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Abstract. 
The known 2-string LCS problem is generalized to finding a Longest Common Subsequence 

(LCS) for a set of strings. A new, general approach that systematically enumerates common 
subsequences is proposed for the solution. Assuming a finite symbol set, it is shown that the 
presented scheme requires a preprocessing time that grows linearly with the total length of the input 
strings and a processing time that grows linearly with (K), the number of strings, and (IIPII) the 
number of matches among them. The only previous algorithm for the generalized LCS problem 
takes O(K). ISll'lS21'...'[Sgl) execution time, where IS,I denotes the length of the string Si. Since 
typically IIPII is a very small percentage of tSlt'lS21"...'lSxl, the proposed method may be 
considered to be much more elScient than the straightforward dynamic programming approach. 
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1. Introduction. 

A string is a sequence of  symbols.  The  set of  all possible symbols  is called the 
alphabet ,  denoted _r. We assume that  the a lphabet  is of bounded  size, i.e., 

II-rll ~< C for some constant  C, where IIXII denotes  the cardinalit_y of a set X. A 
subsequence of  a string is obta ined  by deleting 0 or  more  (not necessarily 
consecutive)  symbols  f rom the string. Fo r  example,  ' cbcbd '  is a string, and 'ccb'  
is a subsequence of it. A c o m m o n  subsequence (CS) of a set of  strings is a 
subsequence of all the strings. A longest c o m m o n  subsequence (LCS) is one 
with the greatest  length. For  example,  " top"  is a CS of ' en t ropy '  and ' topology ' ,  
while ' t opy '  is the LCS of  the two strings. Not ice  that, in general, a set of  strings 
m a y  possess more  than one LCS. Fo r  example,  bo th  ' abd '  and °acd' are LCSs of 
' abcd '  and 'acbd ' .  The K-st r ing LCS problem (for short, ' K - L C S  prob lem' )  is to 
find a single LCS for K arb i t ra ry  input strings. 

The  2-LCS prob lem was first studied by the molecular  biologists (e.g., [6, 7]) 
who  found use of  LCS in s tudying similar sequences of  amino  acids. 
Subsequently,  together  with other  string problems,  the complexi ty  of the 2-LCS 
p rob lem was analyzed by m a n y  compute r  scientists (see the references). Other  
cited appl icat ions include da ta  compress ion  [1, 4, 5, 14, 29], syntactic pat tern  
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recognition [21], etc. [8, 24, 28], where an LCS of the strings is used to denote 
a maximal common substructure of the objects represented by the strings. 
Closely related problems concern the computations of string-to-string distance 
(string editing) [20, 23, 26, 30, 31], shortest common supersequences [10, 22], 
string m6rging [16]~ pattern matching [t7],  and tree-to-tree distance [9, 27]. 

The general K-LCS problem was first addressed in [10, 22], also in [16] as a 
special type of the string merging problems. In [16], Itoga generalized the 
dynamic programming approach in [30] to solving the K-LCS problem. The 
execution time which is required by his algorithm is bounded by 
O(K'ISII'IS2I'...'ISKI), where IS~I denotes the length of the string 
S~(1 ~<i~<K). 

In Section 2, the general LCS problem is first formulated as identifying a 
longest path in some acyclic directed graph, then special properties of the LCS 
problem are pointed out to allow more efficient operations. Our scheme is 
presented after studying a computational model called "common subsequence 
tree', whereas suitable data structures are studied in the following section. The 
result is that whenever the matches among the strings are scarce, i.e., 
[IPl[ << (ISaI" IS2I'..." ISKI), as is the usual case, the new method presented here 
is very efficient, in terms of both time and space. Comparisons with other recent 
results are provided in the last part. 

To put our subject in perspective, in the following we briefly review some 
existing algorithms. 

The 2-LCS problem has been solved by using dynamic programming, e.g., 
[11, 26, 30]. The idea is derived from the following observation. Letting 
A[1.. .m] and B[1.. .n] denote the strings ala2...a,, and bib2...b,, and Li. ~ be 
the length of LCS of Al l . . . i ]  and B[1...j],  we have 

I f  a i = bj then L~,j = L i_ 1 , j -  1 + 1 

else Li, j = max {Li,:i_ i, Li- 1.j}. 

Clearly, Li,o = 0 for i = 0, 1, 2 ..... and 
Lo, j = 0  for j = 0 , 1 , 2  .... 

This boundary condition simply means that the length of LCS of any string and 
a null string is zero. 

In [30], Wagner and Fischer employ an array L[0...m, 0.. .n] such that Li, j is 
kept in L[i,j]. With column 0 and row 0 of this array set to 0 initially, L[i,j] 
are computed row by row according to the above recursion. The desired value 
of Lm., is in L[m, n]. 

For example, A = abcdb, B = cbacbaa. After computing Lid, the L matrix is 
as shown in Fig. 1, 
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Fig. 1. L matrix. 

Since row i (i > 0) of the L matrix corresponds to A[i], the ith symbol of A, 
and column j corresponds to B[j], the corresponding symbols are shown in the 
figure. In this example, the length of LCS is in L[5, 7], which is 3. 

Since all the entries in the L matrix are calculated, and computing each entry 
requires a constant amount of time, the total time required in computing the 
length of LCS is bounded by O(m" n), m, n being the lengths of the two strings. 
An LCS can be generated in O(m+n) time after computing the matrix, so the 
total time is bounded by O(m. n). 

The storage space required in this algorithm is also bounded by O(m. n). In 
[11] Hirschberg improves the space complexity to O(m+n). But the execution 
time remains the same. 

As pointed out in [1], the straightforward matrix-filling approach for the LCS 
problem has the disadvantage that it takes the same large amount of time on all 
input strings with the same lengths (1SIt, IS2t . . . . .  JS~I), as the algorithm makes no 
use of the inherent structures of the strings. Therefore we shall look for an 
algorithm which is more efficient on typical inputs. 

Observing that a CS is composed of only matched symbols, we have a 
possibility. Consider the following diagram (Fig. 2a). By the above argument, 
we need only consider the matches (*) in the diagram, instead of dealing with 
all the m.n  entries. Note that usually the number of such matches is just a 
small percentage of JS11.iS2S.~ ~.- tSKI. 

Consider again the L matrix of the dynamic programming approach now 
with non-matches omitted (Fig. 2b). Since only matched symbols will constitute 
an LCS, if we can somehow compute the retained L-values on the matched 
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Fig. 2. Matrices with reduced number of entries. 

points, we lose no necessary information for generating an LCS. Several 
algorithms [12-15, 25] for the 2-LCS problem compute some representation of 
the reduced L matrix. The (worst case) time bound is lowered down to 
O(om" max (1, log (n/m)J), where m, n(m <~ n) denote the lengths of the two input 
strings and 0 denotes the length of the computed LCS [13]. 

Unfortunately, one finds difficulties in generalizing the above algorithms to 
the general K-LCS problem, because these algorithms depend on certain 
properties unique to the special 2-string cases. More explicitly, the points to be 
labelled with the same L value are on a "contour" (cf. Fig. 2b) which is easy to 
define row-by-row or column-by-column. But this contour-defining approach 
when generalized to higher dimensions (K > 2) requires much book-keeping 
work, hence will, very likely, yield poor time performance and induce great 
space demand. Consequently, a new, general approach which differs from those 
mentioned above is pursued. 

A note is in order. It has been shown in [10, 22] that the K-LCS problem is 
NP-complete for variable-length strings and (implicitly) unbounded K, no 
matter whether the size of the alphabet is bounded or not. Therefore, it is ~?ery 
probable that every solution to the K-LCS problem, in the worst case, takes an 
amount of execution time which is an exponential function of the 'input size', 
taking the lengths of the strings and the number of strings (K) as parameters. 

However, for almost every conceivable application, it is also reasonable to as- 
sume that the number of the strings under consideration is bounded by some con- 
stant. In this sense, the straightforward (generalized) dynamic programming algo- 
rithm of [16] already has a polynomial time complexity: O(K'ISII'IS21...' IS~l) 
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=O(]SxlK)where ISxl = max{]Sl],]SE[ . . . . .  ]SrI}, since K is now considered as a 
constant. 

In other words, in typical applications we expect the number of strings under 
consideration to be bounded by a constant and therefore a solution of the 
generalized LCS problem for typical applications to be a polynomial time 
algorithm. 

2. Anew approach. 

Associated with a given set of strings $1, $2 . . . .  , S x, a matched point  (a match,  a 

point)  is a K-tuple (il, i2 ..... iK) which denotes two things: 
1. a match of the symbols at some positions of the strings, and 
2. the matched symbol 0. I.e., 0 = SI [i~] = S 2 [ i 2 ]  . . . . .  SK[iK]. 

A point P = (i~, i 2 . . . . .  ix) is said to be a successor  of another point P ' =  
• r . !  .p  . i  . !  

(i' 1, 72 . . . . .  ix), if il > q, i2 > 72 . . . .  , and i x > tK. Alternatively, we say that P' is a 
predecessor  of P. Clearly, a CS of $1,$2 .. . . .  S r dorresponds to a chain of 
predecessor-successors and vice versa, and an LCS of the strings corresponds to 
a longest such chain. Letting P denote the set of all matched points, the above 
successor-predecessor relation is a partial ordering [18] defined on P. We may 
represent the relation by an acyclic digraph having all arcs of length 1. 
According to the above argument, an LCS corresponds to a maximal length 
path on the graph, as first observed by IVlukhopadhyay in [25]. 

For convenience we further introduce two dummy matches 0 = (0,0 . . . . .  0) 
and ~ = ( ~  .. . . .  ~ )  into P. Since all the other points in P are successors to G 
and predecessors to ~ ,  the above graph is now converted to one with a single 
'source' (O) and a single 'sink' ( 4 )  as encountered in many network analysis 
problems. Indeed, determining an LCS can now be thought of as identifying a 
crit ical path from () to  oh, as in project-scheduling problems. A critical path for 
AOE (activity-on-edge) networks can be computed by well-known algorithms, 
[33], requiring only O ( V + E )  execution time where V denotes the number of 
vertices (nodes) and E denotes the number of edges (arcs) on the network. 

However, depending on the input strings, the number of arcs on the digraph 
representing the partial order relation of the matched points may be as large as 
the order of IIIPII 2, IIPll being the number of points, or vertices. Thus, using the 
known algorithms the required processing time is at least of the order (IIPlI2). 
Hence in the following we shall deviate from the known graph (critical path) 
algorithms. 

Now we are concerned with a longest path from 6 to oh. For a matched point 
P a longest path from P to ~ is of interest. Let R v denote the length of a 
longest path from P to oh. Clearly, from the above definition, R~ = 0, and 
R~ = (length of L C S ) -  1. It is also easy to see that 
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LEMMA 1 

R v = max {Rp, IP' is a successor of P} + 1. 

As a matter of fact, in determining Rp (the 'R-value') of a point P, not all the 
successors of P are relevant. We shall characterize a subset of all the successors 
of a point P so that R v can be determined from the R-values of these selected 
successors. To be specific, 

Rp = max {Rv, IP' is a selected successor of P} + 1. 
Consider the following property of R-values: 

Property (1) Given two points P ' =  (i'1, i~ . . . . .  i~) and P ' =  (i'i,t ~ . . . . .  i~), where 
i) ~< i~ for 1 ~<j ~< K, then Rp,~< Rp,,. 

PROOF 

Every successor of P" must also be a successor of P', by Lemma 1, and the 
result follows. • 

For  convenience, if a successor of a point P corresponds to a symbol 0, we 
call it a O-successor of P. Also, for any 0, we define ~ to be a O-successor of any 
other point, while o~ has no successor itself. 

Now, if the above P' and P" are two 0-successors to a point P for which Rp is 
to be determined, then P" can be ruled out by P', since Re,, <<. R e, <<. Rp. 

Hence, out of all 0-successors of P, we need only consider the one (see the 
following) which is not ruled out by any other 0-successor of P. 

The "immediate" O-successor of a point P = (il, i2,..., iK) (P ~ oT3) is defined as 
follows : 

P ' =  ~ if {i]Sj[i] = 0  and i j < i ~ ] S j [ }  = ~ for some j (1 ~<j~<K). 
-I  

Otherwise P ' =  (i'~, i~ . . . . .  i~) where tj = min{ilS~[i] = 0, and ij < i~<  ISj[} 
(1 < j ~< g) .  

By the above definition, the immediate 0-successor of a point P = (il, i2 ..... iK) 
represents the next 0 that is closest to i~ in string j (1 ~< j ~ K), whereas 
simply denotes that no such 0 exists. In Section 3, we shall discuss an efficient 
method for generating an immediate successor for any point under 
consideration. 

Now, by Property (1), since all the other 0-successors of P, if any, have 
smaller (or equal) R values than that of the immmediate 0-successor, it follows: 

LEMMA 2 
I f  01, 02 . . . . .  0 t are the distinct symbols which are common to the set of strings, 

and PI, P2, . . . ,P t  are the corresponding immediate successors of P, then 
R v = max{Rvo Rp~, .... Re, } + 1. 

Hence, to compute R~ and, thereby, the length of LCS, we may consider the 
R-values of all the immediate successors of O. If the R-value of a selected 
successor is still unknown, we again consider all its immediate successors. While 
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if the R-values of all the immediate successors of a point P are known, then Rp 
can be determined readily, by using Lemma 2. It is easy to see that the above 
recursive process can indeed determine R~, hence the length of LCS. 

To visualize the computational process, the above scheme can be represented 
as a tree (cf. Fig. 3), with 0 being the root. Each internal (nonleaf) node in the 
tree corresponds to a point for which the R value is to be determined, and each 
(directed) branch connects a parent node to a child node, the latter being the 
immediate 0-successor of the former. Since each path JJ'om a node (a match) to its 
descendent node (a match) corresponds to a CS (common subsequence) of the 
strings, such a tree will be (called) a CS tree. 

Intuitively, a CS tree enumerates chains of common subsequences by 
catenating as many.common symbols as possible, that is, by considering only 
immediate successors. 

Example 
Fig. 3 shows a CS tree.associated with the given strings. It is easy to verify 

the immediate successor-predecessor relations. Also, by observing that a longest 
path in the tree corresponds to an LCS, our problem is solved. In this case, R(~ 
is 4, and acb, bcb, cbb are all LCSs of the strings. 

For  simplicity, we initially stipulate that all internal nodes have exactly t 
children. That  is, for the t distinct symbols which are common to all the strings, 
we generate t immediate successors for a point with undefined R value. In other 
words, a CS tree is t-ary. The following property is taken from [18]. 

LEMMA 3. 

,4 t-ary tree with I internal nodes has ( t - 1 ) I  + 1 external nodes. 

Note that since the R-value of a point need not be computed more than once, 
to save execution time, on a CS tree, each distinct point, if it ever appeared, 
should be on the internal node no more than once. Such a CS tree (with no 
duplicate internal nodes) is said to be irredundant and is abbreviated as an 
ICS tree. Letting IIPII denote the total number of all matched points, it 
follows that 

COROLLARY 3.1. 
An irredundant t-ary CS tree has at most tllPll+ 1 nodes. 

PROOF. The number of all internal nodes of an ICS tree is bounded by IIPlI. 
There are then at most (t-1)IlPtl + 1, external nodes. Adding these two bounds 
yields the result. 

In Fig. 3 only ob appeared as the leaf nodes. Since certain points 
(underscored) appeared more than once as the internal nodes, this CS tree 
represents an inefficient computation. Fig. 4 shows an ICS tree for the same job. 
Note that the subtrees rooted at (5, 5) and (3,4) are pruned because the two 
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1 2 3 4 5 6  

= ab c db b 

(1,3) 

oo (2,5) (3,4) 

(0,0) 1 2 3 4 5 6 7  

(2,2) 

~ ( 5 , 5 )  ( 3 , 4 )  

/ / 

/ / 

~ ( 5 , 5 )  ~ 1 1  / 

(3,1) 

eo (5,2) oo 

o~ (6,5) o~ 

Fig, 4. An ICS tree. 

nodes appeared in other places. Here we may think of the dashed lines as 
references to known results. 

As illustrated in the examples, a systematic evaluation of the R values may 
further require that the branches are considered in a fixed sequence, i.e., we 
consider only ordered ICS trees. 

Now, we are able to present a scheme for computing an LCS by constructing 
an ICS tree associated with a set of input strings. 

It is natural to construct an ordered ICS tree in depth-first [18, 33] manner. 
Specifically, for each node (point) visited, if the R-value is not yet known, the 
subtree rooted with its first (left-most) child is generated recursively, then the 
second subtree and so on; if the R-value of a node (point) is known (i.e., the 
longest path from the point to ~ is known), then no further subtrees of it are 
generated, rather, the R-value of the point is compared with the R-values of the 
other siblings (other children of the same parent of this node), in order to 
determine the maximum R-value (thus a longest path to o~). Fig. 5 presents the 
tree of Fig. 4 when it is traversed in this order, the integer labels on the nodes 
corresponding to the sequence of the traversal. 

For each internal node, along with its own R value, we will register the 
identity of one of its immediate successors which has the maximum R-value. 
Now, if the R-value of 0, the root of a CS tree, is determined, we can easily trace 
out an LCS by using this linkage information. 

From the preceding discussion, we may safely claim that the scheme above 
solves the LCS problem correctly. Also, from Corollary 3.1, the total number of 
nodes processed is bounded by O(t. ItPH). So if processing each node (generating 
immediate successors, determining R-value, see next section) takes 'l time units, 
then an algorithm realizing the scheme above takes at most O(l.t" IPlI) 
processing time. In the next section, we shall examine some data structures in 
order to determine the parameter of performance mentioned above. 
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20/ 

Fig. 5, A depth first search, 

19 

3. Implementation. 

Provided with some simple preprocessing, we may enumerate the immediate 
0-successors for any given point rather efficiently; see the following example. 
First recall that the jth-tuple of a matched point corresponds to a position in 
string S~, and that the immediate 0-successor of a point P = (il,  i2 . . . . .  ik), if it 
exists, is given by (i'1, i~,..., i;,), where i~ = min {ilS~[i] = 0 and i > ii}, (1 ~< j ~< k) 
(otherwise, the successor is given by o%). 

Example  
For a string S, a '0-list' is given by { i lS[i]  = 0}. Fig. 6 shows the positions of 

the strings partitioned into 0-1ists. Now,  for any point, say (3, 1), which is a 'c' 
match, we may search the two 'b'-lists, and find that (5, 2) is the immediate 'b'- 
successor of (3, 1).0 

123456 

s I = a b c d b b Positions~ @ 
in 

1234567 S 1 

S2 = cb acba a ............. 

S 2 

Fig. 6. 0-lists. 

,'a' 

1 

3,6,7 

i c' 'd' 

3 4 

1,4 nil 
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Observe that for a given position in a string, we need to know the next higher 
position that contains 0. Hence, to avoid the searches on the 0-lists as done in 
the example above, we rather prepare such 'next higher 0-positions' for each 
position in a string. Consider the following example. 

Example 
In Fig. 8a, we prepare three lists of the next higher positions for the 3 distinct 

symbols: a, b, and c. 
The contents of the array A are determined thus: 

A[i] = min {jIS[j] = 'a' and j > i}. 

Thus A[1] = 4 denotes that position 4 of the string contains the first 'a' that 
appeared after position 1. Similar statements apply to arrays B and C. 

Preprocessin9 
Here is how the lists of 'next higher 0-positions' are set up: 

(Step 1) First, for each symbol, identify the positions in each string containing 
that symbol, thus forming the 0-lists. For a string S, the '0-list' is given by 
{ilS[i] = 0}. Again see Fig. 7b for example. 

1 2 3 4 5 6 7 

S = a b c a b b c 

location in S 

2 3 4 5 6 7 

Array A 

B 

C - - - -  

'a' 

1,4 

'b' 

2,5,6 

'C' 

3,7 

(a) 

Fig. 7. Representation of 'next' O's. 

(b) 

(Step 2) Now, for each position i o f  the string, with i running through 1, 2,..., in 
that sequence, scan each of the 0-lists, and write the first value in the 0-list 
which is greater than i into the ith position of the corresponding array (cf. Fig. 
7). 

Step 1 is called string-identification in [1]. Assuming the alphabet is known, 
the work can be done in O(ISI) time using O(ltZtl+lSt) space, where S denotes 
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the length of the string under 'identification' and tlSII denotes the size of the 
alphabet Z. (If the symbols are not known (given) beforehand, then with the use 
of balanced search tree techniques [18, 33], the work requires at most O(ISIlog t) 
time*, where t denotes the number of distinct symbols appearing in the string.) 
It is also easy to implement Step 2 with at most O(ISI • t) time and O(IS l ' t )  space. 

where t still represents the number of distinct symbols appearing in S. 
For all K strings, the total time/space required in Steps 1, 2 are bounded by 

O ( L ' t ' ) w h e r e  L = ISII+IS21+...+ISKI, and t' is the number of the distinct 
symbols that are common to all the strings. Since t'~< tl2:tt ~< C for some 
constant C, the time bound may be expressed as O(L),  that is, the preprocessing 
takes an execution time which grows linearly with the total length of the input 
strings. 

With this preparation of the 'next higher positions', we may obtain an 
immediate successor (a K-tuple) of any point in an amount  of time which 
depends only on K, the number of strings under consideration. 

Also from this preprocessing, the data structure required in storing the R- 
value of a point can be determined. We shall use one array for the points 
matching a distinct symbol. Let Xij = {IISi[I] = 0 i, 1 <~ 1 <~ ISil}, which denotes 
all the positions in S~ that contain 0 i , then the cartesian product 
P1 = X l i x X 2 1  x ' ' ' × X K i  is clearly the set of all the points matching the 
symbol 0 i. We may use an IIXlilL × IX21ti ×- . .  × ItXKilt array to store the R-values 
of the points in Pi" See the following example. 

EXAMPLE 
Fig. 8 portrays parts of the 0-lists for some given strings. 

Clearly, since I[Xl11[ = 4, {[X211t = 2, tlX3111 = 3, a 4 x 2 x 3  array B1 can be 
used to store the R-values for all the points matching 01. 

~ 0  Common 
is 

strings 

S 1 

S 2 

S 3 

• Ol 

1,4,7,11 

3,14 

2,5,6 

Fig. 8. 0-lists. 

% 

* It is reasonable to assume that the representations of the symbols are linearly ordered so that 
useful operations like test-for-ordering (i.e., x >/b?), rather than test for mere equality, (x = b?), 
may be used. 



C O M P U T I N G  A L O N G E S T  C O M M O N  S U B S E Q U E N C E ,  . . 57 

It is also clear that, in this arrangement, each point has a unique index in the 
array and an access to the array takes a constant amount of time. The total 
space required is clearly bounded by O(tIPII), where tt z = llzl w P2 u . . .  w Pt- 
For the example above, the R-value of the point (1, 14, 2) is in B1 [1, 2, 1]. 

Concluding these discussions, the arrangements can solve the general LCS 
problem rather efficiently. 

Main theorem 
With O(L. t) preprocessing time, the K-string LCS problem can be soh,ed with 

O(K" t" IIPII) processing time and O(lIPll+L' t) space, where L denotes the total 
length of the strings (the input size) and t denotes the number of distinct symbols 
that are common to the strings under consideration. H~zll is the number of K-tuples 
denoting the matches among the strings. 

For the usual applications, the number of the strings (K) and the alphabet 
(Z) are both finite, i.e., there exist some constants C1, C2, such that K ~< C1 and 
112711 ~< C2. Since t ~< IISII, we have the following asymptotic upper bound for the 
K-string LCS problem: 

COROLLARY For a constant number oj strings and an alphabet oJ bounded size, 
the LCS problem can be solved with O(L) preprocessing time and 0(0 z) processing 
time, where L denotes the input size and • denotes the number of matches. 

4. Discussion. 

A simple, systematic approach for generating common subsequences for a set 
of strings has been proposed. Assuming a finite symbol set, it is shown that the 
proposed scheme requires a preprocessing time that grows linearly with the total 
length of the input strings and a processing time that grows linearly with K, the 
number of strings, and IIP]I, the number of matches among them. The only 
previous algorithm for the generalized LCS problem takes 
O(K'JSlJ'JS2J'...'JSK]) execution time, where jSiJ denotes the length of the 
string Si. Since typically HPtI is a very small percentage of ISII'tSzt'... 'ISKI, the 
proposed method may be considered as much more effÉcient than the 
straightforward dynamic programming approach. 

Now, consider the conventional 2-LCS case. We first note that in several 
recent works [12-15, 25] essentially the same string-identification preprocessing 
as done in ours is required. With the matched poin.ts represented as a set of 0- 
lists, Hirschberg's algorithm in [12] examines every matched point at least once, 
hence the time complexity of his algorithm, when expressed in terms of lJPll (the 
number of matches), is O(IIPII), i.e., is bounded below by IIPII asymptotically. 
Again, let n denote the length of the longer string, the algorithms in [14, 15, 25] 
require O(llPlllogn) time. Hence, asymptotically, the above algorithms are 
outrun by the new one. The preceding arguments apply only when t, the total 
number of distinct symbols that are common to the two strings, is bounded. 
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For tuna te ly ,  this is the usual case. Fu r the rmore ,  as ind ica ted  in Section 1, the 

new scheme is general  enough so tha t  the  K str ings cases are  hand led  with the 

same ease. The  p r o p o s e d  CS trees is hence a very useful concept  for the LCS 

problem.  
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