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ABSTRACT

Texture synthesis is a hot topic in computer graphics; however, there is less work on perceptual

evaluation of synthetic structural texture. As visual attention is the first stage of visual cognition

process, we propose two models, visual attention model and perceptual rating model, to predict

visual saliency and human rating on synthetic structural textures. We designed an experiment to

gather subjects’ eye-tracking data and rating score while evaluating the similarity of an input and

its synthesized textures. The visual attention model is developed to associate texture features

and fixations. The perceptual rating model is trained to associate the relationship between the

fixations and the rating. We compared our visual attention model with the saliency map. Our

model correctly predicts 82.7% of fixation positions while the saliency map only achieves 57%.

For the perceptual rating, the Chi-square value of our model is 3.98 but non-perceptual metric

is 6.95, comparing to human’s rating scores. Our model is very helpful for guiding texture

synthesis and manipulation algorithms to efficiently allocate computational resources to those

regions that humans pay attention to.
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C H A P T E R 1

Introduction

1.1 Background

It becomes a common situation to apply perceptually-based technique to many research fields,

such as image-based rendering, geometry level of detail selection, realistic image synthesis and

video compression. How to refine the appearance and reduce the computational cost of a syn-

thetic texture are always interesting questions. This inspired us to construct a computational

model to perceptually evaluate the quality of synthetic structural textures.

Several previous works presented non-perceptual methods to evaluate synthetic textures.

Lin et al.[1] suggested that in evaluating the quality of synthetic near regular textures, geomet-

ric structure is a more important feature to viewers than color, intensities, or orientations. Two

mathematical metrics, G-score and A-score, are proposed to compare with user data and find

the relationship. Nevertheless, the results of non-perceptual methods do not always match those

of users. Moreover, it is costly and unrealistic to hire subjects to evaluate synthetic textures

all the time. For this reason, we would like to develop a computational model to associate the

quality of synthetic texture and human perception. In our survey, less evaluation work is related

1



1.2 Overview 2

to human visual system (HVS). Benard et al.[2] proposed a strategy to analyze the relationship

between human rating and textures. In this work, they indicated the average co-occurrence

error as a meaningful quality assessment metric for fractalized NPR textures. They validated

the relevance of this predictor by showing its strong correlation with the results of a user-based

ranking experiment; however, co-occurrence error primarily reflects the results of NPR texture

but fails to predict the others.

1.2 Overview

As non-perceptual metrics may not reflect real human rating scores, we want to develop a per-

ceptual evaluation method in this thesis. According to [3], there is a close connection between

attention and cognition. To rate a synthetic texture, a subject has to gaze at some regions of

the texture. Thus, we assume where people are attracted to would affect the rating. Moreover,

an intuitive way to define a percptual metric to evaluate the quality of synthetic textures is to

measure the difference between the input and the synthesized texture. We may collect user rat-

ing scores and a model to represent the relationship between image difference and user scores.

Nevertheless, the visual rating process is very complicated. It is not easy to directly model this

relationship. Therefore, we model the rating process by considering it as two subprocesses,

visual attention and perceptual rating, and model them separately.

A popular choice to predict visual attention is the use of saliency map [4], which guides

the selection of attended locations based on the spatial distribution of saliency by analyzing the

low-level features of an image such as colors, intensities and orientations at every location in

the visual field. In contrast to natural images, textures have low variation in color, intensities

and orientations. This makes the saliency map not work well on textures, so we claim that the

saliency map does not meet our needs.
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To model gaze behavior, a convenient way is to learn eye-tracking has been used to under-

stand attractive locations of a scene. We develop our model based on Self-Constructing Neural

Fuzzy Inference Network (SONFIN)[5] to learn the relationship between features of textures

and subjects’ eye-tracking data. Eye movements may even reveal information that viewers are

not aware of, because it is not consciously available to the observer. For instance, eye track-

ing experiments have shown that professional radiologists spend more time gazing at locations

where tumors are present, though they had failed to identify and report them [6].

From [1], we have known geometric structure of textures is a more attractive feature to

viewers than color, intensities, or orientations, e.g. repeated structures dominate the quality of

the synthetic near-regular textures. We extract several new features as the input feature to learn

human rating score in perceptual rating model.

1.3 Result

To evaluate the performance of our model, we adopt normalized scan-path saliency (NSS) [7],

which measures the similarity of the predicted fixations and the actual fixations recorded by the

eye-tracking system. In visual attention model, 82.7% of predicted fixations match with the ac-

tual fixations. We also compared our model with saliency map on the same textures. Only 57%

of fixations predicted by the saliency map match with the actual fixations. For the perceptual

rating, Chi-square value of our model is 3.98 but non-perceptual metric is 6.95, comparing to

human’s rating scores.

The rest of the thesis is organized as follows. In Chapter 2, we briefly review texture syn-

thesis algorithm and related work in visual attention. In Chapter 3, we will talk about the

experiment procedures. In Chapter 4, we describe how to get the feature vectors and develop

our model. In Chapter 5, we will show the evaluation method and our results. Finally, conclu-
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sions and future work are present in Chapter 6.



C H A P T E R 2

Related Work

Our work is closely related to synthetic texture evaluation and visual attention. We will intro-

duce related work in these two fields.

2.1 Texture Evaluation

The evaluation of texture feature is important for several image processing applications. Texture

analysis forms the basis of object recognition and classification in several domains. There is a

range of non-perceptual texture extraction methods and performance evaluation. They are im-

portant parts of understanding the utility of feature extraction tools in image analysis. To com-

pare different non-perceptual evaluation methods, M. Sharma et al. [8] evaluated five popular

different feature extraction methods. These were auto-correlation, edge frequency, primitive-

length, Laws method, and co-occurrence matrices. According to the result, each of them has

their disadvantages to evaluate the quality of textures.

5



2.2 Visual Attention 6

Lin et al. proposed a synthetic way to evaluate the qaulity of a texture by human perception

[1]. The contribution of their work is that they carry out a systematic comparison study on the

performance. Geometric regularity(G-score) and apearance regularity(A-score) are two math-

ematical criteria utilized to compare the quality of textures. They also set up an experiment to

record user evaluation data and analyzed the result. According to their result, they suggested

that in evaluating the quality of synthetic near regular textures, geometric structure is a more

important feature to viewers than color, intensities, or orientations.

Benard et al.[2] designed a rating experiment. They chose twenty gray-scale 2D textures

sufficiently representative of the main traditional media used in NPR. To create a sufficient re-

dundancy in the results, they designed two sets of ten texture pairs. For each set, they chose

one representative texture per class (pigments on canvas, paint, paper, hatching, cross-hatching,

dots, near-regular or irregular patterns, noise and grid). Consequently, they paid special atten-

tion to assessing the statistical validity of the resulting data. In this work, they indicated the

average co-occurrence error as a meaningful quality assessment metric for fractalized NPR tex-

tures. They validated the relevance of this predictor by showing its strong correlation with the

results of a user-based ranking experiment; however, co-occurrence error primarily reflects the

results of NPR texture but fails to predict the others.

2.2 Visual Attention

Saliency map proposed by Itti et al.[4] is the most popular algorithm used to predict human

fixation. In contrast to the early research of visual attention which concentrates on subjective

awareness of the world, saliency map (shown as Figure 2.1) divides an image into three seper-

ated feature channels: color contrast, luminance contrast, and four orientations. These features

detect salient parts in the visual stimulus using the center-surround architecture. The generated

feature map will then be normalized to mimic the literal inhibition effect. The sum of the feature
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Figure 2.1: Saliency map model.

map for each feature channel results in the conspicuity map, which will also be normalized and

then summed up to obtain the saliency map that quantifies visual attention.

Figure 2.2: Saliency map model.

Peter et al.[9] build up a least-square based model(shown as Figure 2.2) of spatial atten-

tion that combines a general computational implementation of both bottom-up saliency and

dynamic top-down task relevance. The bottom-up component computes a saliency map from
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12 low-level multi-scale visual features. The top-down component computes a low-level signa-

ture of the entire image, and learns to associate different classes of signature with the different

gaze patterns recorded from human subjects. In a simple statement, the basic idea of this thesis

is to train a model associating to the features of saliency map.

Mathew et al.[10] presented a neural network model to simulate saliency map[4]. They in-

troduced a model that expands on Itti and Koch’s model by implementing the feature maps and

saliency map as a network of neural populations with dynamics based on data from electrophys-

iological experiments. Their main motivation for this model was to propose a hypothesis for

how Itti and Koch adstract model could be implemented by neural networks with biologically

realistic dynamics.

Most saliency approaches are based on bottom-up computation that does not consider top-

down image semantics and often does not match actual eye movement. Judd et al.[11], on the

other hand, proposed a support vector machine(SVM) based model trained with low, middle and

high-level features. These features include subband features, Itti and Koch saliency channels,

distance to the center, color features and automatic horizontal, face, person and car detectors.

Compare with the former related work, this thesis contains more object-relevant features con-

sidered as interesting parts in an image.

Normalized scanpath salience(NSS) proposed by Robert et al.[7] can be used to measure

the average normalized salience value across all fixation locations. The normalized scanpath

salience indicates that, on average, the model-predicted salience at fixated locations. Since the

NSS is scale-free, it can be used to compare the degree of correspondence between observed

and predicted behavior for different observers and images.

Stas et al.[12] proposed a new type of saliency, context-aware saliency, which aimed at de-

tecting the image regions that represent the scene. They presented a detection algorithm which
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was based on four priciples observed in the psychological literature, such as local low-level

considerarions, global considerations, visual organization rules and highlevel factors.

Yu et al.[13] proposed a computational model of visual attention on structural textures by

analyzing human subjects’ gaze behavior. We keep the eye-tracking data and user’s rating score

data. Additionally, we modify her feature extraction and the association model to guarantee

a beeter prediction. Instead of training whole feature map of textures, we sample the training

patterns from feature map to reduce the computational cost. Moreover, we replace the training

model with SONFIN regarding to her appreciating speed and performance.
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Eye Tracking Experiments

Eye-tracking has become much more attractive recently. Why is eye-tracking important? Sim-

ply put, we move our eyes to bring a particular portion of the visible field of view into high

resolution so that we may see in fine detail whatever is at the central direction of gaze. Most

often we also divert our attention to that point so that we can focus our concentration on the

object or region of interest. Thus, we may presume that if we can track someone’s eye move-

ments, we can follow along the path of attention developed by the observer.

We recorded eye movements from human observers while they are watching, comparing

and judging a synthesized texture. The collected eye-tracking data is utilized to train our model.

This may give us some insight into what the observer found interesting. In this chapter, we will

describe the settings of our experiment and how we process the eye-tracking system.

3.1 Experiment Settings

To record the most natural reaction of viewers, we need to reduce the effects from eye-tracking

equipment and provide a relaxing environment for our subjects. For these two reason, our ex-

10
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Figure 3.1: This photo shows Tobii T120 Eye-tracker and experiment environment.

periment was done on the Tobii T120 Eye-tracker, which is a contact free gaze measurement

device, as shown in Figure 3.1. The eye tracking system allows for a large degree of head move-

ment, providing a distraction-free test environment that ensures natural behavior, and therefore

valid results. The eye tracking technology’s high level of accuracy and precision ensures that

the research results are reliable. This helps to acquire a more realistic response from human

subjects.

The following are the specifications of Tobii T120 eye-tracker:

Data Rate: 120Hz

Accuracy: typical 0.5 degrees

Head Movement Error: typical 0.2 degrees

Head Movement Box: 30*22cm at 70cm

Tracking Distance: 50-80 cm

Max Gaze Angles: 35 degrees

Top Head-motion Speed: 25 cm/second

Screen Size: 17” TFT

Screen Resolution: 1280*1024 pixels



3.1 Experiment Settings 12

Display Colors: 16.7M

20 undergraduate and graduate students participated in our experiment. After excluding

those subjects whose eye movements cannot be successfully tracked, the data of 18 subjects

were analysized. The remaining 18 subjects consist of 14 males and 4 females, aged from 19 to

24 with normal or corrected to normal vision. None of them has relevant knowledge in texture

synthesis. No subjects have been exposed to this experiment more than once, so the learning

effects can be avoided. They are all naive to the purpose of the whole process.

Several well-known techniques of texture synthesis, such as graph cut [14], image quilting

[15], near-regular texture synthesis (NRT) [16], regularized patch-based and patch based [17],

are widely applied to many fields. The graph cut approach attempts to handle the global regu-

larity by incorporating a local correlation technique to determine the best pasting location. The

main idea of image quilting is to synthesize new texture by taking patches of existing texture

and stitching them together in a consistent way. NRT proposed by can depart from regular tiling

along different axes of appearance. It is able to produce a regular structural layout and control

the color variation. The basic idea of the patch based algorithm is to synthesize textures by di-

rectly copying image patches from the input texture. They also propose a modified approximate

nearest-neighbor technique to speed up their model.

In our experiment, to make sure the data of textures having no risk of leaving out crucial

details, we collect these data from Lin et al.[1]. These data was not produced by reimplemen-

tations of Lin et al., but they asked the authors to run their own algorithms or allow them to run

their source code on the same set of input textures.

The images used in this experiment are eleven different structural textures as shown in Fig-

ure 3.2and 3.3. Our database includes 10 near-regular and 1 irregular textures. Each texture has

four synthesized textures generated by graph-cut[14], image-quilting[15], patch-based texture
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Figure 3.2: This figure shows the texture categories of A, B, C, D, and E and their texture

synthesis results. These textures are near-regular textures.

synthesis[17], or near-regular texture synthesis[18]. There are 44 synthesized textures in total.

Figure 3.2 and 3.3 show all the input and synthesized textures used in our experiment.

3.2 Experiment Procedures

In the beginning of the experiment, the subjects were asked to sit down with a position that

they feel comfortable to look at the screen. The viewing distance from a subject to the screen

is controlled within 50-80 cm with the screen, which is acceptable by the eye tracker. All sub-
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jects have to do calibration for their eye-positions. During the procedure, a subject was asked

to look at specific points on the screen. The resulting information is then integrated in the eye

model and the gaze point for each image sample is calculated. If the accuracy of calibration

pass the requirement, we can start the following procedure; otherwise the calibration should be

performed again or the subject need to be replaced.

After calibration, subjects were told that the following scene will have two images. Left

one is the input image for a texture synthesis algorithm; right one is the synthesis result of the

left image on the screen. Figure 3.4 is what a subject really saw on the screen during the ex-

periment. Then the subjects will be asked to give a score (between 1 and 5, 1 representing the

least satisfactory and 5 representing the most satisfactory) for each right image, according to

the quality of the synthetic texture compared to the input texture.

Finally, we began the recording process. Each pair of images appear on the screen for 10

seconds. After images disappear, the text which asks a subject to give a score will be shown

on the screen. After the subject gives a score, next pair of images will appear. Each pair of

images was shown in a random order. After showing 44 pairs of textures, the whole recording

is completed. And we can then get the eye-movement data of subjects while they were rating

each synthetic texture. Figure 3.5 illustrates our experiment process.
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Figure 3.3: This figure shows the texture categories of F, G, H, I, J, and K and their texture

synthesis results. Textures G, I, and K are irregular textures. The remaining ones are near-

regular textures.
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Figure 3.4: This image shows what subjects really see on the screen.

Figure 3.5: Procedure of the experiment. For each subject, they was asked to sit and have a

position which make them feel comfortable ,and then do the calibration for eye-tracker. Next,

we will let subjects to see some sample image to let them get familiar with the environment.

After these procedures, the main recording will be started: the subject will observe each image

for 10 seconds, and then will be ask to give a score for the synthesis result. The images will

appear in random order. After all the images have been observed and scored by the subject, we

can get the eye-movement data during the observation and scores for each image.
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Our Approach

To satisfy the goal of evaluating the quality of a textur with perception, we present two models

consisting of visual attention model and perceptual rating model in this thesis. Both of them

include two stages: training data collection and learning. We will explain how to prepare the

data and build the SONFIN model. While seeing a texture, the visual attention model is used to

simulate human’s fixation, and the perceptual rating model is to predict the score. We train these

models with the ground truth data recorded from the eye-tracking experiment. In the following

sections, we will describe our feature extraction approach, the SONFIN model and proposed

visual attetion and perceptual rating models..

4.1 Feature Extraction

Inspired by Peters et al.[9], we develop our model with bottom-up stage and top-down stage.

The bottom-up stage defines features of synthesized textures and the top-down stage contains

subjects’ fixation data. Judd et al.[11] shows that we may sample positive-fixation parts and

17
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negative-fixation parts as an input to train our model.

Figure 4.1: Example of structural textures. The left one is input texture and the right four are

synthesized textures.

The goal of our experiment is to develop a model to evaluate textures. The result of

Lin et al.[1] shows that that most regularity-preserved textures have higher user scores than

regularity-broken textures. This implies that the regularity of structure has more effects than the

color/intensity of textures while human judge synthetic structural textures as shown in Figure

4.1.

Example-based texture synthesis algorithm requires an input texture to synthesize a larger

size of texture, so here we extract the feature by comparing synthesized texture and input tex-

ture. Figure 4.2 illustrates our feature extraction process. Since structure is the most important

feature we need, we implement a Gaussian filter to remove details and noise, which would affect

the extraction of structural features. We use the Canny edge detection algorithm to find edges of

the textures. To obtain the best extraction result, we also change the sigma and threshold values

of the Canny edge detection algorithm for different textures. After detection, the edge regions

will be denoted as 1 and the other regions as 0. Then we dilate the detected edges, so a little
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(a) (b)

(c) (d)

Figure 4.2: (a) is the original image of the two textures. Left one is the input texture, right

one is the synthesis result from the input texture. (b) shows the edge images of (a). In (b), we

calculate the difference of Ri with I j which is the most similar patch to Ri in the edge image

of the input texture. We visualize these error values as a structural error map as shown in (c).

Brighter region means larger error. (d) is the gradient of structure error gained from computing

the gradient of (c).

shift of the edges would not affect the structural error too much.

We measure the structural error of synthesized textures by comparing the differences be-

tween the edges detected in the synthesized texture and the input texture. We acquire many

image patches from a synthesized texture by uniformly sampling the synthesized texture. For a

near-regular texture, the size of the patches is equal to the size of the tile [18]; For an irregular

texture, the size of patch is manually set to be the average size of its texture elements. We

denote R1,R2, ...Ri, ...,Rn as the patches of synthesized texture, respectively. These patches are
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(a) (b)

Figure 4.3: (a) shows some patches on the edge image of synthesized texture. (b) shows some

patches on the edge image of input texture.

10 pixels apart along the horizontal and vertical directions. The center of Ri is larger than 0 and

less than WR and HR. Here, WR and HR denote the width and height of the synthesized texture,

respectively. Figure 4.3 (b) shows this sampling process.

The center of R1 is on the top-left corner of the image, and the next patch R2 is 10 pixels right

to it. After we sampled all the patches in the first row, we will move 10 pixels downward to the

next row, and continue the same process until we have sampled all the patches, Rn, in the texture.

To compute the structural error of each Ri, we compare it with the edge image of its input

texture. For each Ri, we find the best matched patch in the edge image of the input texture. We

denote these patches in the edge image as I1, I2, ..., I j, ..., Im(with the same patch size of Ri). WI

and HI denote the width and height of the input texture. The center of I j should be in the range

larger than 0 and less than WI and HI . Figure 4.3 (a) illustrates the patches in the edge image

of the input texture. Note that the center of I j is moved pixel by pixel in finding the best match

process.
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The center of Ii is on the top-left corner of the input texture, and we move 1 pixel to the

right to get the next patch I2. After we sampled all the patches in the first row, we move 1 pixel

downward to continue the same process until all the patches are sampled in the input texture.

See Figure 4.3 (a)

For each Ri, the comparison is to calculate ‖Ri − I j‖ , ∀ I j ∈ {I1, I2, ..., Im}, which simply

calculated the difference of the value of Ri and I j, and the norm of (Ri − I j).

We have to let Ri compare with every possible patch in the input texture to make sure that

each Ri does find the smallest structural error value, even if the patches are not entirely included

in the input texture.

As the portion of patch I j that is not inside the input texture will bias the computation of

the structure difference ‖Ri − I j‖, we multiply ‖Ri − I j‖ by a mask to mark the valid region.

Another purpose of the mask is to calculate the area of the valid region. We divide the structural

difference by the area of the valid region of a patch. This avoids the area bias the computation

of structural difference,

min
j

S um(‖(Ri − I j)‖ ∗ Mask j)
area(Mask j)

, j ∈ 1, 2, ...,m, (4.1)

where S um(·) denotes the sum of all elements of a matrix, ‖ · ‖ is the absolute value, ∗ is the

element-wise product of two matrices, and Mask mark the valid region. We record this value in

a matrx as structural error map.

After we get the structural error map of each synthetic textures, we normalize them among

all textures synthesized from the same input texture to form normalized matrix, E, shown as

Figure 4.2(c).
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Besides the structural error, gradient error along x-axis and y-axis dominates the viewer’s

judgements. We get this feature by computing the gradient of E.

OE = (
δE
δx
,
δE
δy

) = (Gx,Gy) (4.2)

where

 Gx
i, j = Ei, j+1 − Ei, j

Gy
i, j = Ei+1, j − Ei, j

∀i, j (4.3)

To visualize Gx and Gy, we show them in Figure 4.2(d).

In addition, human visual habbits affect the result. Hence, the information of the gaze

position are considered as important features. We set two feature vectors, the first collects the

vector of normalized structural error E and the position X, Y ,

Φ =



EX1,Y1 , X1,Y1

EX2,Y2 , X2,Y2

.

.

.

EXn,Yn , Xn,Yn


, (4.4)

The second feature vector consists of the gradient of structural error map Gx, Gy and the
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information of positions X, Y ,

Ψ =



Gx
X1,Y1

,Gy
X1,Y1

, X1,Y1

Gx
X2,Y2

,Gy
X2,Y2

, X2,Y2

.

.

.

Gx
Xn,Yn

,Gy
Xn,Yn

, Xn,Yn


, (4.5)

for the synthesized texture. We also visualize it as which can be seen in Figure 4.2(c). In the

chapter of Result, the results of these two feature vector will be compared.

4.2 Self-Constructing Neural Fuzzy Inference Network

There are many machine learning algorithm to find the mapping function. These models include

multi-layer neural networks, support-vector machines, and the Expectation/Maximization algo-

rithm. The feature vectors in our experiment, however, are too large and too complicated to

train by a simple learning approach. Fuzzy system would be a good choice. Obviously, it is

difficult for human experts to examine all the input-output data from a complex system to find

a number of proper rules for the fuzzy system. Though several approaches, such as consisting

of two learning phases, the structure learning phase and the parameter learning phase, are pre-

sented to solve this difficulty, they have to be done sequentially. This fact makes the traditional

fuzzy system suitable only for off-line operation.

Chia-Feng Juang and Chin-Teng Lin[5] proposed a novel machine learning model called

Self-Constructing Neural Fuzzy Inference Network(SONFIN) with on-line learning ability. The

SONFIN is inherently a modified Takagi-Sugeno-Kang(TSK)-type fuzzy rule-based model pos-

sessing neural network’s learning ability.
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Finding the number of proper rules is always a difficulty in fuzzy system. Owning to these

problems, SONFIN is developed to simultaneously handle structure as well as the parameter

learning phases. So, here we choose SONFIN as our model for two reasons. First, SONFIN can

find its structure and parameters to model an economic network size automatically. Second, the

learning speed as well as the odeling ability of the SONFIN are all appreciated.

Figure 4.4: Graphical illustration of Self-Constructing Neural Fuzzy Inference Network pro-

posed by Chia-Feng Juang and Chin-Teng Lin in 1998. The goal of this model is to learn the

mapping from the input to the output using historical data so the model can then be used to

produce an output while the desired output is unknown.

Shown as Figure4.4, there are totally 6-layers in the SONFIN model.

Rule i: IF xi is Ai1 and xn is Ain

THEN y is a0i + a jix j + · · ·
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where Ai j is the fuzzy set of the jth linguistic term of input variable x j, and a ji’s are the conse-

quent parameters. a0i is the center of a symmetric membership function on y. Let u(k)
i and o(k)

i

denote the input and output of the ith node in layer k, respectively. The followings describe the

functions of each layer of the SONFIN.

Layer 1:

o(1) = u(1)
i . (4.6)

We only transmit input values to the next layer directly in this layer. Note that we may apply a

linear transformation in this layer proposed in enhanced SONFIN[5]. Though no computation

performs in this layer, we still keep it as one layer of six-layered structural SONFIN.

Layer 2:

o(2) = e
−

(
u(2)

i −mi j
)2

σ2
i j , (4.7)

where mi j and σi j are the center and width of the Gaussian membership function of the jth

partition for the ith input variable xi, respectively. In this layer, each node corresponds to a

fuzzy set of the input variables in Layer 1. Here Gaussian membership is performed as the

function of Layer 2 shown in Equation 4.7.

Layer 3:

o(3) =

q∏
i=1

u(3)
i

= e−[Di(x−mi)]T [Di(x−mi)], (4.8)

where q is the number of Layer 2 nodes participating in the IF part of the rule. Each node in

this layer stands for a fuzzy logic rule, AND operation.

Layer 4:

o(4) =
u(4)

i∑r
j=1 u(4)

j

, (4.9)

where r is the number of rule nodes in Layer 3. The firing strength calculated in Layer 3 in this

layer is normalized.
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Layer 5:

o(5) =

 n∑
j=1

a jix j + a0i

 u(5)
i . (4.10)

This layer is called the consequent layer. The blank and shaded circles represent two types

of nodes used in this layer. The blank circle (blank node) is the essential node representing a

Gaussian fuzzy set of the output variable. As to the shaded circle (shaded node), it represents a

linear combination of input variable.

Layer 6:

o(6) =
∑

o(5)
i . (4.11)

In Layer 6, each node corresponds to one output variable. The node integrates all the actions

recommended by Layer 5 and acts as a defuzzifier with.
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4.3 Visual Attention Model

In the eyetracking experiment, viewers examine scenes in a series of fixations (periods which

the eye movements is stable, viewing a single point) and saccades (quick eye movements be-

tween points). Fixations are the points that viewers find meaningful. Since viewing is inhibited

during saccade, all samples recorded during saccades can be discarded.

Here, we aggregate fixations by Clear View fixation filter, which is a built-in function of

tobii studio. The Clear View fixation filter will first check if two gaze points are within a pre-

defined minimum distance from each other. If yes, they should be considered as belonging to

the same fixation. It also need a minimum time limit for which gaze need to be within the pre-

defined minimum distance to be considered a fixation. Here, as recommend for pictures, the

minimum distance is 50 pixels and the time limit is 200ms. After all data have been processed,

we get each subject’s fixation points on each texture. The score of each texture is also recorded.

We prepared the training data by processing the fixation data as follows. The fixation data

from an eye-tracker contain the x and y coordinates and duration of each fixation. We have to

encode these fixation data into a fixation intensity map. The image being observed is divided

into square regions of 20 × 20 pixels. We define the intensity of a fixation as b t
100c, where t is

the duration of the fixation in millisecond. Furthermore, we define the fixation intensity within

a square region as the sum of the intensities of all fixations located in the square, as shown in

Figure 4.5.

Following above definitions, we build the fixation intensity map of a texture by combing the

fixation data from all subjects viewing the texture shown in Figure 4.6(a). The fixation intensity

map is treated as ground truth data for training SONFIN. By setting the most salient 50 percent

of these data as threshold, we have two sets of fixation information, positive and negative fixa-

tion as Figure 4.6(b), We randomly gather 50 samples from each of these two sets as the training



4.3 Visual Attention Model 28

Figure 4.5: The figure shows how we encode fixations in x and y coordinates into fixation

intensity map. In the left image, darker dot in the square region means fewer fixations, lighter

dot means more fixations. The right image shows the intensities values in the square region,

which will be added together.

(a) (b) (c)

Figure 4.6: (a) The eye-tracking data of a synthesized texture collected from all testers. (b) set

salient 50% as threshold. (c) 100 samples from positive and negative fixations (50 for positive

and 50 for negative).

data, see Figure 4.6(c). There are totally 11 kinds of input texture. For each input texture, we

pick 2 from 4 kinds of synthesized texture. For each synthesized texture, we gather 50 positive

samples and 50 negative samples. For each sample, we construct a feature vector consisting of

structural error and sampled position. Thus, we obtain a training set of 2200 items. Each item

includes a feature vector and a scalar fixation intensity value.
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4.4 Perceptual Rating Model

In eye-tracking experiment, we have recorded rating data of each subject for every texture, re-

spectively. That is, each texture has 18 subjects’ rating. Before setting the data as desire output

in SONFIN model, we recursively compute the mean and remove outliers, which are beyond

3 times variance from mean. If there are no more outliers, the mean is kept as rating of the

texture. In the following paragraphs, we call it as user score.

There are definitely some connections between structure error and user score. The assump-

tion is that the larger structure error human focuses the less user score will be and we will prove

this assumption in the next chapter. In this model, we compare three different fixation models

(e.g. user-fixation-map, predict-fixation-map, random-fixation-map shown as Figure 4.7). We

calculate error with fixation map as the first pattern. Fixation map becomes a weighting matrix

used to multiply structure error map as one of the input training patterns shown as equation 4.12.

F =

∑N
i=1

∑M
j=1(Γi, j · Ei, j)

N · M
, (4.12)

where F denotes fixation error, Γ may be a fixation map of user-fixation-map, predict-fixation-

map, random-fixation-map or uniform-fixation-map, and E denotes the structural error map. N

and M stand for the height and width of E.

According to Judd et al.[11] and Goldberg et al.[19], human eyes usually search an object

of interest from the center of the image. The second training pattern is defined as distribution

ratio (D). While seeing a well-synthesized texture, subject would focus around the center most.

So we consider distribution ratio as an important feature. To compute D, every fixation point

on the fixation map must be examined whether it is closed to the center. Shown as Figure 4.8,

we define P as fixations within the circle and Q as fixations outside the circle. Equation 4.13

illustrates the formula of D.
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(a) (b) (c) (d)

Figure 4.7: (a) is the user-fixation-map gathered from ground truth data. (b) is the predict-

fixation-map gathered from visual attention model. (c) is the random-fixation-map. (d) is the

uniform-fixation-map

D =
P

P + Q
(4.13)

The third and the forth training patterns are defined together. Consiedring the basic evalua-

tion method, the structure error of texture cannot be ignored. Observing the ground truth data

and structure error, for well-synthesized texture, we would find low mean value and low vari-

ance, but for poor-synthesized texture, we would find unstable mean value and high variance.

So we compute mean and variance of the structural error as the third and forth training patterns,

A and V (shown as figure4.9).
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Figure 4.8: P denotes fixations within the circle and Q denotes fixations outside the circle.

(a) (b)

Figure 4.9: (a) is an example of synthesized textures, B1. (b)The structral error map of B1. A

and V standing for the third and forth feature are the mean and variance of structral error map.
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Results

In this chapter, we will first introduce our evaluation method and then the validation results of

visual attention model and perceptual rating model. We then compare our model with saliency

map. A modified saliency map is also compared with our model. Additionally, we compare the

results of our model with different feature inputs of Φ and Ψ defined in chapter 4. Note that

Φ are typically the feature vector used by Yu [13] consisting of structure error and position. Ψ

proposed in this thesis contains gradient of structure error and position.

5.1 Evaluation Method

To quantitatively evaluate how accurate our models prediction matches observers actual fixation

positions, we use two metrics, normalized scan-path saliency (NSS) [9] and receiver operating

characteristic (ROC). The NSS method is defined as the response value at the current fixations

on a model’s predicted gaze density map that has been normalized to have zero mean and unit

variance. Here, we put all observers’ fixations on the predicted gaze density map and compute

the average of all response values of the current fixations. This average value is called average

NSS. We will compute the prediction rate P%, which means average NSS is above P% of the

32
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distribution of the response value across the entire gaze density map. Higher prediction rate

means better prediction.

Another method is ROC, which is a well-known and useful technique for organizing clas-

sifiers and visualizing their performance. ROC plots are commonly used in medical decision

making. Here we set a threshold between a range from 5% to 100%. For each threshold, two

values are calculated; the True Positive Ratio (the number of outputs greater or equal to the

threshold divided by the number of one targets) and the False Positive Ratio (the number of

outputs less than the threshold divided by the number of zero targets). Note that the more each

curve hugs the left and top edges of the plot, the better the classifier is. Figure 5.1 shows an

example result of NSS and ROC of the prediction rate on a synthesized texture.

5.2 Prediction Experiments on Structural Textures

We designed two sets of experiments. In the first set, two synthesized textures were picked as

training data from each kind of synthesized textures, and then the remaining two synthesized

textures used to text our prediction model. That is, we test how a trained model performs on

unseen textures. We call the first set of experiment visual attention experiment. In the second

set, we buld an association model to learn the relationship between subjects’ gaze behavior and

rating. This experiment is called perceptual rating experiment.

We tuned the parameters for the SONFIN to obtain the best results. We found that the value

of membership threshold and the distribution of sampling play an important role in our exper-

iments. Smaller membership threshold would cause more rules and larger threshold leads to

fewer rules. Too many rules or too few rules makes the training result overtraining or non-

convergent. The membership threshold is set as 0.003 and the learning rate is set as 0.004. To

avoid overtraining, the minimal error is set to 0.01 and the maximal number of iteration is 5000.
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(a) (b)

(c) (d)

Figure 5.1: (a) The original image B1 shown to the subjects. (b) The average normalized

response value across all fixations is taken as the average normalized scan-path saliency (NSS).

The dashed line shows average NSS, which is compared against the distribution of response

value across the entire gaze density map (gray histogram). (c) The normalized gaze density

map of (a), where red circles represent a series of fixations of a subject. (d) The ROC curve

defined by true positive ratio and false positive ratio. The more each curve hugs the left and top

edges of the plot, the better the classification.
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One problem is that we might gather biased samples which would cause bad training result, so

we repeated sampling and training for three times to guarantee a better result.

5.3 Validation of The Vsiual Attention Model

We ran two sets of prediction experiments to validate the effectiveness of our model. One is

new-texture-prediction and the other is new-subject-prediction, respectively. The setup of new-

textures-prediction is to divide 44 textures into 22 training textures and 22 testing textures. For

new-subjects-prediction, we separate 18 subjects into 9 training subjects and 9 testing subjects.

5.3.1 New-Texture-Prediction

In this result, we compare our results with the results generated by the saliency map. One can

observe that Saliency map usually cannot predict fixations well. Its predicted fixations scatter

in the entire synthesized textures. According to Yu’s thesis[13], we also adopt multi-layer per-

ceptron (MLP) as the learning model and compare with our results. The average NSS of MLP

is 74.95%. Our model has NSS average predictive rate of 80.47% and saliency map only has

56.00% (Figures 5.2). Some of our results do not have a higher predictive rate than saliency

map since those results are irregular textures, on which our structural error feature does perform

well. Figure 5.3 shows the comparison between our model and saliency map on ROC curve.

On can find our model more accurate than saliency map since our ROC curve hugs the left and

top edges more, which means a better classifier.

Besides, we replace feature vectors of our model from Φ to Ψ. Shown as Figures 5.2, the

average NSS of Ψ is 82.73%. The result of Φ only exceeds Ψ by 2.26%, but from the angle

of view that the lowest NSS of Ψ is not lower than 75.0% and the lowest NSS of Φ is 57.61%,

Ψ performs much more stable than Φ dose. Notice that Ψ climbs slower than Φ only at the
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begining in Figure 5.3. After false positive rate exceeds 0.2, Ψ has better performance than Φ.

One may argue that saliency map does not acquire or learn from human subjects’ eye track-

ing data. To fairly compare with saliency map, we train SONFIN using saliency map value as

the input feature vector. We call it modified saliency map. The comparison result is shown in

Figure 5.4. The NSS average value of modified saliency map is about 57%, not higher than the

result of original saliency map. Also, compare to our model, the results of modified saliency

map are very unstable. Although the highest prediction rate is more than 90%, the lowest pre-

diction rate is only around 10%. From this comparison, one can find that structural error is a

better feature than saliency map for predicting the fixations on structural textures. By the way,

modified saliency map has higher average NSS than our model in texture J because texture J has

higher diversity on color and intensity, shown as Figure 5.6. Figure 5.5 shows the ROC curves

of modified saliency map and our models with two feature sets.

Some predictions of the results are rather lower than the others. Take Figure 5.7 as an

example, NSS of H1 and H2 are 76.22% and 77.85%. One mat observe that poor-synthesized

parts occupy the most region of H1 and well-synthesized parts occupy H2. For those extremely

good or bad textures, we have to predict the fixations only with position information, and thus

lack of feature of gradient makes the result not so well. This makes our model to predict

subjects’ fixations worse than H3 and H4.

5.3.2 New-Subject-Prediction

All subjects are divided into two groups, group 1 and group 2. We set one of the two groups to

be the training set and the other to be the testing set, and vice versa, so that we are able to predict

new subjects’ fixations. In this model, Φ and Ψ are used as the training patterns, respectively.

Figure 5.8 and 5.9 illustrate the comparison. Figure 5.10 is the ROC curve. In this graph, while
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(a)

(b)

Figure 5.2: This figure shows the NSS average rate of our model and saliency map for each

synthesized texture. Our model has two results generated by two feature input sets, Φ and Ψ.

(a) shows the results for texture A, B, C, D, E, F. (b) shows the results for texture G, H, I, J, and

K. Most of our results have higher predictive rate than saliency map except I3. This is because

textures I is an irregular texture. Larger variations makes it harder to extract valid structural

features. The result of Φ and Ψ are similar, but Ψ performs slightly better in I, J, K, which Φ

does not predict well.
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Figure 5.3: This graph shows the comparison of our model and saliency map in ROC curve.

Since that the more each curve hugs the left and top edges the better the classification, we find

our model more accurate than saliency map.
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(a)

(b)

Figure 5.4: The NSS average value of Modified Saliency Map is only 57%, not higher than the

result of original saliency map. Also, compare to our model, the results of modified saliency

map are very unstable. The lowest accuracy is around 10% but the highest is more than 90%.

This comparison shows that saliency map has lower correlation to the fixations on synthesized

textures than our structural error feature.
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Figure 5.5: This graph shows the comparison of our model and modified saliency map in ROC

curve. Our model still performs better than modified saliency map. In this result, we compare

the ROC curve of Φ and Ψ. We may find that Ψ has higher precision than Φ.
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(a) (b)

Figure 5.6: (a),(b) are two textures of texture J. One may find that these textures contain more

diversity on color intensity. It makes modified saliency map performs better than our model.

increasing the threshold of ROC, Ψ has better result than Φ at the begining. After the threshold

exceeds around 0.35, curve of Φ hugs the top left faster than Ψ. Due to the diversity on peoples

sensitivity to illumination, color and aesthetics, we do not always get high consistence for our

subjects fixation. In our result, the average NSS of Φ is 75% and Ψ is 73%. One may wonder

why Ψ does not work better than Φ just like he does in New-Textures-Prediction. We observe

that the characteristics of Ψ is more likely to memorize human habbits while deciding the scan-

path. Because of the diversity on people’s habbits, we claim that Φ is a more general feature for

predicting human behavior.

5.4 Validation of The Perceptual Rating Model

One may wonder that what is the difference to adopt fixations and fixation-free model to predict

rating. In order to validate the effectiveness of the features we proposed, we run The percep-

tual rating model with four different fixation maps, e.g. user fixation map, preicted fixation

map, random fixation map and uniform fixation map. The user fixation map is typically the
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(a) (b)

(c) (d)

Figure 5.7: (a) is H1. (b) is H2. (c) is H3 and (d) is H4. They are textures of H. The predictions

of this set are rather lower than the others. To understand why, we put them together to figure

out the cause. Poor-synthesized parts occupy the most region of H1 and well-synthesized parts

occupy the most region of H2 so that makes our model to predict subjects’ behavior worse than

H3 and H4.
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(a)

(b)

Figure 5.8: Result of group 1. Here group 2 is training pattern and group 1 is testing pattern.
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(a)

(b)

Figure 5.9: Result of group 2. Here group 1 is training pattern and group 2 is testing pattern.
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Figure 5.10: ROC of new-subjects-prediction. We merge the results of group1 and group2 to

draw the ROC curve. While we increase the threshold of ROC, Ψ has better result than Φ at the

begining. After the threshold exceeds around 0.35, curve of Φ hugs the top left faster than Ψ.

We claim that Φ is a more general feature for predicting human behavior.
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eyetracking-data. The predicted fixation map is the fixation map predicted by virtual attention

model, while the random fixation map and the uniform fixation map are almost unrelevant to

eye-tracking data.

We round off the predicted rating and compare this result with the ground truth data shown

as Table 5.1 and 5.2. Here we use 2-fold to train our model and test the result. Each set of the

textures are picked two as the training set and the other two considered as testing sets, and vice

versa.

Shown as Table 5.3, the results derived from four fixation maps prove the fact that fixation

points affects the rating. The user-fixation-model uses subjects’ fixation data to train percep-

tual rating model, and as a result, the precision of this model is the highest to the user score.

The input fixation map of preict-fixation-model is the predicted fixation map of visual atten-

tion model. This result is slightly worse than user-fixation-model. So far, one may see that the

more accurate visual saliency is, the more precise to predict the rating. The last two models are

random-fixation-model and uniform-fixation-model which we adopt as a fixation free model.

The results of random-fixation-model and uniform-fixation-model are the worst that proves the

fixation data affecting the rating to us. Furthermore, from the view of P-value, both random-

fixation-model and uniform-fixation-model are less than the significance level (0.05), the results

are said to be statistically observed significant.

5.5 Rule Analysis

The value of membership threshold plays an important role in our model. Smaller membership

threshold produces more rules and larger threshold leads to fewer rules. Too many rules or too

few rules makes the training result overtraining or non-convergent. In this section, we discuss

how to explain the rules of SONFIN in our model. SONFIN model generates rules automatically
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during the training procedure and the number of rule is around ten to twenty. The distribution of

rules is able to represent the training patterns and simulate the testing patterns. In te following

paragraph, we will discuss how the rules of SONFIN affect the results. We observed, in the

most cases, that the rules could be divided into two different situations, poor-synthesized and

well-synthesized.

5.5.1 Poor-Synthesized Texture

Shown as Figure 5.11, we take B4 as an example of poor-synthesized textures. Figure 5.11 (c)

and (d) show the rules and the distribution of testing patterns. By importing the testing patterns

in Fixation-Predict-Model, we may find the coefficients for each rules. These cosfficients let

us define the significance of these rules. The numbers for the ellipses in Figure 5.11 (c) and

(d) indicate the significance. Notice that B4 contains not only the pooy-synthesized parts but

also the well-synthesized parts. This characteristic leads the subjects to brouse between the two

parts and compare their differences. In (d), through the distribution of rules, we can confirm

that the rules definitely simulate the fixation data.

5.5.2 Well-Synthesized Texture

Shown as Figure 5.12, we take B2 as an example of well-synthesized textures. In this case,

gradients of the structure error are almost the same, moreover they are all low. So it can not effi-

ciently predict fixation points only using gradient information. Position becomes an additional

information to memorize human habits. In our assumption, we think that human gets used to

focus on the center while seeing a well-synthesized texture. Shown as Figure 5.12 (b), the most

important rules spread at the center of a texture. We may declare that the rules still take a quite

important place in position even if gradients dont work well.
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(a) (b)

(c) (d)

Figure 5.11: (a) is a synthesized texture B4. (b) is the fixation data blending with B4. (c)

contains rules and position information of testing patterns. Each ellipse stands for a rule. The

numbers for the ellipses indicate the significance. (d) shows the rules and the gradient of struc-

ture error of B4.
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(a) (b)

(c) (d)

Figure 5.12: (a) is a synthesized texture B2. (b) is the fixation data blending with B2. (c)

contains rules and position information of testing patterns. Each ellipse stands for a rule. The

numbers for the ellipses indicate the significance. (d) shows the rules and the gradient of struc-

ture error of B2.



5.5 Rule Analysis 50

Table 5.1: The results from A to F. Results which are derived from user-fixation-model, predict-

fixation-model and random-fixation-model are compared with user score, the ground truth data.

Texture User Score User Fixation Predict Fixation Random Fixation Uniform Fixation

Model Model Model Model

A1 1 1 1 2 2

A2 2 1 1 2 2

A3 1 1 1 2 2

A4 4 4 4 3 4

B1 2 2 1 2 1

B2 5 5 5 4 4

B3 1 3 2 2 1

B4 3 4 2 3 2

C1 2 2 2 2 3

C2 3 3 3 2 3

C3 4 4 4 2 3

C4 2 2 2 2 2

D1 2 2 1 2 2

D2 4 4 3 3 3

D3 3 4 2 2 3

D4 2 1 2 2 2

E1 2 2 1 2 1

E2 3 3 3 3 2

E3 2 2 1 2 1

E4 4 5 5 3 3

F1 2 3 2 2 1

F2 3 4 4 2 2

F3 2 1 2 2 2

F4 3 3 2 3 2
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Table 5.2: The results from G to K. Results which are derived from user-fixation-model, predict-

fixation-model and random-fixation-model are compared with user score, the ground truth data.

Texture User Score User Fixation Predict Fixation Random Fixation Uniform Fixation

Model Model Model Model

G1 4 4 3 3 2

G2 2 2 2 2 2

G3 4 4 4 3 3

G4 5 5 5 3 3

H1 1 1 1 2 1

H2 5 5 5 3 4

H3 3 3 2 3 2

H4 2 2 2 2 2

I1 4 3 4 3 2

I2 1 1 1 2 2

I3 3 3 3 2 2

I4 3 3 2 2 3

J1 1 1 1 2 2

J2 4 3 4 3 3

J3 5 4 4 3 4

J4 3 3 3 3 2

K1 4 4 4 3 3

K2 3 3 3 2 3

K3 1 1 2 2 2

K4 2 2 2 2 2
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Table 5.3: The precision of user-fixation-model is the highest to the user score. The result

of predict-fixation-model is slightly worse than user-fixation-model. The result of random-

fixation-model is the worst. This table tells us that fixation points would affect human behavior.

on rating.

User Score User Fixation Predict Fixation Random Fixation Uniform Fixation

Model Model Model Model

Mean 2.77 2.79 2.56 2.41 2.32

Standard

Deviation 1.22 1.27 1.28 0.54 0.83

Average

Error - 0.30 0.38 0.61 0.73

Chi

Square - 3.14 3.98 6.95 7.62

T-test - 3.85 5.20 7.08 8.24

P-value - 0.47 0.22 0.03 0.02
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Conclusion and FutureWork

The main contribution of this work is that we present a proper feature and a computational

model to predict human fixation and rating on structural textures. Our approach can generate

features that genetically reflect the textures characteristics and the model can find the associa-

tion between human eye-tracking data and their textures characteristics. Previous work rarely

addressed evaluating the quality of structural textures and modeling the human evaluating pro-

cess. In our study, we achieve the goal to predict human fixation and rating. Once our model

learned the association, we can use it to evaluate new synthesized structural textures.

Second, we propose a credible evaluation approach. Since there is no agreement on eval-

uating synthetic textures, for differant texture synthesis algorithms, they may have their own

beneficial non-perceptual evaluation methods. For example, those of near regular texture syn-

thesis having rather low structure error than the others means to be better results with respect to

the structure error; however, from the view of co-occurrence error, they are not likely to be the

best. Our model overcomes such problem that we adopt perceptual and non-perceptual features

to predict the rating. This truly reflects the quality of textures no matter what texture synthesis

algorithm it is.
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According to Elhelw et al. who used Markov transition matrix to investigate the underlying

viewing strategy of the subjects in[20]. They labeled different features in the stimuli as the states

for Markov model, and try to find subjects viewing transitions from one feature to the others.

[19] designed an experiment to analyze scanpaths of subjects while they view well-organized

and poorer interfaces. Moreover, they analyzed human scanpath and found that the transition

of fixations reflecting the quality of interfaces. This result inspired us that there are some re-

lationship between rating and transitions. As a future work, we might also label our features

from textures as regularity-preserved and regularity-violated, and find the relation between the

transition of fixations and user’s rating.
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Appendix

A.1 Parameters and Rules

The SONFIN model generates rules automatically in the process of training. The value of mem-

bership threshold plays an important role in our experiments. Smaller membership threshold

would cause more rules and larger threshold leads to fewer rules. Too many rules or too few

rules makes the training result overtraining or non-convergent. The membership threshold is

set as 0.003 and the learning rate is set as 0.004. To avoid overtraining, the minimal error is set

to 0.01 and the maximal number of iteration is 5000. Here we list the number of rules for all

models mentioned in this thesis, shown as Table A.1

A.2 NSS Table

Shown as Table A.2 and A.3, we list all average NSS value in these two tables. The table of

NSS corresponses to the histogram, the result of visual attention model, in chapter 5.
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Table A.1: The number of rules for each model. For the visual attention model, ther are two

prediction models, new-texture-prediction and new-subject-prediction, and then we adopt 2-

fold to train the model. For the perceptual rating model, 2-fold is also used as our validation

strategy. Thus, there are totaly 6 models.

Visual Attention Model Perceptual Rating Model

New-Texture-Prediction New-Subject-Prediction -

16 24 28 20 34 31
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Table A.2: The results of NSS from texture A to F.
Texture Saliiency Map Modified Saliency MLP Model Our Model Our Model

Map with Φ with Ψ

A1 51.25% 62.91% 72.86% 85.18% 85.88%

A2 57.56% 63.41% 74.88% 82.79% 86.21%

A3 51.10% 61.15% 74.03% 72.68% 79.84%

A4 40.00% 51.63% 71.65% 80.47% 82.35%

B1 68.83% 71.20% 77.22% 85.35% 85.37%

B2 54.65% 73.00% 80.12% 80.21% 84.82%

B3 42.36% 72.80% 80.04% 84.98% 84.87%

B4 61.98% 74.24% 79.34% 83.16% 84.88%

C1 50.50% 65.10% 77.14% 88.69% 86.85%

C2 59.65% 68.92% 76.78% 84.68% 85.21%

C3 59.80% 63.00% 75.26% 82.69% 83.58%

C4 56.24% 69.00% 74.95% 81.55% 84.23%

D1 47.86% 28.39% 87.36% 87.21% 87.20%

D2 67.42% 31.33% 78.67% 80.19% 84.22%

D3 71.66% 42.00% 75.64% 89.57% 88.35%

D4 39.23% 21.00% 80.77% 83.26% 84.32%

E1 53.24% 51.84% 76.11% 84.20% 84.59%

E2 53.12% 27.88% 77.85% 79.58% 80.48%

E3 48.44% 35.00% 79.67% 83.42% 84.99%

E4 77.03% 49.00% 69.65% 86.98% 86.20%

F1 68.32% 69.58% 76.30% 87.12% 83.21%

F2 45.67% 69.58% 83.25% 80.43% 80.21%

F3 55.22% 68.00% 77.62% 86.48% 87.10%

F4 28.68% 46.00% 58.57% 80.18% 81.11%
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Table A.3: The results of NSS from texture G to K.
Texture Saliiency Map Modified Saliency MLP Model Our Model Our Model

Map with Φ with Ψ

G1 58.36% 36.44% 80.68% 78.79% 80.22%

G2 44.56% 31.26% 81.33% 76.01% 78.51%

G3 66.98% 82.00% 74.65% 88.91% 87.36%

G4 60.03% 83.00% 67.21% 84.57% 85.99%

H1 51.01% 25.40% 76.96% 70.13% 76.22%

H2 56.68% 26.46% 82.02% 71.55% 77.85%

H3 56.51% 46.00% 77.33% 84.89% 85.22%

H4 32.35% 12.00% 70.10% 75.16% 79.25%

I1 65.65% 57.12% 63.34% 60.34% 75.22%

I2 53.98% 53.60% 48.31% 57.61% 73.22%

I3 67.00% 58.00% 49.00% 70.00% 80.00%

I4 71.18% 57.00% 66.84% 81.52% 82.36%

J1 68.19% 91.47% 65.51% 85.01% 82.29%

J2 71.63% 87.06% 48.31% 86.45% 81.55%

J3 52.31% 86.00% 83.64% 65.12% 80.69%

J4 21.00% 11.00% 82.00% 73.00% 81.00%

K1 63.77% 80.29% 78.58% 82.12% 80.58%

K2 55.15% 88.32% 77.67% 85.11% 83.25%

K3 61.98% 85.00% 78.67% 76.16% 77.89%

K4 60.78% 82.00% 75.37% 87.20% 85.25%

Average 56.00% 57.00% 74.95% 80.48% 82.73%
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