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Abstract

We constructed more general adiabatic energy curves of J =0 for OH + H, =
H,O + H by using the reaction coordinate” and 3N-7 normal modes which is
orthogonal to the reaction coordinate, but found the cumulative reaction probability of
these adiabatic energy curves (without the effect of non-adiabatic coupling, only the
effect of tunneling) is lower than the result of Miller. The possible reason would be
the linkage between reactants and products. Since three rotational related vibration
modes in reactant side, but two in product side. And we also applied the adiabatic
model, modified adiabatic model and diabatic model to the cumulative reaction

probability and then got three main possible reasons for the deviation from Miller’s



result. First is that the energy curves are not parabolic model, the second one is that

the contribution of non-adiabatic coupling and the last one is the accuracies of the

frequencies along the reaction path. In order to make sure which one is the main

reason, we applied these three models to a larger but prototypical system, Cl +CH4 =

HCl + CHjs. But for more than 5-atoms system, there’s no exact solution no matter

hyper-spherical (projected one is the same) or Jocabi coordinate. So only reduced

dimensions information is available, that is, only the adiabatic model with reduced

dimension could be applied to do comparisons. After comparing with the three models;

RLA, RLU, RBU, by Nyman, we found:that the trends of our adiabatic models goes

well Nyman’s results and the effect of resonance becomes larger as the degree of

freedom becomes smaller. From the result, we conclude that the last reason; the

accuracies of the frequencies along the'reaction coordinate dominate the accuracy of

the result for the cumulative reaction probability.



CERE P B LR L il e SR D
RO rfdT o in- B b Bt

FARRREHDA AN ERRARLR X EHE - L L FAEE
AEOEE T LA AP E LT A nE BRI 2 RBRE GRS o

[ g

B AN - B ErF R 0w §

2

NE - BREDEALMHEETF SRR & % IR TR e g

\H

\E/@fﬂ‘\?ﬂ??l/l 'ﬁ/\ ,

BAE S AL E LA 0 R A R APEIREATR K2 xS S

HEEEEEIEREITE T SN e S A E R E S

R F RS A AR R ) R AR A D A T P i

AN Y

‘EH.
K ‘«\

k(e 2%

e

oo T2 DAY o PRI EA R 2 4w (R



Table of Contents

Chapter 1 INtroduction ........coeeienveiensnicssnencssseecssenccsssncssssncssssscssssscssssssssssssssssssssssess 1
1-1 Quasi-classical trajectory, quantum and semi-classical methods............................. 2
1-1.1 Quasi-classical trajectory method................cccooiiiiiiiiiiiiiii s 2
1-1.2 Quantum mMethod ..............ooooiiiii e e 4
1-1.3 Semi-classical method ...............cooooiiiiiiiiii s 5

1-2 MOtEVATION ..ot ee s e s neeens 5
RETEIEICES ...ttt ettt ettt ettt e b e b e esbeesbeesbeenbeenbeas 9
(011 F:1 017 000 N 1 1T o 2N 11
2-1 Born-Oppenheimer approXimation..............cccoceeriiiiiiiniiiiiieeneeee e 14
2-1.1 Hartree—Fock method (HF)..........ccccooiiiiiiiiniiie et 18
2-1.2 Post- HF methods .......... 0. i i e ettt 23

2-2 Adiabatic approximation.for the motion-of nuclei on single PES.......................... 27
2-2.1 Min energy Path ... il i e 28
2-2.2 Semi-classical theory........ . i it e 31
2-2.2.1 Zhu and Nakamura theory ..............ccccooeviiiiiiniiniininees 31

2-3 Application to adiabatic curves on MEP.................oooiiiiiii 33
RETOIEICES: ...ttt et sttt ettt st ettt esaneeane e 44
Chapter 3 Results and DiSCUSSIONS.....ccccverrveressrnrcsssarcssnrcssssrssssnsssssssssssssssssssssssssses 45
3-1 Theoretical results for OH+H, 9H+H20 Feaction........ccooeeveviiiiiiiiiiieeeeeeeeeeeeian, 45
3-1.1 Theoretical calculation for MEP..............c.ccccooiiiiiiiiie e 45
3-1.2 Geometry of transition state...............ccoociiiiiiiiiiiiii e 46
3-1.3 Normal modes along reaction path.................ccccoooiiiiiiniinie 46
3-2.Contruct the adiabatic curves of J=00n MEP ...............cccooiiiiiiinniiiieeeeee 50
3-3. Cumulative reaction probability..............cccocininiiniiiiii e 51
3-3.1 Cumulative reaction probability for OH+H29HCI+H20 ............................... 51
3-3.2 Cumulative reaction probability for CI + CH49 HC1 +CH;........ouvvveeeeeenee 59

Vi



3-3.2.1 Theoretical results for the MEP of Cl + CH; = HCIl + CH;

.............................................................................................................. 59

3-3.2.2 Geometries of transition state, products and reactants .....60

3-3.2.3 Normal modes along reaction path ......................cc..cccoe. 60

3-3.2.4 Cumulative reaction probability for C1 + CH4 - HCI +CH;
.............................................................................................................. 61

Chapterd ConcluSiONS........coeeeiivienisnenisenensssrcsssnesssecssssscssssscssssssssssssssssssssssessssssssss 99
| (<) (=) 1SS 101

Vi



Chapter 1 Introduction

One of the basic purposes of chemical reaction dynamics including state-to-state
reaction is to understanding reaction mechanism by analyzing the evolution
relationships between quantum states of products and reactants. These relationships
show the information of how bonds break and form gradually from reactant to product
through the transition state. Within Born-Oppenheimer approximation, the motion of
atoms in the molecule relies on the force created by the potential energy surface which
is formed by averaging motion of all electrons in the molecule.

A tri-atomic reaction, AB+C=> A+BC; is the most basic reaction for state-to-state
reaction dynamical studies. In" this fundamental reaction involving only three
normal-mode vibrations plus rotation and translation; both experiments and theoretical
research have very much advanced in‘order to obtain the complete information for
diatom-atom reactions. These indicate that vibrational or translational excitation may
produce dramatic effects on chemical reactions. One of the most obvious effects is the
influence of chemical reactivity. ' Polanyi has shown that the vibrational excitation is
more efficient than the translation excitation for increasing endoergic chemical
reactivity for atom-diatom-reaction, namely late barrier. The concept of early
barrier/late barrier becomes not so apparent for reactions containing polyatomic

reagents since many degree of freedoms involves in polyatomic molecules in which



there are a large number of vibrational modes. The quantum”’ and quasiclassical
trajectory® methods for atom-diatom reaction have been extended for studying
polyatomic reactions. At the same time, several exciting experimental results for
state-to-state reaction dynamics of polyatomic reactions have been found. Both these
experiments and theoretical research have pointed out that there are essential
differences between atom-diatom reactions and polyatomic reactions. Studying these

differences open new horizons for scientists.

1-1 Quasi-classical trajectory, quantum and semi-classical methods
Quasi-classical trajectory (QCT), quantum scattering and semi-classical methods
are three general methods to study chemical reaction dynamics theoretically. I would
like to introduce a brief review of QCT first, the second is quantum method, and the
third is semi-classical method. Finally, I will mention problems for each of three

methods.

1-1.1 Quasi-classical trajectory method
As mentioned above from Born-Oppenheimer approximation, the motion of
atoms in molecule is just experiencing force induced by PES formed. If potential

energy surface can be constructed as an analytical function of the internal coordinates



of the constituent atoms, it is possible to solve the motion of atoms on the surface for
collision trajectory in classical way. The initial conditions can be determined by using
coordinates and momentums of reactant molecule semi-classically, and then numerical
integration of the Hamilton equation of motion for coordinate Q; and it’s conjugate
momentum Pj=mdQ)j/dt are evaluated. Because of classical mechanical approach, there
are several quantum effects that have to be added separately:

1. Particles penetrating into the region are classical forbidden.

2. The zero point energy (ZPE) is absence. Several approaches’™> have been done to
fix the problem of ZPE, butnone of them are that reliable.

3. Classical mechanics does not recognize that reactants/products have quantum
states, the given integration results may produce the vibrational energy of products
different from quantum mechanics.” But what we’re interested in is the quantum
mechanic features as the vibrational or rotational product distribution, in order to
obtain the correspondence, a binning process is needed. How to bin the region for
different vibration and rotation quantum number will influence the accuracy of
state to state dynamics, but this defect may cancel out for overall distribution.

4. Some of the initial-condition parameters of reactants would not be specified during
experiments, but the specification of these parameters is required in doing

calculation, such as impact parameter, the orientation of the reactants, the phase of



the reactant vibration with respect to the time of collision, and so on. So, averaging
over these uncontrolled parameters of collision in the classical mechanic
calculation is required.

The defects of QCT can be easily seen from the mentioned above, the omission
of the quantum effects make it experienced difficulties at threshold; when the total
energy is slightly above the minimum required to cross the potential barrier, the ZPE
energy tends to be converted into translation energy, which is not allowed in quantum
mechanics. Besides this general problem for QCT, dealing with large system by QCT
is still a challenging problem. The reason for this s that determination of vibrational
actions; binning process, for large system is not a standard process. Even if there is

standard process for binning, obtaining the PES for large system is still difficult.

1-1.2 Quantum method

Apart from using the Newton mechanics to describe the motion of atoms; their
motion is governed by a wave equation in quantum mechanics. The general strategy is
to solve the time dependent or time independent Schrodinger equation in the
superposition wave function of channels interested and then obtain the quantities needed,
e.g. state to state cross section, by giving suitable boundary condition.

For exact quantum calculation, it may consume large amount of computational



time. Since all accessible states; rotational and vibrational states, should be considered

in the calculation. Of course, one could calculate all the information, but are these

considerable quantities that demanding? Doing that requires huge effort, so a modified

method; reduced dimension quantum method is developed for this need. For four, five,

or six atoms system, this method is accessible. But for larger system, it’s a big problem.

So there’s reduced dimension quantum method (modified quantum method). However

for too large system, the modified quantum method is still not ok.

1-1.3 Semi-classical method

This method would bé explained clearly in chapter 2. Same as the two methods

mentioned above. There is no general strategy for large system.

1-2 Motivation

As mentioned above, no matter quasi-classical trajectory, modified quantum

method or semi-classical method, there still exist difficulties for studying dynamics of

large system. So, this motivates us to produce a more general way; which is practical to

large system for dealing with state-to-state reaction dynamics. For system more than 5

atoms, it’s not that easy to obtain exact quantum results for reactions. In order to make

sure the feasibility of our method, we would like to apply this approach to



OH+H,>H,O0+H; which has been studied thoroughly from both theory and
experiments. Fristly, I would like to give a brief review of the calculations and
experiments which have been done for OH+H,>H,O+H.
OH+H,>H,0+H

The thermal rate constant for OH+H,; which is important in combustion
chemistry, has been measured over a wide range of temperature(T=250~2000K) for

both thermal distribution of reactants'®!'®

and there is obvious evidence'® that k(T)
shows non-Arrhenius behavior with a suggested best fit expression k(T) = 1.66
#1071 T %*exp (-1660K/T) em3/molecule*s. G.P. Glass'®, Spencer et al *° and R.

1821
Zellner ™

investigate the influence of ‘vibrational excitation on reaction rate.
Theylg’lg'20 found that not small amount of enhancement (H,(v=1)/H,(v=0)>100) for
H,(v=1), but smaller effect(50% less than the excitation of H,) for OH(v=1); which is
reasonable since OH can be seen as a spectator in the reaction. Later, R. Zellner*'
thought the large enhancement may be due to the possibilities of the contribution of a
translational rate acceleration of OH +H, in the flow system. After correction, the
enhancement is rather small (5~66) compared to before (>100). Many fast-atom
experiments™ >’ have been done for H+H,O(and it’s isotopomers) in the final

vibrational and rotational distribution of H, and OH were determined.

[saacson’s”’ group reported a reaction path potential, based on Walch and



Dunning’s calculation, and use it in transition state theory calculation for rate constant
with complex tunneling effect. Cohen et al’' used Isaacson’s reaction path potential in
transition state theory calculation of rate constant with new treatments of anharmoncity
of the transition state force field. A potential curve along a tunneling path is also
calculated by Truong and Evans®*; which is used in calculating the rate constant.

Schatz and Elgersma33 based on the method for saddle point properties developed
by Walch and Dunning™® to construct a global potential energy surface. Extensive
quasiclassical trajectory calculations® "> based on this PES have been done, they point
out interesting mode specificity in the H+H,O reaction in highly vibrational excited
states. There are several other QCT studies being reported later’”™*°

Quantum dynamics studies, for the OH+H2 reaction have been reported by Wang
& Bownan“, Clary and coworkers42, Miller and coworkers® , Zhang44, and Neuhauser™®.
Those of Miller and coworkers , Zhang, and Neuhauser are full dimension. Wang &
Bownan RD-AB theory. Clary and coworkers use RBA-AB theory.

The cumulative reaction probability for J=0 has been calculated with full
dimension; by Miller, RD-AB; by Wang, and RBA-AB, by Clary. The results show that
there is a quite good agreement for RD-AB and RBA-AB with full dimension at low E,

but a little deviation at higher E.

Miller also calculated the thermal rate constant for OH+H, by J-shift



approximation. The result for thermal rate constant along RD-AB (J-shift

approximation), RBA-AB (centrifugal-sudden approximation), and QCT are also

calculated. The RD-AB result is in good agreement with full dimension (RD-AB

results are reasonable, since J=0 CPR are almost the same and they both use J shift

method), but RBA-AB somewhat higher (The difference comes from using

centrifugal-sudden approximation). Finally, QCT’s result show good agreement with

full dimension at higher temperatures, but underestimate at lower temperatures (The

lack of tunneling effect for QCT method). The comparisons between full dimensions

show that taking bending motion as a adiabatic motion still give reliable result and

QCT method can’t deal with‘dynamics at low temperature.
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Chapter 2 Theory

As mentioned in chapter 1, state-to-state dynamics provide mechanism
understanding of reactions by indirect probing of transition state. What is probed are
the connections made between products and reactants, that is, these connections reveal
how bond break and form in the transition state. So the question is how to obtain the
information of state-to-state dynamics theoretically. In order to achieve this goal,
knowing how atoms move in the electron clouds of the molecule system is necessary.
In general, this kind of information would be gained by Born-Oppenheimer
approximation (or adiabatic approximation). Within Born-Oppenheimer approximation,
the motion of atoms in the molecule relies on the force created by the potential energy
surface which is formed by averaging motion of all electrons in the molecule, that is,
the motion of atoms and electrons could be considered separately as bellow
Y7 =Y Ve (2.1)

, where ¥, is the total wave function, ¥, is the wave function of electrons and
Y,.. the wave function of nucleuses. Since the state-to-state dynamics here are
talking about the states in the same electronic state, that is to say, only the
rovibrational states of the ground electronic state are necessary and non-adiabatic
coupling would occur between the rovibrational states. There are three general
methods; quasi-classical trajectory (QCT), quantum and semi-classical methods.

11



However, no matter which method, there is still a big problem for dealing with large
system. It motivates us to generate a general way for polyatomic reaction. Our method
is based on the semi-classical theory developed by Zhu and Nakamura', but chooses a
different reaction scattering axis for adiabatic curves, which is more general for
normal system (small or large system). Bellow I would like to talk about the general
concept for adiabatic approximation. Then, there will be explanation of the reason for
the chosen of this coordinate and the difference of semi-classical theory for dealing
with non-adiabatic coupling and its application.
General concept of adiabatic approximation

In a study of systems ‘with many degrees of freedom, such as those consisting
several interacting particles, one general seeks to use the same way, a successive
reduction of multidimensional problem to several lower dimensional problems that
are simpler to deal with. There are two general way to do this, symmetry and
adiabatic separation. Adiabatic separation is main thought in Born-Oppenheimer
approximation, which is settled on the assumption that the motion associated with
some part of the variables (Fast) can be treated with other part (Slow) seen as frozen;
taking the energy of these fast variables at different slow variables produce effective
PES for the motion of slow variables. A general operator of this thought:
H(Q,,0,)=K(Q,)+H,(©Q,.0,) (2.2)

12



, in which Qrand Qs represents the fast and slow variables, K(Qs) is the kinetic energy
for the motion in Qg which does not depends on Qy, and the adiabatic Hamiltonian
Hai(QrQs) is the operator of Qf which depends on Qg parametrically. The
schrondinger equation would be:

{K(Q)+H,(9,,0)-E}Y(Q,)=0 (2.3)
with total wave function to be:

¥(Q,)=D F,(0)p,(Q;,0) 24

, in which ¢, (Q,,0y) is from equation (2.5)

H,,(0,,0)90,(9,,05) = E, (25)0,(Q,595) (2.5)
where E, is the adiabatic energy and ¢, is the adiabatic state. Take equation (2.4)
into equation (2.3) and integrate, the coordinate of fast variables with¢, , you could

obtain the non-adiabatic coupling terms'as equation (2.6) and equation (2.7):

(4,(0,.00)|V,.|2,0,.05)) (2.6)
And
(4,(0,.00)|V5,|4,(0,.00)) 2.7)

If the adiabaticity is pretty good, then the contribution of these two terms would be
pretty small, that is, we could omit these effects and obtain
{K(Q)+E,(Q,)-E}F,(Q,)=0 (2.8)
And the approximated total wave function as

13



¥, (9,) =F,(Q5)9,(Q,,0s) (2.9)
From equation (2.2) to (2.7), there is no approximation inside until the function
»,(Q,,0;) 1is specified. Since it’s impossible to consider infinite basis in equation
(2.5), we must do truncation. If the adiabaticity is good, then the non-adiabatic
coupling between adiabatic states; equation (2.6) and (2.7), would be small, that is,
the total wave function; equation (2.5), would be much more similar to the adiabatic
one, which means lesser basis are needed and this is where the approximation
originated. In order to obtain good approximation, the way of how to choose the fast
and slow variables is important, since the adiabaticity will be depended on how you
choose them. Born-Oppenheimer approximation is a good approximation of adiabatic

approximation. Bellow I would like to.introduce this approximation.

2-1 Born-Oppenheimer approximation

Born-Oppenheimer approximation; named after Max Born and J. Robert
Oppenheimer, is a kind of adiabatic approximation which is used to describe the
motion of nuclei and electrons in the molecular system. As mentioned above, the
adiabaticity controls the accuracy of the approximation. Why adiabatic approximation
is a good approximation for the motion of nucleus and electrons in the molecular
system? From the view of physical meanings, since the motion of nuclei is much

14



slower than the motion of electrons, that is, we could see the movements of nuclei as
frozen when electrons are moving at every instant, which is pretty reasonable, since
the weight of nucleus is much larger than the weight of electron (even the lightest one;
hydrogen, are larger than electron in a factor of 1836). So it’s obvious to take the
motion of nuclei as slow variables and the motion of electrons as fast variables. From
the view of derivation, the nonrealistic Hamiltonian of the molecular system could be

written as

LYYy S AL o)

s 472'80 T soadme,r,,

3 D WX

2mA

47rgor o
, where A, B refer to nuclie and 1, j refer to electrons. The Hamiltonian may be written
explicitly as

H=T (R)+T(r)+V (R,r)+V (1) + TV, (R) (2.11)
, where R is the set of nuclear coordinates, r is the set of electronic coordinates. In
equation (2.11), it is Ve this term that makes the separation of electrons and nuclei
becoming impossible. But as mentioned above, since the motion of nuclei is much
slower than the motion of electrons, it is reasonable to rewrite the Hamiltonian as
H=T,(R)+H (R,r) (2.12)
Where H (R, r) is as bellow

ZZe

ZZ +y Y AT (2.13)

47[50 v T = drer, i A oA 4re,r g

AR =Y STy
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Or

H LR, ) = T(r)+V (R,r)+V, (r)+V,(R) (2.14)
And the total schrondinger equation of the molecular system would be

(H-E)Y, =(Ty(R)+H, (R,r)-E)¥, =0 (2.15)
, where H. is the Hamiltonian of electrons at fixed nuclei configuration, R is the set of
nuclear coordinates; the slow variables, and r is the set of electronic coordinates: the
fast variables. The total wave function would be

¥,(R) =Y F" (R)p; (R,r) (2.16)

, where ¢! (R,r)is from

H,(R,r)p,(R,r) = E,(R)¢,(R.r) (2.17)

, in which E, is the adiabatic_electronic- energy and ¢ (R,r) is the adiabatic
electronic state. Take equation (2.16) back to equation (2.15) and integrate the

coordinates of electrons with¢? (R,r), then we get

> (on|T| £ > +E,F," —EF," =0 (2.18)
And the term z<(p ‘F e e> could be further derived by

(2.19)

2mA

Then we obtain

Vo) Ve o

Vies) EN+2(p;

_hz 2 Nuc hz
> VitE,—E|F"™ _ZZW[@Z
n A A

= 2m,

(2.20)
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A more compact notation is needed for equation (2.20), so we introduced the

following quantities used by Tully?

d\)(R) = (05 |V 405) (2.21)

Dy (R) = (g, |Vig: ) (2.22)
These two terms are the non-adiabatic terms shown in equation (2.6) and (2.7). The
neglect of these two terms is the Born-Oppenheimer approximation, which is

reasonable since the weight of nucleus is much larger than the weight of electron, that

is,V ,@¢is much smaller thanV , " . So we could obtain

2
{Z h Vj+Em—E}Fm=O (2.23)

T 2m,

And total wave function would be

¥, (R) = F," (R)p; (R,7) (2.24)
Equation (2.17) and (2.23) are the two basic equations of Born-Oppenheimer
approximation, where E,, is obtained by equation (2.17); the adiabatic electronic
energy, which is seen as the average field of the motion of nuclei. This average field is
calculated before dealing with the motion of nuclei, that is, solve the Shcrondinger
equation at every fixed nuclei configuration. Now the question comes to how to
obtain the adiabatic electronic energy state and energy, that is how to solve equation
(2.17). In general, there are two general methods for quantum calculation;

Hartree—Fock or self-consistent field (SCF) method and Post-Hartree—Fock, where
17



the Post—Hartree—Fock are the set of methods developed to improve on the
Hartree—Fock (HF), which considered the electron correlation energy that HF method
didn’t consider. Bellow we would to introduce the HF method and then some Post-HF

methods.

2-1.1 Hartree—Fock method (HF)

Hartree—Fock theory is one of the simplest approximate theories for solving
the many-body Hamiltonian, which reduce the many-body problem into several
one-body problems. It is based.on the independent particle models, that is, the total
wave function of the electrons are the product of wave function of each single
electrons, as bellow
Y =0, R.n)o,, (R,ry) @, (R,ry ) (2.25)
Where R is the set of nuclear coordinates, r; is the ith electronic coordinate and a; is
the ith spin orbital function. In order to contain the property of anti-symmetry for the
total wave function of electrons, single Slater determinant is used to represent the total

wave function, as the form bellow

@, () @, () @ (ry)
¢ (7 (r c(r
\II;:D _ 1 ¢az ( l) waz.( 2) ¢az(. Ne) (226)
NI : :
@.. (1) @, () - g (ry)
With
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[o, * (et (rar, =5, 2.27)
That is
[ s, * W, dridr, --dry =1 (2.28)

. So the energy would be

E=(¥;,|A,

o) (2.29)

Where H . 1s the form as equation (2.13) or (2.14) which could be rewritten as

e 1 XY z,z
H,(R,r)= ZH°+ZZ +y > A (2.30)
i ity 4 B>a Typ

Where H; is the operator of single electron at.the same nuclei configuration as

bellow
H - 2.31
Z 472'801" i ( )
If N, equals to 2N, and the form of Slater determinant changed to
ppa(r) @pa(r,) - @zany)
we - 1 (PBIﬂ(’ﬁ) (PBI/B(rz) (Pglﬁ.(er) (2.32)
Ne ! e :
/B(rl) (PBK ﬂ(rz) (P;\fﬂ(er)
Then equation (2.29) can be further written as
N N N
E=2)1, 2> (2J,, —K,;) (2.33)
J i

Where the third term of equation (2.30) is not considered, since it is just an effect of a

constant and shifts to the eigenvalues and

1, = (e ()|H}

P, (n)}n (2.34)
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e e 1
JB,.Bj = <§05,. (Vz)(ogj (7,,) p

Im

@5, (1)@ (7, )>

1 T

e e 1
Ky, = (05 ()05, ()] -

Im

05, ()05, (7))

(2.35)

(2.36)

J g5 18 called coulomb integral and the K, , is called the exchange integral if i is not

equals to j. By applying the vibration method to equation (2.34), we could find that

the form of spatial orbital will satisfy the following equation (2.37) in order to

minimize the energy; which is the famous Fock equation
F(r)es () =505, () i=12,,N
Where F (r;) is the Fock operator, which is given by
A ~ N ~ A
) =70+ Y T, ) - Ryt
k
Where

- -1 VA
r)=—V, -y -4

frp=3v, -7

J 5, (r;) 1s the coulomb operator given by

T )05 ()= () {03, ()|, )

mj

P

And K s, (;) 1s the exchange operator given by

Ry, ()0 () =5, 0) {03, ()| 05 )

mj

So the expression for the ith molecular orbital would be

&5 = (05 () |[F |05, )

Or
N

gp =1y +Z(2JB,Bj _KB,Bj)
J
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(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)



Comparing with equation (2.33), we could get the total energy in the form of
N
E= ZIBJ +&p (2.44)
,which is not just the summation of the orbital energy, since the interaction between
electrons will give contribution to the total energy. As it comes to solve the equation
(2.37), we found that equation (2.40) and (2.41) cannot be evaluated until all the
orbital are known. So self-consistent procedure is needed, in which you guess a set of
N coupled basis. Using the Fock equation, we could get a set of new orbital. Then this
new set of orbital are used to calculate the new Fock equation. Repeating this process
until the new set of orbital is almost same as the previous set, in other words, until
they are self-consistent. Now the problem comes to how to guess the orbital. This
problem is pretty important, since it controls .the convergence time for the
self-consistent and the accuracy of the convergent result. The most general procedure
is developed by Clemens Roothaan. He expressed the molecular orbital ¢;,,as the
linear combinations of basis functions ¢, , which in general is atomic orbital
k

Pro = ZCV¢V (2:45)

Take equation (2.45) back into equation (2.37) and integrate the electron coordinate r;

with¢, () . Then we can get

k k
Y F,c,=e).8,c, u=12-k (2.46)
Where F, is given by
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Fo={,0D[F G 8,0)) (2.47)
and S, 1s given by
S, =(8,0)|e.(r)) (2.48)

Ty

If g, is chosen a set of real functions; which is general the case. Then both F,,and S,

are k x k Hermitian matrices. The equation (2.46) could be rewritten in matrix
notation as bellow

Fe=&5c (2.49)

Which is the most general form used in the computational calculation for HF method,
because of the convenience of matrix mnotation. Up to now, we have shown the
derivation of HF method. From this, we could see that there is a principle for making
sure the accuracy of the HF ground state result; the lower the ground state energy the
more accurate the ground state result, since it is derived from variation method.
Besides that advantage, from equation (2.37) we found that the best form after
vibration method is one electron schrondinger equation with the effect of taking other
electrons as average field, that is, this not only reduce the multi-electrons problem
into several one-electron problems but also improve the molecular orbital; the Fock
orbital, which has the information of considered electron interacting with other
electrons and it is much better than normal single electron orbital. Although there are
several advantages above, but there exist one big defect, that is, the independent
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particle model approximation for the total wave function, which is absolutely not the

form of exact wave function. Because of the second term in the right side of equation

(2.30), they are no longer independent. So it is impossible for the total wave function

in the form of the product by each single electrons wave function. In other words, the

result of HF for ground state will never same as the exact one and it will always

higher than the exact one (Since it is derived from variation method.), even if we used

infinite basis equation (2.45); which we call this HF limit. The difference between HF

limit and the exact one is in the order that will influence the accuracy of chemical

reaction. Since HF omit the effect of the instant interaction of electrons (because of

the form for total wave function); which is called electron correlation energy, and this

is very important for chemical reactions. In order to consider the effect of correlation

energy, there is the development of the post-HF method, which would be introduced

bellow.

2-1.2 Post- HF methods

As mentioned above, Post- HF method is the method improved to consider the

correlation energy that HF didn’t consider, which could be defined in the form of

bellow equation

E,.=E EHF limmit (2.50)

corr exact
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There are several Post- HF methods. Here we would only mention the MP2 for
Moller-Plesset Perturbation theory and the CCSD, CCSD(T) for couple cluster
method.
Moller-Plesset Perturbation Theory

The basis of Moller-Plesset is to take the Slater determinants constructed by
Fock orbitals as the zero order function and further improve the energy and wave

function by perturbation theory. So the zero order schrondinger equation would be as

bellow
]j[(mq)lgm —E®®" (2.51)
Where
A N(‘
HO =>"F(r) (2.52)

In which F(7;) is the Fock operator

E© = Z‘gai (2.53)
and ® is constructed by Fock orbital(The excited state is simply obtained by
exciting the electrons to virtual Fock orbital and then construct its correspond Slater
determinants.) Since H is in the form of equation (2.30) and H®is in the form of
equation (2.52), then we could expected the first order Hamiltonian would be
HY=H-H® (2.54)
Or
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N, N, N, R A
A =238, - X0, -, ) (255)
T, i a

Where

1
g, =— (2.56)

Ty
From the basic of perturbation we would find that the energy considered to first order
(MP1) is the result of HF, which is pretty reasonable since

E, = Ei(o) +Ei(1) _ <(Dz('0) ‘ﬁ‘®§0)> _ <(DiHF ‘If]‘q)lHF> _ EiHF _ EjMPl (2.57)

So considering to second order energy (MP2), the energy would be

IS S oo |1 55 o)
E, =E”+EV"+E® =E/" &% i J T

/o] EP—EY
(2.58)

From equation (2.58), it is easy to see.that the second order energy correction must be
negative. So if we are talking about the ground state, and the basis already make HF
limit, then it’s obvious that the second order energy correction would be the electron
correlation energy.
Coupled-Cluster Theory

The concept of coupled-cluster is little bit same as configuration interaction, but
sort the groups in the order of number of electrons excited (same as MP2), where CI
sort them in the order of spin (converge too slow.). So total wave function would in

the following form
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Y, =0 +Za DF+ D al DL+ Y ag D e (2.59)
ij ,ab ijk ,abc
Where @, is the HF ground wave function, i; j; k is the occupied orbitals and a; b; c is
the virtual orbitals. The coefficients in equation (2.59) are obtained by variation

method, but not the case for coupled-cluster method, which are obtained by second

excitation as bellow, where the coefficients are not obtained by variation method

occ Vir

LD, =Y. > t/D] (2.60)
0, =3 Yo 2.61)
i<j a<b
-3 Yo (2.62)

i<j<k a<b<c

So equation (2.59) would be

Woo =147, 4T, + T, + - f, (2.63)

\PCC — e(l+ﬂ+fz+f3+ ...... )q)o — e(f)q)o (264)

, which is the exact solution to the equation (2.17). By multiplying e’(f)and integrate

with® ., which is at least single excitation, then we can get the information of

coefficient in it as bellow

(@, e He"|®,)=(D,|®,)=0 (2.65)
By multiplying e_(f )and integrate with @, then we can get the total energy as bellow
(®,e"H e"|®,)=E=E,, +(0,|H,(, +%fﬁ)|cp0> (2.66)
And CCSD and CCSD(T) is the truncated coupled-cluster method, where CCSD take
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e(f) as bellow

>

) 2147 + 7, (2.67)
And CCSD(T) is same as CCSD but consider some effect of triple excitation, but not

entirely as CCSDT.

2-2 Adiabatic approximation for the motion of nuclei on single PES

Now the question is how to deal with the nuclei motion on the single adiabatic
electronic PES. Adiabatic approximation is the general strategy for this kind of
problem. But electronic transition, vibrational transition seems cannot be a good
candidate for good adiabaticity. But in fact, reactive transitions occur in the
rovibraiontal states in physical different regions, reactants and products and occur
efficiently only in the region that two parts come closer. So using adiabatic separation
for state to state dynamics problem seems reasonable. Still, the adiabaticity is not that
good as electronic transition, that is, non-adiabatic transition still play an important
rule inside the state to state dynamics. But the adiabaticity is good enough that he
region of strong non-adiabatic coupling would be separated from each other, each of
them can be seen freely from others. Because of the properties of localized region, the
semi-classical method developed by Zhu and Nakamura®™® could be used to deal
with this case. The information needed is the E, in equation (2.5) without solving the
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non-adiabatic coupling by equation (2.6) and (2.7). Now The question is how to make
sure the quality of adiabaticity, that is, how to choose a coordinate that improve the
adiabaticity. Previously, Jacobi’ (non-adiabatic coupling did not die out in asymptotic
region), hyper-spherical % and hyper-spherical elliptic coordinates’ are being used. But
there is no analytical form for more than 5 atoms, the work become tedious even for
obtaining the adiabatic curves only. A general coordinate is needed for this
semi-classical method, since the main issue is to obtain the adiabatic curves, and the
following steps will be just like a service pattern. So how to choose this coordinate, in
fact, it’s min energy path (MEP), which has been developed thoroughly. How can min
energy path be an appropriate slow variable will be explained in 2-2.1. Then, I would
34

like to introduce how the semi-classical theory developed by Zhu and Nakamura

can be applied to this coordinate in section 2-2.2.

2-2.1 Min energy path

In order to explain why MEP could be proper slow variable for adiabatic
approximation, knowing the basics of MEP is necessary. Let’s recall the fundamental
concept for min energy path, there would be 3N-7 mode with gradient equal to zero,
orthogonal to the min energy path which may contains non zero gradient. So for the
general point one could has
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ov(a) - +l

v(x) =v(a)+ on 5

$-k-& (2.68)
where X is arbitrary point; x = {X;;}, a is a point on the reaction path; a = {a;;}, k=

{kir,i’r’} with

o%v

i = —8xir8xl_;r; (2.69)
, and  1is the displacement vector. Here i = 1, 2, 3.....N , r = x, y, z. For
displacement " that is orthogonal in the 3N dimensional vector space component of
the gradient part in the equation (2.68). In order to get the normal modes for vibration
that are orthogonal to the reaction path, it-is also necessary for ¢ to orthogonal to
the 3N space vector component of the -rotation and translation for the complete
N-atom system. Since it’s not the case of minimum or saddle point, it is necessary to
project out the infinitesimal rotation, translation.and the unit vector along the reaction
path, otherwise there will contamination of rotation and translation during normal
analysis. So at each point, one define projected force constant matrix k" for normal
analysis as

k" =(1-P)-k-(1-P) (2.70)
After doing normal analysis at harmonic approximation, one could expect there will
be 3N-7 nonzero eigenvalues; which give frequencies orthogonal to the reaction path,

seven zero with six correspond to rotation and translation, one for reaction coordinate.

So this provides the following approximated potential surface,
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k=3n-7 1

v(5,0,,0,,05evnne. Ouy) = V() + D, >V (s)° O} (2.71)

where s is reaction path ,Qy is the normal coordinate orthogonal to s and vy is the
potential energy on the reaction path. The classical one-dimension motion
Hamiltonian along reaction path for 3N-7>2 has been reported as

H,(p.5) =5 P AG) 4o+ TS w () +) (2.72)

by Miller®, where A(s) is the correction factor and ps is the momentum along reaction
coordinate. From equation (2.72), we can easily find that the first term is equal to the
kinetic energy of slow variable in equation (2.2), the second and third term then is
correspond to adiabatic potential,” which-is-the E, in (2.5).This term (E,) is only
information needed for semi-classical theory. Up to now, I have not explained why
reaction path could be the right coordinate to choose.. Since the reaction coordinate
separate reactant and product into two'regions, there’s no problem of non-adiabatic
coupling between reactants and products in asymptotic region as Jocabi coordinate
does. And the reactive transitions mostly occur around the saddle point (transition
state). Besides that, the way of obtaining the adiabatic curves (E,) is much more
general than Jocabi, hyper-spherical and hyper-spherical elliptic coordinate, since the
theory for normal mode analysis on reaction coordinate® has been developed
completely. E, here is correspond to J = 0 adiabatic curves, since equation (2.72) only
contains vibrational part, where J is the total angular momentum, which is conserved
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during the reaction, so the information of chemical dynamics preserved in constant J,
that is the dynamics won’t be mixed between each J. But in order to obtain the total
dynamics, the message of J>0 is needed. The J-shift approximation'"'*'*, which
relates the state to state reaction probability for arbitrary J and its body-fixed
projection k to the one actually calculated for J = 0:

PIN(E)~ PSNE-E) ) 2.73)
, will be used to gain case for J > 0, where E*;x is the rotational energy of transition

state.

2-2.2 Semi-classical theory

As mentioned above, MEP divides the reactant and product into two different
regions; no problem of non-adiabatic coupling in the asymptotic region, and reactive
transitions mainly occur around saddle point (transition), so it make it possible to treat
the chemical reaction in ordinary scattering problem. That is to say, we can apply the

semi-classical theory of non-adiabatic transition developed by Zhu and Nakamura’'°.

2-2.2.1 Zhu and Nakamura theory
The theoretical studies of non-adiabatic of transitions between potential energy
curves should be date back to 1932, when Landau14, ZenerlS, and Stueckelberg16
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published the pioneering paper independently. They have shown the non-adiabatic
transition probability at curve crossing point between two curves :

27AE?

Py = eX]@(—W

) (2.74)

, so called famous Landau-Zener formula, where AE is the diabatic coupling:

_WZ_VVI
2

AE (2.75)

and F is the difference of the slopes of the two diabatic potential (V; and V) at Rx,
which is the crossing point between V; and V, as shown in figure 2.1. But there are
five general defects for this formula, which are summarized'’ as follows: (1) Not
work at energies near and lower than the -crossing point. (2) No good formula exists
for transmission when the two diabatic curves cross with: different signs of slopes. (3)
The available accurate formulas, which are valid only at energies higher than the
crossing point, contain inconvenient complex contour integrals and are not very useful
for experimentalists. (4) The Landau-Zener formula requires the knowledge of
diabatic potential, which can’t be uniquely obtained from adiabatic potentials. (5) The
accurate phases to define the scattering matrixs are not available for all cases. In this
report, we would take advantages of point (2), (3) and (4), that is, we only consider
the transition point lower than total energy and no phase consideration. The main

purpose of this report is to check whether taking MEP as the slow variable is valid or

not.
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2-3 Application to adiabatic curves on MEP

Since the properties of MEP, the adiabaticity holds in localized region. Then the
most important non-adiabatic transition occur between two adjacent adiabatic curves.
(Non-adiabatic transition between non-adjacent may contribute a little, but not that
important, which may be considered after obtaining the diabatic curves from adiabatic

curves as ref 1 does. This won’t be shown in this report.) So let us look at the easiest

case; two adiabatic curves, as Figure 2:2. The scattering wave function for asymptotic

region can be written in WKB.form:

Y.(s) = 2”@) exp(i;!;kn (s)ds) + \/% exp(—iTj;kn (8)ds) (s > ) (2.76)
Y, (s)= S, exp(ijk (s)ds) + D exp(—ij.k (8)ds) (s > —0) (2.77)
k,(s L Jk, () LA

,where TH, and T, are the same for transition point lower than the total energy
considered, but left-side turning point and right-side turning point for tunneling case,

and

k, (s) = 21(E — En(s)) . (2.78)

The scattering matrix is defined by
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4, B, Sy Sy Sy Su | B S Sn Sy Su| B
4, _ B, _ Sp S»n Sn Sp | B _ Su Sun Sy Sy | B
_d 7= - (2.79)
D, G Sy Sy Sy Su| G Sy Su Sy Sy | G
D, C, S Sy S Su)\G Sa Se Su Sa NG

, where the outgoing coefficients (purple one in the figure 2.2) are represented by the
incoming coefficients (black one in the figure 2.2), and S;=S;;. It’s not unexpected to
obtain S matrix in the form of equation (2.79). Since the outgoing part is contributed
by the outgoing part, that is to say, S;; itself is related to the probability that outgoing
coefficient formed from the incoming coefficient. In fact, it is in the form of square
root of probability with phase; because it is the square of coefficient that gives the
meaning of probability not coefficient itself. Take A; for.example:
A4, =8B +8S,B,+S,C +5,C, (2.80)

, where Sj; is related to the probability of the reflection of the incoming wave By, S;,
is the probability of the reflection of the incoming wave of B, which transmit to lower
curve, S3; is the probability that C; stay at lower curve and S4; is the probability that
C, stay at upper curve. In this model, there two kinds of S matrix:

1. Non-adiabatic transition between two curves, so called I matrix ; like point I,

and point I, in figure 2.3:

1N

S~

S

0
0
i,

0

Jp
_ ll—plefix‘
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~
%
®

[\S]

4 0 T\ B JI=pe® J
or | 72 |=1, :( ‘j : witthz[ Pie P J

D, o I, 0)C¢C P ~Jl=-pe™

D, C, G,

forl, (2.81)
4 0 0 Jl-p,e™ VP, B,
4, _ 0 0 \ P —y1-p,e™ | B,
D, JI=p,e” VP 0 0 &
D, VP —yJl-p,e™ 0 0 G,
4, B, B,
4, By| (0 T)B,| . VI=p,e” VP

Or =1, = | withT, = L

D, o , 0)¢ VP2 —Jl-pe™
D, C, C,

for 1, (2.82)

, where p; and p; are the probability -of the transition between lower curve and
upper curve at position ofl; and. I

2. Tunneling; like the E; case infigure 2.3:

C e \/?” 0 ee™ J1-p, 0 A,
C, | 0 e \p., 0 e et m 4,
B | |—ete N 0 e Ip, 0 D,
B, 0 —ee™ I-p,, 0 e \p, D,

(2.83)

, where py; and py, represents the probability of transmittance at lower and upper curve
for energy equals to E; These two kinds shown above are only single S matrix. In
order to obtain the final s matrix; which connects incoming and outgoing of the very
beginning and end, one should know how to link the multiple s matrix. From figure

2.3, we could find that there are two types of linkage; one is that energy contains
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all two curves (E; in fig. 2.3), another one is tunneling exist between two transition

matrix (E; in fig. 2.3). It seems these two types are totally different, but in fact E, is

just a special case of E; with the transmittance probability equal to 1. So the

discussion of E;’s case is enough. In order to do this, the transformation of the S

matrix is necessary. Since we can’t just multiple each single S matrix to obtain the last

one, the transformed one could, which links . After obtaining the total matrix, we need

convert it back to S matrix. The transformed one for transition and tunneling matrix

would be:

1. Transition matrix:

Cl Bl Bl
C "\ B 1B
2| O T (2.84)
D, T, 0 ) 4 A,
D2 A2 A2
, where I’y 1s the modified matrix of I;
G B B,
: 0 7, B. .| B.
G0 LB B (2.85)
D, T, 0) 4 A,
D, 4, 4,

, where I’; is the modified matrix of I,

2. Tunneling matrix
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0 1 e,wjlz O _ p12 eflez
P \ Po
B, C, C,
B r t|C C
or | 2l=(, ) 2|=P | with
A4, t r | D D,
A4, D, D,
_ 1- Pu e—ixtl 0 1 ei¢1t 0
I and r=| V0 | (2.86)
0 _ 1 - pt2 e—ixtz 0 eiﬁz
P P

So the total matrix would be manipulated as bellow for E; case:

c, B, , B,
C,| (0 T,)B,| (0 T, ¢ z)cz (0 T, ’ t) 0 71\ B,
D | \1, 0)4 | \r, 0)t r|D T, 0 )t r\I, 0) 4
D, 4, D, 4,
Bl Bl Bl
T,t'T, T,p'T, \ B B M MI\B
_| 20 4 2 P *1 2| _ 1,PI, 2| _ 1T 2T 2 (2.87)
LT, Ty, 4, 4, My M, ) 4
A2 A2 A2

The P matrix in equation (2.26) should always exist between two I matrix, since p is
not unit matrix even for the case of total transmittance. The result of equation (2.87)
could be applied to multiple s matrices, and you can obtain following form for

modified total matrix F:
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. : M M
F=1(s, )P _ (s, ) (s, )P (s cep (s (s) =] ! 2
n( 2n—1) n—l( 2n—2) n—l( 2n—3) n—l( 2n—4) pl( 2) 1( 1) (MJ MZ‘J

with s, <s, <5, <8§,°-<58,,, . (2.88)
, Where s; is the position on the reaction path. In fact Equation (2.88) is also the

general result for multiple curves, but with (2.87) in the form of

C B, B,
Ci‘ Bi MlT MzT Bi
|=F = : (2.89)
D A, MI M) A4
D A A,

1 1

, where 1 is the number of adiabatic curves..For multiple curves, the T; (s;) in I(s;)

matrix will be denoted as

JI=pi(s,)e JBiGs,) 0

Jpi(s)) — 1= p,(s)e

l_pn (S] )eixn(s,/') pn (SJ)
: i B ey A

(2.90)

, where pn(sj) is the transition probability between curve n and n+1 at position s; (pn
would be equal to zero for those curves not involve in the transition point) and n+1 <
1’s curves. Here, n is the number of nth curves, not the notation of right side or left

side for the adiabatic curves. And the ri(s;) and tj(s;) in Pj(s;) would be
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1- S:) —ix(s
_ i j)e v, (s;) 0
pll(Sj)

ri(s;) = .
0 I Ll ST
pii(Sj)
;eiﬂ(sj) 0
JraGs)
P (Sj) -
0 ;ei@(‘gi)

(2.91)

(2.92)

, where pu(sj) is the probability of transmittance in nth adiabatic, and n<=i; the total

number of adiabatic curves. Now we know the general form for modified total matrix

in equation (2.89).Then we need to convert the transformed total matrix into S matrix.

A general step is shown below:

First,
c B, A,
Dl=M| |+ M,
C B, A,
D B, A,
Dol=My| [+ M)
D B, A,

Then, from equation (2.93) we can obtain

4 C B,
=My |- (M) MY
A, o B,
Finally take (2.94) into (2.93), we get
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D, B, c
VS VS0 e ur Vel I S VSN0 VES Rl B (2.96)
D B C'n

n

Thus we gain the representation for total S matrix:

A, B, B,
An _ MT —IMT MT -1 B B
T T ( T2) T 11 T (T . )T 1 C=S) (2'97)
D| M3 _M4(M2)_M1 M4(M2)_ Cl Cl
D ¢,) \C,

No matter how many tunneling(barriers) exist in the dynamics, the process from

equation (2.93) to (2.97) is general; which could be easily solved numerically. There

four parts in S matrix, each has its correspond physical meanings:

1. Upper left part: relate to the probability for the waves from right side curves to

go back.

2. Upper right part: relate to the probability for the waves from right side curves to

go to left side curves.

3. Lower left part: relate to the probability for the waves from left side curves to go

to right side curves

4. Lower right part: relate to the probability for the waves from left side curves to

go to left side curves
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Eenergy

Ex

Figure 2.1 Schematic potential energy curves in the
Landau-Zener type crossing.V; and V, are diabatic curves, W,

and W, are adiabatic.curves and AE is the diabatic coupling.
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Cz —» D), +— 4 | —» A 4—- B]_

C, —» Dy «— 3

Figure 2.2 Schema of general case for two adiabatic curves on
MEP coordinate. A, and B, are the coefficients of scattering wave
function for asymptotic ‘region (s=>+infinity) in WKB form as
equation (2.76). C,.and Dy are -the coefficients of scattering wave
function for asymptotic region (s=-infinity) in WKB form as

equation (2.77).
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s(MEF)

Figure 2.3 Schema of two adiabatic curves on MEP. I, and I, are
the transition points. E; and E; are the two types of energy will be

encountered during obtaining the total S matrix.
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Chapter 3 Results and Discussions

3-1 Theoretical results for OH+H, 2 H+H,O reaction

3-1.1 Theoretical calculation for MEP

There are several theoretical groups devoted on the research of
OH+H,>H+H,0 reaction; Smith and Zenner' use two different semi-empirical
potential energy surface; LEPS and BEBO and they neglect tunneling with barrier
same as experiment activation energy, Schatz used large scale POL-CI® wave function
with basis 3s3pld/3slp and 4s3p2d/3s2p and Truong® used the PMP4/6-311++G(2d
f,2pd)//QCISD/6-311+G(d,p) method. And in this réport, Gaussian 09 is used to
calculate the reaction path with CCSD/aug-cc-pvdz, CCSD(T)/ aug-cc-pvdz//CCSD/
aug-cc-pvdz and CCSD(T)/aug-cc-pvtz//CCSD/aug-cc-pvdz. All the results are shown
in table 3.1. From table 3.1, we could see that the energy correction by CCSD(T) is
necessary, which match pretty well with Schatz’s larger basis and Troung, no matter
aug-cc-pvdz or aug-cc-pvtz, but seems shown difference with Zener and the activation
energy (E,) at 300K, which Zener took the activation energy as barrier height in the
semi-empirical potential energy surface. It could be contributed to the tunneling effect
and temperature effect. Schatz* and Truong’ have calculated the rate constant with the
effect of tunneling, then they get pretty good results with experiments, that is to say,
the results of CCSD(T) energy correction is ok. And the comparison for MEP of my
work between before and after energy correction by CCSD(T) shown in figure 3.1
indicates that the saddle point does not change to much compared to the one without
energy correction and almost no difference between the two different basis in energy

correction, CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz and CCSD(T)/aug-cc-pvtz//
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CCSD /aug-cc-pvdz. So we use the MEP calculated by CCSD(T)/ aug-cc-pvdz //

CCSD aug-cc-pvdz.

3-1.2 Geometry of transition state

Figure 3.2 displays the geometries of transition state with CCSD/aug-cc-pvdz method,
which predicted that the O-H length of HOH’H* is 0.976 A, which almost same as the
length of OH radical. This result match the concept that several studies bring out,
which OH can be seen as a spectator group during the reaction. The geometry is
almost same as Schatz” and Truong4’s result, but different from Zennerl, which is no

longer planar.

3-1.3 Normal modes along reaction path

Table 3.2 presents the.frequencies along reaction path calculated by G09 with
CCSD/aug-cc-pvdz. In general, there should be 7 zero.or very small frequencies and
3N-7 non-zero frequencies, here is‘5. From table 3.2, you could see that it’s not the
case. For points near transition state (s = 0) are still ok, but points away from s = 0
show strong defects. Since there are two general problems exist in the G0O9 calculation
for points on reaction coordinate:

1. Linear transformation of Cartesian coordinate to internal coordinate:
For non local maximum or minimum point, the transformation will be no longer
linear, since the first order gradient will also contribute to it like Truhlar metioned®.
Bellow is the energy based on Cartesian (equation (3.1)) and internal coordinates

(equation (3.2))
N 13
V=V,+), GiARi+§zF;/ARiARj+“' 3.1)
ivj
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And
3N 1 &
V=V,+), giAqurEZfleinqj o (3.2)
L

,in which ARi and Aqi are, respectively, the Cartesian and internal coordinate.
The internal coordinate can be expressed in terms of power serious of the

Cartesian coordinate as bellow:
3N 1 3N )

Aq, =ZByMj+E§CjkMiMj+--- (3.3)
J Js

From equation (3.1) to (3.3) yields the expressions for Cartesian gradient and

force const matrix in terms of their internal coordinate counterpart as

G=B"g (3.4)
and

F .
F=B"fB+Y g,C" (3.5)

In above equation, it could be seen easily that it’s not linear transformation, which
is the only first term of equation (3.5)

The process of projecting out the unit component along reaction path, rotation and
translation is not conducted.

Because of problem 1, we choose to use Molpro to calculate the frequencies by

the same method and basis, CCSD/aug-cc-pvdz, with the geometries from G09. Since

Molpro directly diagonalize the transformation matrix in Cartesian coordinate without

changing to internal coordinate. The results of Molpro are indicated in table 3.3. It

seems better but there is still some defects in it, because of problem 2 mentioned

above. This program for this is not that easy to construct. In order to find the 3N-7

nonzero frequencies, we’ve done the following steps:

Transform the first order gradient in Cartesian coordinate from Molpro to normal
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mode coordinate with the transformation matrix from Molpro
2. Do mode-scanning for each coordinate with the transformation matrix obtained in
Molpro for each mode at each point on reaction path.

From the gradient, reduced mass and the mode scan in normal mode, we could
distinguish which is frequency of reaction path (gradient max one), rotation and
translation. Then we obtained the organized frequencies in table 3.4 and. Figure 3.3.
Those frequencies belong to the modes of reactants (OH, H,) and products (H,O);
W;3~Wy in table 3.4, are reasonable. But W; and W, have unphysical imaginary
frequencies during the reaction path. It’s due to the problem 2 mentioned above. The
contamination of reaction coordinate, rotation and translation is stronger for smaller
frequencies (those contribute to the rotation of reactants and products, that is, W; and
W.). But the program for dealing problem2 is no easy to write. Even if we have done
this, there will be still a big-problem, which is shown by Truhlar®. You still may get
unphysical imaginary frequencies not until you use curvilinear internal coordinate.
This is even harder than dealing‘with problem 2, since it’s a non linear process. So we
modified the W; and W, by following the trends of frequencies around s = 0 and goes
to frequencies of rotation in the asymptotic region (Originally, it should be zero, but
we know it’s contributed by the rotation in the asymptotic region, which won’t be
defined as frequency). Then, we fit the curves in the reaction region (s > 0) and
product region( s < 0). This process is shown in figure3.4. (Only show W, and W,
since W3~W, don’t need to modification.) The fitting process will also be done for W3,
Wi, Ws and MEP. The fitting result for W;, W, and W3 of OH+H2 part (all change to
rotation at asymptotic region) is shown as bellow:

Wi

OH+Hj, part ( The rotation of OH, s > 0) :
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E(em™) =18.601 +204.63869 -3 - exp(—s/0.56019) (3.6)
, where 18.601cm™ is the rotation constant B of OH in asymptotic region.
H+H,0 part (The total rotational J of H20, here we approximate it as prolate with

I'=I'v=1/2(1;+I) and I’ ,=I,, where I’ is the modified one and I is the real one):

E(em™) =11.92 + 674.23928 - exp(—0.5 - [(s + 0.24983)/0.48136 ') (3.7)

, where 11.92cm™ is the rotation constant B’ of H,O in asymptotic region.

W,

OH+H, part (H; rotate around OH, s > 0):

E(cm™) =200.5297 -3-exp(—s/0.51682) (3.8)
, where Ocm™ is the rotation constant B’ of OH/H, in asymptotic region.

H+H,0 part (The k component of H,O ):

E(cm™) =14.875 +637.32359 -exp(=0.5 - [(s+ 0.08221)70.54214 ") (3.9)

, where 14.875cm’™ is the rotation constant A” of H,O in asymptotic region.

Wi

OH+H; part (The rotation of H,, s > 0):

E(em™) = 57.66 +908.2709 - exp(—s /1.22003) +93.92793 - exp(—s/0.1746)  (3.10)

, where 57.66cm™ is the rotation constant B of H, in asymptotic region.

We fit these frequencies directly to certain rotation, which in fact is not the case. Since
the motion of those rotations in asymptotic region are mixed together in the complex
HOHH. In reality, it’s not a big problem for two reasons: (1) The couplings between
these rotations could be considered during the process of non-adiabatic transition. (2)
We could take the rotation as an average field, that is, we only need to know this
rotation belong to which vibration without knowing what kind of rotation it is, which

is more general for large system. So from the result we can gain the fitted frequencies
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along the reaction path as table 3.5 and figure 3.5

3-2.Contruct the adiabatic curves of J =0 on MEP

By the fitted frequencies along the MEP, we could construct the adiabatic
curves of J =0 on it with second and third term in the right side of the equation (2.9).
But there are some modifications, which is necessary. Those frequencies that become
rotation in the asymptotic region don’t always preserved the form of E,; = wi(nj+1/2).
It evolves into the form of rotation in regions that are away from transition state.
Besides that, for W, of OH+H,, the rotational quantum number itself is restricted to
the rotational quantum numbers of OH and H, rotation, and for W; of H+H,O0, it’s
restricted by rotational total J of H,O. The restriction seems unreasonable, but in fact

ok as the two points I mentioned above. So the modification will be done as bellow:

E,=a(s)-J - w+(-a(s))-(L+T)w=n-w—a(s)-J -w (3.11)
Or
E, =a(s)-K-w+(1—a(s))-(K”)-w (3.12)

, in which J is the rotational total quantum number and K is the quantum number of z
component of J in molecular axis. a(s) is percentage for the portion of vibration and
(1-a(s)) then is the portion of rotation. ZPE is directly considered with MEP, so no 1/2
for vibration in equation (3.11) and (3.12). The way of how to obtain a(s) is pretty
easy, just follow the trends of how frequencies drop in equation (3.6)~(3.10). Take W
for example, you could get a(s) for :
W, of OH+H,:

a(s) =exp(—s/0.56019) (3.13)

W1 of H+HQOZ
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a(s) = exp(=0.5-[(s +0.24983)/0.48136 ") (3.14)
So En for adiabatic curves would be:
OH+Hj; side :
E=[J—a/(s)-J2 )W, +|J, —ay(s)- 2| W, I, —ay(s)- T2 | Wy +ny - W, + g - W,
(3.15)
, in which J, = J;+J5, J1+])s-1, J1+)3-2,....... , [J1-J3], in order to make the total angular
momentum equals to zero.
H-+H,O side :
E=[K +(-a () KW, +|J, —ay(s)- 2| W, + ny - W, W, + g - W,
(3.16)
,inwhichJ,=0,1,2,....... , J1, since’it’s the z component of J2 (we didn’t consider J,

< 0). Thus from (3.15) and (3:16) we can gain the adiabatic curves as figure 3.6

3-3. Cumulative reaction probability

3-3.1 Cumulative reaction probability for OH+H,->HCI+H,0

Before talking about the state to state dynamics, we would like to show the
cumulative reaction probability first. Cumulative reaction probability is the property
that indicates how much reactants become products at certain total energy, which

could be shown as below:

NEYNI) =D piy (EXJ) (3.17)
i f

N(E)=Y N(E)(J) (3.18)

, in which N(E)(J) is cumulative reaction probability at total energy E, pi«(J) stands
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for the reaction probability from certain state i of reactants to certain state f of
products and both of them are the results of total angular momentum equals to J. From
equation (3.18), it is easy to understand that N(E) is macroscopic properties, which
means that the result of N(E) decides whether the potential energy curves we use is
right or not, since it’s a total effect, that is , it’s easier to achieve than p; 5iJ), which is
a microscopic property. Here, we only show the result of N(E)(J=0), since other
N(E)(J) could be obtain by J shift approximation, that is, we only need to make sure
N(E)(J=0) is correct. Below we would like to display several results of N(E)(J=0)
from different types of model :

Typel:

We only consider the energy levels at the two sides of adiabatic curves, s=-2.5bohr

and s=2.0bohr with the cumulative reaction probability as bellow

N(E)(J =0) = NNy (3.19)

N, +N,

, where N, Ny are, respectively, the number of states available at E for s=2.5bohr and
s=2.0bohr. This N(E)(J=0) is the result of ‘barrierless and every states are equal
partition if the states are available at that E . We do the same thing for reactants and
products, where N, Nf would then, respectively, be the number of states available at E
for reactants and products. Then we obtain the result as figure 3.7. The outcome is
larger than Miller’s result7, which is reasonable, since no barrier in this case. Th
S=-2.5bohr/s=2.0bohr, these two positions are pretty close to the asymptotic region,
and from figure 3.7, we could find that it goes well with the trend of reactant and
product. That is, the linkage between the two sides of the energy curves and
asymptotic region is pretty good.

Typell :
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We consider the entire curves as shown in figure 3.6, but we didn’t evaluate the
total S matrix as equations (2.26) to (2.35) in reality. We only consider the effect of
tunneling of each curve. Because of the macroscopic properties of cumulative reaction
probability, it is easy to assume that the N(E) is contributed mainly by the tunneling
property of each adiabatic curve not by the non-adiabatic transition between them,
which is a microscopic property that would easily vanish in the macroscopic
properties. The strategy we applied is pretty easy, if there is only one barrier in each
adiabatic curve, we just evaluate the tunneling probability of each curves and then do
summation. But if any curve inside the adiabatic curves has more than one barrier,
evaluating the S matrix becomes necessary. Since OH+H, side, reactant side, is higher
than H,O+H side in each adiabatic curve, that is, the possibilities of tunneling would
be decided only by the energy.levels of OH+H; in the asymptotic region. From figure
3.8 which indicated the adiabatic curves that connects the energy levels of reactants
lower than 15kcal/mol. It is obyvious that the assumption of one barrier is sufficient,
even if there is some pretty small well in higherlevels, which won’t give big effect.

The transmittance probability is evaluated as bellow:

5= % LT J2UlE =V (s)|ds (3.20)

,where T and T, are the turning points in each adiabatic curve. If the adiabatic curves
are in parabolic shape, then the transmittance probability are in the form as equation

(3.21) and (3.22):

=20
e

ptransmit tance _25 fOV Etaml > Emax (321)
l+e
625

ptransmittance = 1 + 625 fOV Etaml < Emax (322)

, in which Etotal is the total energy and Emax is the max energy in each adiabatic
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curve. In type II, we obtain the result as figure 3.9. The deviation from Miller’s result’

is not small. There are three possible reasons:

1.

The linkage between reactants and products is not appropriate, since there two
rotational related vibratioanl modes in product side, but three for reactant side.
Possible solution would be the way of dealing with the mode, which shows
vibrational behavior in one side but rotational behavior in other side. We should
consider the evolution of this kind of mode from reactant to product, not just take
one side as vibration and the evolution only in another side. Besides, the way of
dealing with the evolution from vibration to rotation should be modified also, and

this would be done in the future.

2. The non-adiabatic transition may ‘cause some effect to the cumulative reaction

probability.

3. The accuracy of the frequencies along the reaction coordinate would influence the

density of states. For those big frequencies, the defects may be small ,but not the
case for those small frequencies;.especially those rotational related modes in the

asymptotic regions.

Type II1:

Since the adiabatic curves are not appropriate yet, in order to obtain the

cumulative reaction probability, we’ve done following three assumptions:

I.

The shape of upper levels is same as the ground state, and take all of curves as
parabolic model
Take the energy level of transition state as the max energy, Emax, of each
adiabatic curve.
From assumption 1 and 2, we could make a subroutine of delta (o) vs deltaE for

ground energy curve, where deltaE is the difference between Etotal and Emax.

54



Then take this subroutine as the reference for upper energy levels. So for each
adiabatic curves we only need to know two things, one is Etotal > Emax or
Etotal< Emax, another is difference between Emax and Etotal. Then from the
subroutine, we could get its correspond delta(o ). For Etotal > Emax, equation
(3.21) is applied to get Ptransmitance. For Etotal < Emax, equation (3.22) is

applied to get Ptransmitance.

We call this model as adiabatic model. The energy diagram of this model is shown in

figure 3.10. The delta (0) vs deltaE for ground energy curve is displayed in figure

3.11 and the fitted delta (0) vs deltaE is shown in equation (3.23):

0 =-5.66455-10" +1.07919 - deltaE + 7.40337-10™* - deltaE* + 0.01189 - deltaE’

-8.93079-107° - deltaE*

(3.23)

The cumulative reaction probability of J = 0 is.in figure 3.12. We could found that it’s

much closer to Miller’s result’ than ‘type I, but'still has not small difference. There

would three possible reasons:

1.

From figure 3.10, it is easy to see that the energy density of reactant side is larger
than transition state, that is, the delta would be smaller than ground energy curve
at the same delta E for the upper curves, as the parabolic model still holds. So

we’ve done some modification for upper curves as bellow:

0'=0x 1+£ forE_ >E (3.24)

total max

o
5':— fOV Etotal < Emax (325)

, where v stands for the maximum of ground energy curve, E .y is the maximum
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of adiabatic curve considered and Av equals to Emax-vy. The result of this
modification is shown in figure 3.13. No big difference between before and after
modifications. But after directly multiple adiabatic models result by a factor 3.6 or

the modification order change from 0.5 to 2.95 as bellow:

A
5'=5x(1+ v—v)2~"5 forE, >E. (3.26)
0
, 5
5 = AV fOV Etotal < Emax (3 27)
1 + 2.95
( v )

we found that the result match Miller’s result’ better. These are displayed in figure
3.14. The possible explanations would be the parabolic model is not appropriate or
the density of state in transition state is not correct which would be explained in
reason 3. We fit the ground energy curve in polynomial equation, and obtained the

equation (3.28)

E(kcal | mol) = 5.48581+9.75594 -5 -17.62052 -5 -6.5155 -5 +11.56263 -5 +
3.61526-5° -3.31808-5°-1.04517-s" +0.33778-s% +0.11207 - s°

(3.28)
From equation (3.28), we could find that s” is not the only dominated term, that is,
parabolic model no longer good, but whether this is the main reason, it is still in

request.

2. Non-adiabatic transition between each adiabatic curve may cause some effects,
which would be shown in type IV.
3. The accuracy of the frequencies along the reaction coordinate would influence the

density of states. For those big frequencies, the defects may be small ,but not the
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case for those small frequencies, especially those rotational related modes in the
asymptotic regions.

Type IV:

In order to consider the influence of non-adiabatic transition, we use diabatic
model to evaluate the energy curves for the transition state. In diabatic model, all
modes in transition state preserve the properties of the motion in reactants. Since
diabatic model keep all the properties from reactant to transition state, that is, the
non-adiabatic coupling is considered entirely in each curves. So the five vibrational
frequencies 546.6cm™, 609.94cm™, 1059.12cm™, 2479.16cm™ and 3736.43 cm™ in
transition state would be changed as bellow:

1. 546.6cm™: correlates to the rotation befween. OH and H, in asymptotic region,
which is zero .wave numbef in asymptotic region, but 4.89cm™ in
transition state, which the radius for moment inertia is calculated by
the mass center of OH and H,

2. 609.94cm™: correlates to the rotation of OH'in asymptotic region, which is
18.601cm™ in asymptotic region, but 18.6cm™ in transition state. No

big differences between asymptotic region and transition state, since
OH can be seen as a spectator during the reaction.

3. 1059.12cm™: correlates to the rotation of H, in asymptotic region, which is

57.66cm™ in asymptotic region, but 50cm™ in transition state.

4. 2479.16cm™: correlates to the vibration of H, in asymptotic region, which is
4344.54cm™ in asymptotic region, but 2479.16cm™ in transition
state.

5. 3736.43cm™: correlates to the rotation of OH in asymptotic region, which is

3714.33cm™ in asymptotic region, but 3736.43cm™ in transition state.
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No big differences between asymptotic region and transition state, the

reason is same as the concept mentioned in 609.94cm™
So, for the diabatic model, in order to preserve the properties, that is, the quantum
numbers of those five motions in transition state should follow the quantum numbers
of reactants. This is pretty different from adiabatic model. In adiabatic model, we
count the number of possible tunneling amounts from reactants, and then the Emax of
each adiabatic curve are taken from low level to high level, that is, the relation
between each Emax and each state of reactants are decided by the sequence of the
energy level of transition state and reactants. But for diabatic model, for every state of
reactants, we should remember the quantum numbers of those 5 motions, and its
corresponded Emax should have the same quantum numbers in order to preserve the

properties. So the energy level.of transition state would be like equation (3.29) :

E(JOH,JHZ,JOH/HZ,VOH,VHZ)= Vo Vi, 247916 +v,,,;.3736.43+ J ,,, (J .,y +1)-18.6
+JOH/H2 (JOH/HZ +l)'4-89+JH2 (JHZ + 1)'50

(3.29)
, Where vy is electronic energy plus zero point energy of transition state, Jou, Jm2, Vou,
vz should be same as the Jou, Juz, Vou, v of reactants as bellow

E(J oy > 112> Vou »Vi,) = vy, 4344.54 + v, 371433 + J o (J oy +1) -18.601
+Jy,(Jy, +1)-57.66

(3.30)
, and JOH/H2 is [Jou +Jm |, Jou HIm-1|, [Jou Hm-2|....... [Jon -Jm| in order to obtain
total angular momentum equals to zero. Then we could get the energy diagram for
diabatic model as figure 3.15. We could find out that the density of state in transition
state is similar to the density in reactants, since it is diabatic model. Then the process

to obtain cumulative reaction probability is entirely same as type III except the
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linkage between Emax and state of reactants. So we use the same equation (3.23) for
delta (0) vs deltaE, then we get the cumulative reaction probability of diabatic model
as figure 3.16. In this figure, it also shows the adiabatic model. It’s obvious to see that
miller’s result is between adiabatic model and diabatic model, that is to say,
non-adiabatic coupling may give some contribution to the cumulative reaction
probability, since diabatic model consider the non-adiabatic coupling entirely in each
curve, but entirely no non-adiabatic coupling in adiabatic model.

From type III to type IV, it’s easy to figure out that there are three possible
reasons that influence the accuracy of the trends for cumulative reaction probability:
1. Whether the parabolic model for energy curve is appropriate or not.
2. Accuracy of the frequencies along the reaction coordinate
3. The contribution of non-adiabatic-coupling to the cumulative reaction probability
In order to figure out which one is the dominated one, we would like to apply type III

to type IV to a new system, Cl + CHy=> HCL+CHj, a prototypical chemical reaction.

3-3.2 Cumulative reaction probability for Cl1 + CH;»> HCIl +CH;

Before applying those types of model to Cl + CH4 = HCIl + CH3, we would

like to show some theoretical results that people have done before and my works.

3-3.2.1 Theoretical results for the MEP of C1 + CH; - HCI + CH;

Theoretically, there are several ab initio calculations investigating the barrier
height and the heat of reaction with the calculated vibrational adiabatic ground-state
barrier height; VY, varying from 2.6 to 13.7 kcal/mol. Truong et al® used the
MP2-SAC2/MC-311G method, Dobbs and Dixon’ used QCISD(T) and CCSD(T)

with a larger basis set (TZ+2P) and Hua-Gen and Gunnar Nyman obtained the
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information of MEP by applying the hyper-spherical projection method to Rotating
Line Approximation; RLA', Rotating Line Umbrella; RLU'' and Rotating Bond
Umbrella; RBU'? with the calculated London-Eyring-Polanyi-Sato (LEPS); which
contains the zero-point energies of modes that are not explicitly treated in the
quantum dynamics calculations. In this report, Gaussian 09 is used to calculate the
reaction path of Cl + CHy - HCIl + CHj with CCSD/aug-cc-pvdz and CCSD(T)
/aug-cc-pvdz//CCSD/aug-cc-pvdz. All the results are shown in table 3.6. From table
3.6, we could see that the energy correction by CCSD(T) is necessary, which match
pretty well with Nyman’s three results, Troung’s result and the results of experiments
within 1.5 kcal/mol, that is to say, the results of CCSD(T) energy correction is ok.
And the comparison for MEP of my work between before and after energy correction
by CCSD(T) shown in figure 3.17 indicates that the saddle point does not change to
much compared to the one without energy correction. So we use the MEP calculated

by CCSD(T)/ aug-cc-pvdz // €CCSD aug-cc-pvdz

3-3.2.2 Geometries of transition state, products and reactants

Table 3.7 displays the geometries of transition state with CCSD/aug-cc-pvdz
method, which predicted that the C-H length of CI-H-CH3” is 1.0961 A, which almost
same as the CH” of CH”’; radical and the CH” of H’CH”’3, but closer to CH”’; radical
more. This result match the concept that several studies bring out, which CH; can be
seen as a spectator group during the reaction as Nyman does'*'%.

It was found that the transition state has a collinear structure along the CI-H’-C

reactive and is located near the product channel; HCI1 + CHs.

3-3.2.3 Normal modes along reaction path
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We’ve done the same process as OH + H, = H,O + H. Then we obtain the
modified 11 frequencies along the reaction path as table 3.8 for s <0, table 3.9 for s >

0 and figure 3.18 for both s > 0 and s <0.

3-3.2.4 Cumulative reaction probability for Cl + CH,; - HCI +CH;

As mentioned before, for hyper spherical radius coordinate and Jaconbi coordinate,
there’s no exact solution for more than 5 atoms reaction, that is, only reduced
dimension information is available. So we can only apply adiabatic model with the
consideration of reduced dimension to do the comparisons, that is, only type III is
going to used. Bellow we would like to compare to Hua-Gen and Gunnar
Nyman’s'®'"'? three reduced dimension results; RLA, RLU and RBU.
RLA:

RLA stands for Rotating Line Approximation, which treats CH4 as QH, where
Q is a quasi-atom with the mass of CHs; that is; the reaction would changed to QH +
Cl 2 Q + HCI. So in the RLA framework the studied reaction is written:
QH(v3p) + C1 2 HCl(vyc) + Q
, where the the quantum number vs, represents the H-Q vibration and vy represents
the H-Cl vibration. The H-Q vibration is correlated to anti-symmetric stretching
which is not adiabaticlly correlated to the vibration of HCI, that is, there are two
dimensions in this model. It seems like that in order to do the comparison, we should
consider all these two motions, but in fact, it’s not the truth. For hyper-spherical
radius (same for after projection), we can consider reactants and products separately,
but for reaction coordinate, we need to consider them together, that is, the linkage
between reactants and products is necessary for reaction coordinate but not the case
for hyper-spherical radius (same for after projection). So for hyper-spherical radius
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(same for after projection), the adiabatic energy curves for reactants only consider one
dimension; the vibration of QH, and the adiabatic energy curves for products also
only consider one dimension; the vibration of HCI. Both sides all only consider one
dimension. But if we consider both the two dimensions in reaction coordinate, which
makes both reactants and products two dimension, which is not the case in
hyper-spherical radius (same for after projection). It’s impossible for reaction
coordinate to consider one side one motion and the other side another motion and
there’s no linkage between these two motions. In order to match the results of
hyper-spherical radius (same for after projection), we only consider the motions of
reactants, which is pretty reasonable. Since cumulative reaction probability is an
effect of summation, as shown in equation (3:17) and (3.18). No matter how many
final states you just sum all of them, it won’t influence how much to go through, so
the real one to decide how much to go through is the part of reactants. By using the
Wi (anit-sym stretching of  CH4/CH3) in table 3.8/table 3.9 and the calculated
electronic by CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we can obtain the reduced
dimension energy diagram of adiabatic model as figure 3.19. And we repeat the same
in type III, then we obtain the cumulative reaction probability as figure 3.20. We
could find that the trend of my result goes well with Nyman’s result, but the starting
point is different. Besides that, we could find out there’s strong resonance effect.
RLU:

RLU stands for Rotating Line Umbrella. In the RLU model, the reaction CI +
CH4 - HCI + CH3 is treated as a collinear four-atom reaction, Cl + HCX - HCI
+CX, where X has the mass of three hydrogen atoms and is located at their center of
mass. So in the RLU framework, the studied reaction is written

Cl + HCX(V3b,Va) = HCl(Vir.c)) +CX(V2)
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, where vz, is the quantum number correlated to anti-symmetric stretching of
CH4/CH3, V4/V; are the quantum numbers of the umbrella type mode of CH4/CHj
fragments respectively and Vy¢ is the quantum number correlated to symmetric
stretching of CH4/HCI. So there are two dimensions in reactant side, two dimensions
in product side and totally three dimensions. As the reasons mentioned in RLA
section, we used W7, Wy, in table 3.8/table 3.9 and the calculated electronic by
CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we can obtain the reduced dimension
energy diagram of adiabatic model as figure 3.21 and the cumulative reaction
probability as figure 3.22. The trend between my result and Nyman’s seems almost
the same, and the resonance effect becomes smaller.

RBU:

RBU stands for Rotating Bond Umbrella. In this model includes four internal
physical motions: the H-C (V3b; anti-symmetric stretching of CH4+/CHj3) and H-Cl
(Vi.c, symmetric stretching of CH4/HCI) stretch, umbrella type mode of the CH4/CHj;
fragments (V4/V;) and a rotation moede of CHj; (J)'which becomes a bending mode in
CHy (Vy), that is, the studied reaction could be written:

Cl + HCX(V3p,V4,Vp) 2 HCI(V.a1) +CX(V2,J))

So there are three dimensions in reactant side, three dimensions in product side and
totally four dimensions Then we do the same thing as RL A and RLB section, we used
the W4, W, WII in table 3.8/table 3.9 and the calculated electronic by
CCSD(T)/aug-cc-pvdz//CCSD/aug-cc-pvdz, we get the reduced dimension energy
diagram of adiabatic model as figure 3.23 and the cumulative reaction probability as
figure 3.24. The trend of my result goes well with Nyman’s and the resonance effect
becomes smaller compared to RLA and RLU.

From RLA to RBU model, we found that adiabatic model goes well with

63



Nymans’s results. But it is not the case in the full dimension case for OH + H, - H,O

+ Ha. It gives us a clue that we could find out the main reason from the three reasons

we assumed after the section of OH + H, 2 H,0 + H,. Let’s look at them one by one.

I.

2.

Parabolic model :

By fitting the ground energy curves of these three models, we found that none of
these three curves has the dominated second order term, that is, this one is not the
main reason for the deviation from exact one.

Non-adiabatic transition:

Since we are using adiabatic model with considering non-adiabatic transition, but
we still get the right trend, that is, this may not give too big contribution.

The accuracies of the frequencies.along the reaction path:

Since the frequencies used in full dimensions of OH + H, - H,O + H; have
frequencies that are correlated to rotations in asymptotic regions, which are very
small and easily contaminated by the gradient of reaction coordinate, rotations and
translations. And in general; these modes control the density of states, since there
are small. But for the cases in comparing with RLA, RLB and RBU, the
frequencies used are those large frequencies which are in general correct. Even if
there is still some difference between the frequencies I used and he used, but the
difference compared to the frequency itself would be small, since these
frequencies are not small. So in the total energy we are interested in, the

difference won’t be revealed.

So cumulative reaction probability is mainly decided by the accuracy of the density of

states
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Group AE’ AH AE AH E.(300K)
Zenner! 5.0 X X X 4.74
Schatz’ 7.4%6.2)° (6.11)° (15.18)° X 5.59°,(4.75)"
Troung® 6.3°6.0)" | 6.85%6.55) X X X
CCSD/dz 6.99 7.68 -14.02 -12.09 X
CCSD(T)/dz//CCSD/dz 5.63 6.38 -15.20 -13.27 X
CCSD(T)/tz//CCSD/dz 5.51 6.63 -15.13 -13.2 X
Experiments X X X -14.8°¢ 5.1°°

Table 3.1 All energy are in units of kcal/mol, AE" is the classical barrier height,

AH’ is the barrier height with ZPE; AE is the classical reaction energy, AH is the

reaction energy with ZPE, dz stands for aug-cc-pv-dz and tz is aug-cc-pvtz (a)

3s3p1d/3slp basis, (b) 4s3p2d/3s2p basis, (b;) ‘without tunneling (b;) with

tunneling (c¢)

QCISD/

6-311+G(d,p) method,

(d PMP4/ 6-311++G(2d

f ,2pd)//QCISD/6-311+G(d,p) (e) All the results are at 0 K, except for the results

notated e, which is at 300K
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s(bohr) W, W, W; W, W;s W W, Ws W Wio Wi Wiz
-2.5 210.13 220.18 257.56 | 1715.67 | 3723.99 | 3842.01 | -290.25 | -56.13 -52.4 -0.02 0 0.03
24 214.41 232.93 253.51 1715.4 | 3723.97 | 3842.45 | -291.83 -64.6 -60.71 -0.02 0 0.03
-2.3 212.64 | 248.69 | 252.94 | 1715.07 | 3723.93 | 3842.65 | -293.68 -73.7 -69.53 -0.01 -0.01 0.03
2.2 210.02 | 242.83 | 27496 | 1714.65 | 3723.85 | 3842.53 | -171.09 | -34.39 0 0 0 0
-0.1 -1769.0 | 610.76 | 640.39 | 1181.23 | 1995.49 | 3734.53 -0.15 -0.02 -0.01 116.26 165.7 165.97
0.0 -1338 501.63 593.51 | 1058.57 | 2460.84 | 13735.91 -9.84 0 0 0 0 6.01
0.1 -979.98 | 357.75 520.97 | 949.73 .2916.27 | 3736.92 | -155:85 | -145.93 | -101.88 0.04 0.07 1.05
1.7 -214.61 34.45 281.52 348.5 3738.4 432445 | -117.19 | -107.54 -1.67 -0.01 1.91 41.14
1.8 -199.38 | -11.34 262.98 332.35 |3738.36 | 4328.15"| ~110.91 -99.49 -2.73 0 1.39 24.35
1.9 -184.55 | -38.34 245.85 | 316.21 | 3738.33 { 4330.78 | -105.74 -91.7 -20.88 0 0.89 2.86
2.0 -165.87 | -49.86 232.05 | 300.92 | 3738.29 | 4331.69 | -102.33 | -83.88 -28.29 0 0.44 2.04

Table 3.2 The frequencies are in cm™ unit which are calculated by G09 with CCSD/aug-cc-pvdz method along reaction path
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s(bohr)| W, W, W3 W, W;s W W, Ws Wy Wio Wi Wiz
-2.5 | 209.65 | 219.09 | 257.03 |1715.49| 3723.9 |3842.02 0 0 0 0 0 0
24 | 213.04 | 232.95 | 253.14 |1715.25|3723.89| 3842.5 0 0 0 0 0 0
2.3 | 211.21 | 248.34 | 253.41 |1714.93|3723.86|3842.75 0 0 0 0 0 0
-2.2 | 208.47 | 275.8 | 322.55 |1714.52(3723.78 | 3842.7 |-171.09 | -34.39 0 0 0 0
-0.1 | 654.06 | 677.07 [1183.33]1998.15[3734.95(-1850.8 0 0 0 0 23.41 | 31.96
0.0 546.6 | 609.94 [1059.12|2479.16|3736.43 | -1349.8| -9.84 0 0 0 0 6.01
0.1 414.35 | 537.49 | 949.11 |2940.67.{3737.36| -964.6 | -23.31 | -14.61 0 0 0 0
1.7 282.4 | 350.72 |3738.99| 4324.9 | -195.1 | -65.52 | -45.35 0 0 0 0 28.28
1.8 264.39 | 332.23 [3739.05| 4328.4 [=179.11} -68.57 | -41.22 0 0 0 0 15.84
1.9 246.81 | 317.26 |3738.8414330.94|-166.35| -72.43| -51.21 | -41.95 0 0 0 0
2.0 233.74 | 301.88 |3738.9214331.85| -145.2 | -73.02 | -57.03 | -38.29 0 0 0 0

Table 3.3 The frequencies are in cm’ unit which are calculated by Molpro by CCSD/aug-cc-pvdz method along reaction path with the

geometries obtained by G09
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s(bohr)| W; W, W3 W, Ws |s(bohr)| W; W, W; W, Ws

-2.5 |257.03 1209.65 (1715.49| 3723.9 |3842.02] 0 546.6 | 609.94 11059.12|2479.16|3736.43
-2.4 | 253.14|213.04 (1715.25|3723.89| 3842.5 | 0.1 |414.35|537.49|949.11 |2940.67(3737.36
-2.3 | 248.34 | 211.21 {1714.93|3723.86|3842.75| 0.2 |276.79 | 461.87 | 858.92 |3294.27|3738.11
-2.2 |-171.09|208.47 [1714.52|3723.78| 3842.7 | 0.3 91.63 | 389.89 | 783.85 | 3554.9 |3738.69
-2.1 | -170.9 | 205.23 {1714.01|3723.67|3842.28 0.4 |-203.94|330.09 | 720.49 |3749.76(3734.49
-2 |-171.34]201.18 |1713.38|3723.52|3841.37| 0.5 |-259.11|280.27 | 664.13 | 3888 |3738.07
-1.9 |-174.32|194.84 (1712.48|3723.41|3841.11| 0.6 |-292.84|227.58 | 615.83 {3995.79(3738.99
-1.8 |-177.29] 188.63 [1711.45|3723.13|3838.82| 0.7 |-308.32|188.82|571.37 |4079.01|3739.12
-1.7 |-182.22]180.74 {1710.16|3722.76/3835.54| 0.8 |-313.62| 158.88 | 531.17 |4141.67|3739.2
-1.6 | -189.9 [ 169.92 |1708.51|3722.23|3831.05| 0.9 |-314.34| 136.78 | 494.61 |4189.49|3738.97
-1.5 |-199.97| 157.08 | 1706.5 [3721.34|3823.79| 1 -283.18| 119.03 | 460.87 | 4225.9 |3739.26
-1.4 |-216.85] 136.13 [1703.88|3720.24|3816.03| 1.1 |-287.63|105.57 | 421.97 |4253.84|3739.24
-1.3 |-237.48| 108.13 {1700.72|3718.15/3803.83| 1.2 |-264.05| 86.33 | 398.04 | 4276.3 |3739.21
-1.2  |-266.71| 53.09 [1696.74|3714.74/3789.82| 1.3 |-267.32| 80.46 | 372.07 |4291.96|3739.18
-1.1 | -302.3 | -89.78 [1691.81|3707.61|3772.87} 1.4 » |-256.01 | 68.18 | 347.16 |4304.57(3739.14
-1 |-352.98| -148.3 |1685.64| 3692.1 | 3756.8{ 1.5 {-232.57| 53.63 | 323.92 |4313.95(3739.07
-0.9 |-399.03{-202.98(1677.81|3665.42|3746.76| - 1.6 {-206.09| 55.85 | 303.16 |4318.83|3739.01
-0.8 |-448.96|-248.57(1668.42|13612.78|3739.99| 1.7 | -195.1 | 28.28 | 282.4 | 4324.9 |3738.99
-0.7 |-300.81| -98.3 [1660.29|3296.12| 37327 1.8 |-179:.11| 15.84 | 264.39 | 4328.4 |3739.05
-0.6 | 426.97 | 315.67 | 1629.1 |2620:87|3730.16} ~1.9 |<166.35| -2.43 | 246.81 |4330.94|3738.84
-0.5 | 585.94|522.75 {1504.25|1900.22|3729.23| 2 -145.2 | -15.34 | 233.74 |4331.85|3738.92
-0.4 | 636.88 | 535.27 [1351.75|1642.58|3729.74

-0.3 | 707.59 | 614.81 [1344.17|1568.26/3731.06

-0.2 | 681.3 | 651.5 [1302.46(1675.79|3733.23

-0.1 | 677.07 | 654.06 [1183.33(1998.15|3734.95

Table 3.4 The choosen frequencies along the reaction path are in cm™ unit which

are calculated in CCSD/aug-cc-pvdz method
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s(bohr)| W; W, W3 W, Ws |s(bohr)| W; W, W3 W, W5
H,O X x |1648.89|3821.88|3937.11 0 644.9 | 632.52 11059.12|2479.16|3736.43
-2.5 | 1491 | 11.93 |1715.49| 3723.9 |3842.02| 0.1 |495.76 | 532.15 | 949.11 |2940.67|3737.36
-2.4 | 1494 | 11.95 |1715.25|3723.89|3842.5 | 0.2 |408.54 | 448.19 | 858.92 |3294.27|3738.11
-2.3 | 15.02 12 |1714.93|3723.86|3842.75| 0.3 |336.67|377.96 | 783.85 | 3554.9 |3738.69
-2.2 | 1518 | 12.1 [1714.52|3723.78|3842.7 | 0.4 |277.45|319.21 |720.49 |3749.76|3734.49
-2.1 15.5 | 12.34 |1714.01|3723.67|3842.28| 0.5 |228.64 |270.07 | 664.13 | 3888 [3738.07
-2 16.1 | 12.83 [1713.38|3723.52|3841.37| 0.6 | 188.42|228.96 | 615.83 {3995.79(3738.99
-1.9 | 17.18 | 13.81 |1712.48(3723.41(3841.11| 0.7 | 155.27|194.57|571.37 |4079.01|3739.12
-1.8 | 19.09 | 15.69 |1711.453723.13|3838.82| 0.8 |127.95| 165.8 | 531.17 |4141.67|3739.2
-1.7 22.3 | 19.13 (1710.16|3722.76|3835.54| 0.9 |105.44 | 141.73 | 494.61 |4189.49|3738.97
-1.6 | 27.53 | 25.11 |1708.51(3722.23(3831.05| 1 86.90 | 121.6 | 460.87 | 4225.9 |3739.26
-1.5 | 35.73 | 35.05 | 1706.5 |3721.34|3823.79| 1.1 71.61 | 104.76 | 421.97 |4253.84|3739.24
-1.4 | 48.09 | 50.74 |1703.88(3720.24(3816.03| 1.2 59.01 | 90.68 | 398.04 | 4276.3 |3739.21
-1.3 | 66.01 | 74.33 |1700.72|3718.15|3803.83| 1.3 48.63 | 78.89 |372.07 |4291.96|3739.18
-1.2 | 90.95 108 [1696.74|3714.74|3789.82( 1.4 40.08 | 69.04 | 347.16 |4304.57|3739.14
-1.1 124.3 | 153.6 (1691.81|3707.61|3772.87| 1.5 33.03 | 60.79 |323.92 |4313.95|3739.07
-1 166.9 | 212.1 [1685.64| 3692.1 | 3756.8 1.6 27.22 | 53.89 | 303.16 [4318.83|3739.01
-0.9 | 219.2 | 282.7 |1677.81|3665.42|3746.76| 1.7 2243 | 48.12 | 282.4 | 4324.9 |3738.99
-0.8 | 280.2 | 362.8 [1668.42|3612.78|3739:99| 1.8 1848 | 43.30 |264.39 | 4328.4 |3739.05
-0.7 | 347.8 | 447.3 11660.29|3296:12| 3732.7 | ~1.9 15.23 | 39.26 | 246.81 |4330.94|3738.84
-0.6 | 418.8 | 529.4 | 1629.1 |2620.87|3730.16| 2 12.55 | 35.88 | 233.74 |4331.85|3738.92
-0.5 | 488.5 | 601 [1504.25/1900.22|3729.23} “OH X X X x |3714.33
-0.4 | 551.6 | 654.1 |1351.75|1642.58|3729.74] H X X x (434454 x
-0.3 | 602.8 | 682.5 [1344.17/1568.26(3731.06
-0.2 | 637.3 | 682.6 [1302.46{1675.79(3733.23
-0.1 | 651.9 | 654.3 |1183.33/1998.15|3734.95

Table 3.5 The modified and fitted frequencies along the reaction path are in cm’

unit which are calculated in CCSD /aug-cc-pvdz method
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Group AE’ AH AE AH E.(300K)
CCSD/dz 9.8 5.6 7.2 2.2 X
CCSD(T)/dz//CCSD/dz 8.1 3.9 6.9 1.8 X
CCSD(T)/tz//CCSD/dz 7.8 3.6 6.5 1.4 X
Truong et al** 7.9 3.5 X 1.2 X
Dobbs and Dixon®" 4.9 8.9 X 2.5 X
RLA'"* 7.3 3.5 X 1.0 X
RLU'™ 6.8 2.8 X 1.7 X
RBU'** X 3.5 X 1.2 X

2.6+0.4%"

Experiments X 2.341 X 1.1+0.155
3.5+0.5™

Table 3.6 All energy are in units of keal/mol, AE is the classical barrier height,
AH’ is the barrier height with ZPE, AE is the classical reaction energy, AH is the
reaction energy with ZPE, dz stands for aug-cc-pv-dz and tz is aug-cc-pvtz. (a)
MP-SAC2/MC-311G(2d,d,p) (b) QCISD(T)/TZ+2P and for AH’, the difference
between QCISD(T)/TZ+2P and CCSD(T)/TZA+2P is within 0.1 kcal/mol (c)
Rotating Line Approximation with LEPS (d) Rotating Line Umbrella with LEPS
(e) Rotating Bond Umbrella with LEPS (f) Enthalpy of reaction at 0 K (g)
Experimental activation energy in the range of 200-300 K (h) Experimental

activation energy in the range of 300-500 K (i) Obtained by threshold method
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R(C-H’) R(C-H”) R(CI-H”) L(H’-C-H”) L(H”-C-H”) L(CI-H’-C) DH”CH”H”)
Molecule
(Angstroms) (Angstroms) (Angstroms) (degree) (degree) (degree) (degree)
H’-CH”; 1.1013 1.1013 X 109.4712 109.4712 X 120.0000
CH”; X 1.0920 X X 119.9967 X 180.0000
Cl-pm’ X X 1.2906 X X X X
CI-H’-CH”’; 1.4008 1.0961 1.4600 101.1251 116.3692 180.0000 143.0404

Table 3.7 The geometries of transition state, reactants and products in CCSD/ aug-cc-pvdz
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s(bohr) W, W, W; W,y W;s W W, W Wy Wio Wi
HCl X X X X X X X X X X
CH; X X X X 497.54 1413.2 1413.2 X 3116.1 3303.65 3303.65
-1.6 220.7 220.7 381.79 381.79 726.66 1411.51 1411.51 | 2746.32 | 3088.25 | 3286.07 | 3286.07
-1.7 227.63 227.63 394.28 394.28 740.96 1411.5 1411.5 2716.92 | 3085.81 |3285.265 | 3285.265
-14 2354 2354 408.08 408.08 755.67 1411.58 1411.58 | 2682.86 | 3083.06 | 3283.91 | 3283.91
-1.3 242.19 242.19 422.21 422.21 770.2 1411.61 1411.61 | 2644.88 | 3080.59 | 3282.87 | 3282.87
-1.2 249.34 249.34 438.38 438.38 784.78 1411.68 1411.68 | 2599.82 3078.3 3281.7 3281.7
-1.1 257.41 257.41 456.65 456.65 799.37 1411.81 1411.81 | 2546.77 | 3076.01 | 3280.06 | 3280.06
-1 264.52 264.52 475.81 475.81 813.84 1411.96 1411.96 | 2486.82 3074.1 3278.36 | 3278.36
-0.9 272.64 272.64 498.23 498.23 828.34 1412.19-| "1412.19 | 2414.41 | 3072.43 | 3276.14 | 3276.14
-0.8 280.29 280.29 523.02 523.02 841.95 1412.38 1412.38 | 2329.57 3071.8 3274.1 3274.1
-0.7 289.02 289.02 551.23 551.23 854.81 1412.67 |. 1412.67 | 2228.48 | 3071.49 | 3271.41 | 3271.41
-0.6 297.74 297.74 583.43 583.43 865.77 141297 1412.97 | 2106.79 | 3072.26 | 3268.76 | 3268.76
-0.5 306.8 306.8 620.015 | 620.015 873.3 1413.33 1413.33 1960.98 | 3073.78 | 3265.79 | 3265.79
-0.4 316.97 316.97 662.64 662.64 872.59 1413.77 | 1413.77 | 1783.57 | 3076.01 | 3262.69 | 3262.69
-0.3 327.88 327.88 712.25 712.25 851.02 1414.34 | 1414.34 | 1574.13 | 3078.65 | 3259.23 | 3259.23
-0.2 339.49 339.49 774.08 774.08 764.1 1415.02 | 1415.02 | 1357.31 | 3081.65 | 3256.36 | 3256.36
-0.1 351.39 351.39 841.83 841.83 610.14 1416 1416 1218.38 | 3084.16 | 3253.56 | 3253.56
0 360.62 360.62 923.09 923.09 495.28 1417.43 1417.43 1180.36 | 3085.59 | 3251.54 | 3251.54

Table 3.8 The modified and fitted frequencies for S > 0 are in cm”' unit which are calculated in CCSD /aug-cc-pvdz method
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s(bohr) Wi W, W3 W, Ws Ws W, Ws Wy Wio Wi

0 360.62 360.62 923.09 923.09 495.28 1417.43 | 1417.43 | 1180.36 | 3085.59 | 3251.54 | 3251.54
0.1 382.28 382.28 1010.21 1010.21 44433 1419.66 | 1419.66 1191.2 3084.98 | 3249.89 | 3249.89
0.2 368.01 368.01 1095.13 | 1095.13 437.73 1423.19 | 1423.19 | 122739 | 3081.55 | 3248.48 | 3248.48
0.3 321.39 321.39 1168.55 1168.55 532.62 1428.8 1428.8 1300.08 | 3075.03 | 3247.96 | 3247.96
0.4 268.87 268.87 1223.22 | 1223.22 953.01 1437.67 | 1437.67 | 1540.26 | 3064.18 | 3249.12 | 3249.12
0.5 228.13 228.13 1255.33 | 1255.33 1139.1 1450.17 | 1450.17 | 2029.42 | 3047.46 | 3252.54 | 3252.54
0.6 202.67 202.67 1270.34 | 127034 | 119135 /| 1463.09 | 1463.09 | 2416.09 3025.9 | 3259.08 | 3259.08
0.7 187.45 187.45 1279.23 | 1279.23 |, 121545 | 1473.88. | 1473.88 | 2632.26 | 3006.02 | 3266.07 | 3266.07
0.8 176.09 176.09 1250.67 | 1250.67..| 1301.99 1482.8 1482.8 2756.25 | 299343 | 32713 3271.3
0.9 165.32 165.32 1258.79 | 1258.79 | «1309.35 | 1490.59 | 1490.59 | 2844.12 | 2988.42 | 3272.48 | 3272.48
1.0 155.42 155.42 1266.08 | 1266.08 1314.6 1497.41 1497.41 | 2908.07 | 2991.05 | 3270.27 | 3270.27
1.1 148.01 148.01 127279 | 1272.79 13183 1503.32 4. 1503.32 | 2949.17 | 3004.05 | 3265.51 | 3265.51
1.2 143.46 143.46 1279.05 | 1279.05 1.1320.73 | 150854 .| 1508.54 | 2970.01 | 3027.79 | 3258.88 | 3258.88
1.3 140.16 140.16 1285.07 | 1285.07 | 132245 1513.05 | 1513.05 | 2981.66 | 3052.22 | 3250.04 | 3250.04
14 136.39 136.39 1290.77 | 1290.77 | 1323.43 | 1516.98 | 1516.98 | 2991.19 | 3072.98 | 3240.15 | 3240.15
1.5 133.24 133.24 1296 1296 1323.85 | 1520.38 | 1520.38 | 3000.41 | 3089.83 | 3229.67 | 3229.67
CHy4 X X 1329.82 1329.82 1329.82 1544.05 1544.05 3033.14 315852 | 3158.52 3158.52

Table 3.9 The modified and fitted frequencies for S <0 are in cm”' unit which are calculated in CCSD /aug-cc-pvdz method
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S (bohr)

Figure 3.1 MEP of three different methods, where dz

stands for aug-cc-pvdz and tz stands for aug-cc-pvtz.



Figure 3.2 The geometry of transition state in CCSD/
aug-cc-pvdz
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Figure 3.3 The evolution of frequencies along the reaction path.
This result is.calculated with cesd/aug-ce-pvdz method.
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— h20(14.875)_tune
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—— ohh2(18.601) fit
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Figure3.4 Schema of the modified and fitted frequencies of W; an
W,. (a) W, of H,O+H; rotation of H,O, (b) W; of H,O+H; k
component of the rotation of H,O (¢) W; of OH+H;; rotation of
OH (d) W; of OH+Hj;; the rotation of H, rotating around OH.
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Figure 3.5 Fitted frequencies along MEP. This result is calculated
with ccsd/aug-cc-pvdz method. W; is the label used in table 3.5.
From these labels, the correlation between asymptotic regions and
the motion along reaction: path could be understood clearly in
table 3.5.
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404
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]

s(amu”0.5*bohr)

Figure 3.6 (a) 16 Adiabatic curves on reaction path (b)1500
Adiabatic curves on reaction path with rightmost and leftmost part
are the energy level of reactants an products respectively.This
result is calculated with ccsd(t)/aug-cc-pvdz //ccsd/aug-cc-pvdz for
energy correction and ccsd/aug-cc-pvdz for frequencies along MEP
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N(E)
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100

—— miller's result
— two_side
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kcal/mol

Figure 3.7 Reaction probability N(E) of J = 0, black line is Miller’s

result, blue one is evaluated by reactants and product, red is s
-2.5/2.0 bohr. Red and blue.are all evaluated with equation (3.17)
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Figure 3.8 Adiabatic curves that connect reactant’s energy curves
lower than «~ 15kecal/mol. . This result is calculated with
ccesd(t)/aug-cc-pvdz//cesd/aug-cc-pvdz for energy correction and
ccsd/aug-cc-pvdz for frequencies-along MEP
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cumulative reaction probability

30

20

—— my_result
—— miller's result

kcal/mol

Figure 3.9 Cumulative reaction probability of J = 0, my result is
evaluated with one barrier tunneling effect and parabolic model in
ccsd(t)/aug-cc-pvdz//cecsd/aug-cc-pvdz for energy correction and
ccsd/aug-cc-pvdz for frequencies along MEP
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Figure 3.10 The energy diagram of adiabatic model, which show
the energy levels of transition state in the middle and energy levels
of reactant in_the rightmost side. This result is calculated with
ccesd(t)/aug-cc-pvdz//cesd/aug-cc-pvdz for energy correction and
ccsd/aug-cc-pvdz for frequencies along MEP
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deltakE

Figure 3.11 The diagram of delta (0 ) vs deltaE for ground energy
level in ccsd(t)/aug-ce-pvdz//cesd/aug-cc-pvdz for energy correction
and ccsd/aug-cc-pvdz for frequencies along MEP
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cumulatvie reaction probability

307 [——N_E_CCSD(T)_DZ
———————— N_E_Miller
20
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04
! | ! | ! |
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kcal/mol

Figure 3.12 Cumulative reaction probability of J = 0 for adiabatic
model and _miller’s result. This result is calculated with
ccsd(t)/aug-cc-pvdz//ccsd/aug-ce-pvdz - for energy correction and
ccsd/aug-cc-pvdz for frequencies.along MEP
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cumulative reaction probability

%7 [—N_E_ccsD(T) bz

ffffffff N_E_Miller
delta_modified**0.5

20

10 -

kcal/mol

Figure 3.13 Cumulative reaction probability of J = 0 for adiabatic
model with modified delta‘in order of 0.5 and miller’s result. This
result is calculated with ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for
energy correction and ccsd/aug-cc-pvdz for frequencies along MEP
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cumulative reaction probability
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ffffffff N_E_Miller
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—— delta_modified**2.95

5 10
kcal/mol

Figure 3.14 Cumulative reaction probability of J = 0 for adiabatic
model with modified delta in order of 2.95 as equation (3.26) and
(3.27), adiabatic model with a multiple factor 3.6 and miller’s result.
This result is calculated with cesd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz
for energy correction and ccsd/aug-cc-pvdz for frequencies along
MEP
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15 -
H,O+H OH+H,

10

-10 -

-15

Figure 3.15 The energy diagram of diabatic model, which show the
energy levels.of transition state in the middle and energy levels of
reactant in the rightmost side. This result is calculated with
ccsd(t)/aug-cc-pvdz//ccsd/aug-cc-pvdz for energy correction and
ccsd/aug-cc-pvdz for frequencies along MEP
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Figure 3.16 Cumulative reaction probability of J = 0 for diabatic
model (purple line), adiabatic model (black line) and Miller’s result
(red dash line). This result is calculated with ccsd(t)/aug-cc-pvd
/lccsd/aug-cc-pvdz for emergy correction and ccsd/aug-cc-pvdz for
frequencies along MEP
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Figure 3.17 MEP of two different methods, where dz

stands for aug-cc-pvdz-and tz stands for aug-cc-pvtz.
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Figure 3.18 Fitted frequencies along MEP. This result is calculated
with CCSD/aug-¢c-pvdz method. W; is the label used in table 3.8 and
3.9. From these labels, the correlation between asymptotic regions
and the motion ‘along reaction path could be understood clearly in
table 3.8 and 3.9. Double degenerate modes are dashed curves, and
non-degenerate modes are solid curves.
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Figure 3.19 The energy diagram of diabatic model with only one
dimension of the anit-sym stretching of CH4/CH; considered, which
show the energy levels of transition state in the middle and energy
levels of reactantin the rightmost side. This result is calculated with
cesd(t)/aug-cc-pvd//ecsd/aug-cc-pvdz for energy correction and cesd
/aug-cc-pvdz for frequencies along MEP
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Figure 3.20 Cumulative reaction probability of J = 0 for adiabatic
model with only one. dimension of .the anit-sym stretching of
CH4/CH; considered. and Nyman’s - RLA result. This result is
calculated with ccsd(t)/aug-cc-pvd //ccsd/aug-cc-pvdz for energy
correction and ccsd/aug-cc-pvdz for frequencies along MEP
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Figure 3.21 The energy diagram of diabatic model with only two
dimensions of the anit-sym stretching of CH4/CH; and the umbrella
motion of CH4/CHj; considered, which show the energy levels of
transition state in the middle and energy levels of reactant in the
rightmost side. This result is- calculated with ccsd(t)/aug-cc-pvd
/lccsd/aug-cc-pvdz for energy correction and ccsd/aug-cc-pvdz for
frequencies along MEP
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Figure 3.22 Cumulative reaction probability of J = 0 for adiabatic
model with only two dimensions of the anit-sym stretching of
CH4/CH; and the umbrella motion of CH4/CH; considered and
Nyman’s RLU. result. This result is calculated with ccsd(t)/
aug-cc-pvd//ccsd/aug-cc-pvdz for  energy correction and ccsd/
aug-cc-pvdz for frequencies along MEP
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Figure 3.23 The energy diagram of diabatic model with only three
dimensions of-the anit-sym stretching of CH4/CHj3, the umbrella
motion of CHy/CH; and the bending motion of CH4 considered,
which show the energy levels of transition state in the middle and
energy levels of reactant in the rightmost side. This result is
calculated with ccsd(t)/aug-cec-pvd //ccsd/aug-cc-pvdz for energy
correction and ccsd/aug-cc-pvdz for frequencies along MEP
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Figure 3.24 Cumulative reaction probability of J = 0 for adiabatic
model with only three dimensions of-the anit-sym stretching of
CH,4/CHj3, the umbrella motion of CH4/CHj3; and the bending motion
of CH4 considered and Nyman’s RLU result. This result is calculated
with cesd(t)/ aug-cc-pvd//cesd/aug-cc-pvdz for energy correction and
ccsd/ aug-cc-pvdz for frequencies along MEP
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Chapter4 Conclusions

We constructed more general adiabatic energy curves of J =0 for OH + H, =
H,O + H by using, equation (3.15) and (3.16) but found the cumulative reaction
probability of these adiabatic energy curves (without the effect of non-adiabatic
coupling, only the effect of tunneling) is lower than the result of Miller. The possible
reason would be the linkage between reactants and products. Since three rotational
related vibration modes in reactant side, but two in product side. The evolution from
rotation to vibration should be considered carefully. (In fact, the mode which evolves
from rotation in H; to vibration in H,O should be considered together, not in two parts;
reactant and product.) So we applied the adiabatic model, modified adiabatic model
and diabatic model to the cumulative.reaction probability and then got three main
possible reasons for the deviation from Miller’s result'. First is that the energy curves
are not parabolic model, the second one is that the contribution of non-adiabatic
coupling and the last one is the accuracies of the frequencies along the reaction path.
In order to make sure which one is the main reason, we applied these three models to
a larger but prototypical system. But for more than 5-atoms system, there’s no exact
solution no matter hyper-spherical (projected one is the same) or Jocabi coordinate.
So only reduced dimensions information is available, that is, only the adiabatic model

with reduced dimension could be applied to do comparisons. After comparing with
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the three models; RLA, RLU, RBU, by Nymanz, we found that the trends of our
adiabatic models goes well Nyman’s results and the effect of resonance becomes
larger as the degree of freedom becomes smaller. From the result, we conclude that
the last reason; the accuracies of the frequencies along the reaction coordinate

dominate the accuracy of the result for the cumulative reaction probability.
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