摘要	I
ABSTRACT	
誌謝	III
目錄	IV
表目錄	VI
圖目錄	

第一	-章	緒論1	1
	1.1	研究目的	1
	1.2	文獻回顧	3
	1.3	本文內容	5
第二	章	非剛性隔震儲存槽之流體動力分析	7
	2.1	流體動力分析	7
	2.2	非剛性隔震儲存槽之基底剪力與傾覆力矩20)
	2.3	非剛性隔震儲存槽之流體激盪動力方程式21	1
第三	章	非剛性隔震儲存槽之結構-流體動力分析	1
	3.1	運動方程式推導24	1
	3.2	狀態空間法)

3.3	剪力平衡法
3.4	解析法則
第四章	非剛性儲存槽隔震結構之實例分析與參數研究34
4.1	希臘 Revithoussa LNG 儲存槽34
	4.1.1 El Centro 地震
	4.1.2 Kobe 地震
	4.1.3 Northridge 地震
	4.1.4 非剛性儲存槽之槽殼效應
4.2	參數分析
	4.2.1 儲存槽液面高度與半徑比 ^(H/R) 之影響
	4.2.2 隔震器曲率半徑 ^(R_{FPS}) 之影響
	4.2.3 地震強度 ^(P.G.A.) 之影響
	4.2.4 隔震器摩擦係數(^µ)之影響41
第五章	結論43
參考文鬳	犬45
附錄 A.	
附錄 B.	
附錄 C.	
附錄 D.	

表目錄

表 4.1	希臘 Revithoussa LNG 儲存槽圓形儲存槽結構參數	51
表 4.2	摩擦單擺支承參數	51
表 4.3	希臘 Revithoussa LNG 儲存槽自然振動頻率	52
表 4.4	希臘 Revithoussa LNG 儲存槽隔震前自然振動頻率(unit = Hz)	53
表 4.5	希臘 Revithoussa LNG 儲存槽隔震後自然振動頻率(unit = Hz)	54
表 4.6	非剛性儲存槽在 El Centro 0.34g 地震槽存槽隔震效能(h=5 cm)	55
表 4.7	非剛性儲存槽在 Kobe 0.83g 地震槽存槽隔震效能(h=5 cm)	55
表 4.8	非剛性儲存槽在 Northridge 0.84g 地震槽存槽隔震效能(h=5 cm)	56

圖目錄

圖	1.1 槽	設挫屈 1971 San Fernando Earthquake, USA5	7
圖	1.2 槽1	項破壞 1999 台灣集集地震(台中港)5	7
圖	2.1 储石	存槽模型示意圖5	8
圖	3.1 摩扌	擦單擺支承力學行為與構造5	i9
圖	4.1 希月	獵 Revithoussa LNG 儲存槽6	60
圖	4.2 El C	Centro 地震加速度歷時記錄(PGA=0.34g)6	51
圖	4.3 El C	Centro 地震加速度富氏頻譜(PGA=0.34g)6	51
圖	4.4 Kot	be 地震加速度歷時記錄(PGA=0.83g)6	52
圖	4.5 Kot	be 地震加速度富氏頻譜(PGA=0.83g)6	52
圖	4.6 Nor	thridge 地震加速度歷時記錄(PGA=0.84g)6	i3
圖	4.7 Nor	thridge 地震加速度富氏頻譜(PGA=0.84g)6	i3
圖	4.8 岡小	性儲存槽液面波動位移歷時(El Centro PGA=0.34g)6	i 4
圖	4.9 非同	剛性儲存槽液面波動位移歷時(El Centro PGA=0.34g)6	i 4
圖	4.10 岡	1性槽儲存槽底動水壓力歷時(El Centro PGA=0.34g)6	5
圖	4.11 非	≅剛性儲存槽槽底動水壓力歷時(El Centro PGA=0.34g)6	5
圖	4.12 岡	1性儲存槽基底剪力歷時(El Centro PGA=0.34g)6	6
圖	4.13 非	≅剛性儲存槽基底剪力歷時(El Centro PGA=0.34g)6	6
圖	4.14 岡	1性儲存槽傾覆力矩歷時(El Centro PGA=0.34g)6	57

圖 4.15	非剛性儲存槽傾覆力矩歷時(El Centro PGA=0.34g)67
圖 4.16	非剛性儲存槽槽殼頂部位移歷時(El Centro PGA=0.34g)68
圖 4.17	非剛性儲存槽槽殼頂部加速度歷時(El Centro PGA=0.34g) 68
圖 4.18	非剛性儲存槽基座位移歷時(El Centro PGA=0.34g)69
圖 4.19	非剛性儲存槽基底剪力—位移遲滯迴圈(El Centro PGA=0.34g) 69
圖 4.20	剛性儲存槽液面波動位移歷時(Kobe PGA=0.83g)70
圖 4.21	非剛性儲存槽液面波動位移歷時(Kobe PGA=0.83g)70
圖 4.22	剛性儲存槽槽底動水壓力歷時(Kobe PGA=0.83g)
圖 4.23	非剛性儲存槽槽底動水壓力歷時(Kobe PGA=0.83g)71
圖 4.24	剛性儲存槽基底剪力歷時(Kobe PGA=0.83g)
圖 4.25	非剛性儲存槽基底剪力歷時(Kobe PGA=0.83g)
圖 4.26	剛性儲存槽傾覆力矩歷時(Kobe PGA=0.83g)
圖 4.27	非剛性儲存槽傾覆力矩歷時(Kobe PGA=0.83g)
圖 4.28	非剛性儲存槽槽殼頂部位移歷時(Kobe PGA=0.83g)74
圖 4.29	非剛性儲存槽槽殼頂部加速度歷時(Kobe PGA=0.83g)74
圖 4.30	非剛性儲存槽基座位移歷時(Kobe PGA=0.83g)
圖 4.31	非剛性儲存槽基底剪力一位移遲滯迴圈(Kobe PGA=0.83g)75
圖 4.32	剛性儲存槽液面波動位移歷時(Northridge 0.84g)76
圖 4.33	非剛性儲存槽液面波動位移歷時(Northridge 0.84g)

圖 4	4.34	剛性槽儲存槽底動水壓力歷時(Northridge 0.84g)7	7
圖 4	4.35	非剛性儲存槽槽底動水壓力歷時(Northridge 0.84g)7	7
圖 4	4.36	剛性儲存槽基底剪力歷時(Northridge 0.84g)7	8
圖 4	4.37	非剛性儲存槽基底剪力歷時(Northridge 0.84g)7	8
圖 4	4.38	剛性儲存槽傾覆力矩歷時(Northridge 0.84g)7	9
圖 4	4.39	非剛性儲存槽傾覆力矩歷時(Northridge 0.84g)7	9
圖 4	4.40	非剛性儲存槽槽殼頂部位移歷時(Northridge 0.84g)8	0
圖 4	4.41	非剛性儲存槽槽殼頂部加速度歷時(Northridge 0.84g)8	0
圖 4	4.42	非剛性儲存槽基座位移歷時(Northridge 0.84g)8	1
圖 4	1.43	非剛性儲存槽基底剪力一位移遲滯迴圈(Northridge 0.84g)8	1
圖 4	1.44	非剛性儲存槽液面波動位移(h=3cm)82	2
圖 4	4.45	非剛性儲存槽槽底動水壓力(h=3cm)	2
圖 4	4.46	非剛性儲存槽基底剪力(h=3cm)	3
圖 4	1.47	非剛性儲存槽翻覆力矩(h=3cm)	3
圖 4	4.48	非剛性儲存槽槽殼頂部位移(h=3cm)84	4
圖 4	1.49	非剛性儲存槽槽殼頂部加速度(h=3cm)84	4
圖 4	4.50	非剛性儲存槽基座位移歷時(h=3cm)8	5
圖 4	4.51	非剛性儲存槽基底剪力一位移遲滯迴圈(h=3cm)8	5
圖 4	1.52	液面高度與高寬比對於槽底動水壓力峰值折減之影響	6

圖	4.53	液面高度與高寬比對於基底剪力峰值折減之影響	5
圖	4.54	液面高度與高寬比對於傾覆力矩峰值折減之影響86	5
圖	4.55	隔震器曲率半徑對於槽底動水壓力峰值折減之影響	7
圖	4.56	隔震器曲率半徑對於基底剪力峰值折減之影響82	7
圖	4.57	隔震器曲率半徑對於傾覆力矩峰值折減之影響82	7
圖	4.58	地震強度對於槽底動水壓力峰值折減之影響	8
圖	4.59	地震強度對於基底剪力峰值折減之影響	8
圖	4.60	地震強度對於傾覆力矩峰值折減之影響	8
圖	4.61	地震強度對於槽底動水壓力峰值折減之影響	9
圖	4.62	地震強度對於基底剪力峰值折減之影響	9
圖	4.63	地震強度對於傾覆力矩峰值折減之影響	9
圖	4.64	隔震器摩擦係數對於槽底動水壓力峰值折減之影響	0
圖	4.65	隔震器摩擦係數對於基底剪力峰值折減之影響	0
圖	4.66	隔震器摩擦係數對於傾覆力矩峰值折減之影響	С