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ABSTRACT: The effects of model reduction on control systems with parameter variations are 
investigated. In order to reduce these effects, two modljied Padk approximation methods are used 
so that the reduced models can approximate the frequency response of the original transfer 
function not only at s = 0 and s = 00 but also at a selected point on thejiiequency response curve 
of the original transferfunction. Examples are shown and compared with the methods given in the 
current literature. 

I. Introduction 

The methods for model reduction such as continued-fraction expansion, time- 
moment matching and Pad& approximations are equivalent under some conditions, 
and named as Pad6 type approximations (l-9). Since the approximations are taken 
at s = 0, these methods may yield poor frequency response. Some modified Pad& 
approximations at two frequencies, i.e. s = 0 and s = co, have been suggested (10, 
ll), but the frequency response at a specified frequency can not be matched by the 
reduced model. The method by use of continued-fraction expansion about a general 
point, s = a (a > 0), was proposed by Davidson and Lucas (12). However, the 
frequency response of the original transfer function at s = 0 and s = cc can not be 
approximated by the reduced model. 

In the current literature, most of the methods for model reduction are based upon 
the assumption that the original system has constant parameters. However, it will be 
shown later in this paper that even if the reduced model is stable, the closed-loop 
system response characteristics may not be acceptable and the stability of the closed- 
loop system may not be preserved due to the effects of parameter variations. 
Therefore, a practical method for model reduction should consider the effects of 
parameter variations (13-17). 

Recently, Hung and Han (18) proposed two methods for model reduction which 
extend modified Pad6 approximations to obtain “biased” reduced-order models 
(19). By use of these methods, a reduced model can be made to approximate the 
frequency response of the original transfer function not only at s = 0 and s = cc but 
also at a selected point on the frequency response curve of the original transfer 
function. This paper extends the application of Hung and Han’s methods to control 
systems with parameter variations. 
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FIG. 1. Block diagram of a flexible missile control system. 

ZZ. Eflects of Parameter Variations 

In this section, three examples are presented to show the effects of parameter 
variations on the results of model reduction. 

Example 1 
Consider the system shown in Fig. 1. The transfer functions of the blocks are 

defined as (20) 

7.21 

GR(S) = (s+ 1.6)(s- 1.48) 

2750 
G(s) = s2 + 42.2s + 2750 

(s2 + 70s + 4000) (s2 + 22s + 12800) 

GSF(S) = (s2 +30s+5810)(s2 +3Os+ 12800) 

(2.1) 

(2.2) 

(2.3) 

and 

T(s) = [0.686(s + 53) (s - 53) (s2 - 152.2s + 14500) (s2 + 153.8s + 14500)]/ 

[(s2+s+6O5)(s2+45.5s+266O)(s2+2.5ls+39OO)(sz+3.99s+2298O)]. (2.4) 

The parameters a and /I are defined as 

15 < a < 20 (2.5) 

and 

40 < /I < 100, (2.6) 

respectively. By use of the modified Pad& approximation method and the Routh 
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stability array method (21), one has the reduced models of T(s) as follows : 

(a) Mod$ed Pad6 approximation method. 

M,(s) = MC3,51:($ 

= [0.686(s- 111.3723)(s* + 321.1828s +38950.873)]/ 

[(s’+ 1.2982s+401.8666)(s2 + 152.1748s+ 28159.032)(s+ 107.7370)] 

(2.7) 

where M[a, b]:(s) represents that the reduced model has “a” zeros “b” poles, and is 
obtained by continued-fraction expansion of T(s) about s = 0 and s = co for “i” and 
‘7” times, respectively. 

(b) Routh stability array method. 

T,(s) = [ - 1.5899 x lo-‘(s + 53) (s + 150.2440) (s- 157.0873)]/ 

[(s+l61.1435)(s2+O.7348s+611.5744)(s2+2.O1O4s+38O7.4562)]. (2.8) 

The Bode plots of T(s), M,(s) and T,(s) are shown in Fig. 2. The unit-step 
responses of the original system and the systems with reduced models are shown in 
Fig. 3 (a and b). The maximum deviations (EM), integral of absolute errors (I.A.E.) 
and integral of squared errors (I.S.E.) between the unit-step responses of the original 
system and the systems with reduced models are shown in Table I. Note that the 
closed-loop systems with the reduced models for CI = 20 and fi = 40 are unstable, 
although the reduced models M,(s) and T,(s) are stable. 

Example 2 
Consider the system shown in Fig. 4. The transfer function and the gain are 

-10 
- T(s) 

-20 + A, (5) 

-30 - 6, (5) 

-I- c, (5) 
-40 

- MI (5) 

-50 * D, (s) 

- TI (5) 
-60 

-70 

-60 

Mag WB) 

FIG. 2. Bode plots of T(s) and its reduced models. 
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FIG. 3. (a) Closed-loop unit-step responses for c( = 15 and /I = 100. (b) Closed-loop unit-step 
responses for c( = 20 and /3 = 40. 

defined as 

G*(S) = [1441.53(s+ 1.4706)(s+6.1350) 

x (s + 46.7248)]/[(s + 1.8972) (s + 49.3777) (s + 52.5174) 

x (s2 +0.5456s + 1.1621) (s2 + 7.7022s+ 108.0056)] (2.9) 
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R(&/++---~-~~~“~ 

FIG. 4. Block diagram of a control system. 

and 

7.5 < k2 < 12, (2.10) 

respectively. By use of the modified Pade approximation method, the reduced model 
of G,(s) is obtained as 

M,(s) = MCl, 51%) 

= [1441.53(s + 1.8953)]/[s + 45.3585) 

x (?+0.5688s+ 1.1664)(s* + 13.6776s+ 52.4722)]. (2.11) 

The Nyquist plots of G,(s) and M2(s) are shown in Fig. 5. The unit-step responses 
of the original system and the system with reduced model M,(s) are shown in Fig. 6 
(a and b) for k, = 7.5 and k, = 12, respectively. The maximum deviations, integral 
of absolute errors and integral of squared errors are shown in Table II. It can be 
seen that the closed-loop system with the reduced model for k, = 12 is unstable. 

Im 

122 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 
Re 

FIG. 5. Nyquist plots of G,(s) and its reduced models. 
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FIG. 6. (a) Closed-loop unit-step responses for k, = 7.5. (b) Closed-loop unit-step responses 

for k, = 12. 
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TABLE II 

Parameter Models 

k, Errors M,(s) AZ(S) &(s) D,(s) T,(s) 

EM 3.6947E-1 6.3364E-1 1.4326E-2 4.4852E-2 1.3213E-1 
7.5 I.A.E. l.O135E+O l.O362E-1 2.5909E-2 3.4664E-2 1.9254E-1 

I.S.E. 2,1329E-1 3.3249E-2 1.98726-4 7.1119E-4 1.3196E-2 

E, 8.1413E-1 2.5873E-2 l.l917E-1 2.9989E-1 
12 I.A.E. : 1.3098E - 1 4.4793E - 2 1.7343E - 1 3.2550E - 1 

I.S.E. t 6.4556E-2 7.1451E-4 l.l254E-2 5.5259E-2 

t Unstable, integration interval; 7.5 s. 

Example 3 

Consider the system shown in Fig. 7. The transfer functions of G,(s) and H3(s) are 
defined as 

and 

G3(s) = [(s+0.1263)(s+0.6883)(s2 + 1.4210s+ 1.0832) 

x (s2 - 1.6962s + 66.2273) (s2 + 99.4606s 

+8294.2128)]/[13(~+0.1263)(s+ 1.0617) 

x(s+1.2812)(s+1.8152)(s+3.3039)(s+8.6994) 

x(s+20.1418)(s2+ 1.3140~+22.043O)l’ (2.12) 

H3(s) = s+z, 
4s +p3) 

(2.13) 

where the parameters are defined as 

k, = 0.5 (2.14) 

6 < z3 < 10 (2.15) 

4 d ~3 < 6. (2.16) 

By use of the methods of modified Padi approximation and continued-fraction 

(3), one has the reduced models of G3(s) as follows. 

K3 G3W H3(5) 

FIG. 7. Block diagram of a control system. 
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(a) Modijied Padt approximation method. 

M3(S) = MC4,5X(s) 

= C7.6923 x 10-2(s2 +0.06171s+0.002628) 

x (? + 9.9840s + 799.1396)1/C@ + 37.5501) 

x (s2+0.06171s+0.002628)(s2 +0.5886s+ 16.3711)]. (2.17) 

(b) Continued-fraction method. 

C,(s) = CC45 5X0(s) 

= [1.6447(s+0.1263)(s+1.2792)(s2+2.0818s+1.1653)]/ 

[(s+O.1263)(s2+O.8198s+4.3O35)(s2+1.3826s+O.5697)]. (2.18) 

The Nyquist plots of GJs), MS(s) and C,(s) are shown in Fig. 8. For various values 
ofz,, pj and k,, the unit-step responses of the original system and the system with the 
reduced models are shown in Fig. 9 (a and b). The other data are shown in Table III. 
It can be seen that the closed-loop systems with the reduced models are unstable 
when k, = 0.5, z3 = 10 and p3 = 4. 

From the results of the above presented examples, it is clear that, due to the effects 
of parameter variations, the closed-loop system response characteristics and the 
stability characteristics of control systems with reduced models may not be 
acceptable, even if the reduced models are very accurate. 

Re 

FIG. 8. Nyquist plots of C,(S) and its reduced models. 
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FIG. 9. (a) Closed-loop unit-step responses for p3 = 6 and zj = 6. (b) Closed-loop unit-step 
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TABLE III 

Parameters Models 

23 P3 Errors M&l A3(S) B3(S) C,(S) T3(S) 

EM 1.3945E-1 7.3832E-2 8.2724E-2 1.6117E-1 t 
6 6 I.A.E. 9.9302E- 1 1.4150E - 1 1.7397.E- 1 4.6494E - 1 

I.S.E. 6.5610E-2 5.3165E-3 6.2723E-3 3.2237E-2 : 
E, 2.6279E - 1 2.3361E - 1 

10 4 I.A.E. : l.l183E+O 8,5478E-1 : f 
I.S.E. t 1.5140E-1 7.9249E-2 t t 

t Unstable, integration interval ; 20 s. 

ZZZ. A Review of Hung and Han’s Methods (18) 

Assume that the original transfer function and the reduced model are 

G(s) = 
A,, +A,,s+A,,s2+ ... +AZnS”-l 

A,,+A,,s+A,,s2+...+Al,,+1s” 

and 

WR[Ir-Lrl:(s) = 
d,+d,s+d,s2+~~~+d,_Is’-1 

c +c s+c s2+...+c s, 2 

0 1 2 I 

(3.1) 

(3.4 

respectively. In Eq. (3.2), r and r - 1 represent the numbers of poles and zeros of R(s), 
respectively; i and j are the numbers of times of the continued-fraction expansion of 
G(s) about s = 0 and s = co, respectively and o is the frequency at which the 
frequency response of G(s) is matched by R(s). 

(i) Method A 
Step 1. Expand G(s) about s = 0 for i (even number) times, i.e. 

G(s) = 
1 

h,+ h 

1 

2-c 
1 

. . . 
. . 

“+ 
1 

5 + HN(S) 
S H,(S) 

where 

and 

HN(s) = Ai+2,1+Ai+2,2s+...+Ai+2,n_i/2sn-1-i’2 (3.4) 

H,(S) = Ai+l,l+Ai+l,2S+...+Ai+l,n+l_i,2Sn-i’2. 

(3.3) 

(3.5) 
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Step 2. Reverse the sequence of the polynomials in Eqs (3.4) and (3.5) and continue 
to expand (3.3) about s = cc for j (odd number) times yield 

Hds) 1 
--= 
H,(s) 1 

H,s+ 
1 

(3.6) 

I 

Hz+ 
1 

H,s.+ 
. . . 

. . . . 
‘. 1 

+ 
H .s + MN(s) 1 

M,(s) 

where 

MN(s) = Ai+j+2,n_~i+j_1~,Z~n-(i+j+1)‘2+~~~+Ai+j+2,1 (3.7) 

and 

M,(s) = Ai+j+l,,_~i+j-l~,zs”-(i+j+1)‘2+~..+Ai+j+1,1. (3.8) 

Step 3. Let 

P(s) = s2 + CO2 (3.9) 

and let MN(s) and M,(s) in (3.7) and (3.8) be divided by P(s) in decreasing order of s, 
one has 

MN(~) = P(S)&(S) + RN@) (3.10) 

and 

M,(s) = P(4Q,(s)+Ms) (3.11) 

where QN(s), &(s) are the quotients and RN(s), R,(s) are the remainders, i.e. 

RN(~) = 41s+40 (3.12) 

and 

R,(s) = v,s+u,. (3.13) 

Step 4. Replace MN(s)/MD(s) in (3.6) by RN(s)/RD(s) defined by (3.12) and (3.13) and 
invert the continued fraction, the reduced model given in (3.2) is obtained. The order 
of the denominator of the reduced model is 

r = (i +j + 3)/2. (3.14) 

From (3.9)-(3.1 l), it can be seen that 

MN(ju) = &(j@) (3.15) 

and 

M,(jw) = Ujo). (3.16) 
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Therefore, one has 

G(jo) = R(jw). (3.17) 

Equation (3.17) indicates that the frequency response of G(s) at s = jo is exactly 
matched by R(s). Note that if i is odd and j is even, the above equations may have 
some minor differences, but the procedure is the same. 

(ii) Method B 
Step 1. Same as Step 1 of Method A. 
Step 2. Reverse the polynomial sequences in (3.4) and (3.5) and continue to expand 

(3.3) about s = co for j (even number) times yield 

Hi&) 1 
p= 
H,(s) 1 

E,s+ 1 

-. 
‘. 

“+ 
1 

E, + FN(S) 

’ F,(s) 

where 

FN(s) = Ai+j+~,~_~~+j~,~s”-1-‘i+i”2+~~~+Ai+j+~,~s+Ai+j+~,~ 

and 

F,(S) = Ai+j+~,~+~_~i+j~,~s”-‘i”“2+~~~+Ai+j+~,2s+Ai+j+~,~~ 

Step 3. Let 

TN(S) r, pzzzz 
T,(s) X,s+X, 

and with 

FN(s) TN(s) 
F,(s)== 

for s = jw. 

The unknowns X, and X,, can be obtained as 

and 

F,(s) 
X, = Y, Re ~ 

[ II FN(s) s=jw 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

where Im[ *] and Re[ -1 denote the imaginary part and the real part of FD(s)/FN(s) 
for s = jo, respectively, and Y, can be chosen as any non-zero real number. 

Step 4. Replace FN(s)/FD(s) in Eq. (3.18) by (3.21) and invert the continued fraction, 
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the reduced model defined in (3.2) is obtained. The order of the denominator of the 
reduced model is 

r = (i +j + 2)/2. (3.25) 

The above equations may have some minor differences if both i and j are odd 
numbers. 

IV. Applications to Systems with Parameter Variations 

The main purpose of this section is to extend Hung and Han’s methods to control 
systems with parameter variations. For ease in presentation, the examples con- 
sidered in Section II are reconsidered here. 

Example 4 
Consider the system in Example 1. By use of Hung and Han’s methods, and let 

the frequency responses of the reduced models be matched with that of T(s) at 
o1 = 21 rad s- I, then the following models are obtained : 

(a) Method A. 

= [-4.0825x lo-‘@+43.6677)(s-49.6197) 

x (s-428.8551)]/[(s+ 107.3613)(? + 18.6332s 

+ 2067.7344) (s* + 0.9456s + 608.3490)]. (4.1) 

(b) Method B. 

B,(s) = (%)N4> 51%) 

= [-2.6594x10-*(s2+78.0282s+1555.1648)(s2-125.0310s 

+ 3962.3308)]/[(s + 38.0753)(? +0.9930s + 605.2786) 

x (s’+25.7674~+2531.3237)]. (4.2) 

For comparison purpose the models obtained by use of the continued-fraction 
method, and the stability-equation and Pad& approximation method (22), are as 
follows. 

(c) Continued-fraction method. 

C,(s) = C[4,5-$j0(s) 

= [-2.44x 10~2(s-61.3836)(s-67.5164)(s2+81.5000s 

+ 1748.6381)1/C@ +41.3000) (s2 + 0.9700s + 605.9021) 

x (s* + 25.4000s + 2447.8033)]. (4.3) 
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(d) Stability-equation and Pade approximation method. 

D,(s) = r-2.3873 x 10-2(s+38.1380) (s+ 130.4869) (s2- 101.2398s 

+2997.6391)]/[(s+ 72.5638) (s2 +0.91s+602.1438) 

x (s’ + 12.4262s+ 2902.0190)]. (4.4) 

Same as in Example 1, the results are also shown in Table I and in Figs 2 and 3. It 
can be seen that the system response with the model B,(s) of Hung and Han’s 
method B is the best one. 

Example 5 
Consider the system in Example 2. Assume that the frequency responses of the 

reduced models are matched with that of G2(s) at wP2 = 7.7155 rad s-l, which is the 
phase crossover frequency. The following models are obtained : 

(a) Method A. 

A,(s) = (o+,)RC2> 51%) 

= C2.4478 x lO’(s+ 1.2126) (s+4.6310)]/[(~+ 1.3640) 

x (s2 +0.5328s+ 1.1532) (s2 +7.8318~+88.8049)]. 

(b) Method B. 

R,(s) = (w,,)RC2> U%) 

(4.5) 

= Cl.9304 x 101(s + 1.4880) (s + 7.6536)]/[(s + 1.9625) 

x (s2 + 0.5456s + 1.1608) (s2 + 6.5298s + 97.8933)]. (4.6) 

(c) Stability-equation method (23). 

D,(s) = C3.9424 x lo-‘(s+ 1.4706) (s+6.1350) (s+46.7248)]/ 

x [(s+ 1.8563) (s2 +0.5454s+ 1.1610) (s2 + 7.8478s+ 78.3993)]. (4.7) 

(d) Routh stability array method. 

T,(s) = [4.2382 x lo- ‘(s+ 1.4706) (s+ 6.1350) (s+46.7248)]/ 

[(s+ 1.7321) (s2+0.5328s+ 1.1735) (s2 +5.9616~+89.3227)]. (4.8) 

The results are also shown in Table II and in Figs 5 and 6, which indicate that the 
reduced model B,(s) of Hung and Han’s method B can give the best result. 

Example 6 

Consider the system in Example 3. If the frequency responses of the reduced 
models are matched with that of G3(s) at o3 = 1.5 rad s-l and o4 = 3.3 rad s-l. The 
following models are obtained. 

(a) Method A. 

AAs) = (c+)RC4,51&) 

= C7.6923 x 10-2(s2 + 1.0958s + 2.3388) (s2 + 102.8190s +8201.5786)-J/ 

[(s+38.4017) (s2 +2.3560s+ 14.7175) (s2+0.9006s+2.6109)]. (4.9) 
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(b) Method B. 

k(s) = (o,)K4,5X(s) 

= [8.4719x lo-‘(s+O.1139) (s+ 13.5001) (s2+0.1786s+0.1008)]/ 

[(s+O.1139) (s2+0.1794s+0.1008) (s2+ 1.3364s+ 11.4298)]. (4.10) 

(c) Routh stability array method. 

7”(s) = [-23.1355(s+O.O96O5)(s-1.1446)(s2+O.3195s+O.2851)]/ 

[(s+O.1207) (s2 + 1.0592s+O.5177) (s2 + 1.7500s+ 11.6037)]. (4.11) 

The results are also shown in Table III and in Figs 8 and 9. It can be seen that the 
reduced models A3(s) and B3(s) of Hung and Han’s methods are the best ones. 

V. Conclusions 

The effects of parameter variations on the characteristics of closed-loop systems 
with reduced models have been illustrated. The applications of Hung and Han’s 
method to the systems with parameter variations have been presented. In a 
comparison of the results obtained by other current methods the advantages of 
Hung and Han’s methods are quite evident. 
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