附錄A

在自由液面上,由於流體滿足不會發生剝離的現象且液壓為零等條件,因此必須滿足邊界條件 $\frac{\partial \phi}{\partial z}\Big|_{z=H} = \frac{\partial d}{\partial t}\Big|$,即(2.1-4d)式,另外,在流體不穩定 (unsteady)及非旋性(irrotational)的情況下,流體必須滿足此 Bernoulli Equation:

$$\frac{\partial \phi}{\partial t} + \frac{p}{\rho_l} + \frac{1}{2} \nabla \phi \cdot \nabla \phi + g(z - H) = 0$$
(A.1)

其中 p 表示流體的液壓,ρ_i 表流體密度。

考慮流體為一微小質點,因此該質點之動能¹₂∇ø.∇ø可以忽略。

將(A.1)式同乘以 ρ_l 並改寫如下: $\rho_l \frac{\partial \phi}{\partial t} + p + \rho_l g(z-H) = 0$ (A.2)

或
$$p = -\rho_l \frac{\partial \phi}{\partial t} - \rho_l g(z - H) = 0$$
 (A.3)

因為自由液面壓力p=0,因此(A.3)或可改寫為 $\rho_l \frac{\partial \phi}{\partial t} + \rho_l g(z-H) = 0$,即邊界條件式(2.1-4c).。

附錄B

由(2.1-8)式

$$\frac{r^2}{\hat{R}}\frac{\partial^2 \hat{R}}{\partial r^2} + \frac{r}{\hat{R}}\frac{\partial \hat{R}}{\partial r} + \frac{r^2}{\hat{Z}}\frac{\partial^2 \hat{Z}}{\partial z^2} = -\frac{1}{\hat{\theta}}\frac{\partial^2 \hat{\theta}}{\partial \theta^2}$$
(B.1)

成立等號必須兩邊均為常數,此常數記作μ(特徵值)

則可將式(2.1-8)改寫成下列二式:

$$\frac{r^{2}}{\hat{R}}\frac{\partial^{2}\hat{R}}{\partial r^{2}} + \frac{r}{\hat{R}}\frac{\partial\hat{R}}{\partial r} + \frac{r^{2}}{\hat{Z}}\frac{\partial^{2}\hat{Z}}{\partial z^{2}} = \mu$$

$$\frac{\partial^{2}\hat{\theta}}{\partial \theta^{2}} + \mu\hat{\theta} = 0$$
(B.2)

因為極座標具有週期性,也就是恆有 $\phi(r,z,\theta,t) = \phi(r,z,\theta+2\pi,t)$,因此 $\hat{\theta}(\theta)$ 必須 是以 2π 為週期的週期函數,也是 $\hat{\theta}(\theta) = \hat{\theta}(\theta+2n\pi)$,為滿足此條件,因此特徵值 必須為某個整數的平方,也就是 $\mu = n^2$ 。

附錄C

由式(2.1-45a)
$$\frac{\partial \phi_1}{\partial t}\Big|_{z=H} = \sum_{n=1}^{\infty} \dot{T}_{1n}(t) \cos(n\theta) J_n(kr) \cosh(kH) = 0$$

若上式恆成立,則 cosh(kH)必須等於零。

cosh(x)可表示如下:

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
, $\square \not L \cosh(kH) = \frac{e^{kH} + e^{-kH}}{2} = \frac{e^{2kH} + 1}{2} > 0$

由此可知該恆等式不成立,所以第二種情況不滿足。 同樣地,第三種情況亦不滿足。

附錄D

由式(2.1-53b)

$$\frac{\partial \phi_2}{\partial t}\Big|_{r=R} = \hat{T}_2(t) \cos \theta \, \frac{1}{R} = 0 \tag{D.1}$$

若上式恆成立,則 $\cos\theta$ 必須為零,則 $\theta = \frac{\pi}{2}$

這表示流體在槽壁上的速度只在θ=^π/₂ 满足此邊界條件,此與真實情況不 符,因此第二種情況不成立。

另外由(2.1-54c)

$$\frac{\partial \phi_3}{\partial r}\Big|_{r=R} = \sum_{i=1}^{\infty} \hat{T}_{3i}(t) \cos \theta \left(\frac{\lambda_i}{H}\right) I'_1\left(\frac{\lambda_i}{H}R\right) \cos \left(\frac{\lambda_i}{H}z\right) = 0$$
(D.2)

若上式成立,則
$$I'_{1}\left(\frac{\lambda_{i}}{H}R\right)$$
必須為零。

$$I_{n}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+2)} \left(\frac{x}{2}\right)^{2m+n}$$
(D.3)
因此 $I_{1}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+2)} \left(\frac{x}{2}\right)^{2m+1}$,則 $I'_{1}(x) = \sum_{m=0}^{\infty} \frac{1}{2} \frac{2m+1}{m!(m+1)\Gamma(m+1)} \left(\frac{x}{2}\right)^{2m}$

$$I_{0}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+1)} \left(\frac{x}{2}\right)^{2m}$$
(D.4)

其中 $\Gamma(x+1) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$ 且 $\Gamma(x+1) = \int_{0}^{\infty} t^{x} e^{-t} dt = -e^{-t} t^{x} \Big|_{0}^{\infty} + x \int_{0}^{\infty} t^{x-1} e^{-t} dt = x \Gamma(x)$ 因此 $\Gamma(2) = \Gamma(1+1) = 1\Gamma(1) = 1$

$$\Gamma(m+1) = m\Gamma(m) = m!$$

由 I_0 之圖形可得知, $I_0 > 0$

由此一關係可得知 $I'_1(x) = \frac{2m+1}{2(m+1)}I_0 > 0$ 所以第三種情況不成立。

50

儲存槽高度(m)	32.5
儲存槽半徑(m)	34.5
儲存槽殼密度(kg/m ³)	7850
液體密度(kg/m ³)	135
儲存槽厚度(m)	0.05
槽殼阻尼比	2%
1896	ANNULL I

表 4.1 希臘 Revithoussa LNG 儲存槽圓形儲存槽結構參數

表 4.2 摩擦單擺支承參數

曲率半徑(m)	1
摩擦係數	0.05

h=5cm	隔窘	隔震前 以		隔震後
模態	頻率(Hz)	阻尼比(%)	頻率(Hz)	阻尼比(%)
1	0.1095	0	0.1095	0
2	0.1959	0	0.1959	0
3	0.2480	0	0.2480	0
4	0.2904	0	0.2904	0
5	0.3272	0	0.3272	0
6	0.3602	Martin Oliver	0.3602	0
7	0.3904	TOS A	0.3904	0
8	0.4185	0	0.4185	0
9	0.4447	0	0.4447	0
10	0.4695	0	0.4695	0
11	5.5702	2	0.6346	0
12			8.6556	1.43

表 4.3 希臘 Revithoussa LNG 儲存槽自然振動頻率(H=5cm)

			shell	liquid				
		H/R	1st	1st	2nd	3rd	4th	5th
Rigid tank		0.81	-	0.1095	0.1959	0.248	0.2904	0.3272
		0.5	-	0.0981	0.195	0.2479	0.2904	0.3272
		0.1	-	0.0491	0.1369	0.2064	0.2637	0.3109
	h=5cm	0.81	5.5702	0.1095	0.1959	0.248	0.2904	0.3272
		0.5	18.4767	0.0981	0.195	0.2479	0.2904	0.3272
		0.1	19.6611	0.0491	0.1369	0.2064	0.2637	0.3109
Non rigid	h=4cm	0.81	3.2042	0.1095	0.1959	0.248	0.2904	0.3272
tank		0.5	18.1899	0.0981	0.195	0.2479	0.2904	0.3272
		0.1	19.6611	0.0491	0.1369	0.2064	0.2637	0.3109
	h=3cm	0.81	0.1458	0.1095	0.1959	0.248	0.2904	0.3272
		0.5	17.7198	0.0981	0.195	0.2479	0.2904	0.3272
		0.1	19.6611	0.0491	0.1369	0.2064	0.2637	0.3109

表 4.4 希臘 Revithoussa LNG 儲存槽隔震前自然振動頻率(unit = Hz)

			shell	liquid					
		H/R	1st	1st	2nd	3rd	4th	5th	isolated mode
		0.81	_	0.1095	0.1959	0.248	0.2904	0.3272	0.6448
Rigid t	ank	0.5	-	0.0978	0.1949	0.2478	0.2903	0.3272	0.5934
		0.1	_	0.0491	0.1368	0.2064	0.2636	0.3108	0.5189
	h=5cm	0.81	8.6556	0.1095	0.1959	0.248	0.2904	0.3272	0.6346
		0.5	21.467	0.0981	0.195	0.2479	0.2904	0.3272	0.5861
		0.1	22.265	0.0491	0.1369	0.2064	0.2637	0.3109	0.5172
Non-rigid tank	h=4cm	0.81	5.7053	0.1095	0.1959	0.248	0.2904	0.3272	0.6377
		0.5	20.686	0.0981	0.195	0.2479	0.2904	0.3272	0.5881
		0.1	21.774	0.0491	0.1369	0.2064	0.2637	0.3109	0.5177
	h=3cm	0.81	1.7364	0.1095	0.1959	0.248	0.2904	0.3272	0.6408
		0.5	19.704	0.0978	0.1949	0.2478	0.2903	0.3272	0.5902
		0.1	21.270	0.0491	0.1369	0.2064	0.2637	0.3109	0.5181

表 4.5 希臘 Revithoussa LNG 儲存槽隔震後自然振動頻率(unit = Hz)

表 4.6 非剛性儲存槽在 El Centro 0.34g 地震槽存槽隔震效能(h=5 cm)

El Centro	PGA=0.34g				
	隔震前	隔震後	折減率%		
最大波動位移 (cm)	76.21	76.30	-0.12		
最大動水壓 (kN/m ²)	9.23	3.90	57.70		
最大基底剪力 (kN)	13238	5543.9	58.12		
最大傾覆力矩 (kN-m)	106250	49003	53.88		
ESA					

表 4.7 非剛性儲存槽在 Kobe 0.83g 地震槽存槽隔震效能(h=5 cm)

There are a second s					
Kobe	PGA=0.83g				
	隔震前	隔震後	折減率%		
最大波動位移 (cm)	57.66	108.37	-87.94		
最大動水壓 (kN/m ²)	27.17	16.26	40.14		
最大基底剪力 (kN)	30575	20318	33.55		
最大傾覆力矩 (kN-m)	230760	143410	37.85		

Northridge	PGA=0.84g				
	隔震前	隔震後	折減率%		
最大波動位移 (cm)	122.82	201.48	-64.05		
最大動水壓 (kN/m ²)	29.77	20.11	32.43		
最大基底剪力 (kN)	30237	24556	18.79		
最大傾覆力矩 (kN-m)	214890	168470	21.60		
1896 BULL					

表 4.8 非剛性儲存槽在 Northridge 0.84g 地震槽存槽隔震效能(h=5 cm)

圖 1.1 槽殼挫屈 1971 San Fernando Earthquake, USA

圖 1.2 槽頂破壞 1999 台灣集集地震(台中港)

圖 2.1 儲存槽模型示意圖

圖 3.1 摩擦單擺支承力學行為與構造

圖 4.1 希臘 Revithoussa LNG 儲存槽

圖 4.3 El Centro 地震加速度富氏頻譜(PGA=0.34g)

圖 4.5 Kobe 地震加速度富氏頻譜(PGA=0.83g)

圖 4.7 Northridge 地震加速度富氏頻譜(PGA=0.84g)

圖 4.9 非剛性儲存槽液面波動位移歷時(El Centro PGA=0.34g)

圖 4.10 剛性槽儲存槽底動水壓力歷時(El Centro PGA=0.34g)

圖 4.11 非剛性儲存槽槽底動水壓力歷時(El Centro PGA=0.34g)

圖 4.12 剛性儲存槽基底剪力歷時(El Centro PGA=0.34g)

圖 4.13 非剛性儲存槽基底剪力歷時(El Centro PGA=0.34g)

圖 4.14 剛性儲存槽傾覆力矩歷時(El Centro PGA=0.34g)

圖 4.15 非剛性儲存槽傾覆力矩歷時(El Centro PGA=0.34g)

圖 4.16 非剛性儲存槽槽殼頂部位移歷時(El Centro PGA=0.34g)

圖 4.17 非剛性儲存槽槽殼頂部加速度歷時(El Centro PGA=0.34g)

圖 4.19 非剛性儲存槽基底剪力一位移遲滯迴圈(El Centro PGA=0.34g)

圖 4.21 非剛性儲存槽液面波動位移歷時(Kobe PGA=0.83g)

圖 4.23 非剛性儲存槽槽底動水壓力歷時(Kobe PGA=0.83g)

圖 4.25 非剛性儲存槽基底剪力歷時(Kobe PGA=0.83g)

圖 4.27 非剛性儲存槽傾覆力矩歷時(Kobe PGA=0.83g)

圖 4.28 非剛性儲存槽槽殼頂部位移歷時(Kobe PGA=0.83g)

圖 4.29 非剛性儲存槽槽殼頂部加速度歷時(Kobe PGA=0.83g)

圖 4.31 非剛性儲存槽基底剪力—位移遲滯迴圈(Kobe PGA=0.83g)

圖 4.33 非剛性儲存槽液面波動位移歷時(Northridge 0.84g)

圖 4.35 非剛性儲存槽槽底動水壓力歷時(Northridge 0.84g)

圖 4.37 非剛性儲存槽基底剪力歷時(Northridge 0.84g)

圖 4.39 非剛性儲存槽傾覆力矩歷時(Northridge 0.84g)

圖 4.40 非剛性儲存槽槽殼頂部位移歷時(Northridge 0.84g)

圖 4.41 非剛性儲存槽槽殼頂部加速度歷時(Northridge 0.84g)

圖 4.43 非剛性儲存槽基底剪力一位移遲滯迴圈(Northridge 0.84g)

圖 4.45 非剛性儲存槽槽底動水壓力(h=3cm)

圖 4.47 非剛性儲存槽翻覆力矩(h=3cm)

圖 4.49 非剛性儲存槽槽殼頂部加速度(h=3cm)

圖 4.51 非剛性儲存槽基底剪力—位移遲滯迴圈(h=3cm)

圖 4.52 液面高度與半徑比對於槽底動水壓力峰值折減之影響

圖 4.53 液面高度與半徑比對於基底剪力峰值折減之影響

圖 4.54 液面高度與半徑比對於傾覆力矩峰值折減之影響

圖 4.55 隔震器曲率半徑對於槽底動水壓力峰值折減之影響

圖 4.56 隔震器曲率半徑對於基底剪力峰值折減之影響

圖 4.57 隔震器曲率半徑對於傾覆力矩峰值折減之影響

圖 4.58 地震強度對於槽底動水壓力峰值折減之影響

圖 4.59 地震強度對於基底剪力峰值折減之影響

圖 4.60 地震強度對於傾覆力矩峰值折減之影響

圖 4.61 地震強度對於槽底動水壓力峰值折減之影響

圖 4.62 地震強度對於基底剪力峰值折減之影響

圖 4.63 地震強度對於傾覆力矩峰值折減之影響

圖 4.64 隔震器摩擦係數對於槽底動水壓力峰值折減之影響

圖 4.65 隔震器摩擦係數對於基底剪力峰值折減之影響

圖 4.66 隔震器摩擦係數對於傾覆力矩峰值折減之影響