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The light-interstitial hopping process is reviewed by taking a statistical. viewpoint of the lattice-

trap integral. The validity of applying the central-limit theorem to the integral is tested by the

Lindeberg-Feller and Liapounov conditions. Both are satisfied in the high-temperature limit. At
low temperatures, the factor fico&/E, becomes decisive for the effectiveness of the closed-form

Gaussian solution which shows a T rate law below 0.1 of the Debye temperature. The conditions

are used to investigate several systems.

INTRODUCTION

Recently, light-interstitial diffusion in solids has at-
tracted considerable attention, ' partially due to its
nonclassical behavior at low temperatures. Such behavior
requires quantum interpretations. Stoneham and Flynn'
have applied the small-polaron theory' '" to successfully
interpret the diffusion of light-interstitials in several sys-
tems. Their method utilizes the adiabatic approximation
in accounting for the hopping transition between two
neighboring Wannier states, by-passing the conceptual
difficulty of requiring the existence of a transition state in
classical thermodynamic approaches. ' In the Stoneham-
Flynn method, discussion focuses on the lattice-trap in-

tegration. Their analysis, neglecting the diagonal transi-
tions, yields a classical Arrhenius formula at high tem-
peratures, with good agreement between the calculated ac-
tivation energies and the experimental data, and a T hop-
ping rate at low temperatures.

At low temperatures, the tunneling process' ' of
T behavior has frequently been discussed, although an
experiment has never revealed its existence. The tunneling
process of an interstitial could be repressed, and thus be-
come diagonal hopping, by the residual stresses induced

by various crystal defects, including other interstitials. In
fact, the term, "diagonal tunneling" could be misleading
since there exists a coordinate transformation in configu-
ration space accompanying the transition; that is, a screw
symmetry is associated, in configuration space, with the
defect movements. Thus the lattice trapping means more
than an energy barrier. This complexity wi11 be analyzed
in a future report. We will here, therefore, only consider
the hopping mechanism which arises from the Fermi
golden-rule formulation used by Stoneham and Flynn, as
mell as others.

Recently, Teichler and Lagos have used a Gaussian
formula to interpret the p+ diffusion data. However,
these solutions lack a rigorous mathematic basis. In the
following we will take a statistical viewpoint of the over-

lap integral, and discuss the validity of the Gaussian
closed-form solution of the hopping process.

FORMULATION

In the framework of the Stoneham-Flynn method, the
hopping rate between two nearest-neighbor %"annier states

~ p, n ) and
~

p', n') is written as

Wpp ~ Jpp i $g fop (nq, nq)5(1rta1 )

n q

Here, J~z is the interstitial transition matrix element be-
tween the two localized positions, fez is the overlap in-
tegral of the lattice part, the 5 function ensures the
conservation of energy of the processes, with
co= g coq(nq nq), and—( )„- takes the thermal average

over all modes. Explicitly, we have'

fez(nq, nq)=1 —(nq+ —,') (bgq) +O((hgq) ),

fez (nq+1, nq) =fez (nq, nq+1)

(2a)

, (nq+—1) (bgq) +O((hgq) ),

fpp(nq+2, nq)=fop (nq, nq+2)=O((hgq)"),

fop (nq+ 3, nq ) =fop (nq, nq +3)=O((hgq ) ),

(2b)

(2c)

in the continuum approximation. Here, Mo, 0, and v are
the atomic mass, volume, and Poisson ratio of the solvent

solid, 5V and d are the dilatation and jump vector,
respectively, of the diffusing interstitial, and ro is a core
parameter equivalent to the starting of the lattice sum 111

evaluating hgq, and is usually taken as zero as an approx-
imation. Note that b, gq is of the order N'~, X being the
number of active modes involved in the jump process.
With mode independence and the linearity of the func-
tions of nq in Eqs. (2), when X is large, Eq. (1) can readily
be transformed into the formula generally adapted by the
previous reports I, i0, 1 r, i 4 However, we wi 11 take a dif-

etc. Here, Egq is the change of the mean displacement of
mode q resulting from the jurnp which can be expressed
as"

1/2
i ~0 5V 1+v;-. 1»n(pro)

b, g =— (e 'q' —1)—
3 X 0 1 —v q qro

(3)
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with the mean

p= g (Eg )q=4E, ,

E, = Q —,
'

coq(b, gq /2) = g &q,

and the variance

o. =A'g((nq)+ —,
'

)coq(d Qq)

(6a)

(6b)

Here, E, is the lattice-trap energy. Notice that the diago-
nal hoppings are included in the solution. Defining an ef-
fective temperature T, by

kiiT, =cr /8E, ,

We then have

Wpp (n/4' E,k~T, )——'
i Jpp i

exp( E, /kiiT, ) . —

(8)

(9)

ferent viewpoint of the equation and try to analyze it by
statistical methods.

By setting sq n—
q
—n—

q
and with suitable change of the

sum and product sequences in Eq. (1), the overlap part of
the equation can be alternatively written as'

F= g Q (fop(sq nq)) 5(iris')) ~ (4)
S = —oo

q

This formulation is exactly the same as presented in
random-walk problems, ' with random variables Acoqsq

and discrete probability distributions (fez (sq, nq ) )„.
Here we are asking for the probability distribution of the
sum variable Rco=g ficoqsq, subject to energy conserva-
tion as stated by 5(irido). The normalization of the total
probability is automatically maintained, as manifested by
Eqs. (2).

Owing to the discreteness of the probability distribu-
tions of Eqs. (2) and, more seriously, the finite variance of
Eq. (4) as the number of modes become infinite, the con-
vergence of Eq. (4) becomes complicated. ' Since the gen-
eral solution is not available, we will focus on the validity
of the central-limit theorem, which will be applicable with
restrictions to be discussed in the next section. However,
let us first assume that the central-limit theorem is applic-
able. If it is, then the solution of Eq. (4) is a normal dis-
tribution, and the transition rate reads'

0.3—
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0
0 2

0.5

0.1—

0
0

I I I I I

1 2 3

qod

1 I I I

5 6 7

FIG. 1. Variation of the effective temperature at 0 K, To, as
functions of the Debye wave vector qa and the core distortion
parameter g =rp/d. d is the impurity jump distance and ro is
defined in Eq. (3).

At high temperatures, zq =kii T/ficoq && 1., and

5
q ~~ q»0 q+ 30z40 q

Zq (10)

Combining Eqs. (8)—(10), Eq. (9) becomes the classical
form obtained by Stoneham and Flynn. The expansion of
Eq. (10) indicates that T, deviates from the true tempera-
ture only about 4%%uo at the Debye temperature 8. At the
extreme low temperature, T, approaches a constant To
defined as

kgTO gficoq(hg——q) /16E, . (11)
q

For the Debye solids, To is close to 40%%uo of 0, as shown
in Fig. 1.

Equation (9) is the same as obtained by Lagos. q In fact,
his treatment of the conventional lattice-trap integral is
just an alternative version of the central-limit solution,
and like here, requires the more rigorous mathematic
treatment to be carried out below.

APPLICABILITY OF CENTRAL-LIMIT THEOREM

We will try to utilize the Liapounov theorem as well as
the Lindenberg-Feller theorem' to test the validity of Eq.
(5). Both theorems are suitable for discrete probability
distributions.

We define a "normed" random variable

TABLE I. Values of go at various temperatures calculated according to Eq. (16).

System 0 (K) E, (eV) T/0=3 1

2 =0

H:Ta (bcc)
H:Nb (bcc)
H:Fe (bcc)
N:Fe (bcc)
p+:Cu (fcc)

262
241
477
477
343

0.18'
0 15'
0.06'
0 55'
0.109

0.042
0.044
0.097
0.032
0.061

0.062
0.065
0.15
0.048
0.091

0.12
0.13
0.29
0.095
0.18

0.23
0.24
0.54
0.18
0.34

0.31
0.33
0.73
0.24
0.46

'Stoneham and Flynn, Ref. 1 ~

From Lagos, Ref. 9.

T, =1.01T =1.021 T 1.042 T =1.17T 0.40
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x~ = (Picots~ —8m~ )/cr (12)

for mode q. The sum variable S=g x~ will converge in
distribution to the unit normal @, (1) if the third absolute
moment,

3/mg = 5.227—————N. Fe (bcc)
5— 4.916———————————C. Fe(bcc)

I &
——gg ~x~ ~

f(x~) 0 (Liapounov), (13)
q x

as N~ao, provided that the random variables are "holo-
spoudic" (2) or if, and only if,

3.488——————H: Nb(bcc)
H: Tct(bcc)

3.171

Btc g——g ~
x~

~ f(x~)~0 (Lindeberg-Feller),
q x

(14)

T, AcoD

8gpE
(17)

a condition close to that obtained by Lagos. Here, qp is a
positive number. For the Gaussian solution to be effective
in describing the low-temperature diffusion behavior, we
see that it requires a solid with a large lattice trapping E,
and a small Debye temperature. Table I shows the calcu-
lated i)0 at various temperatures for a few systems. It is

as N~ ao, g is an arbitrary positive number. Holospoudi-
city, which is the negligibility of the individual terms in S
compared to S itself, is included in Eq. (14). Therefore,
the condition (14) is stronger than Eq. (13), which could
break down if only a few strong interactive local modes
are associated with the hopping interstitial impurity. In
the continuum approximation, Eqs. (2) and (3) ensure that
the random process is holospoudic.

From Eqs. (12), as N ~ oo, E~ ~0 and

inaxI
~
xq ~ I =ficoD/(8k' T,E, )' & il (15)

q

as T—+ oo. Hence the Lindeberg-Feller condition is strict-
ly satisfied. The Gaussian is the exact solution for high-
temperature hopping. The same result can be proved
from the Liapounov condition. At low temperatures, con-
dition (13) is approximately true if ~x~ ~

&&1, the stan-
dard deviation of the unit normal @. In our language,
this means, in the upper bound,

ficoD /cr =go « 1,
or, equivalently,

0
0

T/8
FIG. 2. Plots of W (curved solid lines) and 3/m~ (straight

dashed lines) appearing on both sides of Eq. (20) for listed sys-
tems (octahedral-octahedral jump). Note that I depends sensi-

tively on the Debye wave vector. For bcc and fcc crystals, qDd
corresponds to -2.5 and -4.4, respectively.

obvious that N:cz-iron should follow the Gaussian
behavior to the lowest value of the ratio T/8 among
those listed. However, due to the low Debye tempera-
tures, H:Ta or H:Nb could possibly follow the Gaussian
behavior to the lowest actual temperatures. As indicated
by the table, since T, deviates less than 4% from rat the
Debye temperature of solids, it can be said quite generally
that the Gaussian solution can describe the diffusion
behavior appropriately above the Debye temperature. For
H:Fe this corresponds to a value of 0.29 for i)0. In com-
parison, the N:Fe system should maintain a Gaussian
behavior close to absolute zero, and for H:Ta or H:Nb, to
quite low temperatures. However, judging from Lagos's
fitting for the p+:Cu system, the effective rlo value could
be as high as 0.4. Then the Gaussian would fit all of the
above three systems down to the neighborhood of 0 K.

We can also test the solution with the Liapounov condi-
tion. For Debye solids, this reads

I iv ——micW(qDd)

where

6m Q I —vK=
&V 1+v EgMpO

1/2

~(qDd)= ~y J dz
1 ]. 4

1 —s111z

exp(Pz ) —1 2 z
J'dz

0

1 3
1

s1Ilz

exp(Pz ) —1 2 z

3/2 '

(19)

Here, y =qDd and p=fiv/ksTd, v is the velocity of
sound, and we have set ra=0 in Eq. (3). For octahedral-
octahedral hopping, m takes a value of 1 for bcc crystals
and 2' for fcc crystals. Since the characteristic function
of the true distribution is bound by , t +AI ~ ~

t —~

~

A
~

& —,,
' this is to say that the Liapounov condition is

followed approximately in conservative estimation by

(20)

Taking
~

t
~

= 1, Fig. 2 shows the calculations for various
systems, having the similar tendency indicated in Table I.
Note that I & is sensitive to the Debye wave vector qD.
For bcc systems, qDd =2.5, ' and for fcc systems
qDd =4.4. The fcc systems have smaller Jr value, but this
factor is offset somewhat by the factor m.
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DISCUSSION
A =0.425 0

2

The central-limit theorem can be applied to solve the
lattice-trap integral for the light-interstitial hopping pro-
cess when the process is holospoudic and the Lindeberg-
Feller condition holds. This statement is true for high-
temperature hopping and when linear elasticity is appli-
cable for the impure solid. At low temperatures the
Lindeberg-Feller condition holds approximately for small

AcoD/E, values.
The normalization of the distribution to N allows us to

make comparison among various systems. By comparing
our calculated data and Lagos's fitting, it seems that a
value of gp —0.4 should be an acceptable level. for using
the central-limit solution. Hence, N:Fe is the best candi-
date, followed by H:Ta or H:Nb, and then p+:Cu. For
the H:Fe system in Table I, the Gaussian approximation
should be used only with care in the low-temperature re-
gime.

The advantage of our treatment is not limited only to
the fact that diagonal hopping is included. In principle, it
is applicable to crystals of various phonon dispersions.
Additionally, the approximations of Eqs. (2) are not
necessary if there is a reasonable value of N which allows
the statistical method to be applied. When there exist a
few strong active local modes, holospoudicity breaks
down, and only the Lindeberg-Feller condition is useful.
If the local modes have frequencies ~~ higher than coD,
then the Lindeberg-Feller condition is still applicable with
coD replaced by col. This means that the effective regime
of the solution is raised to higher temperatures, as mani-
fested by Eq. (17). However, when the local-mode fre-
quencies are lower than coD, the effectiveness of the
Gaussian solution becomes better, in the framework of the
Stoneham-Flynn theory. As Eq. (14) indicates, the same
thing happens when the lattice-distortion spectrum b,gz
has a negligible high-frequency part. In evaluating vari-
ous moments of (b,g~) in the above equations, it is obvi-
ous that the high frequency modes are weighted most
heavily. As manifested by the characteristics of the
Fourier transformation, the high-frequency b,g~ are pri-
marily due to core distortions, where solids are discrete
and nonlinear. This fact could cause considerable errors
in evaluating the related parameters. Therefore, core con-
siderations must be taken into account if a more accurate
calculation is required. As shown by Fig. 1, Tp is de-
creased when a certain core part is removed in evaluating
b.g&, resulting in a larger 7)p.

For the Debye solids at temperatures below 0.10, the
Gaussian solution shows a T hopping behavior which is
written as

6

(21)

X
1

kgTp

1

2E,
(22)

The rate can either deviate positively or negatively from
the zero-point rate Fp, depending on the relative magni-
tudes of 2E, and kTp. However, since Tp=0.48, a nega-
tive deviation requires AcoD &5E„which should not be
observed in most cases. In fact, E, is a fictitious quantity
composed of minute lattice adjustments of various pho-
non modes, no barrier, and hence no tunneling to each
mode, and the temperature always assists the hopping
process. Since 8'p essentially arises from the coherent
fluctuation in the zero-point motion implied in our sto-
chastic solution, the above behavior has the sense of phase
coincidence as manifested in classical dynamic theory.
Owing to the approximation discussed above, a question
remains regarding T behavior at low temper'atures. For
T behavior the diagonal hopping should be more impor-
tant than the two-phonon processes which lead to a T
law, as treated by Stoneham and Flynn.

In the problem dealing with color-center absorp-
tion, ' ' it is quite possible that, at low temperatures, the
Gaussian cannot fit the absorption band shape in general.
This is because of the high frequency of the optical pho-
nons existing in those crystals.
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CONCLUSION

The effectiveness of the central-limit behavior of light-
interstitial hopping can be tested by the Lindeberg-Feller
and Liapounov conditions. The factor ficoD/E, deter-
mines the validity of the Gaussian closed-form solution,
which indicates a T rate law close to absolute zero. Core
distortion could be important in testing the condition.
This implies that the Debye model could cause some error
in the estimation. Our statistical method has the advan-
tage of wider applicability, for example, to those solids
with various phonon dispersions or with high-order kg&
in Eq. (2), and it can also be applied to the concentration-
related hopping processes as well as other phenomena.
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