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摘要摘要摘要摘要    

        此研究利用了現今發展完善的反應途徑(Reaction coordinate)以及正交於反應

座標系的 3N-7 震動模(Normal modes)所建構的 J = 0 絕熱曲線(adiabatic curves)來

進行 OH + H2 � H2O + H 化學反應動態學的研究。發現由此絕熱曲線在只考慮穿

隧效應下得到的 J=0累積反應機率(Cumulative reaction probability)比Miller的 J=0

累積反應機率(Cumulative reaction probability)小很多。可能原因是反應端跟生成

端轉動相關的震動模的數目不相符。吾人也利用了絕熱模型(adiabatic model)，改

裝過的絕熱模型(modified adiabatic model)和透熱模型(diabatic model)來計算累積

反應機率，並得到三個可能與 Miller 結果差異的原因。第一是能量曲線並不是拋

物線的模型，第二是非絕熱偶合(non-adiabatic coupling)的貢獻和最後一個是延反

應途徑的頻率分析的準確度。為了確定哪個是最主要的原因，吾人利用上述的三

個模型到比較大的體系， Cl +CH4 � CH3 + HCl。可是對於大於五個原子以上的
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體系，並沒有一個精確的解。所以只有降維度的資料可以比較，也就是說，吾人

只能用降維度的絕熱模型來做比較。在與 Nyman 三個降維度；RLA，RLU 和 RBU,

的結果比較，吾人發現絕熱模型的結果與 Nynam 的結果的趨勢很近，並且發現

考慮的維度越小，共振的現象越大。從比較的結果，吾人發現以上三個原因中，

以第三個原因為決定累積反應機率準確度的最主要原因。 
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Abstract 

    We constructed more general adiabatic energy curves of J =0 for OH + H2 � 

H2O + H by using the reaction coordinate and 3N-7 normal modes which is 

orthogonal to the reaction coordinate, but found the cumulative reaction probability of 

these adiabatic energy curves (without the effect of non-adiabatic coupling, only the 

effect of tunneling) is lower than the result of Miller. The possible reason would be 

the linkage between reactants and products. Since three rotational related vibration 

modes in reactant side, but two in product side. And we also applied the adiabatic 

model, modified adiabatic model and diabatic model to the cumulative reaction 

probability and then got three main possible reasons for the deviation from Miller’s 
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result. First is that the energy curves are not parabolic model, the second one is that 

the contribution of non-adiabatic coupling and the last one is the accuracies of the 

frequencies along the reaction path. In order to make sure which one is the main 

reason, we applied these three models to a larger but prototypical system, Cl +CH4 � 

HCl + CH3. But for more than 5-atoms system, there’s no exact solution no matter 

hyper-spherical (projected one is the same) or Jocabi coordinate. So only reduced 

dimensions information is available, that is, only the adiabatic model with reduced 

dimension could be applied to do comparisons. After comparing with the three models; 

RLA, RLU, RBU, by Nyman, we found that the trends of our adiabatic models goes 

well Nyman’s results and the effect of resonance becomes larger as the degree of 

freedom becomes smaller. From the result, we conclude that the last reason; the 

accuracies of the frequencies along the reaction coordinate dominate the accuracy of 

the result for the cumulative reaction probability. 
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Chapter 1 Introduction 

One of the basic purposes of chemical reaction dynamics including state-to-state 

reaction is to understanding reaction mechanism by analyzing the evolution 

relationships between quantum states of products and reactants. These relationships 

show the information of how bonds break and form gradually from reactant to product 

through the transition state. Within Born-Oppenheimer approximation, the motion of 

atoms in the molecule relies on the force created by the potential energy surface which 

is formed by averaging motion of all electrons in the molecule.   

A tri-atomic reaction, AB+C�A+BC, is the most basic reaction for state-to-state 

reaction dynamical studies. In this fundamental reaction involving only three 

normal-mode vibrations plus rotation and translation, both experiments and theoretical 

research have very much advanced in order to obtain the complete information for 

diatom-atom reactions. These indicate that vibrational or translational excitation may 

produce dramatic effects on chemical reactions. One of the most obvious effects is the 

influence of chemical reactivity. 
1 

Polanyi has shown that the vibrational excitation is 

more efficient than the translation excitation for increasing endoergic chemical 

reactivity for atom-diatom-reaction, namely late barrier. The concept of early 

barrier/late barrier becomes not so apparent for reactions containing polyatomic 

reagents since many degree of freedoms involves in polyatomic molecules in which 
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there are a large number of vibrational modes. The quantum
5-7

 and quasiclassical 

trajectory
8
 methods for atom-diatom reaction have been extended for studying 

polyatomic reactions. At the same time, several exciting experimental results for 

state-to-state reaction dynamics of polyatomic reactions have been found. Both these 

experiments and theoretical research have pointed out that there are essential 

differences between atom-diatom reactions and polyatomic reactions. Studying these 

differences open new horizons for scientists.   

 

1-1 Quasi-classical trajectory, quantum and semi-classical methods 

   Quasi-classical trajectory (QCT), quantum scattering and semi-classical methods 

are three general methods to study chemical reaction dynamics theoretically. I would 

like to introduce a brief review of QCT first, the second is quantum method, and the 

third is semi-classical method. Finally, I will mention problems for each of three 

methods.    

 

1-1.1 Quasi-classical trajectory method 

     As mentioned above from Born-Oppenheimer approximation, the motion of 

atoms in molecule is just experiencing force induced by PES formed. If potential 

energy surface can be constructed as an analytical function of the internal coordinates 



3 

 

of the constituent atoms, it is possible to solve the motion of atoms on the surface for 

collision trajectory in classical way. The initial conditions can be determined by using 

coordinates and momentums of reactant molecule semi-classically, and then numerical 

integration of the Hamilton equation of motion for coordinate Qj and it’s conjugate 

momentum Pj=mdQj/dt are evaluated. Because of classical mechanical approach, there 

are several quantum effects that have to be added separately: 

1. Particles penetrating into the region are classical forbidden.   

2. The zero point energy (ZPE) is absence. Several approaches
9-15

 have been done to 

fix the problem of ZPE, but none of them are that reliable. 

3. Classical mechanics does not recognize that reactants/products have quantum 

states, the given integration results may produce the vibrational energy of products 

different from quantum mechanics. But what we’re interested in is the quantum 

mechanic features as the vibrational or rotational product distribution, in order to 

obtain the correspondence, a binning process is needed. How to bin the region for 

different vibration and rotation quantum number will influence the accuracy of 

state to state dynamics, but this defect may cancel out for overall distribution. 

4. Some of the initial-condition parameters of reactants would not be specified during 

experiments, but the specification of these parameters is required in doing 

calculation, such as impact parameter, the orientation of the reactants, the phase of 
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the reactant vibration with respect to the time of collision, and so on. So, averaging 

over these uncontrolled parameters of collision in the classical mechanic 

calculation is required. 

     The defects of QCT can be easily seen from the mentioned above, the omission 

of the quantum effects make it experienced difficulties at threshold; when the total 

energy is slightly above the minimum required to cross the potential barrier, the ZPE 

energy tends to be converted into translation energy, which is not allowed in quantum 

mechanics. Besides this general problem for QCT, dealing with large system by QCT 

is still a challenging problem. The reason for this is that determination of vibrational 

actions; binning process, for large system is not a standard process. Even if there is 

standard process for binning, obtaining the PES for large system is still difficult.  

 

1-1.2 Quantum method 

     Apart from using the Newton mechanics to describe the motion of atoms; their 

motion is governed by a wave equation in quantum mechanics. The general strategy is 

to solve the time dependent or time independent Schrodinger equation in the 

superposition wave function of channels interested and then obtain the quantities needed, 

e.g. state to state cross section, by giving suitable boundary condition.  

     For exact quantum calculation, it may consume large amount of computational 
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time. Since all accessible states; rotational and vibrational states, should be considered 

in the calculation. Of course, one could calculate all the information, but are these 

considerable quantities that demanding? Doing that requires huge effort, so a modified 

method; reduced dimension quantum method is developed for this need. For four, five, 

or six atoms system, this method is accessible. But for larger system, it’s a big problem. 

So there’s reduced dimension quantum method (modified quantum method). However 

for too large system, the modified quantum method is still not ok. 

 

1-1.3 Semi-classical method 

This method would be explained clearly in chapter 2. Same as the two methods 

mentioned above. There is no general strategy for large system.  

 

1-2 Motivation 

     As mentioned above, no matter quasi-classical trajectory, modified quantum 

method or semi-classical method, there still exist difficulties for studying dynamics of 

large system. So, this motivates us to produce a more general way; which is practical to 

large system for dealing with state-to-state reaction dynamics. For system more than 5 

atoms, it’s not that easy to obtain exact quantum results for reactions. In order to make 

sure the feasibility of our method, we would like to apply this approach to 
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OH+H2�H2O+H; which has been studied thoroughly from both theory and 

experiments. Fristly, I would like to give a brief review of the calculations and 

experiments which have been done for OH+H2�H2O+H. 

OH+H2����H2O+H 

     The thermal rate constant for OH+H2; which is important in combustion 

chemistry, has been measured over a wide range of temperature(T=250~2000K) for 

both thermal distribution of reactants
16-18

 and there is obvious evidence
18

 that k(T) 

shows non-Arrhenius behavior with a suggested best fit expression k(T) = 1.66 

*10
-16

*T
1.6

*exp (-1660K/T)  cm3/molecule*s. G.P. Glass
19

, Spencer et al 
20

 and R. 

Zellner
 18,21

 investigate the influence of vibrational excitation on reaction rate. 

They
18,19-20

 found that not small amount of enhancement (H2(v=1)/H2(v=0)>100) for 

H2(v=1), but smaller effect(50% less than the excitation of H2) for OH(v=1); which is 

reasonable since OH can be seen as a spectator in the reaction. Later, R. Zellner
21

 

thought the large enhancement may be due to the possibilities of the contribution of a 

translational rate acceleration of OH +H2 in the flow system. After correction, the 

enhancement is rather small (5~66) compared to before (>100). Many fast-atom 

experiments
22-29

 have been done for H+H2O(and it’s isotopomers) in the final 

vibrational and rotational distribution of H2 and OH were determined. 

 Isaacson’s
30

 group reported a reaction path potential, based on Walch and 
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Dunning’s calculation, and use it in transition state theory calculation for rate constant 

with complex tunneling effect. Cohen et al
31

 used Isaacson’s reaction path potential in 

transition state theory calculation of rate constant with new treatments of anharmoncity 

of the transition state force field. A potential curve along a tunneling path is also 

calculated by Truong and Evans
32

; which is used in calculating the rate constant. 

Schatz and Elgersma
33

 based on the method for saddle point properties developed 

by Walch and Dunning
34

 to construct a global potential energy surface. Extensive 

quasiclassical trajectory calculations
33,35,36

 based on this PES have been done, they point 

out interesting mode specificity in the H+H2O reaction in highly vibrational excited 

states. There are several other QCT studies being reported later
37-40

 

Quantum dynamics studies for the OH+H2 reaction have been reported by Wang 

& Bownan
41

, Clary and coworkers
42

, Miller and coworkers
43

 , Zhang
44

, and Neuhauser
45

. 

Those of Miller and coworkers , Zhang, and Neuhauser are full dimension. Wang & 

Bownan RD-AB theory. Clary and coworkers use RBA-AB theory. 

The cumulative reaction probability for J=0 has been calculated with full 

dimension; by Miller, RD-AB; by Wang, and RBA-AB, by Clary. The results show that 

there is a quite good agreement for RD-AB and RBA-AB with full dimension at low E, 

but a little deviation at higher E. 

     Miller also calculated the thermal rate constant for OH+H2 by J-shift 



8 

 

approximation. The result for thermal rate constant along RD-AB (J-shift 

approximation), RBA-AB (centrifugal-sudden approximation), and QCT are also 

calculated. The RD-AB result is in good agreement with full dimension (RD-AB 

results are reasonable, since J=0 CPR are almost the same and they both use J shift 

method), but RBA-AB somewhat higher (The difference comes from using 

centrifugal-sudden approximation). Finally, QCT’s result show good agreement with 

full dimension at higher temperatures, but underestimate at lower temperatures (The 

lack of tunneling effect for QCT method). The comparisons between full dimensions 

show that taking bending motion as a adiabatic motion still give reliable result and 

QCT method can’t deal with dynamics at low temperature. 
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Chapter 2 Theory 

As mentioned in chapter 1, state-to-state dynamics provide mechanism 

understanding of reactions by indirect probing of transition state. What is probed are 

the connections made between products and reactants, that is, these connections reveal 

how bond break and form in the transition state. So the question is how to obtain the 

information of state-to-state dynamics theoretically. In order to achieve this goal, 

knowing how atoms move in the electron clouds of the molecule system is necessary. 

In general, this kind of information would be gained by Born-Oppenheimer 

approximation (or adiabatic approximation). Within Born-Oppenheimer approximation, 

the motion of atoms in the molecule relies on the force created by the potential energy 

surface which is formed by averaging motion of all electrons in the molecule, that is, 

the motion of atoms and electrons could be considered separately as bellow    

NucElecT ΨΨ=Ψ                                                     (2.1) 

, where TΨ  is the total wave function, ElecΨ  is the wave function of electrons and 

NuxΨ  the wave function of nucleuses. Since the state-to-state dynamics here are 

talking about the states in the same electronic state, that is to say, only the 

rovibrational states of the ground electronic state are necessary and non-adiabatic 

coupling would occur between the rovibrational states. There are three general 

methods; quasi-classical trajectory (QCT), quantum and semi-classical methods.  
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However, no matter which method, there is still a big problem for dealing with large 

system. It motivates us to generate a general way for polyatomic reaction. Our method 

is based on the semi-classical theory developed by Zhu and Nakamura
1
, but chooses a 

different reaction scattering axis for adiabatic curves, which is more general for 

normal system (small or large system). Bellow I would like to talk about the general 

concept for adiabatic approximation. Then, there will be explanation of the reason for 

the chosen of this coordinate and the difference of semi-classical theory for dealing 

with non-adiabatic coupling and its application. 

General concept of adiabatic approximation 

     In a study of systems with many degrees of freedom, such as those consisting 

several interacting particles, one general seeks to use the same way, a successive 

reduction of multidimensional problem to several lower dimensional problems that 

are simpler to deal with. There are two general way to do this, symmetry and 

adiabatic separation. Adiabatic separation is main thought in Born-Oppenheimer 

approximation, which is settled on the assumption that the motion associated with 

some part of the variables (Fast) can be treated with other part (Slow) seen as frozen; 

taking the energy of these fast variables at different slow variables produce effective 

PES for the motion of slow variables. A general operator of this thought: 

),()(),( sfadssf QQHQKQQH +=                                    (2.2) 
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, in which Qf and Qs represents the fast and slow variables, K(Qs) is the kinetic energy 

for the motion in Qs which does not depends on Qf, and the adiabatic Hamiltonian 

Had(Qf,Qs) is the operator of Qf  which depends on Qs parametrically. The 

schrondinger equation would be: 

0)(}),()({ =Ψ−+ ssfads QEQQHQK                                   (2.3) 

with total wave function to be: 

),()()( Sfnsns QQQFQ ϕ∑=Ψ                                         (2.4) 

, in which ),( Sfn QQϕ  is from equation (2.5) 

),()(),(),( SfnSnSfnsfad QQQEQQQQH ϕϕ =                             (2.5) 

where nE  is the adiabatic energy and nϕ  is the adiabatic state. Take equation (2.4) 

into equation (2.3) and integrate the coordinate of fast variables with mϕ , you could 

obtain the non-adiabatic coupling terms as equation (2.6) and equation (2.7): 

),(),( SfnQSfm QQQQ
S

φφ ∇                                         (2.6) 

And 

),(),( 2

SfnQSfm QQQQ
S

φφ ∇                                         (2.7) 

If the adiabaticity is pretty good, then the contribution of these two terms would be 

pretty small, that is, we could omit these effects and obtain 

0)(})()({ =−+ snsns QFEQEQK
                                      

(2.8) 

And the approximated total wave function as  
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),()()( SfnSnsn QQQFQ ϕ=Ψ
                                         

(2.9) 

From equation (2.2) to (2.7), there is no approximation inside until the function   

),( Sfn QQϕ  is specified. Since it’s impossible to consider infinite basis in equation 

(2.5), we must do truncation. If the adiabaticity is good, then the non-adiabatic 

coupling between adiabatic states; equation (2.6) and (2.7), would be small, that is, 

the total wave function; equation (2.5), would be much more similar to the adiabatic 

one, which means lesser basis are needed and this is where the approximation 

originated. In order to obtain good approximation, the way of how to choose the fast 

and slow variables is important, since the adiabaticity will be depended on how you 

choose them. Born-Oppenheimer approximation is a good approximation of adiabatic 

approximation. Bellow I would like to introduce this approximation. 

  

2-1 Born-Oppenheimer approximation 

     Born-Oppenheimer approximation; named after Max Born and J. Robert 

Oppenheimer, is a kind of adiabatic approximation which is used to describe the 

motion of nuclei and electrons in the molecular system. As mentioned above, the 

adiabaticity controls the accuracy of the approximation. Why adiabatic approximation 

is a good approximation for the motion of nucleus and electrons in the molecular 

system? From the view of physical meanings, since the motion of nuclei is much 
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slower than the motion of electrons, that is, we could see the movements of nuclei as 

frozen when electrons are moving at every instant, which is pretty reasonable, since 

the weight of nucleus is much larger than the weight of electron (even the lightest one; 

hydrogen, are larger than electron in a factor of 1836). So it’s obvious to take the 

motion of nuclei as slow variables and the motion of electrons as fast variables. From 

the view of derivation, the nonrealistic Hamiltonian of the molecular system could be 

written as 

∑∑∑∑∑∑∑∑
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 (2.10) 

, where A, B refer to nuclie and i, j refer to electrons. The Hamiltonian may be written 

explicitly as 

)()(),()(ˆ)(ˆˆ RVrVrRVrTRTH NNeeNeeN ++++=                          (2.11) 

, where R is the set of nuclear coordinates, r is the set of electronic coordinates. In 

equation (2.11), it is VNe this term that makes the separation of electrons and nuclei 

becoming impossible. But as mentioned above, since the motion of nuclei is much 

slower than the motion of electrons, it is reasonable to rewrite the Hamiltonian as 

),(ˆ)(ˆˆ rRHRTH eN +=                                              (2.12) 

Where ),(ˆ rRHe is as bellow 
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Or 

)()(),()(ˆ),(ˆ RVrVrRVrTrRH NNeeNeee +++=                            (2.14) 

And the total schrondinger equation of the molecular system would be 

0)),(ˆ)(ˆ()ˆ( =Ψ−+=Ψ− teNt ErRHRTEH                              (2.15) 

, where He is the Hamiltonian of electrons at fixed nuclei configuration, R is the set of 

nuclear coordinates; the slow variables, and r is the set of electronic coordinates: the 

fast variables. The total wave function would be 

∑=Ψ
n

e

n

Nuc

nt rRRFR ),()()( ϕ
                                        

(2.16) 

, where ),( rR
e

nϕ is from 

),()(),(),( rRRErRrRH
e
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e

ne ϕϕ =
                                    

(2.17) 

, in which En is the adiabatic electronic energy and ),( rR
e

nϕ  is the adiabatic 

electronic state. Take equation (2.16) back to equation (2.15) and integrate the 

coordinates of electrons with ),( rR
e

mϕ , then we get 
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e

m EFFEFT ϕϕ                              (2.18) 

And the term∑
n

r

e

n

Nuc

nN

e

m FT ϕϕ ˆ could be further derived by  
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Then we obtain 
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A more compact notation is needed for equation (2.20), so we introduced the 

following quantities used by Tully
2
 

r

e
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e

m
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mn Rd ϕϕ ∇=)()(

                                             

(2.21)
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e
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mn RD ϕϕ 2)( )( ∇=
                                             

(2.22) 

These two terms are the non-adiabatic terms shown in equation (2.6) and (2.7). The 

neglect of these two terms is the Born-Oppenheimer approximation, which is 

reasonable since the weight of nucleus is much larger than the weight of electron, that 

is, e

nAϕ∇ is much smaller than Nuc

nAF∇ . So we could obtain  

0
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                                       (2.23)  

And total wave function would be 

),()()( rRRFR
e

n

Nuc

nt ϕ=Ψ
                                           

(2.24) 

Equation (2.17) and (2.23) are the two basic equations of Born-Oppenheimer 

approximation, where Em is obtained by equation (2.17); the adiabatic electronic 

energy, which is seen as the average field of the motion of nuclei. This average field is 

calculated before dealing with the motion of nuclei, that is, solve the Shcrondinger 

equation at every fixed nuclei configuration. Now the question comes to how to 

obtain the adiabatic electronic energy state and energy, that is how to solve equation 

(2.17). In general, there are two general methods for quantum calculation; 

Hartree–Fock or self-consistent field (SCF) method and Post–Hartree–Fock, where 
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the Post–Hartree–Fock are the set of methods developed to improve on the 

Hartree–Fock (HF), which considered the electron correlation energy that HF method 

didn’t consider. Bellow we would to introduce the HF method and then some Post-HF 

methods. 

 

2-1.1 Hartree–Fock method (HF) 

     Hartree–Fock theory is one of the simplest approximate theories for solving 

the many-body Hamiltonian, which reduce the many-body problem into several 

one-body problems. It is based on the independent particle models, that is, the total 

wave function of the electrons are the product of wave function of each single 

electrons, as bellow 
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t rRrRrR ϕϕϕ L=Ψ                                 (2.25) 

Where R is the set of nuclear coordinates, ri is the ith electronic coordinate and ai is 

the ith spin orbital function. In order to contain the property of anti-symmetry for the 

total wave function of electrons, single Slater determinant is used to represent the total 

wave function, as the form bellow 
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With  
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That is  

∫ =ΨΨ 1 * 21 eN
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. So the energy would be  

 e

SDe

e

SD HE ΨΨ= ˆ                                                (2.29) 

Where eĤ is the form as equation (2.13) or (2.14) which could be rewritten as 
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Where 0

iH  is the operator of single electron at the same nuclei configuration as 

bellow 
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If Ne equals to 2N, and the form of Slater determinant changed to 
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Then equation (2.29) can be further written as 
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Where the third term of equation (2.30) is not considered, since it is just an effect of a 

constant and shifts to the eigenvalues and  
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jiBBJ is called coulomb integral and the 
jiBBK is called the exchange integral if i is not 

equals to j. By applying the vibration method to equation (2.34), we could find that 

the form of spatial orbital will satisfy the following equation (2.37) in order to 

minimize the energy; which is the famous Fock equation 
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Where )(ˆ
jrF is the Fock operator, which is given by 
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And )(ˆ
jB rK

k
is the exchange operator given by 
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So the expression for the ith molecular orbital would be 
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Comparing with equation (2.33), we could get the total energy in the form of  

∑ +=
N

i

BB ij
IE ε                                                   (2.44) 

,which is not just the summation of the orbital energy, since the interaction between 

electrons will give contribution to the total energy. As it comes to solve the equation 

(2.37), we found that equation (2.40) and (2.41) cannot be evaluated until all the 

orbital are known. So self-consistent procedure is needed, in which you guess a set of 

N coupled basis. Using the Fock equation, we could get a set of new orbital. Then this 

new set of orbital are used to calculate the new Fock equation. Repeating this process 

until the new set of orbital is almost same as the previous set, in other words, until 

they are self-consistent. Now the problem comes to how to guess the orbital. This 

problem is pretty important, since it controls the convergence time for the 

self-consistent and the accuracy of the convergent result. The most general procedure 

is developed by Clemens Roothaan. He expressed the molecular orbital e

MOϕ as the 

linear combinations of basis functions vφ , which in general is atomic orbital 

 ∑=
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v

vv

e

MO c φϕ                                                    (2.45) 

Take equation (2.45) back into equation (2.37) and integrate the electron coordinate rj 

with )(*

jrµφ . Then we can get 
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vv  , ,2 ,1      L== ∑∑ µε µµ                                  (2.46) 

Where
vFµ is given by 
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jr
jvjjv rrFrF )()()( φφµµ

)
=                                          (2.47) 

and
vS µ is given by 

jr
jvjv rrS )()( φφµµ =                                              (2.48) 

If vφ is chosen a set of real functions; which is general the case. Then both
vFµ and

vS µ  

are k x k Hermitian matrices. The equation (2.46) could be rewritten in matrix 

notation as bellow 

ScFc ε=                                                         (2.49) 

Which is the most general form used in the computational calculation for HF method, 

because of the convenience of matrix notation. Up to now, we have shown the 

derivation of HF method. From this, we could see that there is a principle for making 

sure the accuracy of the HF ground state result; the lower the ground state energy the 

more accurate the ground state result, since it is derived from variation method. 

Besides that advantage, from equation (2.37) we found that the best form after 

vibration method is one electron schrondinger equation with the effect of taking other 

electrons as average field, that is, this not only reduce the multi-electrons problem 

into several one-electron problems but also improve the molecular orbital; the Fock 

orbital, which has the information of considered electron interacting with other 

electrons and it is much better than normal single electron orbital. Although there are 

several advantages above, but there exist one big defect, that is, the independent 



23 

 

particle model approximation for the total wave function, which is absolutely not the 

form of exact wave function. Because of the second term in the right side of equation 

(2.30), they are no longer independent. So it is impossible for the total wave function 

in the form of the product by each single electrons wave function. In other words, the 

result of HF for ground state will never same as the exact one and it will always 

higher than the exact one (Since it is derived from variation method.), even if we used 

infinite basis equation (2.45); which we call this HF limit. The difference between HF 

limit and the exact one is in the order that will influence the accuracy of chemical 

reaction. Since HF omit the effect of the instant interaction of electrons (because of 

the form for total wave function); which is called electron correlation energy, and this 

is very important for chemical reactions. In order to consider the effect of correlation 

energy, there is the development of the post-HF method, which would be introduced 

bellow. 

 

2-1.2 Post- HF methods 

     As mentioned above, Post- HF method is the method improved to consider the 

correlation energy that HF didn’t consider, which could be defined in the form of 

bellow equation 

mitHFexactcorr EEE lim −=                                              (2.50) 
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There are several Post- HF methods. Here we would only mention the MP2 for 

Moller-Plesset Perturbation theory and the CCSD, CCSD(T) for couple cluster 

method. 

Moller-Plesset Perturbation Theory 

     The basis of Moller-Plesset is to take the Slater determinants constructed by 

Fock orbitals as the zero order function and further improve the energy and wave 

function by perturbation theory. So the zero order schrondinger equation would be as 

bellow  

)0()0()0()0(ˆ
iii EH Φ=Φ                                                 (2.51) 

Where   

∑=
eN

i

irFH )(ˆ )0(                                                    (2.52) 

In which )( irF is the Fock operator 

∑=
i

ai i
E ε)0(

                                                     (2.53) 

and )0(

iΦ is constructed by Fock orbital(The excited state is simply obtained by 

exciting the electrons to virtual Fock orbital and then construct its correspond Slater 

determinants.) Since Ĥ is in the form of equation (2.30) and )0(Ĥ is in the form of 

equation (2.52), then we could expected the first order Hamiltonian would be 

)0()1(ˆ HHH
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−=                                                    (2.54) 

Or 
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From the basic of perturbation we would find that the energy considered to first order 

(MP1) is the result of HF, which is pretty reasonable since 
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So considering to second order energy (MP2), the energy would be 
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(2.58) 

From equation (2.58), it is easy to see that the second order energy correction must be 

negative. So if we are talking about the ground state, and the basis already make HF 

limit, then it’s obvious that the second order energy correction would be the electron 

correlation energy. 

Coupled-Cluster Theory 

     The concept of coupled-cluster is little bit same as configuration interaction, but 

sort the groups in the order of number of electrons excited (same as MP2), where CI 

sort them in the order of spin (converge too slow.). So total wave function would in 

the following form  
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Where 0Φ is the HF ground wave function, i; j; k is the occupied orbitals and a; b; c is 

the virtual orbitals. The coefficients in equation (2.59) are obtained by variation 

method, but not the case for coupled-cluster method, which are obtained by second 

excitation as bellow, where the coefficients are not obtained by variation method 
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So equation (2.59) would be 

( ) 0321
ˆˆˆ1 Φ++++=Ψ LLTTTCC

                                     

(2.63) 

By non linear transformation we could get                              

( ) ( )
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CC ee
LL                                       (2.64) 

, which is the exact solution to the equation (2.17). By multiplying
( )Te

ˆ−
and integrate 

with αΦ , which is at least single excitation, then we can get the information of 

coefficient in it as bellow 
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By multiplying
( )Te

ˆ−
and integrate with 0Φ , then we can get the total energy as bellow 
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And CCSD and CCSD(T) is the truncated coupled-cluster method, where CCSD take
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( )Te
ˆ

as bellow 

( )
21

ˆ ˆˆ1 TTe T ++≈                                                    (2.67) 

And CCSD(T) is same as CCSD but consider some effect of triple excitation, but not 

entirely as CCSDT. 

 

 2-2 Adiabatic approximation for the motion of nuclei on single PES 

     Now the question is how to deal with the nuclei motion on the single adiabatic 

electronic PES. Adiabatic approximation is the general strategy for this kind of 

problem. But electronic transition, vibrational transition seems cannot be a good 

candidate for good adiabaticity. But in fact, reactive transitions occur in the 

rovibraiontal states in physical different regions, reactants and products and occur 

efficiently only in the region that two parts come closer. So using adiabatic separation 

for state to state dynamics problem seems reasonable. Still, the adiabaticity is not that 

good as electronic transition, that is, non-adiabatic transition still play an important 

rule inside the state to state dynamics. But the adiabaticity is good enough that he 

region of strong non-adiabatic coupling would be separated from each other, each of 

them can be seen freely from others. Because of the properties of localized region, the 

semi-classical method developed  by Zhu and Nakamura
3,4

 could be used to deal 

with this case. The information needed is the En in equation (2.5) without solving the 
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non-adiabatic coupling by equation (2.6) and (2.7). Now The question is how to make 

sure the quality of adiabaticity, that is, how to choose a coordinate that improve the 

adiabaticity. Previously, Jacobi
5
 (non-adiabatic coupling did not die out in asymptotic 

region), hyper-spherical
 6
 and hyper-spherical elliptic coordinates

7
 are being used. But 

there is no analytical form for more than 5 atoms, the work become tedious even for 

obtaining the adiabatic curves only. A general coordinate is needed for this 

semi-classical method, since the main issue is to obtain the adiabatic curves, and the 

following steps will be just like a service pattern. So how to choose this coordinate, in 

fact, it’s min energy path (MEP), which has been developed thoroughly. How can min 

energy path be an appropriate slow variable will be explained in 2-2.1. Then, I would 

like to introduce how the semi-classical theory developed by Zhu and Nakamura
3,4

 

can be applied to this coordinate in section 2-2.2.  

 

2-2.1 Min energy path 

     In order to explain why MEP could be proper slow variable for adiabatic 

approximation, knowing the basics of MEP is necessary. Let’s recall the fundamental 

concept for min energy path, there would be 3N-7 mode with gradient equal to zero, 

orthogonal to the min energy path which may contains non zero gradient. So for the 

general point one could has 
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where x is arbitrary point; x = {xir}, a is a point on the reaction path; a = {air}, k = 
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, and ζ is the displacement vector. Here i = 1, 2, 3…..,N , r = x, y, z. For 

displacementζ that is orthogonal in the 3N dimensional vector space component of 

the gradient part in the equation (2.68). In order to get the normal modes for vibration 

that are orthogonal to the reaction path, it is also necessary for ζ to orthogonal to 

the 3N space vector component of the rotation and translation for the complete 

N-atom system. Since it’s not the case of minimum or saddle point, it is necessary to 

project out the infinitesimal rotation, translation and the unit vector along the reaction 

path, otherwise there will contamination of rotation and translation during normal 

analysis. So at each point, one define projected force constant matrix k
P
 for normal 

analysis as 

)1()1( PkPk P −⋅⋅−=                                            (2.70) 

After doing normal analysis at harmonic approximation, one could expect there will 

be 3N-7 nonzero eigenvalues; which give frequencies orthogonal to the reaction path, 

seven zero with six correspond to rotation and translation, one for reaction coordinate. 

So this provides the following approximated potential surface, 
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where s is reaction path ,Qk is the normal coordinate orthogonal to s and v0 is the 

potential energy on the reaction path. The classical one-dimension motion 

Hamiltonian along reaction path for 3N-7>2 has been reported as 
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by Miller
8
, where A(s) is the correction factor and ps is the momentum along reaction 

coordinate. From equation (2.72), we can easily find that the first term is equal to the 

kinetic energy of slow variable in equation (2.2), the second and third term then is 

correspond to adiabatic potential, which is the En in (2.5).This term (En) is only 

information needed for semi-classical theory. Up to now, I have not explained why 

reaction path could be the right coordinate to choose. Since the reaction coordinate 

separate reactant and product into two regions, there’s no problem of non-adiabatic 

coupling between reactants and products in asymptotic region as Jocabi coordinate 

does. And the reactive transitions mostly occur around the saddle point (transition 

state). Besides that, the way of obtaining the adiabatic curves (En) is much more 

general than Jocabi, hyper-spherical and hyper-spherical elliptic coordinate, since the 

theory for normal mode analysis on reaction coordinate
8
 has been developed 

completely. En here is correspond to J = 0 adiabatic curves, since equation (2.72) only 

contains vibrational part, where J is the total angular momentum, which is conserved 
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during the reaction, so the information of chemical dynamics preserved in constant J, 

that is the dynamics won’t be mixed between each J. But in order to obtain the total 

dynamics, the message of J>0 is needed. The J-shift approximation
11,12,13

, which 

relates the state to state reaction probability for arbitrary J and its body-fixed 

projection k to the one actually calculated for J = 0: 

)()( *

,

0,

KJ

J

fi

KJ

fi EEPEP −≈ =
→→                                           (2.73) 

, will be used to gain case for J > 0, where E*J,K is the rotational energy of transition 

state. 

 

2-2.2 Semi-classical theory 

     As mentioned above, MEP divides the reactant and product into two different 

regions; no problem of non-adiabatic coupling in the asymptotic region, and reactive 

transitions mainly occur around saddle point (transition), so it make it possible to treat 

the chemical reaction in ordinary scattering problem. That is to say, we can apply the 

semi-classical theory of non-adiabatic transition developed by Zhu and Nakamura
9,10

.  

 

2-2.2.1 Zhu and Nakamura theory 

     The theoretical studies of non-adiabatic of transitions between potential energy 

curves should be date back to 1932, when Landau
14

, Zener
15

, and Stueckelberg
16
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published the pioneering paper independently. They have shown the non-adiabatic 

transition probability at curve crossing point between two curves : 

)
2

exp(
2

Fv

E
PLZ

h

∆
−=

π
                                              (2.74) 

, so called famous Landau-Zener formula, where ∆E is the diabatic coupling: 

2

12 WW
E

−
=∆                                                (2.75) 

and F is the difference of the slopes of the two diabatic potential (V1 and V2) at Rx, 

which is the crossing point between V1 and V2 as shown in figure 2.1. But there are 

five general defects for this formula, which are summarized
17

 as follows: (1) Not 

work at energies near and lower than the crossing point. (2) No good formula exists 

for transmission when the two diabatic curves cross with different signs of slopes. (3) 

The available accurate formulas, which are valid only at energies higher than the 

crossing point, contain inconvenient complex contour integrals and are not very useful 

for experimentalists. (4) The Landau-Zener formula requires the knowledge of 

diabatic potential, which can’t be uniquely obtained from adiabatic potentials. (5) The 

accurate phases to define the scattering matrixs are not available for all cases. In this 

report, we would take advantages of point (2), (3) and (4), that is, we only consider 

the transition point lower than total energy and no phase consideration. The main 

purpose of this report is to check whether taking MEP as the slow variable is valid or 

not.  
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2-3 Application to adiabatic curves on MEP 

     Since the properties of MEP, the adiabaticity holds in localized region. Then the 

most important non-adiabatic transition occur between two adjacent adiabatic curves. 

(Non-adiabatic transition between non-adjacent may contribute a little, but not that 

important, which may be considered after obtaining the diabatic curves from adiabatic 

curves as ref 1 does. This won’t be shown in this report.) So let us look at the easiest  

case; two adiabatic curves, as Figure 2.2. The scattering wave function for asymptotic 

region can be written in WKB form:
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,where T
L

n and T
R

n are the same for transition point lower than the total energy 

considered, but left-side turning point and right-side turning point for tunneling case, 

and  

))((2)( sEnEskn −= µ .                                           (2.78) 

The scattering matrix is defined by  
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, where the outgoing coefficients (purple one in the figure 2.2) are represented by the 

incoming coefficients (black one in the figure 2.2), and Sij=Sji. It’s not unexpected to 

obtain S matrix in the form of equation (2.79). Since the outgoing part is contributed 

by the outgoing part, that is to say, Sij itself is related to the probability that outgoing 

coefficient formed from the incoming coefficient. In fact, it is in the form of square 

root of probability with phase; because it is the square of coefficient that gives the 

meaning of probability not coefficient itself. Take A1 for example:     

2411312211111 CSCSBSBSA +++=                                    (2.80) 

, where S11 is related to the probability of the reflection of the incoming wave B1, S12 

is the probability of the reflection of the incoming wave of B2 which transmit to lower 

curve, S31 is the probability that C1 stay at lower curve and S41 is the probability that 

C2 stay at upper curve. In this model, there two kinds of S matrix: 

1. Non-adiabatic transition between two curves, so called I matrix ; like  point I1 

and point I2 in figure 2.3: 
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, where p1 and p2 are the probability of the transition between lower curve and 

upper curve at position of I1 and I2 

2. Tunneling; like the E1 case in figure 2.3:  
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, where pt1 and pt2 represents the probability of transmittance at lower and upper curve 

for energy equals to E1. These two kinds shown above are only single S matrix. In 

order to obtain the final s matrix; which connects incoming and outgoing of the very 

beginning and end, one should know how to link the multiple s matrix. From figure 

2.3, we could find that there are two types of linkage; one is that energy contains  
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all two curves (E2 in fig. 2.3), another one is tunneling exist between two transition 

matrix (E1 in fig. 2.3). It seems these two types are totally different, but in fact E2 is 

just a special case of E1 with the transmittance probability equal to 1. So the 

discussion of E1’s case is enough. In order to do this, the transformation of the S 

matrix is necessary. Since we can’t just multiple each single S matrix to obtain the last 

one, the transformed one could, which links . After obtaining the total matrix, we need 

convert it back to S matrix. The transformed one for transition and tunneling matrix 

would be: 

1. Transition matrix: 
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, where I’1 is the modified matrix of I1  
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, where I’2 is the modified matrix of I2  

2. Tunneling matrix 
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So the total matrix would be manipulated as bellow for E1 case:  
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The P matrix in equation (2.26) should always exist between two I matrix, since p is 

not unit matrix even for the case of total transmittance. The result of equation (2.87) 

could be applied to multiple s matrices, and you can obtain following form for 

modified total matrix F: 
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, where si is the position on the reaction path. In fact Equation (2.88) is also the 

general result for multiple curves, but with (2.87) in the form of 
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, where i is the number of adiabatic curves. For multiple curves, the Tj (sj) in Ij(sj) 

matrix will be denoted as 
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, where pn(sj) is the transition probability between curve n and n+1 at position sj (pn 

would be equal to zero for those curves not involve in the transition point) and n+1 < 

i’s curves. Here, n is the number of nth curves, not the notation of right side or left 

side for the adiabatic curves. And the rj(sj) and tj(sj) in Pj(sj) would be 
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, where ptn(sj) is the probability of transmittance in nth adiabatic, and n<=i; the total 

number of adiabatic curves. Now we know the general form for modified total matrix 

in equation (2.89).Then we need to convert the transformed total matrix into S matrix. 

A general step is shown below: 

First, 
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Then, from equation (2.93) we can obtain 
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Finally take (2.94) into (2.93), we get 
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Thus we gain the representation for total S matrix: 
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No matter how many tunneling(barriers) exist in the dynamics, the process from 

equation (2.93) to (2.97) is general, which could be easily solved numerically. There 

four parts in S matrix, each has its correspond physical meanings: 

1. Upper left part: relate to the probability for the waves from right side curves to 

go back. 

2. Upper right part: relate to the probability for the waves from right side curves to 

go to left side curves. 

3. Lower left part: relate to the probability for the waves from left side curves to go 

to right side curves 

4. Lower right part: relate to the probability for the waves from left side curves to 

go to left side curves    
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Figure 2.1 Schematic potential energy curves in the 

Landau-Zener type crossing.V1 and V2 are diabatic curves, W1 

and W2 are adiabatic curves and ∆E is the diabatic coupling. 
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Figure 2.2 Schema of general case for two adiabatic curves on 

MEP coordinate. An and Bn are the coefficients of scattering wave 

function for asymptotic region (s����+infinity) in WKB form as 

equation (2.76). Cn and Dn are the coefficients of scattering wave 

function for asymptotic region (s����-infinity) in WKB form as 

equation (2.77).   
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Figure 2.3 Schema of two adiabatic curves on MEP. I1 and I2 are 

the transition points. E1 and E2 are the two types of energy will be 

encountered during obtaining the total S matrix. 
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Chapter 3 Results and Discussions 

3-1 Theoretical results for OH+H2 ����H+H2O reaction 

 

3-1.1 Theoretical calculation for MEP 

There are several theoretical groups devoted on the research of 

OH+H2�H+H2O reaction; Smith and Zenner
1
 use two different semi-empirical 

potential energy surface; LEPS and BEBO and they neglect tunneling with barrier 

same as experiment activation energy, Schatz used large scale POL-CI
3
 wave function 

with basis 3s3p1d/3s1p and 4s3p2d/3s2p and Truong
4
 used the PMP4/6-311++G(2d 

f ,2pd)//QCISD/6-311+G(d,p) method. And in this report, Gaussian 09 is used to  

calculate the reaction path with CCSD/aug-cc-pvdz, CCSD(T)/ aug-cc-pvdz//CCSD/ 

aug-cc-pvdz and CCSD(T)/aug-cc-pvtz//CCSD/aug-cc-pvdz. All the results are shown 

in table 3.1. From table 3.1, we could see that the energy correction by CCSD(T) is 

necessary, which match pretty well with Schatz’s larger basis and Troung, no matter 

aug-cc-pvdz or aug-cc-pvtz, but seems shown difference with Zener and the activation 

energy (Ea) at 300K, which Zener took the activation energy as barrier height in the 

semi-empirical potential energy surface. It could be contributed to the tunneling effect 

and temperature effect. Schatz
4
 and Truong

5
 have calculated the rate constant with the 

effect of tunneling, then they get pretty good results with experiments, that is to say, 

the results of CCSD(T) energy correction is ok. And the comparison for MEP of my 

work between before and after energy correction by CCSD(T) shown in figure 3.1 

indicates that the saddle point does not change to much compared to the one without 

energy correction and almost no difference between the two different basis in energy 

correction, CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz and CCSD(T)/aug-cc-pvtz// 
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CCSD /aug-cc-pvdz. So we use the MEP calculated by CCSD(T)/ aug-cc-pvdz // 

CCSD aug-cc-pvdz. 

 

3-1.2 Geometry of transition state 

Figure 3.2 displays the geometries of transition state with CCSD/aug-cc-pvdz method, 

which predicted that the O-H length of HOH’H’’ is 0.976 A, which almost same as the 

length of OH radical. This result match the concept that several studies bring out, 

which OH can be seen as a spectator group during the reaction. The geometry is 

almost same as Schatz
2
 and Truong

4
’s result, but different from Zenner

1
, which is no 

longer planar.  

 

3-1.3 Normal modes along reaction path 

     Table 3.2 presents the frequencies along reaction path calculated by G09 with 

CCSD/aug-cc-pvdz. In general, there should be 7 zero or very small frequencies and 

3N-7 non-zero frequencies, here is 5. From table 3.2, you could see that it’s not the 

case. For points near transition state (s = 0) are still ok, but points away from s = 0 

show strong defects. Since there are two general problems exist in the G09 calculation 

for points on reaction coordinate: 

1. Linear transformation of Cartesian coordinate to internal coordinate: 

For non local maximum or minimum point, the transformation will be no longer 

linear, since the first order gradient will also contribute to it like Truhlar metioned
6
. 

Bellow is the energy based on Cartesian (equation (3.1)) and internal coordinates 

(equation (3.2))   

L+∆∆+∆+= ∑∑
N

ji

jiiji

N

i i RRFRGVV
3

,

3

0
2

1
                         (3.1) 
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And  
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,

3

0
2

1
                            (3.2) 

,in which ∆Ri and ∆qi are, respectively, the Cartesian and internal coordinate.  

The internal coordinate can be expressed in terms of power serious of the 

Cartesian coordinate as bellow: 

∑∑ +∆∆+∆=∆
N

kj

ji
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jiji RRCRBq
3

,

3

2

1
L                            (3.3) 

From equation (3.1) to (3.3) yields the expressions for Cartesian gradient and 

force const matrix in terms of their internal coordinate counterpart as 

gBG T=                                                       (3.4) 

and 

][i
F

i

i

T
CgfBBF ∑+=                                             (3.5) 

In above equation, it could be seen easily that it’s not linear transformation, which 

is the only first term of equation (3.5) 

2. The process of projecting out the unit component along reaction path, rotation and 

translation is not conducted. 

     Because of problem 1, we choose to use Molpro to calculate the frequencies by 

the same method and basis, CCSD/aug-cc-pvdz, with the geometries from G09. Since 

Molpro directly diagonalize the transformation matrix in Cartesian coordinate without 

changing to internal coordinate. The results of Molpro are indicated in table 3.3. It 

seems better but there is still some defects in it, because of problem 2 mentioned 

above. This program for this is not that easy to construct. In order to find the 3N-7 

nonzero frequencies, we’ve done the following steps: 

1. Transform the first order gradient in Cartesian coordinate from Molpro to normal 
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mode coordinate with the transformation matrix from Molpro 

2. Do mode-scanning for each coordinate with the transformation matrix obtained in 

Molpro for each mode at each point on reaction path.  

From the gradient, reduced mass and the mode scan in normal mode, we could 

distinguish which is frequency of reaction path (gradient max one), rotation and 

translation. Then we obtained the organized frequencies in table 3.4 and. Figure 3.3. 

Those frequencies belong to the modes of reactants (OH, H2) and products (H2O); 

W3~W4 in table 3.4, are reasonable. But W1 and W2 have unphysical imaginary 

frequencies during the reaction path. It’s due to the problem 2 mentioned above. The 

contamination of reaction coordinate, rotation and translation is stronger for smaller 

frequencies (those contribute to the rotation of reactants and products, that is, W1 and 

W2). But the program for dealing problem2 is no easy to write. Even if we have done 

this, there will be still a big problem, which is shown by Truhlar
6
. You still may get 

unphysical imaginary frequencies not until you use curvilinear internal coordinate. 

This is even harder than dealing with problem 2, since it’s a non linear process. So we 

modified the W1 and W2 by following the trends of frequencies around s = 0 and goes 

to frequencies of rotation in the asymptotic region (Originally, it should be zero, but 

we know it’s contributed by the rotation in the asymptotic region, which won’t be 

defined as frequency). Then, we fit the curves in the reaction region (s > 0) and 

product region( s < 0). This process is shown in figure3.4. (Only show W1 and W2, 

since W3~W4 don’t need to modification.) The fitting process will also be done for W3, 

W4, W5 and MEP. The fitting result for W1, W2 and W3 of OH+H2 part (all change to 

rotation at asymptotic region) is shown as bellow: 

W1: 

OH+H2 part ( The rotation of OH, s > 0) : 
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 )0.56019/exp(3204.6386918.601)(
~ 1

scmE −⋅⋅+=−                       (3.6) 

, where 18.601cm
-1

 is the rotation constant B of OH in asymptotic region. 

H+H2O part (The total rotational J of H2O, here we approximate it as prolate with 

I’c=I’b=1/2(Ic+Ib) and I’a=Ia, where I’ is the modified one and I is the real one): 

[ ] )0.48136/)0.24983(5.0exp(674.2392811.92)(
~ 21 +⋅−⋅+=−

scmE           (3.7) 

, where 11.92cm
-1

 is the rotation constant B’ of H2O in asymptotic region. 

W2: 

OH+H2 part (H2 rotate around OH, s > 0):  

)0.51682/exp(3200.5297)(
~ 1

scmE −⋅⋅=−                                (3.8) 

, where 0cm
-1

 is the rotation constant B’ of OH/H2 in asymptotic region. 

H+H2O part (The k component of H2O ): 

[ ] )0.54214/)0.08221(5.0exp(637.3235914.875)(
~ 21 +⋅−⋅+=−

scmE           (3.9) 

, where 14.875cm
-1

 is the rotation constant A’ of H2O in asymptotic region. 

W3: 

OH+H2 part (The rotation of H2, s > 0):  

)0.1746/exp(93.92793)1.22003/exp(908.270957.66)(
~ 1

sscmE −⋅+−⋅+=−

  (3.10) 

, where 57.66cm
-1

 is the rotation constant B of H2 in asymptotic region. 

We fit these frequencies directly to certain rotation, which in fact is not the case. Since 

the motion of those rotations in asymptotic region are mixed together in the complex 

HOHH. In reality, it’s not a big problem for two reasons: (1) The couplings between 

these rotations could be considered during the process of non-adiabatic transition. (2) 

We could take the rotation as an average field, that is, we only need to know this 

rotation belong to which vibration without knowing what kind of rotation it is, which 

is more general for large system. So from the result we can gain the fitted frequencies 
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along the reaction path as table 3.5 and figure 3.5 

 

3-2.Contruct the adiabatic curves of J = 0 on MEP 

     By the fitted frequencies along the MEP, we could construct the adiabatic 

curves of J =0 on it with second and third term in the right side of the equation (2.9). 

But there are some modifications, which is necessary. Those frequencies that become 

rotation in the asymptotic region don’t always preserved the form of Eni = wi(ni+1/2). 

It evolves into the form of rotation in regions that are away from transition state. 

Besides that, for W2 of OH+H2, the rotational quantum number itself is restricted to 

the rotational quantum numbers of OH and H2 rotation, and for W1 of H+H2O, it’s 

restricted by rotational total J of H2O. The restriction seems unreasonable, but in fact 

ok as the two points I mentioned above. So the modification will be done as bellow: 

wJsawnwJJsawJsaEJ ⋅⋅−⋅=⋅+⋅−+⋅⋅= 22
)()())(1()(                 (3.11) 

Or 

wKsawKsaEK ⋅⋅−+⋅⋅= )())(1()( 2
                                 (3.12) 

, in which J is the rotational total quantum number and K is the quantum number of z 

component of J in molecular axis. a(s) is percentage for the portion of vibration and 

(1-a(s)) then is the portion of rotation. ZPE is directly considered with MEP, so no 1/2 

for vibration in equation (3.11) and (3.12). The way of how to obtain a(s) is pretty 

easy, just follow the trends of how frequencies drop in equation (3.6)~(3.10). Take W1 

for example, you could get a(s) for : 

W1 of OH+H2:  

 )0.56019/exp()( ssa −=                                            (3.13) 

W1 of H+H2O:  
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[ ] )0.48136/)0.24983(5.0exp()(
2+⋅−= ssa                              (3.14) 

So En for adiabatic curves would be: 

OH+H2 side : 

[ ] [ ] [ ] 55443

2

3332

2

2221

2

111 )()()( WnWnWJsaJWJsaJWJsaJE ⋅+⋅+⋅⋅−+⋅⋅−+⋅⋅−=  

                                                                (3.15) 

, in which J2 = J1+J3, J1+J3-1, J1+J3-2,……., |J1-J3|, in order to make the total angular 

momentum equals to zero. 

H+H2O side : 

[ ] [ ] 5544332

2

2221

2

111 )())(1( WnWnWnWJsaJWKsaKE ⋅+⋅+⋅+⋅⋅−+⋅⋅−+=  

                                                                (3.16) 

, in which J2 = 0, 1, 2,……., J1, since it’s the z component of J2 (we didn’t consider J2 

< 0). Thus from (3.15) and (3.16) we can gain the adiabatic curves as figure 3.6 

 

3-3. Cumulative reaction probability 

 

3-3.1 Cumulative reaction probability for OH+H2����HCl+H2O 

     Before talking about the state to state dynamics, we would like to show the 

cumulative reaction probability first. Cumulative reaction probability is the property 

that indicates how much reactants become products at certain total energy, which 

could be shown as below: 

∑∑ →=
i f

fi JEpJEN ))(())((                                     (3.17) 

∑=
J

JENEN ))(()(                                            (3.18) 

, in which N(E)(J) is cumulative reaction probability at total energy E, pi
�

f(J) stands 



52 

 

for the reaction probability from certain state i of reactants to certain state f of 

products and both of them are the results of total angular momentum equals to J. From 

equation (3.18), it is easy to understand that N(E) is macroscopic properties, which 

means that the result of N(E) decides whether the potential energy curves we use is 

right or not, since it’s a total effect, that is , it’s easier to achieve than pi
�

f(J), which is 

a microscopic property. Here, we only show the result of N(E)(J=0), since other 

N(E)(J) could be obtain by J shift approximation, that is, we only need to make sure 

N(E)(J=0) is correct. Below we would like to display several results of N(E)(J=0) 

from different types of model : 

Type I :  

We only consider the energy levels at the two sides of adiabatic curves, s=-2.5bohr 

and s=2.0bohr with the cumulative reaction probability as bellow  

fr

fr

NN

NN
JEN

+

⋅
== )0)((                                           (3.19) 

, where Nr, Nf are, respectively, the number of states available at E for s=2.5bohr and 

s=2.0bohr. This N(E)(J=0) is the result of barrierless and every states are equal 

partition if the states are available at that E . We do the same thing for reactants and 

products, where Nr, Nf would then, respectively, be the number of states available at E 

for reactants and products. Then we obtain the result as figure 3.7. The outcome is 

larger than Miller’s result
7
, which is reasonable, since no barrier in this case. Th 

S=-2.5bohr/s=2.0bohr, these two positions are pretty close to the asymptotic region, 

and from figure 3.7, we could find that it goes well with the trend of reactant and 

product. That is, the linkage between the two sides of the energy curves and 

asymptotic region is pretty good. 

Type II : 
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     We consider the entire curves as shown in figure 3.6, but we didn’t evaluate the 

total S matrix as equations (2.26) to (2.35) in reality. We only consider the effect of 

tunneling of each curve. Because of the macroscopic properties of cumulative reaction 

probability, it is easy to assume that the N(E) is contributed mainly by the tunneling 

property of each adiabatic curve not by the non-adiabatic transition between them, 

which is a microscopic property that would easily vanish in the macroscopic 

properties. The strategy we applied is pretty easy, if there is only one barrier in each 

adiabatic curve, we just evaluate the tunneling probability of each curves and then do 

summation. But if any curve inside the adiabatic curves has more than one barrier, 

evaluating the S matrix becomes necessary. Since OH+H2 side, reactant side, is higher 

than H2O+H side in each adiabatic curve, that is, the possibilities of tunneling would 

be decided only by the energy levels of OH+H2 in the asymptotic region. From figure 

3.8 which indicated the adiabatic curves that connects the energy levels of reactants 

lower than 15kcal/mol. It is obvious that the assumption of one barrier is sufficient, 

even if there is some pretty small well in higher levels, which won’t give big effect. 

The transmittance probability is evaluated as bellow: 

∫ −=
2

1

)(2
1 T

T
dssVEµδ

h
                                           (3.20) 

,where T1 and T2 are the turning points in each adiabatic curve. If the adiabatic curves 

are in parabolic shape, then the transmittance probability are in the form as equation 

(3.21) and (3.22): 
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, in which Etotal is the total energy and Emax is the max energy in each adiabatic 
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curve. In type II, we obtain the result as figure 3.9. The deviation from Miller’s result
7
 

is not small. There are three possible reasons: 

1. The linkage between reactants and products is not appropriate, since there two 

rotational related vibratioanl modes in product side, but three for reactant side. 

Possible solution would be the way of dealing with the mode, which shows 

vibrational behavior in one side but rotational behavior in other side. We should 

consider the evolution of this kind of mode from reactant to product, not just take 

one side as vibration and the evolution only in another side. Besides, the way of 

dealing with the evolution from vibration to rotation should be modified also, and 

this would be done in the future. 

2. The non-adiabatic transition may cause some effect to the cumulative reaction 

probability. 

3. The accuracy of the frequencies along the reaction coordinate would influence the 

density of states. For those big frequencies, the defects may be small ,but not the 

case for those small frequencies, especially those rotational related modes in the 

asymptotic regions. 

Type III: 

     Since the adiabatic curves are not appropriate yet, in order to obtain the 

cumulative reaction probability, we’ve done following three assumptions: 

1. The shape of upper levels is same as the ground state, and take all of curves as 

parabolic model  

2. Take the energy level of transition state as the max energy, Emax, of each 

adiabatic curve.   

3. From assumption 1 and 2, we could make a subroutine of delta (δ ) vs deltaE for 

ground energy curve, where deltaE is the difference between Etotal and Emax. 
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Then take this subroutine as the reference for upper energy levels. So for each 

adiabatic curves we only need to know two things, one is Etotal > Emax or 

Etotal< Emax, another is difference between Emax and Etotal. Then from the 

subroutine, we could get its correspond delta(δ ). For Etotal > Emax, equation 

(3.21) is applied to get Ptransmitance. For Etotal < Emax, equation (3.22) is 

applied to get Ptransmitance. 

We call this model as adiabatic model. The energy diagram of this model is shown in 

figure 3.10. The delta (δ ) vs deltaE for ground energy curve is displayed in figure 

3.11 and the fitted delta (δ ) vs deltaE is shown in equation (3.23): 

45

32-4-4

deltaE108.93079-      

deltaE0.01189+deltaE107.40337+deltaE1.07919+10-5.66455

⋅⋅

⋅⋅⋅⋅⋅=
−

δ
                                       

(3.23) 

The cumulative reaction probability of J = 0 is in figure 3.12. We could found that it’s 

much closer to Miller’s result
7
 than type I, but still has not small difference. There 

would three possible reasons: 

1. From figure 3.10, it is easy to see that the energy density of reactant side is larger 

than transition state, that is, the delta would be smaller than ground energy curve 

at the same delta E for the upper curves, as the parabolic model still holds. So 

we’ve done some modification for upper curves as bellow:   

max

0
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total >

∆
+×= δδ                                   (3.24) 

max

0

   

1

' EEfor

v

v
total <

∆
+

=
δ

δ                                     (3.25) 

   , where v0 stands for the maximum of ground energy curve, Emax is the maximum 
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of adiabatic curve considered and ∆ v equals to Emax-v0. The result of this 

modification is shown in figure 3.13. No big difference between before and after 

modifications. But after directly multiple adiabatic models result by a factor 3.6 or 

the modification order change from 0.5 to 2.95 as bellow: 
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∆
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 we found that the result match Miller’s result
7
 better. These are displayed in figure 

3.14. The possible explanations would be the parabolic model is not appropriate or 

the density of state in transition state is not correct which would be explained in 

reason 3. We fit the ground energy curve in polynomial equation, and obtained the 

equation (3.28) 

98765

432
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11.562636.5155-s17.62052-s9.755945.48581)/(
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(3.28) 

From equation (3.28), we could find that s
2
 is not the only dominated term, that is,  

parabolic model no longer good, but whether this is the main reason, it is still in 

request. 

2. Non-adiabatic transition between each adiabatic curve may cause some effects, 

which would be shown in type IV.  

3. The accuracy of the frequencies along the reaction coordinate would influence the 

density of states. For those big frequencies, the defects may be small ,but not the 
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case for those small frequencies, especially those rotational related modes in the 

asymptotic regions. 

Type IV: 

     In order to consider the influence of non-adiabatic transition, we use diabatic 

model to evaluate the energy curves for the transition state. In diabatic model, all 

modes in transition state preserve the properties of the motion in reactants. Since 

diabatic model keep all the properties from reactant to transition state, that is, the 

non-adiabatic coupling is considered entirely in each curves. So the five vibrational 

frequencies 546.6cm
-1

, 609.94cm
-1

, 1059.12cm
-1

, 2479.16cm
-1

 and 3736.43 cm
-1

 in 

transition state would be changed as bellow:  

1. 546.6cm
-1

: correlates to the rotation between OH and H2 in asymptotic region, 

which is zero wave number in asymptotic region, but 4.89cm
-1

 in 

transition state, which the radius for moment inertia is calculated by 

the mass center of OH and H2 

2. 609.94cm
-1

: correlates to the rotation of OH in asymptotic region, which is 

18.601cm
-1

 in asymptotic region, but 18.6cm
-1

 in transition state. No 

big differences between asymptotic region and transition state, since 

OH can be seen as a spectator during the reaction. 

3. 1059.12cm
-1

: correlates to the rotation of H2 in asymptotic region, which is 

57.66cm
-1

 in asymptotic region, but 50cm
-1

 in transition state. 

4. 2479.16cm
-1

: correlates to the vibration of H2 in asymptotic region, which is 

4344.54cm
-1

 in asymptotic region, but 2479.16cm
-1

 in transition 

state. 

5. 3736.43cm
-1

: correlates to the rotation of OH in asymptotic region, which is 

3714.33cm
-1

 in asymptotic region, but 3736.43cm
-1

 in transition state. 
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No big differences between asymptotic region and transition state, the 

reason is same as the concept mentioned in 609.94cm
-1 

So, for the diabatic model, in order to preserve the properties, that is, the quantum 

numbers of those five motions in transition state should follow the quantum numbers 

of reactants. This is pretty different from adiabatic model. In adiabatic model, we 

count the number of possible tunneling amounts from reactants, and then the Emax of 

each adiabatic curve are taken from low level to high level, that is, the relation 

between each Emax and each state of reactants are decided by the sequence of the 

energy level of transition state and reactants. But for diabatic model, for every state of 

reactants, we should remember the quantum numbers of those 5 motions, and its 

corresponded Emax should have the same quantum numbers in order to preserve the 

properties. So the energy level of transition state would be like equation (3.29)： 

50)1(89.4)1(                                                     

6.18)1(43.3736.16.2479.),,,,(
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(3.29) 

, where v0 is electronic energy plus zero point energy of transition state, JOH, JH2, vOH, 

vH2 should be same as the JOH, JH2, vOH, vH2 of reactants as bellow 
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(3.30) 

, and JOH/H2 is |JOH +JH2 |, |JOH +JH2-1|, |JOH +JH2-2|……. |JOH -JH2| in order to obtain 

total angular momentum equals to zero. Then we could get the energy diagram for 

diabatic model as figure 3.15. We could find out that the density of state in transition 

state is similar to the density in reactants, since it is diabatic model. Then the process 

to obtain cumulative reaction probability is entirely same as type III except the 
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linkage between Emax and state of reactants. So we use the same equation (3.23) for 

delta (δ ) vs deltaE, then we get the cumulative reaction probability of diabatic model 

as figure 3.16. In this figure, it also shows the adiabatic model. It’s obvious to see that 

miller’s result is between adiabatic model and diabatic model, that is to say, 

non-adiabatic coupling may give some contribution to the cumulative reaction 

probability, since diabatic model consider the non-adiabatic coupling entirely in each 

curve, but entirely no non-adiabatic coupling in adiabatic model. 

     From type III to type IV, it’s easy to figure out that there are three possible 

reasons that influence the accuracy of the trends for cumulative reaction probability: 

1. Whether the parabolic model for energy curve is appropriate or not.  

2. Accuracy of the frequencies along the reaction coordinate 

3. The contribution of non-adiabatic coupling to the cumulative reaction probability 

In order to figure out which one is the dominated one, we would like to apply type III 

to type IV to a new system, Cl + CH4� HCl +CH3, a prototypical chemical reaction. 

 

3-3.2 Cumulative reaction probability for Cl + CH4���� HCl +CH3 

     Before applying those types of model to Cl + CH4 � HCl + CH3, we would 

like to show some theoretical results that people have done before and my works. 

 

3-3.2.1 Theoretical results for the MEP of Cl + CH4 ���� HCl + CH3 

Theoretically, there are several ab initio calculations investigating the barrier 

height and the heat of reaction with the calculated vibrational adiabatic ground-state 

barrier height; V
G

a, varying from 2.6 to 13.7 kcal/mol. Truong et al
8
 used the 

MP2-SAC2/MC-311G method, Dobbs and Dixon
9
 used QCISD(T) and CCSD(T) 

with a larger basis set (TZ+2P) and Hua-Gen and Gunnar Nyman obtained the 
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information of MEP by applying the hyper-spherical projection method to Rotating 

Line Approximation; RLA
10

, Rotating Line Umbrella; RLU
11

 and Rotating Bond 

Umbrella; RBU
12

 with the calculated London-Eyring-Polanyi-Sato (LEPS); which 

contains the zero-point energies of modes that are not explicitly treated in the 

quantum dynamics calculations. In this report, Gaussian 09 is used to calculate the 

reaction path of Cl + CH4 � HCl + CH3 with CCSD/aug-cc-pvdz and CCSD(T) 

/aug-cc-pvdz//CCSD/aug-cc-pvdz. All the results are shown in table 3.6. From table 

3.6, we could see that the energy correction by CCSD(T) is necessary, which match 

pretty well with Nyman’s three results, Troung’s result and the results of experiments 

within 1.5 kcal/mol, that is to say, the results of CCSD(T) energy correction is ok. 

And the comparison for MEP of my work between before and after energy correction 

by CCSD(T) shown in figure 3.17 indicates that the saddle point does not change to 

much compared to the one without energy correction. So we use the MEP calculated 

by CCSD(T)/ aug-cc-pvdz // CCSD aug-cc-pvdz 

 

3-3.2.2 Geometries of transition state, products and reactants 

     Table 3.7 displays the geometries of transition state with CCSD/aug-cc-pvdz 

method, which predicted that the C-H length of Cl-H-CH3’’ is 1.0961 A, which almost 

same as the CH’’ of CH’’3 radical and the CH’’ of H’CH’’3, but closer to CH’’3 radical 

more. This result match the concept that several studies bring out, which CH3 can be 

seen as a spectator group during the reaction as Nyman does
10~12

.  

It was found that the transition state has a collinear structure along the Cl-H’-C 

reactive and is located near the product channel; HCl + CH3. 

 

3-3.2.3 Normal modes along reaction path 
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     We’ve done the same process as OH + H2 � H2O + H. Then we obtain the 

modified 11 frequencies along the reaction path as table 3.8 for s < 0, table 3.9 for s > 

0 and figure 3.18 for both s > 0 and s < 0. 

 

3-3.2.4 Cumulative reaction probability for Cl + CH4 ���� HCl +CH3 

As mentioned before, for hyper spherical radius coordinate and Jaconbi coordinate, 

there’s no exact solution for more than 5 atoms reaction, that is, only reduced 

dimension information is available. So we can only apply adiabatic model with the 

consideration of reduced dimension to do the comparisons, that is, only type III is 

going to used. Bellow we would like to compare to Hua-Gen and Gunnar 

Nyman’s
10,11,12

 three reduced dimension results; RLA, RLU and RBU. 

RLA: 

     RLA stands for Rotating Line Approximation, which treats CH4 as QH, where 

Q is a quasi-atom with the mass of CH3, that is, the reaction would changed to QH + 

Cl � Q + HCl. So in the RLA framework the studied reaction is written: 

QH(v3b) + Cl � HCl(vHCl) + Q 

, where the the quantum number v3b represents the H-Q vibration and vHCl represents 

the H-Cl vibration. The H-Q vibration is correlated to anti-symmetric stretching 

which is not adiabaticlly correlated to the vibration of HCl, that is, there are two 

dimensions in this model. It seems like that in order to do the comparison, we should 

consider all these two motions, but in fact, it’s not the truth. For hyper-spherical 

radius (same for after projection), we can consider reactants and products separately, 

but for reaction coordinate, we need to consider them together, that is, the linkage 

between reactants and products is necessary for reaction coordinate but not the case 

for hyper-spherical radius (same for after projection). So for hyper-spherical radius 
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(same for after projection), the adiabatic energy curves for reactants only consider one 

dimension; the vibration of QH, and the adiabatic energy curves for products also 

only consider one dimension; the vibration of HCl. Both sides all only consider one 

dimension. But if we consider both the two dimensions in reaction coordinate, which 

makes both reactants and products two dimension, which is not the case in 

hyper-spherical radius (same for after projection). It’s impossible for reaction 

coordinate to consider one side one motion and the other side another motion and 

there’s no linkage between these two motions. In order to match the results of  

hyper-spherical radius (same for after projection), we only consider the motions of 

reactants, which is pretty reasonable. Since cumulative reaction probability is an 

effect of summation, as shown in equation (3.17) and (3.18). No matter how many 

final states you just sum all of them, it won’t influence how much to go through, so 

the real one to decide how much to go through is the part of reactants. By using the 

W11 (anit-sym stretching of CH4/CH3) in table 3.8/table 3.9 and the calculated 

electronic by CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we can obtain the reduced 

dimension energy diagram of adiabatic model as figure 3.19. And we repeat the same 

in type III, then we obtain the cumulative reaction probability as figure 3.20. We 

could find that the trend of my result goes well with Nyman’s result, but the starting 

point is different. Besides that, we could find out there’s strong resonance effect. 

RLU: 

     RLU stands for Rotating Line Umbrella. In the RLU model, the reaction Cl + 

CH4 � HCl + CH3 is treated as a collinear four-atom reaction, Cl + HCX � HCl 

+CX, where X has the mass of three hydrogen atoms and is located at their center of 

mass. So in the RLU framework, the studied reaction is written 

Cl + HCX(V3b,V4) � HCl(VH-Cl) +CX(V2) 



63 

 

, where v3b is the quantum number correlated to anti-symmetric stretching of 

CH4/CH3, V4/V2 are the quantum numbers of the umbrella type mode of CH4/CH3 

fragments respectively and VH-Cl is the quantum number correlated to symmetric 

stretching of CH4/HCl. So there are two dimensions in reactant side, two dimensions 

in product side and totally three dimensions. As the reasons mentioned in RLA 

section, we used W7, W11 in table 3.8/table 3.9 and the calculated electronic by 

CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we can obtain the reduced dimension 

energy diagram of adiabatic model as figure 3.21 and the cumulative reaction 

probability as figure 3.22. The trend between my result and Nyman’s seems almost 

the same, and the resonance effect becomes smaller. 

RBU: 

     RBU stands for Rotating Bond Umbrella. In this model includes four internal 

physical motions: the H-C (V3b; anti-symmetric stretching of CH4/CH3) and H-Cl 

(VH-Cl, symmetric stretching of CH4/HCl) stretch, umbrella type mode of the CH4/CH3 

fragments (V4/V2) and a rotation mode of CH3 (J) which becomes a bending mode in 

CH4 (Vb), that is, the studied reaction could be written: 

Cl + HCX(V3b,V4,Vb) � HCl(VH-Cl) +CX(V2,J) 

So there are three dimensions in reactant side, three dimensions in product side and 

totally four dimensions Then we do the same thing as RLA and RLB section, we used 

the W4, W7, W11 in table 3.8/table 3.9 and the calculated electronic by 

CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we get the reduced dimension energy 

diagram of adiabatic model as figure 3.23 and the cumulative reaction probability as 

figure 3.24. The trend of my result goes well with Nyman’s and the resonance effect 

becomes smaller compared to RLA and RLU.  

     From RLA to RBU model, we found that adiabatic model goes well with 
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Nymans’s results. But it is not the case in the full dimension case for OH + H2 � H2O 

+ H2. It gives us a clue that we could find out the main reason from the three reasons 

we assumed after the section of OH + H2 � H2O + H2. Let’s look at them one by one. 

1. Parabolic model : 

By fitting the ground energy curves of these three models, we found that none of 

these three curves has the dominated second order term, that is, this one is not the 

main reason for the deviation from exact one. 

2. Non-adiabatic transition: 

Since we are using adiabatic model with considering non-adiabatic transition, but 

we still get the right trend, that is, this may not give too big contribution. 

3. The accuracies of the frequencies along the reaction path: 

Since the frequencies used in full dimensions of OH + H2 � H2O + H2 have 

frequencies that are correlated to rotations in asymptotic regions, which are very 

small and easily contaminated by the gradient of reaction coordinate, rotations and 

translations. And in general, these modes control the density of states, since there 

are small. But for the cases in comparing with RLA, RLB and RBU, the 

frequencies used are those large frequencies which are in general correct. Even if 

there is still some difference between the frequencies I used and he used, but the 

difference compared to the frequency itself would be small, since these 

frequencies are not small. So in the total energy we are interested in, the 

difference won’t be revealed.   

So cumulative reaction probability is mainly decided by the accuracy of the density of 

states 
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Group ∆E
*
 ∆H

*
 ∆E ∆H Ea(300K) 

Zenner
1
 5.0 x x x 4.74 

Schatz
2
 7.4

a
(6.2)

b
 (6.11)

b
 (15.18)

b
 x 5.59

b
1(4.75)

b
2 

Troung
4
 6.3

c
(6.0)

d
 6.85

c
(6.55)

d
 x x X 

CCSD/dz 6.99 7.68 -14.02 -12.09 x 

CCSD(T)/dz//CCSD/dz 5.63  6.38  -15.20  -13.27 x 

CCSD(T)/tz//CCSD/dz 5.51  6.63 -15.13 -13.2 x 

Experiments x x x -14.8
5,e

 5.1
5,e

 

Table 3.1 All energy are in units of kcal/mol, ∆E
*
 is the classical barrier height, 

∆H
*
 is the barrier height with ZPE, ∆E is the classical reaction energy, ∆H is the 

reaction energy with ZPE, dz stands for aug-cc-pv-dz and tz is aug-cc-pvtz (a) 

3s3p1d/3s1p basis, (b) 4s3p2d/3s2p basis, (b1) without tunneling (b2) with 

tunneling (c) QCISD/ 6-311+G(d,p) method, (d) PMP4/ 6-311++G(2d 

f ,2pd)//QCISD/6-311+G(d,p) (e) All the results are at 0 K, except for the results 

notated e, which is at 300K 
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s(bohr) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 

-2.5 210.13 220.18 257.56 1715.67 3723.99 3842.01 -290.25 -56.13 -52.4 -0.02 0 0.03 

-2.4 214.41 232.93 253.51 1715.4 3723.97 3842.45 -291.83 -64.6 -60.71 -0.02 0 0.03 

-2.3 212.64 248.69 252.94 1715.07 3723.93 3842.65 -293.68 -73.7 -69.53 -0.01 -0.01 0.03 

-2.2 210.02 242.83 274.96 1714.65 3723.85 3842.53 -171.09 -34.39 0 0 0 0 

-0.1 -1769.0 610.76 640.39 1181.23 1995.49 3734.53 -0.15 -0.02 -0.01 116.26 165.7 165.97 

0.0 -1338 501.63 593.51 1058.57 2460.84 3735.91 -9.84 0 0 0 0 6.01 

0.1 -979.98 357.75 520.97 949.73 2916.27 3736.92 -155.85 -145.93 -101.88 0.04 0.07 1.05 

1.7 -214.61 34.45 281.52 348.5 3738.4 4324.45 -117.19 -107.54 -1.67 -0.01 1.91 41.14 

1.8 -199.38 -11.34 262.98 332.35 3738.36 4328.15 -110.91 -99.49 -2.73 0 1.39 24.35 

1.9 -184.55 -38.34 245.85 316.21 3738.33 4330.78 -105.74 -91.7 -20.88 0 0.89 2.86 

2.0 -165.87 -49.86 232.05 300.92 3738.29 4331.69 -102.33 -83.88 -28.29 0 0.44 2.04 

Table 3.2 The frequencies are in cm
-1

 unit which are calculated by G09 with CCSD/aug-cc-pvdz method along reaction path 
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s(bohr) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 

-2.5 209.65 219.09 257.03 1715.49 3723.9 3842.02 0 0 0 0 0 0 

-2.4 213.04 232.95 253.14 1715.25 3723.89 3842.5 0 0 0 0 0 0 

-2.3 211.21 248.34 253.41 1714.93 3723.86 3842.75 0 0 0 0 0 0 

-2.2 208.47 275.8 322.55 1714.52 3723.78 3842.7 -171.09 -34.39 0 0 0 0 

-0.1 654.06 677.07 1183.33 1998.15 3734.95 -1850.8 0 0 0 0 23.41 31.96 

0.0 546.6 609.94 1059.12 2479.16 3736.43 -1349.8 -9.84 0 0 0 0 6.01 

0.1 414.35 537.49 949.11 2940.67 3737.36 -964.6 -23.31 -14.61 0 0 0 0 

1.7 282.4 350.72 3738.99 4324.9 -195.1 -65.52 -45.35 0 0 0 0 28.28 

1.8 264.39 332.23 3739.05 4328.4 -179.11 -68.57 -41.22 0 0 0 0 15.84 

1.9 246.81 317.26 3738.84 4330.94 -166.35 -72.43 -51.21 -41.95 0 0 0 0 

2.0 233.74 301.88 3738.92 4331.85 -145.2 -73.02 -57.03 -38.29 0 0 0 0 

Table 3.3 The frequencies are in cm
-1

 unit which are calculated by Molpro by CCSD/aug-cc-pvdz method along reaction path with the 

geometries obtained by G09
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s(bohr) W1 W2 W3 W4 W5 s(bohr) W1 W2 W3 W4 W5 

-2.5 257.03 209.65 1715.49 3723.9 3842.02 0 546.6 609.94 1059.12 2479.16 3736.43 

-2.4 253.14 213.04 1715.25 3723.89 3842.5 0.1 414.35 537.49 949.11 2940.67 3737.36 

-2.3 248.34 211.21 1714.93 3723.86 3842.75 0.2 276.79 461.87 858.92 3294.27 3738.11 

-2.2 -171.09 208.47 1714.52 3723.78 3842.7 0.3 91.63 389.89 783.85 3554.9 3738.69 

-2.1 -170.9 205.23 1714.01 3723.67 3842.28 0.4 -203.94 330.09 720.49 3749.76 3734.49 

-2 -171.34 201.18 1713.38 3723.52 3841.37 0.5 -259.11 280.27 664.13 3888 3738.07 

-1.9 -174.32 194.84 1712.48 3723.41 3841.11 0.6 -292.84 227.58 615.83 3995.79 3738.99 

-1.8 -177.29 188.63 1711.45 3723.13 3838.82 0.7 -308.32 188.82 571.37 4079.01 3739.12 

-1.7 -182.22 180.74 1710.16 3722.76 3835.54 0.8 -313.62 158.88 531.17 4141.67 3739.2 

-1.6 -189.9 169.92 1708.51 3722.23 3831.05 0.9 -314.34 136.78 494.61 4189.49 3738.97 

-1.5 -199.97 157.08 1706.5 3721.34 3823.79 1 -283.18 119.03 460.87 4225.9 3739.26 

-1.4 -216.85 136.13 1703.88 3720.24 3816.03 1.1 -287.63 105.57 421.97 4253.84 3739.24 

-1.3 -237.48 108.13 1700.72 3718.15 3803.83 1.2 -264.05 86.33 398.04 4276.3 3739.21 

-1.2 -266.71 53.09 1696.74 3714.74 3789.82 1.3 -267.32 80.46 372.07 4291.96 3739.18 

-1.1 -302.3 -89.78 1691.81 3707.61 3772.87 1.4 -256.01 68.18 347.16 4304.57 3739.14 

-1 -352.98 -148.3 1685.64 3692.1 3756.8 1.5 -232.57 53.63 323.92 4313.95 3739.07 

-0.9 -399.03 -202.98 1677.81 3665.42 3746.76 1.6 -206.09 55.85 303.16 4318.83 3739.01 

-0.8 -448.96 -248.57 1668.42 3612.78 3739.99 1.7 -195.1 28.28 282.4 4324.9 3738.99 

-0.7 -300.81 -98.3 1660.29 3296.12 3732.7 1.8 -179.11 15.84 264.39 4328.4 3739.05 

-0.6 426.97 315.67 1629.1 2620.87 3730.16 1.9 -166.35 -2.43 246.81 4330.94 3738.84 

-0.5 585.94 522.75 1504.25 1900.22 3729.23 2 -145.2 -15.34 233.74 4331.85 3738.92 

-0.4 636.88 535.27 1351.75 1642.58 3729.74 
      

-0.3 707.59 614.81 1344.17 1568.26 3731.06 
      

-0.2 681.3 651.5 1302.46 1675.79 3733.23 
      

-0.1 677.07 654.06 1183.33 1998.15 3734.95 
      

Table 3.4 The choosen frequencies along the reaction path are in cm
-1

 unit which 

are calculated in CCSD/aug-cc-pvdz method 
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s(bohr) W1 W2 W3 W4 W5 s(bohr) W1 W2 W3 W4 W5 

H2O x x 1648.89 3821.88 3937.11 0 644.9 632.52 1059.12 2479.16 3736.43 

-2.5 14.91 11.93 1715.49 3723.9 3842.02 0.1 495.76 532.15 949.11 2940.67 3737.36 

-2.4 14.94 11.95 1715.25 3723.89 3842.5 0.2 408.54 448.19 858.92 3294.27 3738.11 

-2.3 15.02 12 1714.93 3723.86 3842.75 0.3 336.67 377.96 783.85 3554.9 3738.69 

-2.2 15.18 12.1 1714.52 3723.78 3842.7 0.4 277.45 319.21 720.49 3749.76 3734.49 

-2.1 15.5 12.34 1714.01 3723.67 3842.28 0.5 228.64 270.07 664.13 3888 3738.07 

-2 16.1 12.83 1713.38 3723.52 3841.37 0.6 188.42 228.96 615.83 3995.79 3738.99 

-1.9 17.18 13.81 1712.48 3723.41 3841.11 0.7 155.27 194.57 571.37 4079.01 3739.12 

-1.8 19.09 15.69 1711.45 3723.13 3838.82 0.8 127.95 165.8 531.17 4141.67 3739.2 

-1.7 22.3 19.13 1710.16 3722.76 3835.54 0.9 105.44 141.73 494.61 4189.49 3738.97 

-1.6 27.53 25.11 1708.51 3722.23 3831.05 1 86.90 121.6 460.87 4225.9 3739.26 

-1.5 35.73 35.05 1706.5 3721.34 3823.79 1.1 71.61 104.76 421.97 4253.84 3739.24 

-1.4 48.09 50.74 1703.88 3720.24 3816.03 1.2 59.01 90.68 398.04 4276.3 3739.21 

-1.3 66.01 74.33 1700.72 3718.15 3803.83 1.3 48.63 78.89 372.07 4291.96 3739.18 

-1.2 90.95 108 1696.74 3714.74 3789.82 1.4 40.08 69.04 347.16 4304.57 3739.14 

-1.1 124.3 153.6 1691.81 3707.61 3772.87 1.5 33.03 60.79 323.92 4313.95 3739.07 

-1 166.9 212.1 1685.64 3692.1 3756.8 1.6 27.22 53.89 303.16 4318.83 3739.01 

-0.9 219.2 282.7 1677.81 3665.42 3746.76 1.7 22.43 48.12 282.4 4324.9 3738.99 

-0.8 280.2 362.8 1668.42 3612.78 3739.99 1.8 18.48 43.30 264.39 4328.4 3739.05 

-0.7 347.8 447.3 1660.29 3296.12 3732.7 1.9 15.23 39.26 246.81 4330.94 3738.84 

-0.6 418.8 529.4 1629.1 2620.87 3730.16 2 12.55 35.88 233.74 4331.85 3738.92 

-0.5 488.5 601 1504.25 1900.22 3729.23 OH x x x x 3714.33 

-0.4 551.6 654.1 1351.75 1642.58 3729.74 H2 x x x 4344.54 x 

-0.3 602.8 682.5 1344.17 1568.26 3731.06 
      

-0.2 637.3 682.6 1302.46 1675.79 3733.23 
      

-0.1 651.9 654.3 1183.33 1998.15 3734.95 
      

Table 3.5 The modified and fitted frequencies along the reaction path are in cm
-1

 

unit which are calculated in CCSD /aug-cc-pvdz method 
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Group ∆E
*
 ∆H

*
 ∆E ∆H Ea(300K) 

CCSD/dz 9.8 5.6 7.2 2.2 x 

CCSD(T)/dz//CCSD/dz 8.1 3.9 6.9 1.8 x 

CCSD(T)/tz//CCSD/dz 7.8 3.6 6.5 1.4 x 

Truong et al
8,a

 7.9 3.5 x 1.2 x 

Dobbs and Dixon
9,b

 4.9 8.9 x 2.5 x 

RLA
10,c

 7.3 3.5 x 1.0 x 

RLU
11,d

 6.8 2.8 x 1.7 x 

RBU
12,e

 x 3.5 x 1.2 x 

Experiments x 2.3
i,15

 x 1.1 ± 0.1
f,13

    

2.6 ± 0.4
g,14

 

3.5 ± 0.5
h,14

 

Table 3.6 All energy are in units of kcal/mol, ∆E
*
 is the classical barrier height, 

∆H
*
 is the barrier height with ZPE, ∆E is the classical reaction energy, ∆H is the 

reaction energy with ZPE, dz stands for aug-cc-pv-dz and tz is aug-cc-pvtz. (a) 

MP-SAC2/MC-311G(2d,d,p) (b) QCISD(T)/TZ+2P and for ∆H
*
, the difference 

between QCISD(T)/TZ+2P and CCSD(T)/TZ+2P is within 0.1 kcal/mol (c) 

Rotating Line Approximation with LEPS (d) Rotating Line Umbrella with LEPS 

(e) Rotating Bond Umbrella with LEPS (f) Enthalpy of reaction at 0 K (g) 

Experimental activation energy in the range of 200–300 K (h) Experimental 

activation energy in the range of 300–500 K (i) Obtained by threshold method
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Molecule 
R(C-H’) 

(Angstroms) 

R(C-H’’) 

(Angstroms) 

R(Cl-H’) 

(Angstroms) 

L(H’-C-H’’) 

(degree) 

L(H’’-C-H’’) 

(degree) 

L(Cl-H’-C) 

(degree) 

D(H’’CH’’H’’) 

(degree) 

H’-CH’’3 1.1013 1.1013 x 109.4712 109.4712 x 120.0000 

CH’’3 x 1.0920 x x 119.9967 x 180.0000 

Cl-H’ x x 1.2906 x x x x 

Cl-H’-CH’’3 1.4008 1.0961 1.4600 101.1251 116.3692 180.0000 143.0404 

Table 3.7 The geometries of transition state, reactants and products in CCSD/ aug-cc-pvdz 
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s(bohr) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 

HCl x x x x x x x  x x x 

CH3 x x x x 497.54 1413.2 1413.2 x 3116.1 3303.65 3303.65 

-1.6 220.7 220.7 381.79 381.79 726.66 1411.51 1411.51 2746.32 3088.25 3286.07 3286.07 

-1.7 227.63 227.63 394.28 394.28 740.96 1411.5 1411.5 2716.92 3085.81 3285.265 3285.265 

-1.4 235.4 235.4 408.08 408.08 755.67 1411.58 1411.58 2682.86 3083.06 3283.91 3283.91 

-1.3 242.19 242.19 422.21 422.21 770.2 1411.61 1411.61 2644.88 3080.59 3282.87 3282.87 

-1.2 249.34 249.34 438.38 438.38 784.78 1411.68 1411.68 2599.82 3078.3 3281.7 3281.7 

-1.1 257.41 257.41 456.65 456.65 799.37 1411.81 1411.81 2546.77 3076.01 3280.06 3280.06 

-1 264.52 264.52 475.81 475.81 813.84 1411.96 1411.96 2486.82 3074.1 3278.36 3278.36 

-0.9 272.64 272.64 498.23 498.23 828.34 1412.19 1412.19 2414.41 3072.43 3276.14 3276.14 

-0.8 280.29 280.29 523.02 523.02 841.95 1412.38 1412.38 2329.57 3071.8 3274.1 3274.1 

-0.7 289.02 289.02 551.23 551.23 854.81 1412.67 1412.67 2228.48 3071.49 3271.41 3271.41 

-0.6 297.74 297.74 583.43 583.43 865.77 1412.97 1412.97 2106.79 3072.26 3268.76 3268.76 

-0.5 306.8 306.8 620.015 620.015 873.3 1413.33 1413.33 1960.98 3073.78 3265.79 3265.79 

-0.4 316.97 316.97 662.64 662.64 872.59 1413.77 1413.77 1783.57 3076.01 3262.69 3262.69 

-0.3 327.88 327.88 712.25 712.25 851.02 1414.34 1414.34 1574.13 3078.65 3259.23 3259.23 

-0.2 339.49 339.49 774.08 774.08 764.1 1415.02 1415.02 1357.31 3081.65 3256.36 3256.36 

-0.1 351.39 351.39 841.83 841.83 610.14 1416 1416 1218.38 3084.16 3253.56 3253.56 

0 360.62 360.62 923.09 923.09 495.28 1417.43 1417.43 1180.36 3085.59 3251.54 3251.54 

Table 3.8 The modified and fitted frequencies for S > 0 are in cm
-1

 unit which are calculated in CCSD /aug-cc-pvdz method 
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s(bohr) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 

0 360.62 360.62 923.09 923.09 495.28 1417.43 1417.43 1180.36 3085.59 3251.54 3251.54 

0.1 382.28 382.28 1010.21 1010.21 444.33 1419.66 1419.66 1191.2 3084.98 3249.89 3249.89 

0.2 368.01 368.01 1095.13 1095.13 437.73 1423.19 1423.19 1227.39 3081.55 3248.48 3248.48 

0.3 321.39 321.39 1168.55 1168.55 532.62 1428.8 1428.8 1300.08 3075.03 3247.96 3247.96 

0.4 268.87 268.87 1223.22 1223.22 953.01 1437.67 1437.67 1540.26 3064.18 3249.12 3249.12 

0.5 228.13 228.13 1255.33 1255.33 1139.1 1450.17 1450.17 2029.42 3047.46 3252.54 3252.54 

0.6 202.67 202.67 1270.34 1270.34 1191.35 1463.09 1463.09 2416.09 3025.9 3259.08 3259.08 

0.7 187.45 187.45 1279.23 1279.23 1215.45 1473.88 1473.88 2632.26 3006.02 3266.07 3266.07 

0.8 176.09 176.09 1250.67 1250.67 1301.99 1482.8 1482.8 2756.25 2993.43 3271.3 3271.3 

0.9 165.32 165.32 1258.79 1258.79 1309.35 1490.59 1490.59 2844.12 2988.42 3272.48 3272.48 

1.0 155.42 155.42 1266.08 1266.08 1314.6 1497.41 1497.41 2908.07 2991.05 3270.27 3270.27 

1.1 148.01 148.01 1272.79 1272.79 1318.3 1503.32 1503.32 2949.17 3004.05 3265.51 3265.51 

1.2 143.46 143.46 1279.05 1279.05 1320.73 1508.54 1508.54 2970.01 3027.79 3258.88 3258.88 

1.3 140.16 140.16 1285.07 1285.07 1322.45 1513.05 1513.05 2981.66 3052.22 3250.04 3250.04 

1.4 136.39 136.39 1290.77 1290.77 1323.43 1516.98 1516.98 2991.19 3072.98 3240.15 3240.15 

1.5 133.24 133.24 1296 1296 1323.85 1520.38 1520.38 3000.41 3089.83 3229.67 3229.67 

CH4 x x 1329.82 1329.82 1329.82 1544.05 1544.05 3033.14 3158.52 3158.52 3158.52 

Table 3.9 The modified and fitted frequencies for S < 0 are in cm
-1

 unit which are calculated in CCSD /aug-cc-pvdz method 
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Figure 3.1 MEP of three different methods, where dz 

stands for aug-cc-pvdz and tz stands for aug-cc-pvtz.  
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Figure 3.2 The geometry of transition state in CCSD/ 

aug-cc-pvdz 
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Figure 3.3 The evolution of frequencies along the reaction path. 

This result is calculated with ccsd/aug-cc-pvdz method. 
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Figure3.4 Schema of the modified and fitted frequencies of W1 an 

W2. (a) W2 of H2O+H; rotation of H2O, (b) W1 of H2O+H; k 

component of the rotation of H2O (c) W1 of OH+H2; rotation of 

OH (d) W1 of OH+H2; the rotation of H2 rotating around OH.    
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 Figure 3.5 Fitted frequencies along MEP. This result is calculated 

with ccsd/aug-cc-pvdz method. Wi is the label used in table 3.5. 

From these labels, the correlation between asymptotic regions and 

the motion along reaction path could be understood clearly in 

table 3.5. 
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Figure 3.6 (a) 16 Adiabatic curves on reaction path (b)1500 

Adiabatic curves on reaction path with rightmost and leftmost part 

are the energy level of reactants an products respectively.This 

result is calculated with ccsd(t)/aug-cc-pvdz //ccsd/aug-cc-pvdz for 

energy correction and ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.7 Reaction probability N(E) of J = 0, black line is Miller’s 

result, blue one is evaluated by reactants and product, red is s = 

-2.5/2.0 bohr. Red and blue are all evaluated with equation (3.17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 3 6 9 12 15

-20

0

20

40

60

80

100

120

140

160

180

N
(E
)

kcal/mol

 miller's result

 two_side

 reactant_product



81 

 

 
Figure 3.8 Adiabatic curves that connect reactant’s energy curves 

lower than 15kcal/mol. This result is calculated with 

ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and 

ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.9 Cumulative reaction probability of J = 0, my result is 

evaluated with one barrier tunneling effect and parabolic model in 

ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and 

ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.10 The energy diagram of adiabatic model, which show 

the energy levels of transition state in the middle and energy levels 

of reactant in the rightmost side. This result is calculated with 

ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and 

ccsd/aug-cc-pvdz for frequencies along MEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3 -2 -1 0 1 2 3

-10

0

10

k
c
a
l/
m
o
l

s

H2O+H OH+H2 



84 

 

 
Figure 3.11 The diagram of delta (δ ) vs deltaE for ground energy 

level in ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction 

and ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.12 Cumulative reaction probability of J = 0 for adiabatic 

model and miller’s result. This result is calculated with 

ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and 

ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.13 Cumulative reaction probability of J = 0 for adiabatic 

model with modified delta in order of 0.5 and miller’s result. This 

result is calculated with ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for 

energy correction and ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.14 Cumulative reaction probability of J = 0 for adiabatic 

model with modified delta in order of 2.95 as equation (3.26) and 

(3.27), adiabatic model with a multiple factor 3.6 and miller’s result. 

This result is calculated with ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz 

for energy correction and ccsd/aug-cc-pvdz for frequencies along 

MEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10

0

10

20

30
c
u
m
u
la
ti
v
e
 r
e
a
c
ti
o
n
 p
ro
b
a
b
ili
ty

kcal/mol

 N_E_Miller

 N_E_CCSD(T)_DZ*3.6

 delta_modified**2.95



88 

 

 
Figure 3.15 The energy diagram of diabatic model, which show the 

energy levels of transition state in the middle and energy levels of 

reactant in the rightmost side. This result is calculated with 

ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and 

ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.16 Cumulative reaction probability of J = 0 for diabatic 

model (purple line), adiabatic model (black line) and Miller’s result 

(red dash line). This result is calculated with ccsd(t)/aug-cc-pvd 

//ccsd/aug-cc-pvdz for energy correction and ccsd/aug-cc-pvdz for 

frequencies along MEP 
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Figure 3.17 MEP of two different methods, where dz 

stands for aug-cc-pvdz and tz stands for aug-cc-pvtz.  
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Figure 3.18 Fitted frequencies along MEP. This result is calculated 

with CCSD/aug-cc-pvdz method. Wi is the label used in table 3.8 and 

3.9. From these labels, the correlation between asymptotic regions 

and the motion along reaction path could be understood clearly in 

table 3.8 and 3.9. Double degenerate modes are dashed curves, and 

non-degenerate modes are solid curves.  
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Figure 3.19 The energy diagram of diabatic model with only one 

dimension of the anit-sym stretching of CH4/CH3 considered, which 

show the energy levels of transition state in the middle and energy 

levels of reactant in the rightmost side. This result is calculated with 

ccsd(t)/aug-cc-pvd//ccsd/aug-cc-pvdz for energy correction and ccsd 

/aug-cc-pvdz for frequencies along MEP 
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Figure 3.20 Cumulative reaction probability of J = 0 for adiabatic 

model with only one dimension of the anit-sym stretching of 

CH4/CH3 considered and Nyman’s RLA result. This result is 

calculated with ccsd(t)/aug-cc-pvd //ccsd/aug-cc-pvdz for energy 

correction and ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.21 The energy diagram of diabatic model with only two 

dimensions of the anit-sym stretching of CH4/CH3 and the umbrella 

motion of CH4/CH3 considered, which show the energy levels of 

transition state in the middle and energy levels of reactant in the 

rightmost side. This result is calculated with ccsd(t)/aug-cc-pvd 

//ccsd/aug-cc-pvdz for energy correction and ccsd/aug-cc-pvdz for 

frequencies along MEP 
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Figure 3.22 Cumulative reaction probability of J = 0 for adiabatic 

model with only two dimensions of the anit-sym stretching of 

CH4/CH3 and the umbrella motion of CH4/CH3 considered  and 

Nyman’s RLU result. This result is calculated with ccsd(t)/ 

aug-cc-pvd//ccsd/aug-cc-pvdz for energy correction and ccsd/ 

aug-cc-pvdz for frequencies along MEP 
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Figure 3.23 The energy diagram of diabatic model with only three 

dimensions of the anit-sym stretching of CH4/CH3, the umbrella 

motion of CH4/CH3 and the bending motion of CH4 considered, 

which show the energy levels of transition state in the middle and 

energy levels of reactant in the rightmost side. This result is 

calculated with ccsd(t)/aug-cc-pvd //ccsd/aug-cc-pvdz for energy 

correction and ccsd/aug-cc-pvdz for frequencies along MEP 
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Figure 3.24 Cumulative reaction probability of J = 0 for adiabatic 

model with only three dimensions of the anit-sym stretching of 

CH4/CH3, the umbrella motion of CH4/CH3 and the bending motion 

of CH4 considered and Nyman’s RLU result. This result is calculated 

with ccsd(t)/ aug-cc-pvd//ccsd/aug-cc-pvdz for energy correction and 

ccsd/ aug-cc-pvdz for frequencies along MEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 20 25

0

2

4

6
c
u
m
a
la
ti
v
e
_
re
a
c
ti
o
n
_
p
ro
b
a
b
ili
ty

kcal/mol(take_Cl+CH4_potnetial_bottom_as_zero)

 my_result

 Nyman's result



98 

 

References: 

 

1.W. M. Smithand and R. Zellner, J. Chem. Soc. Faraday Trans.II 70, 

1045 (1974).   

2. George C. Schatz and Stephen P. Walch J. Chem. Phys. 72, 1 (1980) 

3. P. J. Hay and T. H. Dunning, J. Chem. Phys. 64, 5077 (1976); T. H. 

Dunning, J. Chem. Phys. 65, 3854 (1976). 

4. Thanh N. Truong, J. Chem. Phys. 102, 13(1995) 

5. R.F. Heidner III, J.F. Bott, C.E. Gardner and J.E. Melzer, J. Chem.                       

Phys. 72, 4815. (1980) 

6. Charles F. Jackels, Zhen Gu, and Donald G. Truhlar, J. Chem. Phys. 

102, 8 (1995) 

7. Uwe Manthe, Tamar Seideman, and William H. Miller, J. Chem. Phys. 

99, 12 (1993) 

8. T. N. Truong, D. G. Truhlar, K. K. Baldridge, M. S. Gordon adn R. 

Steckler, J. Chem. Phys, 90, 7137 (1989) 

9. K. D. Dobbs and D. A. Dixon, J. Phys. Chem., 98, 12584 (1994) 

10. Hua-Gen and Gunnar Nyman, J. Chem. Phys. 109, 14 (1998) 

11. Hua-Gen and Gunnar Nyman, PCCP. 1, 1181, (1998) 

12. Hua-Gen and Gunnar Nyman, J. Chem. Phys. 110, 15 (1999) 

13. NIST Computational Chemistry Comparison and Bench mark Data- 

base IVA Reaction Comparison Experimental Enthalpies at 0K, 

http://srdata.nist.gov/ccbdb 

14. M. S. Zahniser, M. Berquist, and F. Kaufman, Int. J. Chem. Kinet. 10, 

15 (1978). 

15. S. S. Yan, Y.-T. Wu, K. Liu, Phys. Chem. Chem. Phys. 9 ,250 (2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

    Chapter4 Conclusions  

We constructed more general adiabatic energy curves of J =0 for OH + H2 � 

H2O + H by using, equation (3.15) and (3.16) but found the cumulative reaction 

probability of these adiabatic energy curves (without the effect of non-adiabatic 

coupling, only the effect of tunneling) is lower than the result of Miller. The possible 

reason would be the linkage between reactants and products. Since three rotational 

related vibration modes in reactant side, but two in product side. The evolution from 

rotation to vibration should be considered carefully. (In fact, the mode which evolves 

from rotation in H2 to vibration in H2O should be considered together, not in two parts; 

reactant and product.) So we applied the adiabatic model, modified adiabatic model 

and diabatic model to the cumulative reaction probability and then got three main 

possible reasons for the deviation from Miller’s result
1
. First is that the energy curves 

are not parabolic model, the second one is that the contribution of non-adiabatic 

coupling and the last one is the accuracies of the frequencies along the reaction path. 

In order to make sure which one is the main reason, we applied these three models to 

a larger but prototypical system. But for more than 5-atoms system, there’s no exact 

solution no matter hyper-spherical (projected one is the same) or Jocabi coordinate. 

So only reduced dimensions information is available, that is, only the adiabatic model 

with reduced dimension could be applied to do comparisons. After comparing with 
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the three models; RLA, RLU, RBU, by Nyman
2
, we found that the trends of our 

adiabatic models goes well Nyman’s results and the effect of resonance becomes 

larger as the degree of freedom becomes smaller. From the result, we conclude that 

the last reason; the accuracies of the frequencies along the reaction coordinate 

dominate the accuracy of the result for the cumulative reaction probability. 
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