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National Chiao Tung University

ABSTRACT

In Scalable Video Coding (SVC), the inter-layer prediction and the variable motion
estimation block partition modes for motion-compensated prediction (MCP) cause
differences in rate and distortion.behavior; however, there are just few models could
explain the rate and distortion behavior-of SVC, not to-mention methods which focus
on analyzing the rate and distortion of different partition mode pairs in SVC. In this
thesis, we derive analytical mode-dependent rate and distortion models for
Coarse-grain scalable video+~coding techniques. - The rate and distortion models for
base and enhancement layer both depend on the partition mode and sequence
characteristics with consideration of the inter-layer residual prediction capability in
enhancement layer. Adopting a forward channel model and an assumption of
temporal-stationary process in the derivation of proposed models, we interpret the
reconstructed block by a motion prediction trajectory and model the transformed
residual variance into a mode-dependent statistic. Our experimental results show that
the proposed model can estimate the actual-coded R-D curves of different partition
modes in base layer and enhancement layer with high accuracy. In addition, similar
tendencies between model and actual-coded curve are observed over the

performances of different mode pair encoded with inter-layer residual prediction.
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CHAPTER 1

Research Overview

1.1 Introduction

Scalable Video Coding(SVC) approaches have been investigated for more than 20 years
to answer demand from various video transmission channels and heterogeneous viewing
devices.

In the aspect of traditional nonscalable video coding, hybrid coding has drawn most
of the attention in the past several decades, which derives well-known H.264/AVC
standard. In hybrid coding, motion-compensated prediction (MCP) is used to exploit
temporal similarities between successive video frames (inter-frame coding). Transform
coding is then implemented in two steps, first, converting spatial values into transform
coefficient values and second, quantizing the coefficients to achieve a lossy compression.
In the block-based MCP, each macroblock is split into one or more partition, refered
to partition mode, for motion compensation. Different partition mode causes different
coding efficiency; when it comes to mode decision, the rate and distortion behavior of
each partition mode is then desirable for decision criterion.

Scalable Video Coding as proposed in [1][2] is an extension of H.264/AVC standard.

-2-



Chapter 1. Research Overview

Instead of independently encoding consecutive spatial layers using MCP based coders,
SVC adopts additional inter-layer prediction to exploit statistical dependences between
different layers. In comparison to simulcasting different qualities or resolutions, in
inter-layer prediction method, pictures with higher quality or resolution levels utilize
the information from the lower levels in order to improve coding efficiency. The issue
of how to analyse the performance of inter-layer prediction then catches the attention

and becomes critical.

1.2 Problem Statement

In transform coding of images and videos, two important factors are coding bit rate R
and picture distortion denoted by D. Analysis and estimation of the R-D performance
are significant in image and video coding. For example, based on the rate and distortion
models, optimum bit allocation as well as other R-D optimization procedures can be
adopted to improve the coding efficiency and, consequently, to improve the image
quality or video presentation quality. In typical hybrid video coding, the rate and
distortion behaviors are relevant to motion estimation partition mode of MCP and
quantization method.

Many efforts have been made on.deriving rate and distortion model for non-scalable
hybrid coding [3][4][5]. Basically, these methods provide analytical or empirical ap-
proach to the rate and distortion of overall video sequences. Among the non-scalable
rate and distortion models, [4] proposes a quantization-distortion model for H.264/AVC
with particular consideration of the motion-compensated prediction effect, however, the
non-linear numerical computation required by this model is impractical, and it cannot
be used to model the R-D variation between different partition mode in block level. In
addition to the non-scalable coding, the rate distortion analysis in [6] gives a framework
for evaluating the rate-distortion theoretic lower bound for spatially scalable video cod-
ing in general. The approach in [6] is simply an extension of that in an earlier work by
B. Girod [7] and the authors in [6] propose ideal assumptions for theoretical analysis
which are far from adequate to describe real SVC codec’s. For capacity of practical
application, an operational and analytical rate distortion model is still needed. In this

thesis we derive rate and distortion models, which depend on block partition mode, to
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approach the behavior of H.264/AVC coding and its extension SVC with inter-layer

residual prediction for Coarse-grain scalable coding. When considering the inter-layer

residual prediction, the problem of rate and distortion modeling in H.264/SVC is very

challenging. This study aims to provide answers to the following questions:

1.

How do we determine the single-layer mode-dependent rate and distortion models

based on prediciton and quantization shcemes of H.264/AVC.

. How do we extend the single-layer mode-dependent rate and distortion models

for SVC inter-layer residual prediction, given quantization parameters qg for base

layer and qg for enhancement layer?

. How do the rate and distortion behave with different partition mode and different

characteristic factors extracted from an input sequence?

. How does inter-layer residual prediction perform when applied to different parti-

tion mode pairs for MCP?

Since R-D behavior is affected by features of input sequence and quantization para-

meter, this thesis provides an in-depth study on the relationship between rate distor-

tion and video contents, as well as relationship between rate distoriton and quantiza-

tion parameter in SVC for_characterizing the rate-quantization (R-Q) and distortion-

quantization (D-Q) models.

1.3 Contributions and Organization of Thesis

Specifically, our main contributions in this work are:

Two mode-dependented distortion-quantization (D-Q) models are proposed for
non-scalable and scalable video coder.

Two mode-dependented rate-quantization (R-Q) models are conducted for non-
scalable and scalable video coder.

Our analysis is capable of evaluating the R-D performance of different mode pair

with SVC inter-layer prediction.

The remaining of this thesis is organized as follows: Chapter 2 contains a review of

hybrid coding, Coarse-grain scalability in SVC and a rate distortion model based on

Laplace distortion. Chapter 3 presents a derivation of single layer rate and distortion

models. And the rate distortion model for multi-layer encoder is introduced in Chapter
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4. Chapter 5 provides simulation results of examining the accuracy of proposed rate
and distortion models and analyzing the performance of inter-layer prediction. Finally,

the thesis is concluded with a summary.



CHAPTER 2

Background

2.1 Overview of Hybrid Video Coding

In hybrid video coding depicted in Fig:2-1;-a video sequence is temporally segmented
into several groups of pictures (GOP). Each picture is divided into numbers of mac-
roblocks (MBs); each MB is split into one or more MB partitions and an intra or
inter prediction is applied on each partition. The error generated as difference between

predictor and current block is called motion-compensated prediction (MCP) residual.

Quantization Distortion
&
Entropy

MCP residual | -
Transform Quantization pieapy ——> Coding Rate

Coding

Quantization parameter

Figure 2.1: hybrid coding diagram.
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Then a fixed M x M block transform, which is commonly a DCT transform, is applied
to the prediction residual of inter and intra-prediction modes; the prediction residual
blocks are therefore transformed into DCT coefficients. Note that the size of an M x M
transform block is always less than or equal to the partition sizes in a MB. After that,
scalar quantization followed by entropy coding is applied to the DCT coefficients. Fi-
nally, the quantizer causes the main quality loss of compression, which is quantization

distortion D.

2.2 Overview of Scalable Video Coding

2.2.1 Concept

Scalable Video Coding (SVC) standard [2][8][1] is a scalable extension of the H.264/AVC
standard developed by the Joint Video Team (JVT), which allows a single bitstream to
provide multiple frame sizes, frame rates and quality levels while achieving a reasonable
coding efficiency. An SVC bitstream is organized inte-one base layer(BL) and one or
more enhancement layers(EL) in eorresponding dimension if it provides certain scala-
bility. A subset of SVC bitstreams can be extracted to form another valid bitstream for
a given decoder and be decoded to produce a playback with a reduced reconstruction
quality compared to the original bitstream.

SVC supports three types of scalabilities: spatial, temporal and quality scalabilities.
Subsets in the spatial scalability bit-stream represent the source content with a reduced
picture size (spatial resolution). The temporal scalability is provided by hierarchical
temporal prediction structures for each coding layer while quality scalability is achieved
by two approaches: Coarse-grain scalable coding (CGS), which can be considered as a
special case of spatial scalability with identical frame sizes for base and enhancement
layer, and medium-grain scalable coding (MGS), which provides quality refinement

layers inside each spatial layer and enables packet-based quality scalable coding.

2.2.2 Coarse-grain Scalable Coding (CGS)

SVC performs CGS through encoding series of quality layers, which have the same spa-

tial and temporal resolutions. At first, the texture information is encoded into an AVC
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Figure 2.2: H.264 quantization scheme.

compatible bitstream to provide a base layer(BL) with the minimum quality among
layers at a given quantization level.~ At enhancement layers(EL), CGS decreases the
quantization step sizes and encodes successive refinements of the transform coefficients.
For residual information, inter-layer prediction is employed. The base layer signal of the
co-located block is used as prediction for the residual signal of the current enhancement

layer macroblock, so that only the corresponding difference signal is coded.

2.3 Rate and Distortion Model Based on Laplace

Distribution

Laplace distribution [3][4][9][10] is a well-known distribution which bear resemblance
to the distribution for DCT coefficients of images. Due to its low computational com-
plexity and high accuracy, in this thesis, we choose Laplace distribution as the base
distribution of transform coefficient in the proposed derivation. A zero-mean Laplace-

distributed random variable with probability density function (pdf) is:
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where x represents the transformed residual, and Laplace parameter A is a function
of o, which is their standard deviation indicating the property of the input sequence.
Recent coding standards usually adopt the uniform quantizer depicted in Fig. 2.2. The
probability that transform coefficient x fall inside each quantization bin ¢ are calculated

by

ig+4+a . \2 r
e (x—ig)” f(x)dr if i >0,

P(i) = fj 2F (2.1)
20 22 f(x)de if i = 0.

where ¢ is quantization step size and « is the quantizer dead-zone parameter. For
H.264/AVC inter frame coding, o = Z. The above probability (2.1) can be computed
and then represented by a close form. the close form then introduces the distortion

function:
—q—2«

exp( V2o )
Il exp(;?q)

D = 0% — (204 1/20)

q, (2.2)

In addition to the distortion ‘model;the entropy of the quantized transformed residuals

can also be computed according to the entropy definition with the probability function.

H="= Z P()log P(7)
= —P(0)log P(0) =2 _ P(i)log P(i).

i=1

And the closed form of entropy is obtained by:

c
H = —pglogpy — (log ]—9) (1 - po) - (2-3)

where

e o2 51— p).

In the next chapter, the proposed rate distortion model will be discussed in detail

based on Laplace distribution.



CHAPTER 3

Rate Distortion Model: Single Layer

This chapter presents the derivation of our operational rate distortion model for a
single layer, or so-called base layer in SVC. Single layer, which is equivalent to the
well-known AVC coding, means that the encoded bitstream does not contain scalable

resolutions or scalable bit-rates.

3.1 Derivation Outline

Based on Laplace distribution and H.264 quantization scheme, a coefficient distortion
function of residual variance o? and quantization step size ¢ can be developed as in
(2.2). As well as the entorpy function is obtain by (2.3).

Given a quantization step size ¢ in the distortion model, the influence of MCP
method can only be revealed in the variance of residual transform coefficients 2. To
model the impat of MCP schemes on distortion and rate behavior, we introduce a
forward channel model to help us conveniently construct a hybrid coding flow. Then
we formulate a closed-from residual variance function o2 (¢) and use it to attain the

rate and distortion model.

-10-
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The MCP prediction error in block base is generated as difference between pre-
diction block in coded reference frame and the current block; current residual is then
encoded and the current distortion is formed. Considering that current block distor-
tion is also relevant to distortion of reference block, in this thesis we assume that video
sequence is a locally temporal-stationary process.

The statistical models proposed by Tao et al. [11] are used to characterize the mo-
tion and intensity fields of video signals. These models provide parameters of motion,
intensity, and block-partition mode to analyze the block-level motion-compensation
predictor; therefore, the closed-from residual variance function o2 (q) we have can also
be controled by those motion, intensity, and block-partition mode parameters. Even-

tually, a rate distortion model that react to the MCP method is achieved.

3.2 Distortion Model for:Single Layer

H.264/AVC is based on the block=based hybrid coding approach. The motion estima-
tion is performed to find the prediction of each macroblock(MB) partition, and DCT
transform followed by quantization is applied on each*M x M segment block inside
a macroblock individually. ‘It follows that -the rate distortion model of a MB can be
reduced to modeling an M x M transform block coverage. Therefore, the derivation of
the distortion model of an inter mode is'depicted on the basis of an M x M transformed
block. To model the distortion for a whole MB, we only need to model each M x M
transform block separately.

To evaluate the transform domain residual variance o2 for distortion function of
Laplace-distributed source, we first formulate the prediction error by subtracting the
reconstructed reference frame from the current kth original frame. Let f;, be the vec-
torization of an M x M intensity block of an MB to be coded in (current) frame £k,
and Akaq be the vectorized motion-compensated prediction of f;, in the reference frame

k — 1. The corresponding residual vector ey, is
e, = fk_i::k—l- (31)

Let e, f7, and ?,l , represent the transformed vectors of ey, fj, and ¥k—1, respectively;

DCT, H, is used to transform vertically and horizontally each M x M block correspond-

-11-
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Figure 3.1: Forward channel model and models in matrix notation.

ing to ey, fi, or ?k,l, and the equivalent transform after vectorization is HQH, where

® is the Kronecker product. Since the equivalent transform is linear, (3.1) implies

L, 2
where e} contains M? transform coefficients in column-major order.

Although being followed by specific quantization and entropy coding in hybrid video
coding, the transform is instead accompanied with the forward channel model, as shown
in Fig.3.1 [12], in the following derivations. It is well-known that if a Gaussian source
with mean zero and finite variance ¢% and an additive Gaussian noise are given, then
with proper scaling § =1 — J—% of the channel input, direct connection of the source
to the channel results in a system that provides an ideal rate distortion function of
the source with respect to the squared-error criterion, where D is the squared-error
distortion between input and output. Though the forward channel needs a Gaussian
source as the input to achieve its ideality and is not quite suitable for the transformed
residual signal, it is still adopted in our framework for mathematical tractability.

Based on the optimum forward channel as shown in Fig.3.1(a), we can give a model
of hybrid coder as Fig.3.2 with dimension M? extension obtained by Fig.3.1(b) for
applying intensity input e’ to it. Thus, the reconstruction €7 of prediction error e}
is obtained by:

&/ =Bel +n}, (3.3)

where n} is a memoreless additive Gaussian noise vector, which is statistically inde-

-12-
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n;
el -
f:'___*<:z> d I&, <%:}————oek
e
-7 ; =T
fo: Predictor |

Figure 3.2: 3-D Model of Hybrid Coder.
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Figure 3.3: Motion trajectory for a-16x16 predicted block along the time axis.

pendent of the input vector. By, is'an M2 x M? diagonal scaling matrix whose diagonal
entries represent the scaling 4’s for'each coefficient.

Let fg be the reconstruction of £, 87 can be rewritten as
& =fi —fi .. (3.4)
Substituting (3.2) and (3.4) into (3.3) gives
£ = Byfl + (1— 5L, + ], (3.5)

which shows an affine relation between ?,Z and EZ 1- In general, the M x M predicted
block corresponding to fk{ | is not aligned with an M x M transformed block in the ref-
erence frame, so (3.5) is only valid for ?,Z . However, we adopt the alignment assumption
that (3.5) is valid for every nonnegative integer k, and thus the reconstructed inten-
sity sequence {f',? }k>0 satisfies a recurrence relation and shows a motion trajectory, as

shown in Fig.3.3.

-13-
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Substituting (3.5) into (3.2) recursively gives the closed-form

k—1 /n—1 k=1 /n—-1
el =f7 — Z (H (I- Bk—l—i)) Bi1nfl i, — Z (H (I- Bk—l—i)> n_i_,

n=1 \=0 n=1 \=0

k—1
- Bk—lf]zil - HZA - <H (I- Bk—l—i)) fi- (3.6)

=0

As different characteristics appear between frames, the scaling matrices B;’s may be
unequal. Since characteristics between frames do not vary greatly except for some
special cases, e.g., scene changes, a temporal-stationary assumption, which assumes
the scaling matrices are all equal, i.e., By = B for every k, is introduced to simplify

the very complicated (3.6):

k-1 k—1
ekT = fkT_ Z(I_ B)" Bfk 1-n ] Z(I_B>nnkT—1—n - (I_B)kf—Tl
= n=0

ZA fl;rl n ZC nk 1-—n» (37)

where A, = (I-B)"B, G, = (I -B)", (I—B)"'= I and fZ, = 0. That 7, equals
0 indicates the M x M block corresponding to fZ along the motion trajectory in the

first frame (k = 0) is intra-coded:

}BT = Bofg + (I — B0>¥Z1 + nOT

=Bf] +nl. (3.8)

In general, e, is a zero-mean random vector and so is e?. Thus, the covariance

matrix of e/ can be computed as follows:

k—1 k—1
E {e,Z (eg)t} =RT(0)~ Y ART (n+1) - Z (ART (n+1))" (39
k—1 k—1 i n7€0—1
+ ALRT (n—m) (An) + > C.RE (0) (C.)',

where

R?(n—m):E{fk{n (fk{m)t} for k > n,m >0,

-14-
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and

RZ (n—m) = E{nk n (nk{m)t} for k>n,m >0

R% (0) forn=m
0 otherwise

where 0 is a zero matrix.

While M x M blocks along the motion trajectory, regarded as a vector-valued
random process f7, is assumed to be a vector-valued wide-sense stationary process,
it implies that the autocovariance R? (n —m) depends only on frame interval n — m.
Therefore, the two autocovariance functions are independent of the specific frame num-
ber k. Noting that any intensity vector and noise vector are statistically independent,
we have

E {fk{n (nk{m)t} = 0for k > n,m > 0.

The covariance matrix of €7 canbe seen‘as a generation of the scalar-valued variance

o2 (i) of ith coefficient of-e], which is extracted from the ith diagonal element of

E{el (ef)'}:

k-1 k=1 k—1
op (i) =rF (031) = 28; Y (L= B)" ki) + 87> ) (1= 5)"" 0 (n—m;i)
- n=0 n=0 m=0
S (A ), (3.10)
n=0

where 77 (n;i) and 7 (0;) are the ith diagonal elements of R} (n) and R} (0), re-
spectively.

Instead of deriving variance in a specific frame k, i.e., o2 (i), it is more useful to
consider the convergent behavior of hybrid coding. Let k goes to infinity and adopt

the following Markov-like assumption:

T .
r% (0;14) forn =10
7“? (n;i) = ! wherel > «; > 0.

(a)"! r{ (1;4) otherwise

-15-
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We then obtain

o? = lim o} (1)
k—o0

(5= )T 00— (5= b VT (1) 4 N (050)
_(2_@‘) 7 (0) (2—5i)1—ai(1—ﬁi)f(1’)+1_(1_ﬁi)2' (3.11)

Equation (3.11) shows a convergent form for the variance of the ith coefficient.
Before substituting (3.11) to Laplace distortion function (??), we need to fill up the
parameters shown up in (3.11), i.e., a4, 53;, T]T (0;4), 7’? (1;4), and 7% (0;4).

The parameters «; are the impact factors in temporal correlation between frames
which motion-compensated prediction (MCP) tries to exploit for a better prediction
efficiency. MCP usual shows a better prediction efficiency when «;’s are all closed to
1 than that when closed to 0. To model a single-layer video coding with a good MCP
scheme, each «; is approximated as 1 for all coefficients, i.e. «a; ~ 1 for all 7. As
the definition in the theorem T. Berger[12] B; &1 — & and r7 (0;4) ~ 3;D; (3.11) is
deduced:

o= 2r7 (0;8) = 2rf (1;i). (3.12)

From the equation (3.12), we conclude that-the transformed residual variance o? is
a function of r}r (0;4) and 7“]:( (1;4)." According to the definition in (3.9), r% (0;4) and
r? (1;4) are the ith diagonal elements of R? (0) and RJT (1), respectively. Regardless
of the independent factor, frame number k, R? (0) is autocovariance of the M x M
transform block fZ and R? (1) is covariance between fZ and motion compansated
reference block f7 ;.

In order to analyze the distribution of motion-compensated residuals, Tao et al.
[11] assumes that the autocorrelation function of the intensity and motion fields can

be approximated with a quadratic function and an exponential funciton, respectively:

E{I} (si) I (sj)} = o

~to
VR
—_
|
W
J
N‘ !
7))
<.
o o
\_/

E{v, (s:)va (85)} = E{v, (s) vy (s7)} = o2om " and E{v (s))} = E{v ()},

where I, (s) represents the intensity value of pixel s = (z (s),y (s)) in reference frame;

v (s) = (v, (8),v,(s)) denotes the motion of s, and {0%, K} and {02, p,,} are their
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Chapter 3. Rate Distortion Model: Single Layer

Figure 3.4: Single-layer residual signal generating for a 16x8 predicted block

(respective) variances and correlation coefficients. In [13], these model are further ex-
tended to address the motion sampling efficiency for MCP. In the temporal dimension,
it is further assumed that I, (s) = Iy_1 (s + v (s)), where I, (s) represents the intensity
value of pixel s in current frame; moreover, a block motion vector v, is approximated
as the motion at the block center; i.e., v. &~ v (s.), and in that regard, block-based
motion estimation is seen as.a motion sampler.

The f7 and f7 | are the transformd intensity vectors of current block and reference
block; however, Tao’s model{11] approximates the intensity fields in the spatial domain.
To derive the transfrom domain autocovariance matrices R (0) and RT (1), we first
illustrate a current intensity block in.matrix form F,, and each element of Fy is in
correspondence with each pixel intensity of block. For processing with covariance

matrix, we need current intensity vector f, = vec (Fj) in column-major order:

Ii(s1) Ir(sar1) - Ik (Sme-m)
P Iy (s2)  In(smre2) -+ In(Sm2-nri1)
i Ik (SM) Ik (SQM) Ik (SMZ) |
—>fk: [ Ik<Sl) Ik (Sg) Ik<SM2) t

Considering for the transformed block F7 in matrix form, which is a 2-D transfor-
mation by M x M DCT matrix H, we can achieve the transformed vector f7 = vec (F])

in column-major order:

F] = HFH' — 7 = (HoH)f,

-17-



Chapter 3. Rate Distortion Model: Single Layer

R7 (0) = £ {f7 (£7)'}
— E{(HoH) f, (HoH) f,)'}
— (HeH) E {f,f.} (HoH)"

RI(1)=E {fkT—l (fkT)t}
= F {(H@H) fi._1 ((H®H) fk)t}
— (HoH) E {f; 1 f} } (HoH)'

We define the spatial doman covariance matrix £ {fif} }and E {f;_1f}} to be R (0)
and Ry (1). The (i,7)th element of Ry (0) , or [E {fifi}],;, is then computed with

assistance of Tao’s model [11]:

E{Ix (si) I (85) } = B {1 (8i4V(81)) [r—1 (85 (s)) }

5 I(si=8)) A (v (s1) —v (5,))ll3
]

lIs: —s;||
B a0k (1- )

=07 |1 T T (3.13)
The (4, j)th element of Ry (1), or [E {fi_1£;}],;:
E {1 (si+ve) I (85)} = E {1 (si + v (se)) Ix-1 (854 (s))}
Y P Isi —s;lly s, (1 B pl’l’”s”c_sjul) (3.14)

K K

Finally, we estimate the parameters o%, K, o2,, and p,,, which account for the

sequence characteristics, and the distortion model is obtained by substituting residual
variance (3.12) to the Laplace distortion function (2.2). The algorithm is detial in the

following section and the estimation of parameter is described in experiment ch.5.
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3.3 Rate Model for Single Layer

The entorpy (2.3), denoted as H, of the quantized transformd residuals is actually far
from the true coding rate such it is the measure of independent coding. In hybrid cod-
ing, quantizated transform residuals are always dependently coded, like run-length cod-
ing, at a block level. And it is extremely difficult to redeem this inaccuracy caused by
dependent coding. The authors in [9] have noticed a stable relationship between the real
coded rate R and entropy H and modified the rate model by involving some correciton

factor. However, we bring out a more steady and more significant linearity relation-
. . 1 <1+§> V2 ﬁ
ship between natural logarithm of real rate In (R) and In (E) H77 exp(—¥%) |.

Then we proposed a new and more accurate rate model:

V2
(7)), 2
IR ~aln <5) Héexp(—i) +b

o

g

122, - /3a 2
R~q ()l exp (b \ Q) (3.15)

where the a and b are both constans at prediction mode level, and o2 is the estimated

residual variance by computing (3.12).

3.4 Rate and Distortion Summery for Single Layer

In this section, we give a summerized algorithm for a single layer modeling through
previously proposed rate and distortion model. Some external parameters need to be

provided as inputs.
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Input: Variance of motion field, o2,

Correlation coefficient of motion field, p,,,

Variance ofIntensity field, o,

Positive number, K,

Quantization step of ¢,

Block partition mode, or prediction block center, s..
Output: Coding bit rate, R (q),

Quantization distortion D (q) .

1. Residual variance for a M x M transform block coefficients:
1.1 Compute spatial domain parameters:
R, (0) by (3.13), Ry (1) by (3.14).
1.2 Transform residual.covariance matrix:
R7 (0) = (HoH)R; (0) (HQH)'.
RT (1) = (HoH)R; (1) (HoH)'".
1.3 Computesingle layer ith variance of coefficients:
o? by (3.12),
2. R-D for a M x M transform block:
2.1 Compute quantization.distortion of ith coefficient:
D; (q) by substituting o2 into (2.2).
2.2 Compute entropy of ith coefficient:
Hi(q) by (2.3),
2.3 Output:
Average variance per pixel, o M2 ZZ 1 o2 .
Average entropy per pixel, H (¢) = 11 ZMz H; (q).
Quantization distortion, D (¢) = 312 Zi:l i (q) -
Average bit per pixel, R (¢) by substituting H (¢) and o2 to (3.15).
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CHAPTER 4

Rate Distortion Model: Multiple Layers

In the preceding single layer derivation, which exploits.-forward chennel model to form
a model of single-layer hybrid coder, we have concluded the D-Q and R-Q function by
an estimated residual variance function. In this chapter, we present the rate distortion
model of the enhancement layer in Coarse-Grain scalable video coding, which can utilize
inter-layer residual prediction to achieve a better prediction efficiency. Without loss of

generality, a two-layer scenario is studied in the thesis for simplicity.

4.1 Distortion Model for Multiple Layers

The framework of a two-layer CGS coder base on the forward channel model is depicted
in Fig. 4.1

We denote the transform-domain base-layer signal with a superscript B and transform-
domain enhancement-layer signal with E. For example, ef and e represent the
transform-domain prediction residual vector for the base layer and enhancement layer,
respectively, of an M x M transform block of the current kth original frame. Note

that in CGS, the base layer input vector fZ and the input of enhancement layer £F
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m,
E B
=1 €; £ ~E
[ = B; e
N
ﬁ
L
-E { Enhancement i
fi b Layer Predictor k
S
n -l
x I
i
B
¢ | ~B
—)@—) B ex

~B Base Layer
| Predictor

Figure 4.1: 3-D model of SVC hybrid coder with inter-layer residual prediciton.

are vectorization of co-located M X M transform blocks of the current kth original
frame, which are identical because both of base and enhancement layers are in the
same resolution.

Fig. 4.1 illustrates the framework of a two-layer scalable coder with inter-layer
residual prediction. The dashed ‘lines in Fig: 4.1 indicate the inter-layer prediction
propagation path of reconstructed base-layer residual €”. In that way, the enhancement
layer prediction residual e to be coded exploits the spatial redundancies by subtracting
the base layer coded residual €2. The enhancement layer transformed residual vector
is

el = fF—fF —@&b. (4.1)

The reconstruction € of inter-layer prediction error ef is then made through the

forward channel model:

& = Brey +ny, (4.2)

or it can also be made as:

&P =—fF —fF, —@&b. (4.3)

Substituting (4.1) and (4.3) into (4.2) gives transform domain representation of

enhancement layer coded frame with Inter-layer residual prediction based on one base-
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layer

£2 = BEEP + (I—- BE) T2, + (1—BE) &P +nf. (44)

Adopting the same alignment assumption in single-layer derivation and temporal-
stationary assumption, which assumes B = B for every k, we substitute (4.4) into

(4.1) recursively and then give the closed-form

k—1 /n—1 k—1 /n-1
ey = /- Z (H (I - BEli)) By, W, - Z (H I -By z ) 0,

n=1 \=0 n=1 \1=0
k—1 k—1 n
- By f, —ni, - ( (I - BkE—l—z‘)> £ — Z (H (I - Bk—l—i)) &1, — e
i=0 n=0 \i=0
= Z AEfk 1-n Z CEnk 1-n Z CEek m (45)
h e A
"k k

where AL = (I—BE)nBE, CE = (I—BE) ,and f”

wn, 1 < n < k are reference

blocks in the EL motion trajectory starting from £ with €2 1 < n < k denoting
their co-located BL coded residual blocks defined as:

&L, =Blel +np,,.

To explain the reconstructed block in the first intra-coded frame (k = 0), we define
fZ = 0 and 6% = 0. And the definition 2 = 0 indicates that there is no inter-layer

residual prediction in intra coding. Then E{E is obtained by:

7 =BUY + (1-BY) 2 + (1-BL)&? +nf

_ BEEP 4l

The original residual signal of kth frame in single layer el is modeled as (3.7); each
M x M transform block f/' 1 < n < k is along an independent single-layer motion
trajectory predicted starting from f{. Nevertheless, in the inter-layer prediction, e?
is the BL original residual vector of the block which corresponds with the EL block

£f  in (k — m)th frame. And £ is the reference block in the EL motion trajectory
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starting from fF. Thefore, we define e as:

k—1 k—1
B Y J ) BeB B_ B
Ch—m = fk—m - E Ap fk—m,k—m—l—p - E Cp Ny mk—m—1—p>
p:O p:O

where AP = (I- BB)pBB, Cl=(1- BB)p, and £7 ., 0 <p<k—1are
reference blocks in the BL motion trajectory starting from £ illustrated in Fig. 4.2,
in other words, the starting block in the BL prediction trajectory is the co-located
block f7 ,, in EL. And ng , ., ,,0 <p <k —1 are corresponding Gaussian noise

vectors. Hence, € = can be rewritten as:

k—m—1 k—m—1

EkB—m = BB (ka—m - Z Afka—me—m—l—p - Z Cfnf—m7k—m—1—p> +nl§—m‘ (46)
p=0 p=0

For tractability, we separate the right-hand side of (4.5) into two terms represented

as wf and wf. According to (4.6); the last term in<(4.5) is obtained by:

k—1
B __ E~B
k Cmekfm

3
=}

E
—_

k=m—1 k—m—1
E B E BeB B_ B B
Cm B fkfm - E Ap fk*m,k—m—1~p - Cp Ny mk—m—1—p +n,,

p=0 p=0

[en]

m=

(4.7)

Since ef is a zero-mean random vector, the transform-domain EL residual covari-

ance is shown as:

t
Efef (ef)'} = B{wf (wF)'} - B{wf @P)'} - (B{wF @B)'}) + B {wf («F)'},
(4.8)
and we can observe that the first squared expectation term is arithmetically identical

to the derivation of single layer covariance matrix of e} (3.9).

k-1 k—1
t t
E{wf (@F)'} =RF(0) = Y AFRE(n+1) = > (AFRF (n+ 1))
n=0 n=0
k—1 k-1 k—1
+ ATRE (n—m) (An) + Y CIRE(0)(Ca)',  (49)
n=0 m=0 n=0
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Oth frame k-1th frame kth frame

_fE

T Chirrent Hlock
| )

Tipa .ono/ \\\f‘g
B QO

\

~B ~B ~B
Enhancement Layer F‘E" ) €1 — _}_ek_ ———

/ f:? B—l,k—l /

f01,;0 f.l{,ko\' T

Figure 4.2: EL and BL motion trajectory starting from f¥  for a 16x16 predicted
block.

where
RY(n—m)=F {f,fin (f,im)t} for k > n,m >0,

and
RY (n—m)= K {n,’f_n (nkE_m)t} for k >n,m >0
R% (0) forn=m

O otherwise

where the autocovariances R} (n — m) and Ry, (n — m) depend only on frame interval
n —m accroding to the assumption of wide-sense stationary process as in single layer.

Therefore, we maintain our focus on the cross expectation term

k—1 k—1 k—1 t
E{of )} - o] (- Soater - Yot ) (ot
n=0 n=0 n=0
(4.10)

Since intensity vectors and noise vectors are statistically independent, by substitut-
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ing (4.7), we expand (4.10) into:

)

E{w? (W)}

k—1 k—1 k—1 k—n—1 t
v (fE—ZAffﬁl_n> (z crartr S 3 CEBBAfffimk_n_l_p)

n=0 n=0 n=0 p=0

J/

TV
@] J
\

k-1 k=1 k—n—1 k-1 t
E_E EpBMB,,B E_ B
+E (jnllkflfn (jnI3 (jp Ny nk—n—1-p — § (jnllkfn )

J

~~

N
o0 )

(4.11)

Noting that n? and nf are memoreless additive Gaussian noise vectors, which can
be deemed as being uncorrelated with the input sequence and independent of any other

signals. We conclude
E {nkE_n (nkB_m)t} ~ O for £ Zn,m > 0.

The expected value of & can be easily worked out:
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The cross expectation term (4.11) is then computed as follows:

B{wf (@f)'} = E{e{} +0

k—1 k—1 k—m—1

=Y "RF(m) (CEBP) =3 > RFF(m+1,p) (CEBPALY
m=0 m=0 p=0
k—1 k—1

>N AFRF(m—n—1) (CEBP)
n=0 m=0
k—1 k—1 k—m—1

+ > AZRPE(m —n,p) (CEBPAL) (4.12)
n=0 m=0 p=0

where
R7 (m —n,p) = E{fifln (6 kmp) } for k> m,n,p > 0.

The matrix RP” (m — n,p) is the covariance between EL block f”  and BL reference

block £ _,._ , in the BL motion-trajectory starting from fL . where the argument

m — n signifies the EL motion trajectory distance between £ and fZ .

The last expected value-of (4.8) is:

E (Z Crel n) (Z crel. n>t

0

E{w,]f (wk }

?T‘

-1 k—

CEE{ek L (@8, }(cg;)t. (4.13)

m=0

Il
=)

n

Here we assume that coded BL residuals of different frames are uncorrelated, that is
E{ekB . (&1 m)t} = O, for m # n.
Therefore, (4.13) is derived into:

E{wf ()} ~ ZCEE{ek NCN (o)

Y CEBE e, (e )} (CFBY) + Y CERE () (CE)'

(4.14)
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where

B

B
€ n

B e (nf)'}

and

B
ng ,

Rﬁ(n—m):E{
R (0)

o

We substitute(4.9), (4.12), and (4.14)

E

ance matrix F {ekE (ek

ith coeflicient is extracted from the ith
B

diagonal elements of E {wkE (wi )t} equa

@)}, = | (B

obtain by letting k goes to infinity:

E

B
Wi

E
Wi

W,

that is, [E {

o} () = lim 0%, (1)

= Jim [ {ef (ef)f]\
= Jim | B {wf (F)'}] 77 im-2

and adopt the following assumption:

¢

r?(0;14)
¢ (n;i) = d .
nl—1
(@) g
)
7 (0;4)
Tf (n;i) = ! .
n|—1
@)

B
Wi

=0Ofork>nm>0

B
ng

(

)t} for k>n,m>0

forn=m

otherwise

to (4.8) and consequently obtain the covari-

)t} of transformed EL residual. The EL variance o3 (i) of

E

diagonal element of E {ekE (ef )t} And the

«£)'})

. The residual variance o%(i) is then

E

B
Wi

1 the diagonal elements of (E { Wy

P

K24

F
k

B
Wi

EeE '}

~+ lim

i k—oo

forn =20
wherel > o >0, (4.15)

i) otherwise

forn =20
wherel > o > 0. (4.16)

i) otherwise
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)
rPP(=1,1;1) form—n=—-1,p=1,

(a{g)\pl 7“}3 (1;i) form —n =0,
rP (m —n,pyi) = (1D
(aB)‘p| (aE)|m7n|71 'r’f (1;4) form —n >0,

K3 K3

0 otherwise,

\

where 1 > o af > 0.

where 7 (n;i) and r7 (n;1) are the ith diagonal elements of R} (n) and R (n). In
(4.17), TfE (m —n,p;i) is ith diagonal element of R}BE (m — n,p), which is a cross-
covariance matrix between the EL block f;” , and the BL reference block £, in

the BL motion trajectory starting from fZ . Based on parameters m, n, and p, The

relativity of f£ —and f2 is explained by four classified cases. A Markov-like

m,k—m—p

assumption is utilized for the calculation as well.
1. when m —n = —1, p =d, orn = m+1;, p = 1, the matrix RF” (-1,1) can
be evaluated with assistance-of Tao’s model [11], and rf¥ (—1,1;7) is the ith

diagonal element of R?E (=1,1). This trajectory situation is depicted in Fig.

4.3(a).

2. Since £, and 7 .. are co-located blocks, we can conclude that f” =
£ o k—m- In the case of m =n = 0, R?E (0,p) = E {f,fim (f,imkimfp)t} can
be rewritten as R7” (0,p) = E {f,f_m7k_m (f,f_m7k_m_p)t}. According to the as-

sumption of wide-sense stationary process, R7¥ (0,p) is equivalent to RY (p) =

and fF . The

m,k—m—p

E {f/éB (f,ﬁp)t} , where p is the frame interval between £
above trajectory situation is illustrated in Fig. 4.3(b).

3. Fig. 4.3(c) is the trajectory situation of m — n > 0. We suppose that the
target reference block depends only on the last block and not on the entire past
trajectory.

4. In addition to above three cases, the remain case shown in Fig. 4.3(d) is approx-

imated as zero.

-29-



Chapter 4. Rate Distortion Model: Multiple Layers

Enhancement Layer Enhancement Layer

Duplicate

Base Layer Base Layer

Enhancement Layer Enhancement Layer

Base Layer Base Layer

Figure 4.3: Four relativities of £” , and f-¢  for a 16x16 predicted block.

After computation, we obtain

2() = _2 E(y. N\ _ B, BZE
op(i) = 52— 3P ¢ (0;4) Tf(LZ)l——aE(l—-ﬁE)
i (0;19) BB .
g aEEE g el
267 : 1 Pal(1 -6 :
D) _@BZE (T}E(O;z) T T aF (1= B (@E-l- 16_2?((1 —Bﬁf))) r}f(l;z))
2 (88) 1 , |
325 (e -9 L)

+

where 7 (n;4), ¥ (n;1), r#¥(0; i) and rf; (0; i) are the ith diagonal elements of R? (n),
RF (n), RFP(0) and R (0), respectively. The parameters o and o are the impact
factors in temporal correlation between frames of base and enhancement layer. There

are the same reasons in single layer derivation, o? and a¥ are approximated as 1 for all
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coefficients, i.e. aP = af ~ 1 for all i. As the definition in the theorem T. Berger[12]

BE~1-— fg (; and r%(0;7) ~ SF Dg(i), the EL residual variance of ith coefficient is

2 ;) = o (1) ot (i) B2 (; BB (1.
750) = s D) 0% () — D) 8 0+ 26775 (1:9))

+ ,"’i(i) _ (2(1— BE) r¥ (0;0) — 20 (10))

T (052 (5) =2 (89)" 17 (-1,1:0) + Di()

which is a function of enhancement layer distortion Dg(i) and base layer imformation

BB =1- JDB((’)) we rewrite it into a quadratic equation:
B
(A—B)Dp(i) + (C — A+ B+ Dg(i)) 02(i) — (03(i))* = 0 (4.18)
where

A= (2??(0;@')—1—27”? (—1,1;%) B —2r7 (1;4)) 87,
B = 2r7 (0;i) — 2rf(15%),

C = (oh(i)427(1540) 8.

The parameters 7 (0;), 7 (1;4), £ (0;4), and r{(1;7) have been explicated in pre-
vious chapter as (3.13) and (3.14). Now rf¥ (—1,1;4), which is the (i,7)th element
of RJ]?E (—1,1), is obtained by the same method in previous chapter. First, we need
to compute the spatial domain covariance matrix. Then we transform the covariance
matrix into DCT domain to achieve R?¥ (—1,1). Note that f” and f* are co-located
M x M transform blocks of the current original frame, i.e., f% = £¥ however, for differ-
ent prediction mode in BL and EL, they have different corresponding motion v (sp)
and vg (sg) since a block motion vector is approximated as the motion at the block

center. Fig. 4.4 illustrates the prediction situation. Thus, the (7, j)th element of the
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Figure 4.4: Multi-layer residual signal generating for BL. 16x16 predicted block and
EL 16x8 predicted block

spatial domain covariance matrix is

E{Iy (sitve (se) Tecr (sj+vp (sB))}

2 [(s¢=s;) ¥ (V& (s£).=v5 (sp))|l5
- (7 et

2 40%L(1__pEE_%ﬂl)
_lsi=silly . (4.19)
K K

_ 2
=07 |1

4.2 Approximation Distortion Solution for Multi-
ple Layers

A problem that arises in solving EL variance equation is that the equation (4.18)
has unknown parameter, distortion of EL Dg(i). In this thesis, we approximate that
the residual coefficients of inter-layer residual prediction obey Laplace distribution.
Therefore, the distortion and entropy function is the same as single layer’s, and we
can obtain the EL variance by soloving the simultaneous equation which contains EL

variance function (4.18) and Laplace distortion function (2.2). The equation is very
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Figure 4.5: Laplace distortion and its approximation.

hard to solve because Laplace distortion is: a nonlinear function (2.2). The Laplace
distortion of five different QP.values are schematized in Fig.4.5, and it has the same
curve tendency of the other-QP values. We can observe that given different QP, there
is a distortion upper bound quickly reached by growing 02. We can easily bring out

the bounding value of distertion for different QP

where ¢ is the corresponding quantization step size. In the case of very small error
variance o2, however, the distortion would make a great deal of difference from its
upper bound D,,.,. We use parabolas through the origin to approach the distortion

curves in the region of small o

Dpora = mao? + no
2

(ram) %

=mlloc+-—) ——
2m 4m’

where m and n depend on the vertex (a, b) of the parabola. The vertex (a, b) is designed

as the point when Laplace distortion is 0.7 times the distortion upper bound D,per

sketched in Fig. 4.5. Thus, m and n are given as:
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And the approximation curves are illustrated in Fig. 4.5.

Instead of nonlinearly solving the simultaneous equation of (4.18) and (2.2), we
substitute Dypper OF Dparq into (4.18) to solve the EL residual variance. A table of the
change points 0 (¢) for each QP is builded up beforehand. As a result, if the solution

of residual variance o%(i) by substituting Dyppe- into (4.18), which is

2 2

(A—B) (% + a2> + (c ~A+B+ % + a2) o (i) — (03(i))* =0,  (4.20)

is smaller than d (q) looked up from the change point table, i.e., o%(i) < 0 (q), we

re-solve it by substituting D,qq:
C—(A—B)+n(A-B)+(n+m(A-B)—1)a(i) +m(c3(i))° =0. (4.21)
where

= rP @O F2ET (L AR E 2 (1) 67

7 i)

A= (
B =2r7(0;1) = 2rf (1;4),
¢=(

The final answer of residual variance-o%(%) is substituted into Laplace distribution

distortion function (2.2) ultimately for achieving enhancement layer distortion.

4.3 Rate Model for Multiple Layers

The rate model of multi-layer is identical to the rate function of single layer in Sec.
5.1.2. We substitute the EL residual variance with inter-layer residual prediction into

the rate function.

4.4 Rate and Distortion Summery for Multiple Lay-
ers

To summerize, we present an algorithm for modeling a two-layer coding with inter-layer

residual prediction. Single-layer model is used as the base-layer model in SVC.
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Input: Variance of motion field, o2,
Correlation coefficient of motion field, p,,,
Variance of intensity field, o2,
Positive number, K,
Quantization step of BL, ¢g, and EL, ¢g,
Turning point § (¢g),
Block partition mode pair, sg and sg.
Output: Coding bit rate of BL and EL, Rg (¢5), R (¢r),
Quantization distortion of BL and EL, Dg (¢5), Dg (¢r) -

1. Compute base layer rate and distoriton:
R (g), Dp (qp) and o%(i) for each coefficient by Sec.3.4.
2.  Compute residual variancefor a EL. M x M transform block:
2.1 Spatial domain EL parameters:
by (3.13),43.14),and (4.19)
2.2 Transform residual covariance matrix:
R7 = (H®H) R,/(H&H)".
2.3 Obtain EL"ith coefficient of residual variance:
0%(i) = solution of (4.20);
if 0%(i) > d (qr) then 0% (i) = solution of (4.21).
3. Rate distoriton for a EL. M x M transform block:
3.1 Compute quantization distortion of ¢th coefficient:
D (qs,1) by (2.2)
3.2  Compute entropy of EL ith coefficient:
Hg(qp,1) by (2.3),
Average entropy per pixel, Hg (qr) = # Zi‘ii Hg(qp,1).
3.3 Output:
Quantization distortion, Dg (qg) = # Zf‘ii Dg (qg;1).

Average bit per pixel, Rg (qg) by substituting Hg(qg, 1) to (3.15) .
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CHAPTER 5

Experiments and Analyses

Having derived our rate distortion model for SVC inter-layer residual prediction, we
conduct extensive experiments in this chapter to evaluate the accuracy of the proposed
R-D estimation method, and to analyze the coding efficiency of the inter-layer residual
prediction by using our model. We compare our model with eight common test video
sequences in CIF and 4CIF format encoded by SVC reference software JSVM 9.19.8[14]
into two quality layers. The proposed model is based on the analysis of MCP coding
for different partition mode. In our experiments, we test the proposed method in IPPP
coding structure. Table 5.1 details above encoder setting. And the mode 16 x 8 and

the mode 8 x 16 are viewed as the same due to their symmetry.

5.1 Comparison of Estimation Accuracy

As shown in the R-D function summery of single layer in Sec. 3.4 and multi-layer in

2
m)

Sec. 4.4, we need to estimate the sequence characteristics o7, K, o2, and p,,. Those
prarmeters are addressed from the statistical models, and their estimations have been

described in the Tao et al. [11]. Instead of the estimation methods in [11], we measure
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Sequence CIF@30Hz, 4CIF@Q30Hz (120 frames)

DCT transform size 4 x4

Prediction structure 1 Reference Frame + IPPP...

Intra period -1

ME partition mode pair 16 x 16/16 x 16, 16 x 16/16 x 8, 16 x 16/8 X 8,

(BL/EL) 16 x 8/16 x 16, 16 x 8/16 x 8, 16 x 8/8 x 16,16 x 8/ 8 x 8,
8 x 8/16 x 16, 8 x 8/16 x 8, 8 x 8/8 x 8

Base layer QP 24, 26, 28, 30, 32, 34, 36, 38, 40

Enhancement layer QP BL QP—-4, BL QP-6, BL QP-8

Inter-layer residual prediction On

Table 5.1: Testing conditions and encoder parameters.

each parameter through a PSNR curves regression, which is described in a following,
to find the accuracy of the proposed rate disotrtion model in the better condition.
The designed experiment can be described as following steps:
1. Encode sequence into two-layer SVC bitstream with inter-layer residual prediction

based on the setting in Table 5.1.

2
m?

with BL mode 16 x 165 EL mode 16 x-16, and QP difference 4 to the algorithm in
Sec. 3.4 and Sec. 4.4. Then sum up the PSNR wvalues of every BLL QP and find

2. PSNR curves regression for the variables-¢7, K, 02, and p,,: Apply conditions

the parameter set that gives theleast sum-up PSNR difference from the real.

3. Take the solutions of variables 0%, K 02, and p,, from step 2 as inputs for the
algorithm in Sec. 3.4 and Sec..4.4 to gererate rate distortion model of every
configuration in Table 5.1.

As our rate distortion model is a combination of distortion function of QP(D-Q) and
rate function of QP(R-Q), we examine the accuracy of distortion and rate separately,
and the following experiments are presented with considering only Luma component.
Besides, considering the simulcast for enhancement layer, we stretch the QP range of
BL PSNR curves regression up to 16, and demonstrate the experiment results in this

QP range.

5.1.1 Distortion Model Accuracy

The proposed rate distortion model, can be used to estimate the D-Q curves of the
encoded video sequences. The encoding distortion is measured in terms of PSNR
between the encoded video and the original one.

As stated before, the proposed experiment requires estimations for o2, K, o2, and
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50 55

BL 16x16 EL16x16 QPd=4

50 ¢

PSNR-Y

25 25
15 20 25 30 35 40 45 10 15 20 25 30 35 10

QP QP

(a) (b)

Figure 5.1: PSNR v.s. QP curves of BL and EL appling different configuration
regression result. (Foreman)

pm- Despite that different mode pair has slightly different regression parameters, we
only apply the regression result from the situation of BL mode 16 x 16, EL. mode 16 x 16,
and QP difference 4. It is reasonable to adopt this simple and convenient method since
the parameters associate with sequence_characteristics not the ME mode pair. And
the D-Q curves of the mode pair of BL. mode 16 x 16 and EL mode 16 x 16 under
different configurations (mode pair and QP difference) regression result is demonstrated
in Fig.5.1.

The example is the result of Foreman(CIF). 'We can observe some divergences of
curves under different regression results in both BL and EL.

The D-Q curves estimated with the only one regression result of mode pair of BL
16 x 16 and EL 16 x 16 are compared with the actual D-Q curves in Fig.5.2. It can
be seen that for the two testing sequences with distinct characteristics, the D-Q curves
estimated by the proposed model fit the actual curves very well; the preciseness is
maintained at other QP differences and sequences. To substantiate our claim, Table
5.2 provides the results of all testing sequences in different QP differences; the numbers
represent the average PSNR error of every mode. It is seen that for both base and
enhancemet layer, there is no more than 0.5dB PSNR error across many sequences and

QP differences except, the worst case, BL of Mobile(CIF).
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Figure 5.2: Real v.s. Model D-Q curves appling one regression result. (mobile and

foreman sequence)
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Resolution  Sequence PSNR error
BL(AdB) EL(AdB)
Qpd=4 Qpd=6 Qpd=8
CIF Bus 0.36 0.32 0.32 0.34
Football 0.40 0.24 0.18 0.16
Foreman 0.33 0.31 0.25 0.20
Mobile 0.67 0.49 0.50 0.50
4CIF City 0.22 0.29 0.24 0.22
Crew 0.41 0.24 0.19 0.16
Harbour 0.25 0.30 0.28 0.27
Soccer 0.33 0.26 0.20 0.17
Average 0.37 0.31 0.27 0.25

Table 5.2: PSNR error between real and model.

3025

525 BL 16x16 BL16x16 EL16x16 QPd=4
3525 2525 Bk
3025 2025 \

£ N
1525 1025
1025 \\ \
s 525 ‘\l\kiﬁ
25 25
0 15 20 25QP 30 35 40 45 15 20 25 30 3s a0

Kbps-Y

ap
——Real_BL —8—Model BL —@— Real_Inter_EL —E&—Model Inter_FL
(a) (b)

Figure 5.3: Entropy curves compared with actual curves (Foreman)

5.1.2 Rate Model Accuracy

In JSVM, the entropy coding design includes Context-adaptive binary arithmetic coding
(CABAC) and Context-adaptive variable-length coding (CAVLC). As the bitrate in
video compression is highly related to the entropy coding method and the dependency
of quantized coefficients at block level, it is a very difficult problem to conclude a rate
model.

Based on the assumption of Laplace distribution, the entropy can be obtain as (2.3).
Since entropy is a measurement for the case of independent coding, we can observe
wide discrepancies between the actual R-Q curves and entropy versus QP curves of
Foreman(CIF) in Fig.5.3 as example. Note that we only present the residual rates in
the actual R-Q curves.

The actual rates are encoded by CABAC and the entropy curves is computed with
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Figure 5.4: Linearity relationship between In (R) and H* (a) Base model6x16 (b)
Base mode 16x8 (c¢) Base mode 8x8 form Forman(CIF)

the same parameter set of distortion model, which is the regression result by the mode
pair of BLL 16 x 16 and EL 16 x 16.

To compensate this inaccuracy of entropy, we exploit a relationship between the
real coded rate R and entropy H. A linearity relationship between natural logarithm

1+A§) V2 /2 Do .
H™ exp(—=%=) |, which is represented as H*, is

of real rate In (R) and In (%)( (7
observed as in Fig.5.4, Foreman(CIE), for example. The blue lines with solid squares
represent the linearity relationship in single-layer coding, and the lines with hollow
tokens indecate the linearity relationship for inter-layer prediciton coding of different
modes.

The other testing sequences ‘have the-similar relationship between In (R) and H*
as Fig.5.4; we can achieve a modified rate model, which is represented as R*and is
discribed before in Sec.. The constants a and b in (3.15) are the coefficients of the
approximate line function of In (R) and H*, and the constants vary accroding to mode
pair and coded sequence. We provide some example curves of modified rate model
compared with real rate curves in Fig.??. Contrast the modified rate with entropy H,
it can be observed that the rate modification has a great improvement in fitting the real
rate curves acorss difficient sequences. For comprehensive analysis, the results of all
testing sequences in different QP differences appear in Table 5.5; the enormous errors

of entropy H is corrected by the proposed rate model R* throughout the difference

sequences.
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Figure 5.5: Modified rate( R*) compared with actual rate, entropy( H) as a contrast.
Blue lines with solid squares are BL R-Q curve. Red lines with hollow squares are
the curves for entropy v.s. QP. Green line with hollow triangles are the curves for
modeified rate v.s. QP
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Resolution  Sequence Rate error
BL(%) EL(%)
Qpd=4 Qpd=6 Qpd=8
H R* H R* H R* H R*
CIF Bus 29.4 71 40.1 11.0 289 11.8 20.2 123

Football 262 3.8 115 39 101 5.0 102 6.0

Foreman 1224 43 1244 74 1003 106 80.4 134

Mobile 281 209 282 173 166 150 9.6 13.2

4CIF City 4334 42.2 149.7 298 1022 32.1 674 31.3
Crew 245 115 422 99 324 132 264 16.2

Harbour 64.3 129 574 180 386 192 26.3 19.0

Soccer 108.7 7.1 1087 141 823 176 61.0 19.7

Average 104.6 13.7 703 139 514 156 37.7 164

Table 5.3: Entropy rate and modified rate error.

5.2 SVC R-D Curve Performance

The performance of SVC with inter-layer residual prediciton is demonstrated in Fig.5.6,
Bus(CIF) for example. The simuleast curve expresses the enhancement layer coding
without residual prediction, in‘ether words, it is a single layer coding applied lower QP.
The following experiments use "base-layer usage" to measure the benefits of inter-layer
residual prediciton; the base-layer usage(BLLU), which is an alternative measure of the

utilization of base-layer information, iscalculated by

Rsimu > Rinter

BLU =
Rsimu - Rbase

where Rpqse, Rinter, and Ry, denote the kbit-rates of base-layer, inter-layer prediction,
and simulcast, respectively. It should be noted that a base layer usage of 0% corre-
sponds to the coding efficiency of simulcast, while BLU less than 0% represents the
inter-layer prediction is inefficient than simulcast. Besides, R;.., is the rate required
for obtaining the same PSNR of simulcast; this rate is calculated by interpolating the
inter-layer rate-distortion curve for the simulcast resolution using linear interpolation.

Table 5.5-5.6 display the comparison of base-layer usage between real and model,
Bus(CIF) Football(CIF), and Foreman(CIF) as testing sequence . Keeping realistic, we
compute BLU with BL QP equaling 28 for each tesing condition. Despite numerically
inaccurate fitting between real and model, they still show some similiar tendencies.
First, it can be observed that when BL has the same mode as EL, inter-layer prediciton

attains the best performance. Second, viewing the change of QP difficience, we can see
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Football, BL16x16 EL16x16 QPd=4 * Football, BL16x16 EL16x8 QPd=4 * Football, BL16x16 EL8x8 QPd=4
e ~

PSNR-Y

10 2010 2010 6010 8010 10010 10 2010 4010 6010 8010 10010 10 2010 4010 6010 8010 10010
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Figure 5.6: SVC performance (Football), the dotted lines indecate the distance be-
tween simulcast and base layer, as well as the distance between simulcast and inter-layer
residual prediction

Bus(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8

BL EL Real Model Real Model Real Model
16 x16 16 x16 24.9 31.0 479 29.7 15.7  30.0
16 x8 9.6 16.5 8.4 17.7 5.7 19.8

8x8 -7.3 -1.0 -5.7 5.3 -5.3 11.6

16 x8 16 x16° -2.7 3.1 -1.9 7.1 -2.3 11.5
16 x 8 7 22.0 29.2 18.1 27.1 13.3 26.9

8 xd6 -T4 1.6 -5.5 5:2 -5.3 9.3

8 X8 -1.5 3.9 -1.7 8.0 -2.1 12.8

8x8 16x16 -21 4.4 -1.5 8.7 -1.8 13.2
16 x-8 7.3 14.9 6.6 16.4 4.3 18.8

8 x'8 19.3 25.9 147 1 26.0 11.3 27.7

Table 5.4: Base-layer usage with base-layer QP equaling 28., Bus(CIF).

the inter-layer prediction performance of most mode pair is decreasing as QP difference

grows.
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Football(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8

BL EL Real Model Real Model Real Model

16 x16 16x16 30.1 30.6 49.8 28.3 20.7 26.7

16 x 8 9.3 7.5 7.6 10.1 7.3 12.2

8 x 8 -8.8 -10.5 -8.0 -4.3 -7.0 0.4

16 x8 16x16 -0.5 1.1 -0.1 4.2 -0.4 6.8

16x8 279 276 225 364 19.2 24.8

8x16 -7.0 -3.8 -5.7 0.9 -5.5 4.7

8 x 8 -1.9 -1.6 -3.0 2.1 -3.0 5.1

8x8 16x16 -3.1 -0.9 -2.7 2.7 -2.37 5.7

16x8 5.8 6.1 4.5 9.0 4.7 114

8 x8 25.1 24.8 18.8 23.2 14.67 22.1

Table 5.5: Base-layer usage with base-layer QP equaling 28., Football(CIF).

Foreman(CIF) BLU(%)
Mode pair Qpd=4 Qpd=6 Qpd=8

BL EL Real Model Real Model Real Model

16 x16 16x16 6.8 9.9 43.3 12.9 2.3 15.8

16 x8 -5.4 -6.0 -6.3 1.8 -5.3 7.4

8x8 -309 -26.7 -19.9 -143 -16.6 -54

16x8 16x16 -9.0 -7.4 -6.3 0.7 -5.6 6.6

16 x 8 5.3 4.3 1.1 8.7 0.1 12.8

8x16 -204 -15.6 -13.5 -4.8 -11.3 3.0

8 x8 217 -18.2  -13.7 -8.6 -12.1 -1.3

8% 8 16 x16 -7.4 -7.3 -5.1 0.9 -4.6 6.8

16 x 8 -1.6 -3.0 -3.0 4.0 2.7 9.2

8 x8 -4.9 -2.2 -2.4 2.8 -3.7 7.4

Table 5.6: Base-layer usage with base-layer QP equaling 28., Foreman(CIF).
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CHAPTER 6

Conclusions

In this thesis, we derive a rate-distortion model for Coarse-Grain Quality Scalability
by construction of a forward ¢hannel model and an assumption of temporal-stationary
process. Afterwards we apply motion and intensity models to interpret the autocovari-
ance factors in proposed model. These models provide parameters of motion, intensity,
and block-partition mode to analyze the block-level motion-compensation predictor.
Through the proposed R-D model for SVC, we estimate the R-D curves of inter-layer
residual with different mode pairs, different sequences, and different QP differences.
Experiments shows a high accuracy of distortion error less than 0.5dB; a great correct-
ness of rate model by an entropy modification function is also demonstrated.

The proposed R-D model for SVC will be extended to several applications:

1. To propose a rate-distoriton function for optimal bit allocation of SVC.

2. To find the Lagrange multiplier for R-D optimization in SVC with Multi-layer

encoder control.

3. To give a theoretical analysis for fast mode decision in SVC.
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