3, pp.

285-299, 1995.

[7] S. Inoue, K. Makino, I. Murase, O. Takizawa, T. Matsumoto, and H. Nakagawa.

“A proposal on information hiding method using XML,” Proceedings of 1st NLP

and XML Workshop, Tokyo, Japan, Nov. 2001.

[8] “Extensible Markup Language (XML) 1.0 (Second Edition),”

http://www.w3.org/TR/REC-xml, Feb. 2001.

[9] Y. C. Lai and W. H. Tsai, “Covert communication via PDF files by new data

hiding techniques,” Proceedings of 2009 Conference on Computer Vision,

94

Graphics and Image Processing, Nantou, Taiwan, Aug. 2009.

[10] I. S. Lee and W. H. Tsai, “A new approach to covert communication via PDF

Files,” Signal Processing, Vol. 90, No. 2, pp. 557-565, Feb. 2010.

[11] I. S. Lee and W. H. Tsai. "Security protection of software programs by

information sharing and authentication techniques using invisible ASCII control

codes," International Journal of Network Security, Vol. 10, No. 1, pp. 1-10, Jan.

2010.

[12] I. S. Lee and W. H. Tsai, “Secret communication through web pages using

special space codes in HTML files,” International Journal of Applied Science

and Engineering, Vol. 6, No. 2, pp. 141-149, Nov. 2008.

[13] K. L. Huang and W. H. Tsai. “Secret sharing with steganographic effects for

HTML documents,” Proceedings of 2004 Conference on Computer Vision,

Graphics and Image Processing, Hualien, Taiwan, Aug. 2004.

[14] Y. H. Chang and W. H. Tsai, “A steganographic method for copyright protection

of HTML documents,” Proceedings of 2003 National Computer Symposium,

Taichung, Taiwan, Dec. 2003.

[15] S. Zhong, X. Cheng and T. Chen, “Data hiding in a kind of PDF texts for secret

communication,” International Journal of Network Security, Vol.4, No.1, pp.

17–26, Jan. 2007.

[16] American National Standard for Information Systems - Coded Character Sets -

7-Bit American National Standard Code for Information Interchange (7-Bit

ASCII), ANSI X3.4-1986, American National Standards Institute, Inc., March 26,

1986.

[17] CP950 to Unicode table:

http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/

CP950.TXT, Jul. 2000.

