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針對可調視訊編碼粗略可調性之模式相依的位元與失真解析模型 

     研 究 生：曾于真                 指導教授：彭文孝 

國立交通大學多媒體工程研究所  碩士班 

摘 要摘 要摘 要摘 要                            

 

  可調視訊編碼的層間預測和動作補償預測中執行動作預測的區塊其不同的分

割模式會導致位元與失真上差異。然而現今只有少數模型可以解釋可調式視訊編

碼位元與失真行為，更遑論有任何方法可以讓我們針對可調視訊編碼中不同的區

塊分割模式分析其位元與失真關係。針對可調視訊編碼粗略可調性，本論文推導

出了一個解析性及模式相依的位元與失真關係模型。考慮到加強層為可採用層間

殘留預測的壓縮方式，我們對可調視訊編碼中基礎層與加強層各提供了一取決於

區塊分割模式和影像特性的位元與失真模型。在我們所提出的位元與失真模型推

演過程中採納了一個向前信道模型以及一個時間上穩態的過程假設，我們藉由一

個動作預測軌跡詮釋重建區塊，並且將殘留變異數設計成一個統計量模型。實驗

結果顯示，我們提出的模型可以很準確的估量出不同區塊分割模式，其真實壓縮

出的基礎層及加強層的位元與失真曲線。並且最後針對不同區塊分割層間殘留預

測的效能分析後，所提出的模型也呈現與真時壓縮相似的位元與失真趨勢。 
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ABSTRACT 

 

In Scalable Video Coding (SVC), the inter-layer prediction and the variable motion 

estimation block partition modes for motion-compensated prediction (MCP) cause 

differences in rate and distortion behavior; however, there are just few models could 

explain the rate and distortion behavior of SVC, not to mention methods which focus 

on analyzing the rate and distortion of different partition mode pairs in SVC. In this 

thesis, we derive analytical mode-dependent rate and distortion models for 

Coarse-grain scalable video coding techniques. The rate and distortion models for 

base and enhancement layer both depend on the partition mode and sequence 

characteristics with consideration of the inter-layer residual prediction capability in 

enhancement layer. Adopting a forward channel model and an assumption of 

temporal-stationary process in the derivation of proposed models, we interpret the 

reconstructed block by a motion prediction trajectory and model the transformed 

residual variance into a mode-dependent statistic. Our experimental results show that 

the proposed model can estimate the actual-coded R-D curves of different partition 

modes in base layer and enhancement layer with high accuracy. In addition, similar 

tendencies between model and actual-coded curve are observed over the 

performances of different mode pair encoded with inter-layer residual prediction. 
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CHAPTER 1

Research Overview

1.1 Introduction

Scalable Video Coding(SVC) approaches have been investigated for more than 20 years

to answer demand from various video transmission channels and heterogeneous viewing

devices.

In the aspect of traditional nonscalable video coding, hybrid coding has drawn most

of the attention in the past several decades, which derives well-known H.264/AVC

standard. In hybrid coding, motion-compensated prediction (MCP) is used to exploit

temporal similarities between successive video frames (inter-frame coding). Transform

coding is then implemented in two steps, first, converting spatial values into transform

coefficient values and second, quantizing the coefficients to achieve a lossy compression.

In the block-based MCP, each macroblock is split into one or more partition, refered

to partition mode, for motion compensation. Different partition mode causes different

coding efficiency; when it comes to mode decision, the rate and distortion behavior of

each partition mode is then desirable for decision criterion.

Scalable Video Coding as proposed in [1][2] is an extension of H.264/AVC standard.
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Chapter 1. Research Overview

Instead of independently encoding consecutive spatial layers using MCP based coders,

SVC adopts additional inter-layer prediction to exploit statistical dependences between

different layers. In comparison to simulcasting different qualities or resolutions, in

inter-layer prediction method, pictures with higher quality or resolution levels utilize

the information from the lower levels in order to improve coding efficiency. The issue

of how to analyse the performance of inter-layer prediction then catches the attention

and becomes critical.

1.2 Problem Statement

In transform coding of images and videos, two important factors are coding bit rate R

and picture distortion denoted by D. Analysis and estimation of the R-D performance

are significant in image and video coding. For example, based on the rate and distortion

models, optimum bit allocation as well as other R-D optimization procedures can be

adopted to improve the coding efficiency and, consequently, to improve the image

quality or video presentation quality. In typical hybrid video coding, the rate and

distortion behaviors are relevant to motion estimation partition mode of MCP and

quantization method.

Many efforts have been made on deriving rate and distortion model for non-scalable

hybrid coding [3][4][5]. Basically, these methods provide analytical or empirical ap-

proach to the rate and distortion of overall video sequences. Among the non-scalable

rate and distortion models, [4] proposes a quantization-distortion model for H.264/AVC

with particular consideration of the motion-compensated prediction effect, however, the

non-linear numerical computation required by this model is impractical, and it cannot

be used to model the R-D variation between different partition mode in block level. In

addition to the non-scalable coding, the rate distortion analysis in [6] gives a framework

for evaluating the rate-distortion theoretic lower bound for spatially scalable video cod-

ing in general. The approach in [6] is simply an extension of that in an earlier work by

B. Girod [7] and the authors in [6] propose ideal assumptions for theoretical analysis

which are far from adequate to describe real SVC codec’s. For capacity of practical

application, an operational and analytical rate distortion model is still needed. In this

thesis we derive rate and distortion models, which depend on block partition mode, to

-3-



Chapter 1. Research Overview

approach the behavior of H.264/AVC coding and its extension SVC with inter-layer

residual prediction for Coarse-grain scalable coding. When considering the inter-layer

residual prediction, the problem of rate and distortion modeling in H.264/SVC is very

challenging. This study aims to provide answers to the following questions:

1. How do we determine the single-layer mode-dependent rate and distortion models

based on prediciton and quantization shcemes of H.264/AVC.

2. How do we extend the single-layer mode-dependent rate and distortion models

for SVC inter-layer residual prediction, given quantization parameters qB for base

layer and qE for enhancement layer?

3. How do the rate and distortion behave with different partition mode and different

characteristic factors extracted from an input sequence?

4. How does inter-layer residual prediction perform when applied to different parti-

tion mode pairs for MCP?

Since R-D behavior is affected by features of input sequence and quantization para-

meter, this thesis provides an in-depth study on the relationship between rate distor-

tion and video contents, as well as relationship between rate distoriton and quantiza-

tion parameter in SVC for characterizing the rate-quantization (R-Q) and distortion-

quantization (D-Q) models.

1.3 Contributions and Organization of Thesis

Specifically, our main contributions in this work are:

• Two mode-dependented distortion-quantization (D-Q) models are proposed for
non-scalable and scalable video coder.

• Two mode-dependented rate-quantization (R-Q) models are conducted for non-
scalable and scalable video coder.

• Our analysis is capable of evaluating the R-D performance of different mode pair
with SVC inter-layer prediction.

The remaining of this thesis is organized as follows: Chapter 2 contains a review of

hybrid coding, Coarse-grain scalability in SVC and a rate distortion model based on

Laplace distortion. Chapter 3 presents a derivation of single layer rate and distortion

models. And the rate distortion model for multi-layer encoder is introduced in Chapter

-4-
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4. Chapter 5 provides simulation results of examining the accuracy of proposed rate

and distortion models and analyzing the performance of inter-layer prediction. Finally,

the thesis is concluded with a summary.

-5-



CHAPTER 2

Background

2.1 Overview of Hybrid Video Coding

In hybrid video coding depicted in Fig.2.1, a video sequence is temporally segmented

into several groups of pictures (GOP). Each picture is divided into numbers of mac-

roblocks (MBs); each MB is split into one or more MB partitions and an intra or

inter prediction is applied on each partition. The error generated as difference between

predictor and current block is called motion-compensated prediction (MCP) residual.

Figure 2.1: hybrid coding diagram.
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Chapter 2. Background

Then a fixedM ×M block transform, which is commonly a DCT transform, is applied

to the prediction residual of inter and intra-prediction modes; the prediction residual

blocks are therefore transformed into DCT coefficients. Note that the size of anM×M

transform block is always less than or equal to the partition sizes in a MB. After that,

scalar quantization followed by entropy coding is applied to the DCT coefficients. Fi-

nally, the quantizer causes the main quality loss of compression, which is quantization

distortion D.

2.2 Overview of Scalable Video Coding

2.2.1 Concept

Scalable Video Coding (SVC) standard [2][8][1] is a scalable extension of the H.264/AVC

standard developed by the Joint Video Team (JVT), which allows a single bitstream to

provide multiple frame sizes, frame rates and quality levels while achieving a reasonable

coding efficiency. An SVC bitstream is organized into one base layer(BL) and one or

more enhancement layers(EL) in corresponding dimension if it provides certain scala-

bility. A subset of SVC bitstreams can be extracted to form another valid bitstream for

a given decoder and be decoded to produce a playback with a reduced reconstruction

quality compared to the original bitstream.

SVC supports three types of scalabilities: spatial, temporal and quality scalabilities.

Subsets in the spatial scalability bit-stream represent the source content with a reduced

picture size (spatial resolution). The temporal scalability is provided by hierarchical

temporal prediction structures for each coding layer while quality scalability is achieved

by two approaches: Coarse-grain scalable coding (CGS), which can be considered as a

special case of spatial scalability with identical frame sizes for base and enhancement

layer, and medium-grain scalable coding (MGS), which provides quality refinement

layers inside each spatial layer and enables packet-based quality scalable coding.

2.2.2 Coarse-grain Scalable Coding (CGS)

SVC performs CGS through encoding series of quality layers, which have the same spa-

tial and temporal resolutions. At first, the texture information is encoded into an AVC

-7-



Chapter 2. Background

Figure 2.2: H.264 quantization scheme.

compatible bitstream to provide a base layer(BL) with the minimum quality among

layers at a given quantization level. At enhancement layers(EL), CGS decreases the

quantization step sizes and encodes successive refinements of the transform coefficients.

For residual information, inter-layer prediction is employed. The base layer signal of the

co-located block is used as prediction for the residual signal of the current enhancement

layer macroblock, so that only the corresponding difference signal is coded.

2.3 Rate and Distortion Model Based on Laplace

Distribution

Laplace distribution [3][4][9][10] is a well-known distribution which bear resemblance

to the distribution for DCT coefficients of images. Due to its low computational com-

plexity and high accuracy, in this thesis, we choose Laplace distribution as the base

distribution of transform coefficient in the proposed derivation. A zero-mean Laplace-

distributed random variable with probability density function (pdf) is:

f(x) =
1

2Λ
e−

|x|
Λ ,

Λ =
σ√
2
,

-8-



Chapter 2. Background

where x represents the transformed residual, and Laplace parameter Λ is a function

of σ, which is their standard deviation indicating the property of the input sequence.

Recent coding standards usually adopt the uniform quantizer depicted in Fig. 2.2. The

probability that transform coefficient x fall inside each quantization bin i are calculated

by

P (i) =





∫ iq+ q

2
+α

iq− q

2
+α
(x− iq)2 f(x)dx if i > 0,

∫ q
2
+α

− q

2
−α x2f(x)dx if i = 0.

(2.1)

where q is quantization step size and α is the quantizer dead-zone parameter. For

H.264/AVC inter frame coding, α = q

3
. The above probability (2.1) can be computed

and then represented by a close form. the close form then introduces the distortion

function:

D = σ2 − (2α+
√
2σ)

exp(−q−2α√
2σ
)

1− exp(−
√
2q
σ
)
q, (2.2)

In addition to the distortion model, the entropy of the quantized transformed residuals

can also be computed according to the entropy definition with the probability function.

H = −
∑

i

P (i) logP (i)

= −P (0) logP (0)− 2
∞∑

i=1

P (i) logP (i).

And the closed form of entropy is obtained by:

H = −p0 log p0 −
(
log

c

p

)
(1− p0)−

2c log p

(1− p)2
, (2.3)

where

p = exp(−
√
2q

σ
),

p0 = 1− exp(−
√
2α

σ
)
√
p,

c =
1

2
exp(−

√
2α

σ
)
√
p (1− p) .

In the next chapter, the proposed rate distortion model will be discussed in detail

based on Laplace distribution.
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CHAPTER 3

Rate Distortion Model: Single Layer

This chapter presents the derivation of our operational rate distortion model for a

single layer, or so-called base layer in SVC. Single layer, which is equivalent to the

well-known AVC coding, means that the encoded bitstream does not contain scalable

resolutions or scalable bit-rates.

3.1 Derivation Outline

Based on Laplace distribution and H.264 quantization scheme, a coefficient distortion

function of residual variance σ2 and quantization step size q can be developed as in

(2.2). As well as the entorpy function is obtain by (2.3).

Given a quantization step size q in the distortion model, the influence of MCP

method can only be revealed in the variance of residual transform coefficients σ2. To

model the impat of MCP schemes on distortion and rate behavior, we introduce a

forward channel model to help us conveniently construct a hybrid coding flow. Then

we formulate a closed-from residual variance function σ2 (q) and use it to attain the

rate and distortion model.

-10-



Chapter 3. Rate Distortion Model: Single Layer

The MCP prediction error in block base is generated as difference between pre-

diction block in coded reference frame and the current block; current residual is then

encoded and the current distortion is formed. Considering that current block distor-

tion is also relevant to distortion of reference block, in this thesis we assume that video

sequence is a locally temporal-stationary process.

The statistical models proposed by Tao et al. [11] are used to characterize the mo-

tion and intensity fields of video signals. These models provide parameters of motion,

intensity, and block-partition mode to analyze the block-level motion-compensation

predictor; therefore, the closed-from residual variance function σ2 (q) we have can also

be controled by those motion, intensity, and block-partition mode parameters. Even-

tually, a rate distortion model that react to the MCP method is achieved.

3.2 Distortion Model for Single Layer

H.264/AVC is based on the block-based hybrid coding approach. The motion estima-

tion is performed to find the prediction of each macroblock(MB) partition, and DCT

transform followed by quantization is applied on each M ×M segment block inside

a macroblock individually. It follows that the rate distortion model of a MB can be

reduced to modeling an M ×M transform block coverage. Therefore, the derivation of

the distortion model of an inter mode is depicted on the basis of anM×M transformed

block. To model the distortion for a whole MB, we only need to model each M ×M

transform block separately.

To evaluate the transform domain residual variance σ2 for distortion function of

Laplace-distributed source, we first formulate the prediction error by subtracting the

reconstructed reference frame from the current kth original frame. Let fk be the vec-

torization of an M ×M intensity block of an MB to be coded in (current) frame k,

and f̃k−1 be the vectorized motion-compensated prediction of fk in the reference frame

k − 1. The corresponding residual vector ek is

ek = fk−f̃k−1. (3.1)

Let eTk , f
T
k , and f̃

T
k−1 represent the transformed vectors of ek, fk, and f̃k−1, respectively;

DCT,H, is used to transform vertically and horizontally eachM×M block correspond-

-11-



Chapter 3. Rate Distortion Model: Single Layer

(a) (b)

Figure 3.1: Forward channel model and models in matrix notation.

ing to ek, fk, or f̃k−1, and the equivalent transform after vectorization is H⊗H, where
⊗ is the Kronecker product. Since the equivalent transform is linear, (3.1) implies

e
T
k =f

T
k −f̃Tk−1, (3.2)

where eTk contains M2 transform coefficients in column-major order.

Although being followed by specific quantization and entropy coding in hybrid video

coding, the transform is instead accompanied with the forward channel model, as shown

in Fig.3.1 [12], in the following derivations. It is well-known that if a Gaussian source

with mean zero and finite variance σ2 and an additive Gaussian noise are given, then

with proper scaling β = 1 − D
σ2
of the channel input, direct connection of the source

to the channel results in a system that provides an ideal rate distortion function of

the source with respect to the squared-error criterion, where D is the squared-error

distortion between input and output. Though the forward channel needs a Gaussian

source as the input to achieve its ideality and is not quite suitable for the transformed

residual signal, it is still adopted in our framework for mathematical tractability.

Based on the optimum forward channel as shown in Fig.3.1(a), we can give a model

of hybrid coder as Fig.3.2 with dimension M2 extension obtained by Fig.3.1(b) for

applying intensity input eTk to it. Thus, the reconstruction ẽ
T
k of prediction error e

T
k

is obtained by:

ẽ
T
k = Bke

T
k + n

T
k , (3.3)

where nTk is a memoreless additive Gaussian noise vector, which is statistically inde-

-12-



Chapter 3. Rate Distortion Model: Single Layer

Figure 3.2: 3-D Model of Hybrid Coder.

Figure 3.3: Motion trajectory for a 16x16 predicted block along the time axis.

pendent of the input vector. Bk is anM2×M2 diagonal scaling matrix whose diagonal

entries represent the scaling β’s for each coefficient.

Let f̃Tk be the reconstruction of f
T
k , ẽ

T
k can be rewritten as

ẽ
T
k = f̃

T
k − f̃Tk−1. (3.4)

Substituting (3.2) and (3.4) into (3.3) gives

f̃
T
k = Bkf

T
k + (I− βk) f̃

T
k−1 + n

T
k , (3.5)

which shows an affine relation between f̃Tk and f̃
T
k−1. In general, the M ×M predicted

block corresponding to f̃Tk−1 is not aligned with anM×M transformed block in the ref-

erence frame, so (3.5) is only valid for f̃Tk . However, we adopt the alignment assumption

that (3.5) is valid for every nonnegative integer k, and thus the reconstructed inten-

sity sequence
{
f̃
T
k

}
k≥0

satisfies a recurrence relation and shows a motion trajectory, as

shown in Fig.3.3.
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Substituting (3.5) into (3.2) recursively gives the closed-form

e
T
k = f

T
k −

k−1∑

n=1

(
n−1∏

i=0

(I−Bk−1−i)
)
Bk−1−nf

T
k−1−n −

k−1∑

n=1

(
n−1∏

i=0

(I−Bk−1−i)
)
n
T
k−1−n

−Bk−1fTk−1 − nTk−1 −
(
k−1∏

i=0

(I−Bk−1−i)
)
f̃
T
−1. (3.6)

As different characteristics appear between frames, the scaling matrices Bk’s may be

unequal. Since characteristics between frames do not vary greatly except for some

special cases, e.g., scene changes, a temporal-stationary assumption, which assumes

the scaling matrices are all equal, i.e., Bk = B for every k, is introduced to simplify

the very complicated (3.6):

e
T
k = f

T
k −

k−1∑

n=0

(I−B)nBfTk−1−n −
k−1∑

n=0

(I−B)n nTk−1−n − (I−B)k f̃T−1

= fTk −
k−1∑

n=0

Anf
T
k−1−n −

k−1∑

n=0

Cnn
T
k−1−n, (3.7)

where An = (I−B)nB, Cn = (I−B)n, (I−B)0 = I, and f̃T−1 = 0. That f̃T−1 equals
0 indicates the M ×M block corresponding to fT0 along the motion trajectory in the

first frame (k = 0) is intra-coded:

f̃
T
0 = B0f

T
0 + (I−B0) f̃T−1 + nT0

= BfT0 + n
T
0 . (3.8)

In general, ek is a zero-mean random vector and so is eTk . Thus, the covariance

matrix of eTk can be computed as follows:

E
{
e
T
k

(
e
T
k

)t}
= RT

f (0)−
k−1∑

n=0

AnR
T
f (n+ 1)−

k−1∑

n=0

(
AnR

T
f (n+ 1)

)t
(3.9)

+
k−1∑

n=0

k−1∑

m=0

AnR
T
f (n−m) (Am)

t +
k−1∑

n=0

CnR
T
N (0) (Cn)

t ,

where

R
T
f (n−m) = E

{
f
T
k−n

(
f
T
k−m

)t}
for k ≥ n,m ≥ 0,
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and

R
T
N (n−m) = E

{
n
T
k−n

(
n
T
k−m

)t}
for k ≥ n,m ≥ 0

=





R
T
N (0) for n = m

0 otherwise

,

where 0 is a zero matrix.

While M × M blocks along the motion trajectory, regarded as a vector-valued

random process fTk , is assumed to be a vector-valued wide-sense stationary process,

it implies that the autocovariance RT
f (n−m) depends only on frame interval n−m.

Therefore, the two autocovariance functions are independent of the specific frame num-

ber k. Noting that any intensity vector and noise vector are statistically independent,

we have

E
{
f
T
k−n

(
n
T
k−m

)t}
= 0 for k ≥ n,m ≥ 0.

The covariance matrix of eTk can be seen as a generation of the scalar-valued variance

σ2k (i) of ith coefficient of eTk , which is extracted from the ith diagonal element of

E
{
e
T
k

(
e
T
k

)t}
:

σ2k (i) = rTf (0; i)− 2βi
k−1∑

n=0

(1− βi)
n
rTf (n+ 1; i) + β2i

k−1∑

n=0

k−1∑

m=0

(1− βi)
n+m

rTf (n−m; i)

+
k−1∑

n=0

(1− βi)
2n

rTN (0; i) , (3.10)

where rTf (n; i) and rTN (0; i) are the ith diagonal elements of RT
f (n) and R

T
N (0), re-

spectively.

Instead of deriving variance in a specific frame k, i.e., σ2k (i), it is more useful to

consider the convergent behavior of hybrid coding. Let k goes to infinity and adopt

the following Markov-like assumption:

rTf (n; i) =





rTf (0; i) for n = 0

(αi)
|n|−1

rTf (1; i) otherwise

where1 ≥ αi ≥ 0.

-15-



Chapter 3. Rate Distortion Model: Single Layer

We then obtain

σ2i = lim
k→∞

σ2k (i)

=

(
2

2− βi

)
rTf (0; i)−

(
2

2− βi

)
βi

1− αi (1− βi)
rTf (1; i) +

rTN (0; i)

1− (1− βi)
2 . (3.11)

Equation (3.11) shows a convergent form for the variance of the ith coefficient.

Before substituting (3.11) to Laplace distortion function (??), we need to fill up the

parameters shown up in (3.11), i.e., αi, βi, r
T
f (0; i), r

T
f (1; i), and rTN (0; i).

The parameters αi are the impact factors in temporal correlation between frames

which motion-compensated prediction (MCP) tries to exploit for a better prediction

efficiency. MCP usual shows a better prediction efficiency when αi’s are all closed to

1 than that when closed to 0. To model a single-layer video coding with a good MCP

scheme, each αi is approximated as 1 for all coefficients, i.e. αi ≈ 1 for all i. As

the definition in the theorem T. Berger[12] βi ≈ 1 − Di
σ2i
and rTN (0; i) ≈ βiDi (3.11) is

deduced:

σ2i = 2r
T
f (0; i)− 2rTf (1; i) . (3.12)

From the equation (3.12), we conclude that the transformed residual variance σ2i is

a function of rTf (0; i) and rTf (1; i). According to the definition in (3.9), r
T
f (0; i) and

rTf (1; i) are the ith diagonal elements of RT
f (0) and R

T
f (1), respectively. Regardless

of the independent factor, frame number k, RT
f (0) is autocovariance of the M ×M

transform block fTk and RT
f (1) is covariance between f

T
k and motion compansated

reference block fTk−1.

In order to analyze the distribution of motion-compensated residuals, Tao et al.

[11] assumes that the autocorrelation function of the intensity and motion fields can

be approximated with a quadratic function and an exponential funciton, respectively:

E {Ik (si) Ik (sj)} = σ2I

(
1− ‖si − sj‖

2
2

K

)

E {vx (si) vx (sj)} = E {vy (si) vy (sj)} = σ2mρ
‖si−sj‖1
m and E {v (si)} = E {v (sj)} ,

where Ir (s) represents the intensity value of pixel s = (x (s) , y (s)) in reference frame;

v (s) = (vx (s) , vy (s)) denotes the motion of s, and {σ2I ,K} and {σ2m, ρm} are their
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Figure 3.4: Single-layer residual signal generating for a 16x8 predicted block

(respective) variances and correlation coefficients. In [13], these model are further ex-

tended to address the motion sampling efficiency for MCP. In the temporal dimension,

it is further assumed that Ik (s) = Ik−1 (s+ v (s)), where Ik (s) represents the intensity

value of pixel s in current frame; moreover, a block motion vector vc is approximated

as the motion at the block center, i.e., vc ≈ v (sc), and in that regard, block-based

motion estimation is seen as a motion sampler.

The fTk and f
T
k−1 are the transformd intensity vectors of current block and reference

block; however, Tao’s model[11] approximates the intensity fields in the spatial domain.

To derive the transfrom domain autocovariance matrices RT
f (0) and R

T
f (1), we first

illustrate a current intensity block in matrix form Fk, and each element of Fk is in

correspondence with each pixel intensity of block. For processing with covariance

matrix, we need current intensity vector fk = vec (Fk) in column-major order:

Fk=




Ik (s1) Ik (sM+1) · · · Ik (sM2−M)

Ik (s2) Ik (sM+2) · · · Ik (sM2−M+1)
...

...
. . .

...

Ik (sM) Ik (s2M) · · · Ik (sM2)




−→ fk =
[

Ik (s1) Ik (s2) · · · Ik (sM2)
]t

Considering for the transformed block FTk in matrix form, which is a 2-D transfor-

mation byM×M DCTmatrixH, we can achieve the transformed vector fT = vec
(
F
T
k

)

in column-major order:

F
T
k = HFH

t −→ f
T
k = (H⊗H) fk
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R
T
f (0) = E

{
f
T
k

(
f
T
k

)t}

= E
{
(H⊗H) fk ((H⊗H) fk)t

}

= (H⊗H)E
{
fkf

t
k

}
(H⊗H)t

R
T
f (1) = E

{
f
T
k−1

(
f
T
k

)t}

= E
{
(H⊗H) fk−1 ((H⊗H) fk)t

}

= (H⊗H)E
{
fk−1f

t
k

}
(H⊗H)t

We define the spatial doman covariance matrix E {fkf tk}and E {fk−1f tk} to be Rf (0)

and Rf (1). The (i, j)th element of Rf (0) , or [E {fkf tk}]ij, is then computed with
assistance of Tao’s model [11]:

E {Ik (si) Ik (sj)} = E {Ik−1 (si+v (si)) Ik−1 (sj+v (sj))}

= E

{
σ2I

(
1− ‖(si − sj)+ (v (si)−v (sj))‖

2
2

K

)}

= σ2I


1− ‖si − sj‖

2
2

K
−
4σ2m

(
1− ρ

‖si−sj‖1
m

)

K


 . (3.13)

The (i, j)th element of Rf (1), or [E {fk−1f tk}]ij:

E {Ik−1 (si + vc) Ik (sj)} ≈ E {Ik−1 (si + v (sc)) Ik−1 (sj+v (sj))}

= σ2I


1− ‖si − sj‖

2
2

K
−
4σ2m

(
1− ρ

‖sc−sj‖1
m

)

K


 (3.14)

Finally, we estimate the parameters σ2I , K, σ2m, and ρm, which account for the

sequence characteristics, and the distortion model is obtained by substituting residual

variance (3.12) to the Laplace distortion function (2.2). The algorithm is detial in the

following section and the estimation of parameter is described in experiment ch.5.
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3.3 Rate Model for Single Layer

The entorpy (2.3), denoted as H, of the quantized transformd residuals is actually far

from the true coding rate such it is the measure of independent coding. In hybrid cod-

ing, quantizated transform residuals are always dependently coded, like run-length cod-

ing, at a block level. And it is extremely difficult to redeem this inaccuracy caused by

dependent coding. The authors in [9] have noticed a stable relationship between the real

coded rate R and entropy H and modified the rate model by involving some correciton

factor. However, we bring out a more steady and more significant linearity relation-

ship between natural logarithm of real rate ln (R) and ln

((
1
q

)(1+√
2

σ

)

H
√
2

σ exp(−
√
2
σ
)

)
.

Then we proposed a new and more accurate rate model:

lnR ≈ a ln



(
1

q

)(1+√
2

σ

)

H
√
2

σ exp(−
√
2

σ
)


+ b

R ≈ q
−
(
1+

√
2

σ

)
a
H

√
2a
σ exp

(
b−

√
2a

σ

)
(3.15)

where the a and b are both constans at prediction mode level, and σ2 is the estimated

residual variance by computing (3.12).

3.4 Rate and Distortion Summery for Single Layer

In this section, we give a summerized algorithm for a single layer modeling through

previously proposed rate and distortion model. Some external parameters need to be

provided as inputs.
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Input: Variance of motion field, σ2m,

Correlation coefficient of motion field, ρm,

Variance ofIntensity field, σ2I ,

Positive number, K,

Quantization step of q,

Block partition mode, or prediction block center, sc.

Output: Coding bit rate, R (q),

Quantization distortion D (q) .

1. Residual variance for a M ×M transform block coefficients:

1.1 Compute spatial domain parameters:

Rf (0) by (3.13), Rf (1) by (3.14).

1.2 Transform residual covariance matrix:

R
T
f (0) = (H⊗H)Rf (0) (H⊗H)t.

R
T
f (1) = (H⊗H)Rf (1) (H⊗H)t.

1.3 Compute single layer ith variance of coefficients:

σ2i by (3.12),

2. R-D for a M ×M transform block:

2.1 Compute quantization distortion of ith coefficient:

Di (q) by substituting σ2i into (2.2).

2.2 Compute entropy of ith coefficient:

Hi (q) by (2.3),

2.3 Output:

Average variance per pixel, σ2 = 1
M2

∑M2

i=1 σ
2
i .

Average entropy per pixel, H (q) = 1
M2

∑M2

i=1Hi (q) .

Quantization distortion, D (q) = 1
M2

∑M2

i=1 Di (q) .

Average bit per pixel, R (q) by substituting H (q) and σ2 to (3.15).
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CHAPTER 4

Rate Distortion Model: Multiple Layers

In the preceding single layer derivation, which exploits forward chennel model to form

a model of single-layer hybrid coder, we have concluded the D-Q and R-Q function by

an estimated residual variance function. In this chapter, we present the rate distortion

model of the enhancement layer in Coarse-Grain scalable video coding, which can utilize

inter-layer residual prediction to achieve a better prediction efficiency. Without loss of

generality, a two-layer scenario is studied in the thesis for simplicity.

4.1 Distortion Model for Multiple Layers

The framework of a two-layer CGS coder base on the forward channel model is depicted

in Fig. 4.1

We denote the transform-domain base-layer signal with a superscriptB and transform-

domain enhancement-layer signal with E. For example, eBk and eEk represent the

transform-domain prediction residual vector for the base layer and enhancement layer,

respectively, of an M ×M transform block of the current kth original frame. Note

that in CGS, the base layer input vector fBk and the input of enhancement layer fEk
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Figure 4.1: 3-D model of SVC hybrid coder with inter-layer residual prediciton.

are vectorization of co-located M × M transform blocks of the current kth original

frame, which are identical because both of base and enhancement layers are in the

same resolution.

Fig. 4.1 illustrates the framework of a two-layer scalable coder with inter-layer

residual prediction. The dashed lines in Fig. 4.1 indicate the inter-layer prediction

propagation path of reconstructed base-layer residual ẽBk . In that way, the enhancement

layer prediction residual eEk to be coded exploits the spatial redundancies by subtracting

the base layer coded residual ẽBk . The enhancement layer transformed residual vector

is

e
E
k = f

E
k −f̃Ek−1 − ẽBk . (4.1)

The reconstruction ẽEk of inter-layer prediction error e
E
k is then made through the

forward channel model:

ẽ
E
k = βEk e

E
k + n

E
k , (4.2)

or it can also be made as:

ẽ
E
k = f̃

E
k − f̃Ek−1 − ẽBk . (4.3)

Substituting (4.1) and (4.3) into (4.2) gives transform domain representation of

enhancement layer coded frame with Inter-layer residual prediction based on one base-
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layer

f̃
E
k = B

E
k f

E
k +

(
I−BEk

)
f̃
E
k−1 +

(
I−BEk

)
ẽ
B
k + n

E
k . (4.4)

Adopting the same alignment assumption in single-layer derivation and temporal-

stationary assumption, which assumes BEk = B
E for every k, we substitute (4.4) into

(4.1) recursively and then give the closed-form

e
E
k = f

E
k −

k−1∑

n=1

(
n−1∏

i=0

(
I−BEk−1−i

)
)
B
E
k−1−nf

E
k−1−n −

k−1∑

n=1

(
n−1∏

i=0

(
I−BEk−1−i

)
)
n
E
k−1−n

−BEk−1fEk−1 − nEk−1 −
(
k−1∏

i=0

(
I−BEk−1−i

)
)
f̃
E
−1 −

k−1∑

n=0

(
n∏

i=0

(
I−BEk−1−i

)
)
ẽ
B
k−1−n − ẽBk

= fEk −
k−1∑

n=0

A
E
n f

E
k−1−n −

k−1∑

n=0

C
E
nn

E
k−1−n

︸ ︷︷ ︸
�ωE

k

−
k−1∑

m=0

C
E
mẽ

B
k−m

︸ ︷︷ ︸
�ωB

k

, (4.5)

where AE
n =

(
I−BE

)n
B
E, CEn =

(
I−BE

)n
, and fEk−n, 1 ≤ n ≤ k are reference

blocks in the EL motion trajectory starting from f
E
k , with ẽ

B
k−n, 1 ≤ n ≤ k denoting

their co-located BL coded residual blocks defined as:

ẽ
B
k−m = B

B
k e

B
k−m + n

B
k−m.

To explain the reconstructed block in the first intra-coded frame (k = 0), we define

f̃
E
−1 = 0 and ẽ

B
0 = 0. And the definition ẽ

B
0 = 0 indicates that there is no inter-layer

residual prediction in intra coding. Then f̃E0 is obtained by:

f̃
E
0 = B

E
0 f

E
0 +

(
I−BE0

)
f̃
E
−1 +

(
I−BE0

)
ẽ
B
0 + n

E
0

= BE0 f
E
0 + n

E
0 .

The original residual signal of kth frame in single layer eTk is modeled as (3.7); each

M ×M transform block fTk−n, 1 ≤ n ≤ k is along an independent single-layer motion

trajectory predicted starting from fTk . Nevertheless, in the inter-layer prediction, e
B
k−m

is the BL original residual vector of the block which corresponds with the EL block

f
E
k−m in (k −m)th frame. And fEk−m is the reference block in the EL motion trajectory
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starting from f
E
k . Thefore, we define e

B
k−m as:

e
B
k−m = f

E
k−m −

k−1∑

p=0

A
B
p f

B
k−m,k−m−1−p −

k−1∑

p=0

C
B
p n

B
k−m,k−m−1−p,

where AB
p =

(
I−BB

)p
B
B, CBp =

(
I−BB

)p
, and fBk−m,k−m−1−p, 0 ≤ p ≤ k − 1 are

reference blocks in the BL motion trajectory starting from fEk−m illustrated in Fig. 4.2,

in other words, the starting block in the BL prediction trajectory is the co-located

block fEk−m in EL. And n
B
k−m,k−m−1−p, 0 ≤ p ≤ k − 1 are corresponding Gaussian noise

vectors. Hence, ẽBk−m can be rewritten as:

ẽ
B
k−m = B

B

(
f
E
k−m −

k−m−1∑

p=0

A
B
p f

B
k−m,k−m−1−p −

k−m−1∑

p=0

C
B
p n

B
k−m,k−m−1−p

)
+nBk−m. (4.6)

For tractability, we separate the right-hand side of (4.5) into two terms represented

as ωEk and ωBk . According to (4.6), the last term in (4.5) is obtained by:

ωBk =
k−1∑

m=0

C
E
mẽ

B
k−m

=
k−1∑

m=0

C
E
m

(
B
B

(
f
E
k−m −

k−m−1∑

p=0

A
B
p f

B
k−m,k−m−1−p −

k−m−1∑

p=0

C
B
p n

B
k−m,k−m−1−p

)
+ nBk−m

)

(4.7)

Since eEk is a zero-mean random vector, the transform-domain EL residual covari-

ance is shown as:

E{eEk
(
e
E
k

)t} = E
{
ωEk

(
ωEk

)t}−E
{
ωEk

(
ωBk

)t}−
(
E
{
ωEk

(
ωBk

)t})t
+E

{
ωBk

(
ωBk

)t}
,

(4.8)

and we can observe that the first squared expectation term is arithmetically identical

to the derivation of single layer covariance matrix of eTk (3.9).

E
{
ωEk

(
ωEk

)t}
= RE

f (0)−
k−1∑

n=0

A
E
nR

E
f (n+ 1)−

k−1∑

n=0

(
A
E
nR

E
f (n+ 1)

)t

+
k−1∑

n=0

k−1∑

m=0

A
E
nR

E
f (n−m) (Am)

t +
k−1∑

n=0

C
E
nR

E
N (0) (Cn)

t , (4.9)
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Figure 4.2: EL and BL motion trajectory starting from f
E
k−m for a 16x16 predicted

block.

where

R
E
f (n−m) = E

{
f
E
k−n

(
f
E
k−m

)t}
for k ≥ n,m ≥ 0,

and

R
E
N (n−m) = E

{
n
E
k−n

(
n
E
k−m

)t}
for k ≥ n,m ≥ 0

=





R
E
N (0) for n = m

O otherwise

where the autocovariances RE
f (n−m) and RE

N (n−m) depend only on frame interval

n−m accroding to the assumption of wide-sense stationary process as in single layer.

Therefore, we maintain our focus on the cross expectation term

E
{
ωEk

(
ωBk

)t}
= E





(
f
E
k −

k−1∑

n=0

A
E
n f

E
k−1−n −

k−1∑

n=0

C
E
nn

E
k−1−n

)(
k−1∑

n=0

C
E
n ẽ

B
k−n

)t


 .

(4.10)

Since intensity vectors and noise vectors are statistically independent, by substitut-
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ing (4.7), we expand (4.10) into:

E{ωEk
(
ωBk

)t}

= E





(
f
E
k −

k−1∑

n=0

A
E
n f

E
k−1−n

)(
k−1∑

n=0

C
E
n β

B
f
E
k−n −

k−1∑

n=0

k−n−1∑

p=0

C
E
nB

B
A
B
p f

B
k−n,k−n−1−p

)t

︸ ︷︷ ︸
Φf
k





+ E





(
k−1∑

n=0

C
E
nn

E
k−1−n

)(
k−1∑

n=0

k−n−1∑

p=0

C
E
nB

B
C
B
p n

B
k−n,k−n−1−p −

k−1∑

n=0

C
E
nn

B
k−n

)t

︸ ︷︷ ︸
ΦN
k





,

(4.11)

Noting that nBk and n
E
k are memoreless additive Gaussian noise vectors, which can

be deemed as being uncorrelated with the input sequence and independent of any other

signals. We conclude

E
{
n
E
k−n

(
n
B
k−m

)t} ≈ O for k ≥ n,m ≥ 0.

The expected value of ΦNk can be easily worked out:

E
{
ΦNk

}
=

k−1∑

n=0

k−1∑

m=0

k−m−1∑

p=0

C
E
nE

{
n
E
k−1−n

(
n
B
k−m,k−m−1−p

)t}(
C
E
mB

B
C
B
p

)t

−
k−1∑

n=0

k−1∑

m=0

C
E
nE

{
n
E
k−1−n

(
n
B
k−m

)t}(
C
E
m

)t

≈ O
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The cross expectation term (4.11) is then computed as follows:

E{ωEk
(
ωBk

)t} = E
{
Φfk

}
+O

=
k−1∑

m=0

R
E
f (m)

(
C
E
mB

B
)t −

k−1∑

m=0

k−m−1∑

p=0

R
BE
f (m+ 1, p)

(
C
E
mB

B
A
B
p

)t

−
k−1∑

n=0

k−1∑

m=0

A
E
nR

E
f (m− n− 1)

(
C
E
mB

B
)t

+
k−1∑

n=0

k−1∑

m=0

k−m−1∑

p=0

A
E
nR

BE
f (m− n, p)

(
C
E
mB

B
A
B
p

)t
(4.12)

where

R
BE
f (m− n, p) = E

{
f
E
k−n

(
f
B
k−m,k−m−p

)t}
for k ≥ m,n, p ≥ 0.

The matrix RBE
f (m− n, p) is the covariance between EL block fEk−n and BL reference

block fBk−m,k−m−p in the BL motion trajectory starting from f
E
k−m, where the argument

m− n signifies the EL motion trajectory distance between fEk−m and f
E
k−n.

The last expected value of (4.8) is:

E
{
ωBk

(
ωBk

)t}
= E





(
k−1∑

n=0

C
E
n ẽ

B
k−n

)(
k−1∑

n=0

C
E
n ẽ

B
k−n

)t




=
k−1∑

n=0

k−1∑

m=0

C
E
nE

{
ẽ
B
k−n

(
ẽ
B
k−m

)t}(
C
E
m

)t
. (4.13)

Here we assume that coded BL residuals of different frames are uncorrelated, that is

E
{
ẽ
B
k−n

(
ẽ
B
k−m

)t}
= O, for m �= n.

Therefore, (4.13) is derived into:

E
{
ωBk

(
ωBk

)t} ≈
k−1∑

n=0

C
E
nE

{
ẽ
B
k−n

(
ẽ
B
k−n

)t}(
C
E
n

)t

=
k−1∑

n=0

C
E
nB

BE
{
e
B
k−n

(
e
B
k−n

)t}(
C
E
nB

B
)t
+

k−1∑

n=0

C
E
nR

B
N (0)

(
C
E
n

)t

(4.14)
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where

E
{
e
B
k−n

(
n
B
k−m

)t}
= O for k ≥ n,m ≥ 0

and

R
B
N (n−m) = E

{
n
B
k−n

(
n
B
k−m

)t}
for k ≥ n,m ≥ 0

=





R
B
N (0) for n = m

O otherwise

We substitute(4.9), (4.12), and (4.14) to (4.8) and consequently obtain the covari-

ance matrix E
{
e
E
k

(
e
E
k

)t}
of transformed EL residual. The EL variance σ2E,k(i) of

ith coefficient is extracted from the ith diagonal element of E
{
e
E
k

(
e
E
k

)t}
. And the

diagonal elements of E
{
ωEk

(
ωBk

)t}
equal the diagonal elements of

(
E
{
ωEk

(
ωBk

)t})t
,

that is,
[
E
{
ωEk

(
ωBk

)t}]
ii
=

[(
E
{
ωEk

(
ωBk

)t})t
]

ii

. The residual variance σ2E(i) is then

obtain by letting k goes to infinity:

σ2E (i) = lim
k→∞

σ2E,k (i)

= lim
k→∞

[
E
{
e
E
k

(
e
E
k

)t}]
ii

= lim
k→∞

[
E
{
ωEk

(
ωEk

)t}]
ii
− lim
k→∞

2
[
E
{
ωEk

(
ωBk

)t}]
ii
+ lim
k→∞

[
E
{
ωBk

(
ωBk

)t}]
ii

and adopt the following assumption:

rBf (n; i) =





rBf (0; i) for n = 0

(
αBi

)|n|−1
rBf (1; i) otherwise

where1 ≥ αBi ≥ 0, (4.15)

rEf (n; i) =





rEf (0; i) for n = 0

(
αEi

)|n|−1
rEf (1; i) otherwise

where1 ≥ αEi ≥ 0. (4.16)
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rBEf (m− n, p; i) =





rBEf (−1, 1; i) for m− n = −1, p = 1,
(
αBi

)|p|
rBf (1; i) for m− n = 0,

(
αBi

)|p| (
αEi

)|m−n|−1
rEf (1; i) for m− n > 0,

0 otherwise,

(4.17)

where 1 ≥ αBi , α
E
i ≥ 0.

where rBf (n; i) and rEf (n; i) are the ith diagonal elements of RB
f (n) and R

E
f (n). In

(4.17), rBEf (m− n, p; i) is ith diagonal element of RBE
f (m− n, p), which is a cross-

covariance matrix between the EL block fEk−n and the BL reference block f
B
k−m,k−m−p in

the BL motion trajectory starting from f
E
k−m. Based on parameters m, n, and p, The

relativity of fEk−n and f
B
k−m,k−m−p is explained by four classified cases. A Markov-like

assumption is utilized for the calculation as well.

1. when m − n = −1, p = 1, or n = m + 1, p = 1, the matrix RBE
f (−1, 1) can

be evaluated with assistance of Tao’s model [11], and rBEf (−1, 1; i) is the ith

diagonal element of RBE
f (−1, 1). This trajectory situation is depicted in Fig.

4.3(a).

2. Since fEk−m and fBk−m,k−m are co-located blocks, we can conclude that fEk−m =

f
B
k−m,k−m. In the case of m − n = 0, RBE

f (0, p) = E
{
f
E
k−m

(
f
B
k−m,k−m−p

)t}
can

be rewritten as RBE
f (0, p) = E

{
f
B
k−m,k−m

(
f
B
k−m,k−m−p

)t}
. According to the as-

sumption of wide-sense stationary process, RBE
f (0, p) is equivalent to RB

f (p) =

E
{
f
B
k

(
f
B
k−p

)t}
, where p is the frame interval between fBk−m,k−m−p and f

E
k−m. The

above trajectory situation is illustrated in Fig. 4.3(b).

3. Fig. 4.3(c) is the trajectory situation of m − n > 0. We suppose that the

target reference block depends only on the last block and not on the entire past

trajectory.

4. In addition to above three cases, the remain case shown in Fig. 4.3(d) is approx-

imated as zero.

-29-



Chapter 4. Rate Distortion Model: Multiple Layers

(a) (b)

(c)

Figure 4.3: Four relativities of fEk−n and f
B
k−m,k−m−p for a 16x16 predicted block.

After computation, we obtain

σ2E(i) =

(
2

2− βEi

)(
rEf (0; i)− rEf (1; i)

βEi
1− αEi (1− βEi )

)

+
rEN(0; i)

1− (1− βEi )
2
− βBi

βEi (β
E
i − 2)

σ2B(i)

− 2βBi
2− βEi

(
rEf (0; i)−

1

1− αEi (1− βEi )

(
βEi +

βBi αBi (1− βEi )

1− αBi (1− βBi )

)
rEf (1; i)

)

+
2
(
βBi

)2

2− βEi

(
1

1− αBi (1− βBi )
rBf (1; i)− rBEf (−1, 1; i)

)

where rBf (n; i), r
E
f (n; i), r

BE
f (0; i) and rEN (0; i) are the ith diagonal elements of R

B
f (n),

R
E
f (n), R

BE
f (0) and RE

N (0), respectively. The parameters αBi and αEi are the impact

factors in temporal correlation between frames of base and enhancement layer. There

are the same reasons in single layer derivation, αBi and αEi are approximated as 1 for all
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coefficients, i.e. αBi = αEi ≈ 1 for all i. As the definition in the theorem T. Berger[12]

βEi ≈ 1− DE(i)

σ2
E
(i)
and rEN(0; i) ≈ βEi DE(i), the EL residual variance of ith coefficient is

σ2E(i) =
σ2E (i)

σ2E (i) +DE(i)

σ2E (i)

σ2E (i)−DE(i)

(
βBi σ2B (i) + 2β

B
i rEf (1; i)

)

+
σ2E (i)

σ2E (i) +DE(i)

(
2
(
1− βBi

)
rEf (0; i)− 2rEf (1; i)

)

+
σ2E (i)

σ2E (i) +DE(i)

(
2βBi rBf (1; i)− 2

(
βBi

)2
rEBf (−1, 1; i) +DE(i)

)

which is a function of enhancement layer distortion DE(i) and base layer imformation

βBi = 1− DB(i)

σ2
B
(i)
; we rewrite it into a quadratic equation:

(A− B)DE(i) + (C − A+ B +DE(i))σ
2
E(i)−

(
σ2E(i)

)2
= 0 (4.18)

where

A =
(
2rEf (0; i) + 2r

BE
f (−1, 1; i)βBi − 2rBf (1; i)

)
βBi ,

B = 2rEf (0; i)− 2rEf (1; i),

C =
(
σ2B(i) + 2r

E
f (1; i)

)
βBi .

The parameters rEf (0; i), r
E
f (1; i), r

B
f (0; i), and rBf (1; i) have been explicated in pre-

vious chapter as (3.13) and (3.14). Now rBEf (−1, 1; i), which is the (i, i)th element
of RBE

f (−1, 1), is obtained by the same method in previous chapter. First, we need
to compute the spatial domain covariance matrix. Then we transform the covariance

matrix into DCT domain to achieve RBE
f (−1, 1). Note that fB and fE are co-located

M×M transform blocks of the current original frame, i.e., fB = fE, however, for differ-

ent prediction mode in BL and EL, they have different corresponding motion vB (sB)

and vE (sE) since a block motion vector is approximated as the motion at the block

center. Fig. 4.4 illustrates the prediction situation. Thus, the (i, j)th element of the
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Figure 4.4: Multi-layer residual signal generating for BL 16x16 predicted block and
EL 16x8 predicted block

spatial domain covariance matrix is

E {Ik−1 (si+vE (sE)) Ik−1 (sj+vB (sB))}

= E

{
σ2I

(
1− ‖(si − sj)+ (vE (sE)−vB (sB))‖

2
2

K

)}

= σ2I


1− ‖si − sj‖

2
2

K
−
4σ2m

(
1− ρ

‖sE−sB‖1
m

)

K


 . (4.19)

4.2 Approximation Distortion Solution for Multi-

ple Layers

A problem that arises in solving EL variance equation is that the equation (4.18)

has unknown parameter, distortion of EL DE(i). In this thesis, we approximate that

the residual coefficients of inter-layer residual prediction obey Laplace distribution.

Therefore, the distortion and entropy function is the same as single layer’s, and we

can obtain the EL variance by soloving the simultaneous equation which contains EL

variance function (4.18) and Laplace distortion function (2.2). The equation is very
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Figure 4.5: Laplace distortion and its approximation.

hard to solve because Laplace distortion is a nonlinear function (2.2). The Laplace

distortion of five different QP values are schematized in Fig.4.5, and it has the same

curve tendency of the other QP values. We can observe that given different QP, there

is a distortion upper bound quickly reached by growing σ2. We can easily bring out

the bounding value of distortion for different QP

Dupper =
q2

12
+ α2.

where q is the corresponding quantization step size. In the case of very small error

variance σ2, however, the distortion would make a great deal of difference from its

upper bound Dupper. We use parabolas through the origin to approach the distortion

curves in the region of small σ2:

Dpara = mσ2 + nσ

= m
(
σ +

n

2m

)2
− n2

4m
,

wherem and n depend on the vertex (a, b) of the parabola. The vertex (a, b) is designed

as the point when Laplace distortion is 0.7 times the distortion upper bound Dupper

sketched in Fig. 4.5. Thus, m and n are given as:

n =
2b

a
,m = − b

a2
.

-33-



Chapter 4. Rate Distortion Model: Multiple Layers

And the approximation curves are illustrated in Fig. 4.5.

Instead of nonlinearly solving the simultaneous equation of (4.18) and (2.2), we

substitute Dupper or Dpara into (4.18) to solve the EL residual variance. A table of the

change points δ (q) for each QP is builded up beforehand. As a result, if the solution

of residual variance σ2E(i) by substituting Dupper into (4.18), which is

(A− B)
(

q2

12
+ α2

)
+

(
C − A+ B + q2

12
+ α2

)
σ2E(i)−

(
σ2E(i)

)2
= 0, (4.20)

is smaller than δ (q) looked up from the change point table, i.e., σ2E(i) < δ (q), we

re-solve it by substituting Dpara:

C − (A−B) + n (A− B) + (n+m (A− B)− 1)σ2E(i) +m
(
σ2E(i)

)2
= 0. (4.21)

where

A =
(
2rEf (0; i) + 2r

BE
f (−1, 1; i)βBi − 2rBf (1; i)

)
βBi ,

B = 2rEf (0; i)− 2rEf (1; i),

C =
(
σ2B(i) + 2r

E
f (1; i)

)
βBi .

The final answer of residual variance σ2E(i) is substituted into Laplace distribution

distortion function (2.2) ultimately for achieving enhancement layer distortion.

4.3 Rate Model for Multiple Layers

The rate model of multi-layer is identical to the rate function of single layer in Sec.

5.1.2. We substitute the EL residual variance with inter-layer residual prediction into

the rate function.

4.4 Rate and Distortion Summery forMultiple Lay-

ers

To summerize, we present an algorithm for modeling a two-layer coding with inter-layer

residual prediction. Single-layer model is used as the base-layer model in SVC.
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Input: Variance of motion field, σ2m,

Correlation coefficient of motion field, ρm,

Variance of intensity field, σ2I ,

Positive number, K,

Quantization step of BL, qB, and EL, qE,

Turning point δ (qE),

Block partition mode pair, sB and sE.

Output: Coding bit rate of BL and EL, RB (qB) , RE (qE) ,

Quantization distortion of BL and EL, DB (qB) , DE (qE) .

1. Compute base layer rate and distoriton:

RB (qB), DB (qB) and σ2B(i) for each coefficient by Sec.3.4.

2. Compute residual variance for a EL M ×M transform block:

2.1 Spatial domain EL parameters:

by (3.13), (3.14),and (4.19)

2.2 Transform residual covariance matrix:

R
T
f = (H⊗H)Rf (H⊗H)t.

2.3 Obtain EL ith coefficient of residual variance:

σ2E(i) = solution of (4.20),

if σ2E(i) > δ (qE) then σ2E(i) = solution of (4.21).

3. Rate distoriton for a EL M ×M transform block:

3.1 Compute quantization distortion of ith coefficient:

DE (qE, i) by (2.2)

3.2 Compute entropy of EL ith coefficient:

HE(qE, i) by (2.3),

Average entropy per pixel, HE (qE) =
1
M2

∑M2

i=1HE(qE, i).

3.3 Output:

Quantization distortion, DE (qE) =
1
M2

∑M2

i=1 DE (qE; i) .

Average bit per pixel, RE (qE) by substituting HE(qE, i) to (3.15) .
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CHAPTER 5

Experiments and Analyses

Having derived our rate distortion model for SVC inter-layer residual prediction, we

conduct extensive experiments in this chapter to evaluate the accuracy of the proposed

R-D estimation method, and to analyze the coding efficiency of the inter-layer residual

prediction by using our model. We compare our model with eight common test video

sequences in CIF and 4CIF format encoded by SVC reference software JSVM 9.19.8[14]

into two quality layers. The proposed model is based on the analysis of MCP coding

for different partition mode. In our experiments, we test the proposed method in IPPP

coding structure. Table 5.1 details above encoder setting. And the mode 16 × 8 and
the mode 8× 16 are viewed as the same due to their symmetry.

5.1 Comparison of Estimation Accuracy

As shown in the R-D function summery of single layer in Sec. 3.4 and multi-layer in

Sec. 4.4, we need to estimate the sequence characteristics σ2I , K, σ
2
m, and ρm. Those

prarmeters are addressed from the statistical models, and their estimations have been

described in the Tao et al. [11]. Instead of the estimation methods in [11], we measure
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Sequence CIF@30Hz, 4CIF@30Hz (120 frames)
DCT transform size 4× 4
Prediction structure 1 Reference Frame + IPPP...
Intra period -1
ME partition mode pair 16× 16/16× 16, 16× 16/16× 8, 16× 16/8× 8,
(BL/EL) 16× 8/16× 16, 16× 8/16× 8, 16× 8/8× 16,16× 8/ 8× 8,

8× 8/16× 16, 8× 8/16× 8, 8× 8/8× 8
Base layer QP 24, 26, 28, 30, 32, 34, 36, 38, 40
Enhancement layer QP BL_QP−4, BL_QP−6, BL_QP−8
Inter-layer residual prediction On

Table 5.1: Testing conditions and encoder parameters.

each parameter through a PSNR curves regression, which is described in a following,

to find the accuracy of the proposed rate disotrtion model in the better condition.

The designed experiment can be described as following steps:

1. Encode sequence into two-layer SVC bitstreamwith inter-layer residual prediction

based on the setting in Table 5.1.

2. PSNR curves regression for the variables σ2I , K, σ
2
m, and ρm: Apply conditions

with BL mode 16×16, EL mode 16×16, and QP difference 4 to the algorithm in
Sec. 3.4 and Sec. 4.4. Then sum up the PSNR values of every BL QP and find

the parameter set that gives the least sum-up PSNR difference from the real.

3. Take the solutions of variables σ2I , K, σ
2
m, and ρm from step 2 as inputs for the

algorithm in Sec. 3.4 and Sec. 4.4 to gererate rate distortion model of every

configuration in Table 5.1.

As our rate distortion model is a combination of distortion function of QP(D-Q) and

rate function of QP(R-Q), we examine the accuracy of distortion and rate separately,

and the following experiments are presented with considering only Luma component.

Besides, considering the simulcast for enhancement layer, we stretch the QP range of

BL PSNR curves regression up to 16, and demonstrate the experiment results in this

QP range.

5.1.1 Distortion Model Accuracy

The proposed rate distortion model, can be used to estimate the D-Q curves of the

encoded video sequences. The encoding distortion is measured in terms of PSNR

between the encoded video and the original one.

As stated before, the proposed experiment requires estimations for σ2I , K, σ
2
m, and
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(a) (b)

Figure 5.1: PSNR v.s. QP curves of BL and EL appling different configuration
regression result. (Foreman)

ρm. Despite that different mode pair has slightly different regression parameters, we

only apply the regression result from the situation of BL mode 16×16, EL mode 16×16,
and QP difference 4. It is reasonable to adopt this simple and convenient method since

the parameters associate with sequence characteristics not the ME mode pair. And

the D-Q curves of the mode pair of BL mode 16 × 16 and EL mode 16 × 16 under
different configurations (mode pair and QP difference) regression result is demonstrated

in Fig.5.1.

The example is the result of Foreman(CIF). We can observe some divergences of

curves under different regression results in both BL and EL.

The D-Q curves estimated with the only one regression result of mode pair of BL

16 × 16 and EL 16 × 16 are compared with the actual D-Q curves in Fig.5.2. It can

be seen that for the two testing sequences with distinct characteristics, the D-Q curves

estimated by the proposed model fit the actual curves very well; the preciseness is

maintained at other QP differences and sequences. To substantiate our claim, Table

5.2 provides the results of all testing sequences in different QP differences; the numbers

represent the average PSNR error of every mode. It is seen that for both base and

enhancemet layer, there is no more than 0.5dB PSNR error across many sequences and

QP differences except, the worst case, BL of Mobile(CIF).
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BL 16× 16 BL 16× 8 BL 8× 8

EL EL EL

Figure 5.2: Real v.s. Model D-Q curves appling one regression result. (mobile and
foreman sequence)
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Resolution Sequence PSNR error
BL(∆dB) EL(∆dB)

Qpd=4 Qpd=6 Qpd=8

CIF Bus 0.36 0.32 0.32 0.34
Football 0.40 0.24 0.18 0.16
Foreman 0.33 0.31 0.25 0.20
Mobile 0.67 0.49 0.50 0.50

4CIF City 0.22 0.29 0.24 0.22
Crew 0.41 0.24 0.19 0.16
Harbour 0.25 0.30 0.28 0.27
Soccer 0.33 0.26 0.20 0.17

Average 0.37 0.31 0.27 0.25

Table 5.2: PSNR error between real and model.

(a) (b)

Figure 5.3: Entropy curves compared with actual curves (Foreman)

5.1.2 Rate Model Accuracy

In JSVM, the entropy coding design includes Context-adaptive binary arithmetic coding

(CABAC) and Context-adaptive variable-length coding (CAVLC). As the bitrate in

video compression is highly related to the entropy coding method and the dependency

of quantized coefficients at block level, it is a very difficult problem to conclude a rate

model.

Based on the assumption of Laplace distribution, the entropy can be obtain as (2.3).

Since entropy is a measurement for the case of independent coding, we can observe

wide discrepancies between the actual R-Q curves and entropy versus QP curves of

Foreman(CIF) in Fig.5.3 as example. Note that we only present the residual rates in

the actual R-Q curves.

The actual rates are encoded by CABAC and the entropy curves is computed with
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(a) (b) (c)

Figure 5.4: Linearity relationship between ln (R) and H∗ (a) Base mode16x16 (b)
Base mode 16x8 (c) Base mode 8x8 form Forman(CIF)

the same parameter set of distortion model, which is the regression result by the mode

pair of BL 16× 16 and EL 16× 16.
To compensate this inaccuracy of entropy, we exploit a relationship between the

real coded rate R and entropy H. A linearity relationship between natural logarithm

of real rate ln (R) and ln

((
1
q

)(1+√
2

σ

)

H
√
2

σ exp(−
√
2
σ
)

)
, which is represented as H∗, is

observed as in Fig.5.4, Foreman(CIF), for example. The blue lines with solid squares

represent the linearity relationship in single-layer coding, and the lines with hollow

tokens indecate the linearity relationship for inter-layer prediciton coding of different

modes.

The other testing sequences have the similar relationship between ln (R) and H∗

as Fig.5.4; we can achieve a modified rate model, which is represented as R∗and is

discribed before in Sec.. The constants a and b in (3.15) are the coefficients of the

approximate line function of ln (R) and H∗, and the constants vary accroding to mode

pair and coded sequence. We provide some example curves of modified rate model

compared with real rate curves in Fig.??. Contrast the modified rate with entropy H,

it can be observed that the rate modification has a great improvement in fitting the real

rate curves acorss difficient sequences. For comprehensive analysis, the results of all

testing sequences in different QP differences appear in Table 5.5; the enormous errors

of entropy H is corrected by the proposed rate model R∗ throughout the difference

sequences.
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Foreman(CIF)

(a) (b)
Football(CIF)

(c) (d)
Soccer(4CIF)

(e) (f)

Figure 5.5: Modified rate( R∗) compared with actual rate, entropy( H) as a contrast.
Blue lines with solid squares are BL R-Q curve. Red lines with hollow squares are
the curves for entropy v.s. QP. Green line with hollow triangles are the curves for
modeified rate v.s. QP
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Resolution Sequence Rate error
BL(%) EL(%)

Qpd=4 Qpd=6 Qpd=8
H R

∗
H R

∗
H R

∗
H R

∗

CIF Bus 29.4 7.1 40.1 11.0 28.9 11.8 20.2 12.3
Football 26.2 3.8 11.5 3.9 10.1 5.0 10.2 6.0
Foreman 122.4 4.3 124.4 7.4 100.3 10.6 80.4 13.4
Mobile 28.1 20.9 28.2 17.3 16.6 15.0 9.6 13.2

4CIF City 433.4 42.2 149.7 29.8 102.2 32.1 67.4 31.3
Crew 24.5 11.5 42.2 9.9 32.4 13.2 26.4 16.2
Harbour 64.3 12.9 57.4 18.0 38.6 19.2 26.3 19.0
Soccer 108.7 7.1 108.7 14.1 82.3 17.6 61.0 19.7

Average 104.6 13.7 70.3 13.9 51.4 15.6 37.7 16.4

Table 5.3: Entropy rate and modified rate error.

5.2 SVC R-D Curve Performance

The performance of SVC with inter-layer residual prediciton is demonstrated in Fig.5.6,

Bus(CIF) for example. The simulcast curve expresses the enhancement layer coding

without residual prediction, in other words, it is a single layer coding applied lower QP.

The following experiments use "base-layer usage" to measure the benefits of inter-layer

residual prediciton; the base-layer usage(BLU), which is an alternative measure of the

utilization of base-layer information, is calculated by

BLU =
Rsimu −Rinter

Rsimu −Rbase

where Rbase, Rinter, and Rsimu denote the kbit-rates of base-layer, inter-layer prediction,

and simulcast, respectively. It should be noted that a base layer usage of 0% corre-

sponds to the coding efficiency of simulcast, while BLU less than 0% represents the

inter-layer prediction is inefficient than simulcast. Besides, Rinter is the rate required

for obtaining the same PSNR of simulcast; this rate is calculated by interpolating the

inter-layer rate-distortion curve for the simulcast resolution using linear interpolation.

Table 5.5-5.6 display the comparison of base-layer usage between real and model,

Bus(CIF) Football(CIF), and Foreman(CIF) as testing sequence . Keeping realistic, we

compute BLU with BL QP equaling 28 for each tesing condition. Despite numerically

inaccurate fitting between real and model, they still show some similiar tendencies.

First, it can be observed that when BL has the same mode as EL, inter-layer prediciton

attains the best performance. Second, viewing the change of QP difficience, we can see
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(a) (b) (c)

Figure 5.6: SVC performance (Football), the dotted lines indecate the distance be-
tween simulcast and base layer, as well as the distance between simulcast and inter-layer
residual prediction

Bus(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8
BL EL Real Model Real Model Real Model

16× 16 16× 16 24.9 31.0 47.9 29.7 15.7 30.0
16× 8 9.6 16.5 8.4 17.7 5.7 19.8
8× 8 -7.3 -1.0 -5.7 5.3 -5.3 11.6

16× 8 16× 16 -2.7 3.1 -1.9 7.1 -2.3 11.5
16× 8 22.0 29.2 18.1 27.1 13.3 26.9
8× 16 -7.4 1.6 -5.5 5.2 -5.3 9.3
8× 8 -1.5 3.9 -1.7 8.0 -2.1 12.8

8× 8 16× 16 -2.1 4.4 -1.5 8.7 -1.8 13.2
16× 8 7.3 14.9 6.6 16.4 4.3 18.8
8× 8 19.3 25.9 14.7 26.0 11.3 27.7

Table 5.4: Base-layer usage with base-layer QP equaling 28., Bus(CIF).

the inter-layer prediction performance of most mode pair is decreasing as QP difference

grows.
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Football(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8
BL EL Real Model Real Model Real Model

16× 16 16× 16 30.1 30.6 49.8 28.3 20.7 26.7
16× 8 9.3 7.5 7.6 10.1 7.3 12.2
8× 8 -8.8 -10.5 -8.0 -4.3 -7.0 0.4

16× 8 16× 16 -0.5 1.1 -0.1 4.2 -0.4 6.8
16× 8 27.9 27.6 22.5 36.4 19.2 24.8
8× 16 -7.0 -3.8 -5.7 0.9 -5.5 4.7
8× 8 -1.9 -1.6 -3.0 2.1 -3.0 5.1

8× 8 16× 16 -3.1 -0.9 -2.7 2.7 -2.37 5.7
16× 8 5.8 6.1 4.5 9.0 4.7 11.4
8× 8 25.1 24.8 18.8 23.2 14.67 22.1

Table 5.5: Base-layer usage with base-layer QP equaling 28., Football(CIF).

Foreman(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8
BL EL Real Model Real Model Real Model

16× 16 16× 16 6.8 9.9 43.3 12.9 2.3 15.8
16× 8 -5.4 -6.0 -6.3 1.8 -5.3 7.4
8× 8 -30.9 -26.7 -19.9 -14.3 -16.6 -5.4

16× 8 16× 16 -9.0 -7.4 -6.3 0.7 -5.6 6.6
16× 8 5.3 4.3 1.1 8.7 0.1 12.8
8× 16 -20.4 -15.6 -13.5 -4.8 -11.3 3.0
8× 8 -21.7 -18.2 -13.7 -8.6 -12.1 -1.3

8× 8 16× 16 -7.4 -7.3 -5.1 0.9 -4.6 6.8
16× 8 -1.6 -3.0 -3.0 4.0 -2.7 9.2
8× 8 -4.9 -2.2 -2.4 2.8 -3.7 7.4

Table 5.6: Base-layer usage with base-layer QP equaling 28., Foreman(CIF).
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CHAPTER 6

Conclusions

In this thesis, we derive a rate-distortion model for Coarse-Grain Quality Scalability

by construction of a forward channel model and an assumption of temporal-stationary

process. Afterwards we apply motion and intensity models to interpret the autocovari-

ance factors in proposed model. These models provide parameters of motion, intensity,

and block-partition mode to analyze the block-level motion-compensation predictor.

Through the proposed R-D model for SVC, we estimate the R-D curves of inter-layer

residual with different mode pairs, different sequences, and different QP differences.

Experiments shows a high accuracy of distortion error less than 0.5dB; a great correct-

ness of rate model by an entropy modification function is also demonstrated.

The proposed R-D model for SVC will be extended to several applications:

1. To propose a rate-distoriton function for optimal bit allocation of SVC.

2. To find the Lagrange multiplier for R-D optimization in SVC with Multi-layer

encoder control.

3. To give a theoretical analysis for fast mode decision in SVC.
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