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Abstract. 
We shall show that on the average, the total length of a Delaunay triangulation is of 

the same order as that of a minimum triangulation, under the assumption that our points are drawn 
from a homogeneous planar Poisson point distribution. 

1. Introduction. 

Let P be a set of points in the plane. A triangulation of P is a maximal subset 
of all straight-line segments whose endpoints are in P, that intersect only at 
their endpoints. A minimum triangulation of P is the triangulation, whose 
straight-line segment length is minimum among all possible triangulations of P. 

The Delaunay triangulation is a particular triangulation such that the 
circumcircle of any triangle in this triangulation contains no point of P in its 
interior (Delaunay [3], Lee and Schachter [7]). It is also defined as the straight- 
line dual of the Voronoi diagram for P (Voronoi [16], Shamos [14]). Shamos and 
Hoey [15] claimed that the Delaunay triangulation was a minimum 
triangulation. Lawson [6] and Lloyd [9] showed that this is not true by 
constructing a counterexample. 

Denote by DT(P) and MT(P) the Delaunay triangulation and minimum 
triangulation, respectively. Manacher and Zorbrist [10] showed that Delaunay 
triangulation does not even approximate minimum triangulation in the worst 
case. Assuming that P contains n points, Manacher and Zorbrist showed 

Q = IDT(P)/MT(P)I >= O(n/log n). 

Kirkpatrick [5] showed that in the worst case there exist arbitrarily large point 
sets P such that the Delaunay triangulation is asymptotically as bad as 
arbitrary triangulation in approximating minimum triangulation. Kirkpatrick 
also showed that in the worst case Q >- O(n). 
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But on the average, the Delaunay triangulation is not so bad. Lingas [8] 
proved Q ~ O(log n) almost certainly if the point set P is uniformly distributed in 
a unit square. 

In the present paper, we shall strengthen Lingas' result by showing that on 
the average Q = O(1) if the point set P is uniformly distributed in a unit square. 

In Section 2, we shall introduce the definition of Delaunay triangulations. 
Section 3 will be devoted to a discussion of the concept of homogeneous planar 
Poisson point distribution, which can be used to help us find the main result. 

Our main result is presented in Section 4. Essentially, our analysis shows that 
the average total length of a Delaunay triangulation is of the same order as that 
of a minimum triangulation, under a very reasonable condition. This means that 
Delaunay triangulations are quite good in the average sense. 

2. The definition of Delaunay triangulation. 

Given n points {Pl, P2,P3 . . . . .  Pn} in the plane, the Voronoi diagram can be 
defined as follows. Let H(pi, p~) be the half plane containing pi and all points 
closer to p~ than to pj. The region V(pi) = (-]i~ H(Pi, Pj) which is the locus of all 
points closer to the point p~ than any other points is called the Voronoi polygon 
of Pi. The union of all Voronoi polygons of p[s, 1 < i < n, is called the Voronoi 
diagram of Pl, P2 ..... P,. 

The straight-line dual of a Voronoi diagram is a planar graph called 
Delaunay triangulation. There is a line segment connecting p~ and p~ in 
Delaunay triangulation if and only if the Voronoi polygons V(p~) and V(p~) 
share a common edge. 

A Voronoi diagram of 14 points and its dual Delaunay triangulation is shown 
in Fig. 2-1. 
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Fig. 2-1. Voronoi diagram and dual Delaunay triangulation. " 
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Delaunay triangulations have many interesting properties. First of all, the 
circumcircles of the triangles in a Delaunay triangulation do not contain any 
other points of P (Lee and Schachter [7]). Another interesting property is 
shown in the corollary of Lemma 2.1. 

LEMMA 2.1 (Lee and Schachter [7]). Given a set P of N points, any triangulation 
of P has the same number of triangles, N t = 2 ( N - 1 ) - N h ,  and the same number 
of edges, N e = 3 ( N -  1 ) - N  h, where N h is the number of points on the convex hull 
of P. 

The following corollary follows from Lemma 2.1. 

COROLLARY 2.1. A Delaunay triangulation has the same number of triangles and 
edges as a minimum triangulation for the same point set. 

3. Homogeneous planar Poisson point distribution. 

In modeling randomly distributed points in the plane, we usually assume "n 
points are uniformly distributed in a bounded region of the Euclidean plane" 
(Shamos [13] pointed out that assuming points uniformly distributed in an 
unbounded plane is meaningless). In the field of geometric probability, the 
assumption above can be characterized by a stochastic point process (Goldman 
[4]) - a homogeneous planar Poisson point distribution. 

Let P represent a homogeneous planar Poisson point distributiOn of intensity 
2 in the plane, N(X)  be the number of points in X and IXI be the Lebesgue 
measure of X for X c E 2. P is completely specified by Lemma 3.1. 

LEMMA 3.1 (Miles [12]). (Extreme Poisson Independence Property). I f  
XI,  X 2 .. . . .  X,, are arbitrary disjoint,Lebesyue-measurable subsets of E 2, then 
N(X1) , . . . ,N(Xm) are mutually independent Poisson random variables with 
expectation 2lX~l . . . . .  ;LIX.,I respectively. 

This means that the expected number of points in each domain X 1 ..... X m is 
a random variable depending only on the area IX~l (Lebesgue measure), neither 
on the shape nor the position of the X[s. 

The expectation of the number of points in each X i is therefore equal to 2 
(intensity) times the area of Xi. 

Besides, the following Lemma indicates that points in each subset are 
independently and uniformly distributed. 

LEMMA 3.2 (Miles [12]). Given N(X)  = n and 0 < IX[ < oo. These n points are 
independently and uniformly distributed in X. 
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4. The average analysis of Delaunay triangulations. 

Assume that we put n points into a unit square by a homogeneous planar 
Poisson distribution. By Lemma 3.2, these n points are uniformly distributed 
with intensity 2 equal to n. The following Lemmas are crucial in our analysis. 

LEMMA 4.t (Marks [11]). Let P be a homogeneous planar Poisson point 
distribution with intensity 2, r be the distance from some point Px to its nearest 
neighbor and E(r) be the mean value of r. Then E(r) < 1/22 ½. 

LEMMA 4.2 (Miles [12]). Let P be a homogeneous planar Poisson point 
distribution with intensity 2, L be the length of a Delaunay edge of a Delaunay 
triangle and E(L) be the mean value of L. Then 

E(L) = 32/9n2 ½. 

Based upon the lemmas above, we can prove the following main theorem. 

THEOREM 4.1. Let P be a point set with n points which are uniformly distributed 
in a unit square, E(MT(P)) and E(DT(P)) be the expected total length of 
minimum triangulation and Delaunay triangulation respectively. Then 

E(DT(P)) 
- o ( 1 ) .  

E(MT(P)) 

PaooF. By Corollary 2.1, these two triangulations have the same number of 
edges Ne. Since each edge of a minimum triangulation connecting some point p:, 
is always greater than or equal to the distance of Px to its nearest neighbor, we 
have on the average, 

E(MT(P)) > N," E(r) = N~/22 ½ 

according to Lemma 4.1. 
By Lemma 4.2, E(DT(P)) = 32Nj9z~2 ½. Hence, 

E(DT(P)) < 64/9n = O(1). 
E(MT(P)) = 

5. Concluding remarks. 

In this paper we have shown that on the average a Delaunay triangulation is 
as good as a minimum triangulation, under the assumption that our points are 
drawn from a homogeneous planar Poisson point distribution. Our results are 
not very surprising since they are obtained just by combining two results of 
Marks [11] and Miles [12]. 
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We believe that both represent quite important research results which should~ 
be studied by every reader interested in computational geometry. In fact, the 
present authors [2] successfully applied the result in [11] to show that the 
average case performance of Bentley's method to solve the planar closest pair 
problem [1] is a linear function of the number of points. 
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