
BIT 24 (1984), 45 59

COMPUTING A LONGEST COMMON SUBSEQUENCE FOR
A SET OF STRINGS

W. J. HSU and M. W. DU

Institute of Computer Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,
Taiwan, Republic of China

Abstract.
The known 2-string LCS problem is generalized to finding a Longest Common Subsequence

(LCS) for a set of strings. A new, general approach that systematically enumerates common
subsequences is proposed for the solution. Assuming a finite symbol set, it is shown that the
presented scheme requires a preprocessing time that grows linearly with the total length of the input
strings and a processing time that grows linearly with (K), the number of strings, and (IIPII) the
number of matches among them. The only previous algorithm for the generalized LCS problem
takes O(K). ISll'lS21'...'[Sgl) execution time, where IS,I denotes the length of the string Si. Since
typically IIPII is a very small percentage of tSlt'lS21"...'lSxl, the proposed method may be
considered to be much more elScient than the straightforward dynamic programming approach.

Key Phrases : Analysis of Algorithms, String Merging Problems, LCS Problem.

1. Introduction.

A string is a sequence of symbols. The set of all possible symbols is called the
alphabet , denoted _r. We assume that the a lphabet is of bounded size, i.e.,

II-rll ~< C for some constant C, where IIXII denotes the cardinalit_y of a set X. A
subsequence of a string is obta ined by deleting 0 or more (not necessarily
consecutive) symbols f rom the string. Fo r example, ' cbcbd ' is a string, and 'ccb'
is a subsequence of it. A c o m m o n subsequence (CS) of a set of strings is a
subsequence of all the strings. A longest c o m m o n subsequence (LCS) is one
with the greatest length. For example, " top" is a CS of ' en t ropy ' and ' topology ' ,
while ' t opy ' is the LCS of the two strings. Not ice that, in general, a set of strings
m a y possess more than one LCS. Fo r example, bo th ' abd ' and °acd' are LCSs of
' abcd ' and 'acbd ' . The K-st r ing LCS problem (for short, ' K - L C S prob lem') is to
find a single LCS for K arb i t ra ry input strings.

The 2-LCS prob lem was first studied by the molecular biologists (e.g., [6, 7])
who found use of LCS in s tudying similar sequences of amino acids.
Subsequently, together with other string problems, the complexi ty of the 2-LCS
p rob lem was analyzed by m a n y compute r scientists (see the references). Other
cited appl icat ions include da ta compress ion [1, 4, 5, 14, 29], syntactic pat tern

Received March 1983. Revised August 1983.

46 ~N. J. HSU AND M. W. DU

recognition [21], etc. [8, 24, 28], where an LCS of the strings is used to denote
a maximal common substructure of the objects represented by the strings.
Closely related problems concern the computations of string-to-string distance
(string editing) [20, 23, 26, 30, 31], shortest common supersequences [10, 22],
string m6rging [16]~ pattern matching [t7], and tree-to-tree distance [9, 27].

The general K-LCS problem was first addressed in [10, 22], also in [16] as a
special type of the string merging problems. In [16], Itoga generalized the
dynamic programming approach in [30] to solving the K-LCS problem. The
execution time which is required by his algorithm is bounded by
O(K'ISII'IS2I'...'ISKI), where IS~I denotes the length of the string
S~(1 ~<i~<K).

In Section 2, the general LCS problem is first formulated as identifying a
longest path in some acyclic directed graph, then special properties of the LCS
problem are pointed out to allow more efficient operations. Our scheme is
presented after studying a computational model called "common subsequence
tree', whereas suitable data structures are studied in the following section. The
result is that whenever the matches among the strings are scarce, i.e.,
[IPl[<< (ISaI" IS2I'..." ISKI), as is the usual case, the new method presented here
is very efficient, in terms of both time and space. Comparisons with other recent
results are provided in the last part.

To put our subject in perspective, in the following we briefly review some
existing algorithms.

The 2-LCS problem has been solved by using dynamic programming, e.g.,
[11, 26, 30]. The idea is derived from the following observation. Letting
A[1.. .m] and B[1.. .n] denote the strings ala2...a,, and bib2...b,, and Li. ~ be
the length of LCS of Al l . . . i] and B[1...j], we have

I f a i = bj then L~,j = L i_ 1 , j - 1 + 1

else Li, j = max {Li,:i_ i, Li- 1.j}.

Clearly, Li,o = 0 for i = 0, 1, 2 and
Lo, j = 0 for j = 0 , 1 , 2

This boundary condition simply means that the length of LCS of any string and
a null string is zero.

In [30], Wagner and Fischer employ an array L[0...m, 0.. .n] such that Li, j is
kept in L[i,j]. With column 0 and row 0 of this array set to 0 initially, L[i,j]
are computed row by row according to the above recursion. The desired value
of Lm., is in L[m, n].

For example, A = abcdb, B = cbacbaa. After computing Lid, the L matrix is
as shown in Fig. 1,

COMPUTING A LONGEST COMMON SUBSEQUENCE.. . 47

B

c b a c b a a

0 1 2 3 4 5 6 7

A

0

a 1

b 2

c 3

d 4

b 5

0 0 0 0 0 0 0 0

0 0 0 ~ 1 1 1 1

! oo

0 1 I 2 2

Fig. 1. L matrix.

Since row i (i > 0) of the L matrix corresponds to A[i], the ith symbol of A,
and column j corresponds to B[j], the corresponding symbols are shown in the
figure. In this example, the length of LCS is in L[5, 7], which is 3.

Since all the entries in the L matrix are calculated, and computing each entry
requires a constant amount of time, the total time required in computing the
length of LCS is bounded by O(m" n), m, n being the lengths of the two strings.
An LCS can be generated in O(m+n) time after computing the matrix, so the
total time is bounded by O(m. n).

The storage space required in this algorithm is also bounded by O(m. n). In
[11] Hirschberg improves the space complexity to O(m+n). But the execution
time remains the same.

As pointed out in [1], the straightforward matrix-filling approach for the LCS
problem has the disadvantage that it takes the same large amount of time on all
input strings with the same lengths (1SIt, IS2t JS~I), as the algorithm makes no
use of the inherent structures of the strings. Therefore we shall look for an
algorithm which is more efficient on typical inputs.

Observing that a CS is composed of only matched symbols, we have a
possibility. Consider the following diagram (Fig. 2a). By the above argument,
we need only consider the matches (*) in the diagram, instead of dealing with
all the m.n entries. Note that usually the number of such matches is just a
small percentage of JS11.iS2S.~ ~.- tSKI.

Consider again the L matrix of the dynamic programming approach now
with non-matches omitted (Fig. 2b). Since only matched symbols will constitute
an LCS, if we can somehow compute the retained L-values on the matched

48 W . J . HSU A N D M. W. D U

1

1

2

A 3

4

5

1

a c

a

b

C *

d

b

B

2 3 4 5 6 7

b a c b a a c b a c b a a

a

d L

1 1

(a) points of matches (b) reduced L matrix

Fig. 2. Matrices with reduced number of entries.

points, we lose no necessary information for generating an LCS. Several
algorithms [12-15, 25] for the 2-LCS problem compute some representation of
the reduced L matrix. The (worst case) time bound is lowered down to
O(om" max (1, log (n/m)J), where m, n(m <~ n) denote the lengths of the two input
strings and 0 denotes the length of the computed LCS [13].

Unfortunately, one finds difficulties in generalizing the above algorithms to
the general K-LCS problem, because these algorithms depend on certain
properties unique to the special 2-string cases. More explicitly, the points to be
labelled with the same L value are on a "contour" (cf. Fig. 2b) which is easy to
define row-by-row or column-by-column. But this contour-defining approach
when generalized to higher dimensions (K > 2) requires much book-keeping
work, hence will, very likely, yield poor time performance and induce great
space demand. Consequently, a new, general approach which differs from those
mentioned above is pursued.

A note is in order. It has been shown in [10, 22] that the K-LCS problem is
NP-complete for variable-length strings and (implicitly) unbounded K, no
matter whether the size of the alphabet is bounded or not. Therefore, it is ~?ery
probable that every solution to the K-LCS problem, in the worst case, takes an
amount of execution time which is an exponential function of the 'input size',
taking the lengths of the strings and the number of strings (K) as parameters.

However, for almost every conceivable application, it is also reasonable to as-
sume that the number of the strings under consideration is bounded by some con-
stant. In this sense, the straightforward (generalized) dynamic programming algo-
rithm of [16] already has a polynomial time complexity: O(K'ISII'IS21...' IS~l)

COMPUTING A LONGEST COMMON SUBSEQUENCE... 49

=O(]SxlK)where ISxl = max{]Sl],]SE[.]SrI}, since K is now considered as a
constant.

In other words, in typical applications we expect the number of strings under
consideration to be bounded by a constant and therefore a solution of the
generalized LCS problem for typical applications to be a polynomial time
algorithm.

2. Anew approach.

Associated with a given set of strings $1, $2 , S x, a matched point (a match, a

point) is a K-tuple (il, i2 iK) which denotes two things:
1. a match of the symbols at some positions of the strings, and
2. the matched symbol 0. I.e., 0 = SI [i~] = S 2 [i 2] SK[iK].

A point P = (i~, i 2 ix) is said to be a successor of another point P ' =
• r . ! .p . i . !

(i' 1, 72 ix), if il > q, i2 > 72 , and i x > tK. Alternatively, we say that P' is a
predecessor of P. Clearly, a CS of $1,$2 S r dorresponds to a chain of
predecessor-successors and vice versa, and an LCS of the strings corresponds to
a longest such chain. Letting P denote the set of all matched points, the above
successor-predecessor relation is a partial ordering [18] defined on P. We may
represent the relation by an acyclic digraph having all arcs of length 1.
According to the above argument, an LCS corresponds to a maximal length
path on the graph, as first observed by IVlukhopadhyay in [25].

For convenience we further introduce two dummy matches 0 = (0,0 0)
and ~ = (~ ~) into P. Since all the other points in P are successors to G
and predecessors to ~ , the above graph is now converted to one with a single
'source' (O) and a single 'sink' (4) as encountered in many network analysis
problems. Indeed, determining an LCS can now be thought of as identifying a
crit ical path from () to oh, as in project-scheduling problems. A critical path for
AOE (activity-on-edge) networks can be computed by well-known algorithms,
[33], requiring only O (V + E) execution time where V denotes the number of
vertices (nodes) and E denotes the number of edges (arcs) on the network.

However, depending on the input strings, the number of arcs on the digraph
representing the partial order relation of the matched points may be as large as
the order of IIIPII 2, IIPll being the number of points, or vertices. Thus, using the
known algorithms the required processing time is at least of the order (IIPlI2).
Hence in the following we shall deviate from the known graph (critical path)
algorithms.

Now we are concerned with a longest path from 6 to oh. For a matched point
P a longest path from P to ~ is of interest. Let R v denote the length of a
longest path from P to oh. Clearly, from the above definition, R~ = 0, and
R~ = (length of L C S) - 1. It is also easy to see that

50 W. J. HSU AND M. W. DU

LEMMA 1

R v = max {Rp, IP' is a successor of P} + 1.

As a matter of fact, in determining Rp (the 'R-value') of a point P, not all the
successors of P are relevant. We shall characterize a subset of all the successors
of a point P so that R v can be determined from the R-values of these selected
successors. To be specific,

Rp = max {Rv, IP' is a selected successor of P} + 1.
Consider the following property of R-values:

Property (1) Given two points P ' = (i'1, i~ i~) and P ' = (i'i,t ~ i~), where
i) ~< i~ for 1 ~<j ~< K, then Rp,~< Rp,,.

PROOF

Every successor of P" must also be a successor of P', by Lemma 1, and the
result follows. •

For convenience, if a successor of a point P corresponds to a symbol 0, we
call it a O-successor of P. Also, for any 0, we define ~ to be a O-successor of any
other point, while o~ has no successor itself.

Now, if the above P' and P" are two 0-successors to a point P for which Rp is
to be determined, then P" can be ruled out by P', since Re,, <<. R e, <<. Rp.

Hence, out of all 0-successors of P, we need only consider the one (see the
following) which is not ruled out by any other 0-successor of P.

The "immediate" O-successor of a point P = (il, i2,..., iK) (P ~ oT3) is defined as
follows :

P ' = ~ if {i]Sj[i] = 0 and i j < i ~] S j [} = ~ for some j (1 ~<j~<K).
-I

Otherwise P ' = (i'~, i~ i~) where tj = min{ilS~[i] = 0, and ij < i~< ISj[}
(1 < j ~< g) .

By the above definition, the immediate 0-successor of a point P = (il, i2 iK)
represents the next 0 that is closest to i~ in string j (1 ~< j ~ K), whereas
simply denotes that no such 0 exists. In Section 3, we shall discuss an efficient
method for generating an immediate successor for any point under
consideration.

Now, by Property (1), since all the other 0-successors of P, if any, have
smaller (or equal) R values than that of the immmediate 0-successor, it follows:

LEMMA 2
I f 01, 02 0 t are the distinct symbols which are common to the set of strings,

and PI, P2, . . . ,P t are the corresponding immediate successors of P, then
R v = max{Rvo Rp~, Re, } + 1.

Hence, to compute R~ and, thereby, the length of LCS, we may consider the
R-values of all the immediate successors of O. If the R-value of a selected
successor is still unknown, we again consider all its immediate successors. While

COMPUTING A LONGEST COMMON SUBSEQUENCE... 51

if the R-values of all the immediate successors of a point P are known, then Rp
can be determined readily, by using Lemma 2. It is easy to see that the above
recursive process can indeed determine R~, hence the length of LCS.

To visualize the computational process, the above scheme can be represented
as a tree (cf. Fig. 3), with 0 being the root. Each internal (nonleaf) node in the
tree corresponds to a point for which the R value is to be determined, and each
(directed) branch connects a parent node to a child node, the latter being the
immediate 0-successor of the former. Since each path JJ'om a node (a match) to its
descendent node (a match) corresponds to a CS (common subsequence) of the
strings, such a tree will be (called) a CS tree.

Intuitively, a CS tree enumerates chains of common subsequences by
catenating as many.common symbols as possible, that is, by considering only
immediate successors.

Example
Fig. 3 shows a CS tree.associated with the given strings. It is easy to verify

the immediate successor-predecessor relations. Also, by observing that a longest
path in the tree corresponds to an LCS, our problem is solved. In this case, R(~
is 4, and acb, bcb, cbb are all LCSs of the strings.

For simplicity, we initially stipulate that all internal nodes have exactly t
children. That is, for the t distinct symbols which are common to all the strings,
we generate t immediate successors for a point with undefined R value. In other
words, a CS tree is t-ary. The following property is taken from [18].

LEMMA 3.

,4 t-ary tree with I internal nodes has (t - 1) I + 1 external nodes.

Note that since the R-value of a point need not be computed more than once,
to save execution time, on a CS tree, each distinct point, if it ever appeared,
should be on the internal node no more than once. Such a CS tree (with no
duplicate internal nodes) is said to be irredundant and is abbreviated as an
ICS tree. Letting IIPII denote the total number of all matched points, it
follows that

COROLLARY 3.1.
An irredundant t-ary CS tree has at most tllPll+ 1 nodes.

PROOF. The number of all internal nodes of an ICS tree is bounded by IIPlI.
There are then at most (t-1)IlPtl + 1, external nodes. Adding these two bounds
yields the result.

In Fig. 3 only ob appeared as the leaf nodes. Since certain points
(underscored) appeared more than once as the internal nodes, this CS tree
represents an inefficient computation. Fig. 4 shows an ICS tree for the same job.
Note that the subtrees rooted at (5, 5) and (3,4) are pruned because the two

1
2
3
4
5
6

S1

=

a
b
c

d
b
b

1
2
3
4
5
6
7

$2

=

C
b

a
c

b
.
~

"
-
-
-
'
~
'
_
~

(i
,3

)

(c
o,
co
)

(2
,5

)
(3

,4
)

(c
o,

co
l

(c
o,

~)

(~
,~

)
(~

,,~
)

(_
5.

.:.
5)

(~

,~
)

(o
o,
oo
)

(c
o,

~o
)

(o
%0
0)
 J

(2
,2

)

(c
o,

~
(~

.:.
~)

 (c
o,
~)

(o
o,
oo
)

Co
o,
co
)

(3
,1

)

(o
o ,
oo
)

(5
,2

)
(o
o ,
co
)

/2

(0
%o
0)

(6
,5

)
(o
o,
co
)

(c
o,
oo
)

Co
o,

co
)

(~
o,
~)

t.m

I,
O

:Z

> Z

t~

Fi
g.

 3
.

A
 C

S
 t

re
e

(w
it

h
re

du
nd

an
cy

).

S 1

C O M P U T I N G A LONGEST COMMON S U B S E Q U E N C E . . . 53

1 2 3 4 5 6

= ab c db b

(1,3)

oo (2,5) (3,4)

(0,0) 1 2 3 4 5 6 7

(2,2)

~ (5 , 5) (3 , 4)

/ /

/ /

~ (5 , 5) ~ 1 1 /

(3,1)

eo (5,2) oo

o~ (6,5) o~

Fig, 4. An ICS tree.

nodes appeared in other places. Here we may think of the dashed lines as
references to known results.

As illustrated in the examples, a systematic evaluation of the R values may
further require that the branches are considered in a fixed sequence, i.e., we
consider only ordered ICS trees.

Now, we are able to present a scheme for computing an LCS by constructing
an ICS tree associated with a set of input strings.

It is natural to construct an ordered ICS tree in depth-first [18, 33] manner.
Specifically, for each node (point) visited, if the R-value is not yet known, the
subtree rooted with its first (left-most) child is generated recursively, then the
second subtree and so on; if the R-value of a node (point) is known (i.e., the
longest path from the point to ~ is known), then no further subtrees of it are
generated, rather, the R-value of the point is compared with the R-values of the
other siblings (other children of the same parent of this node), in order to
determine the maximum R-value (thus a longest path to o~). Fig. 5 presents the
tree of Fig. 4 when it is traversed in this order, the integer labels on the nodes
corresponding to the sequence of the traversal.

For each internal node, along with its own R value, we will register the
identity of one of its immediate successors which has the maximum R-value.
Now, if the R-value of 0, the root of a CS tree, is determined, we can easily trace
out an LCS by using this linkage information.

From the preceding discussion, we may safely claim that the scheme above
solves the LCS problem correctly. Also, from Corollary 3.1, the total number of
nodes processed is bounded by O(t. ItPH). So if processing each node (generating
immediate successors, determining R-value, see next section) takes 'l time units,
then an algorithm realizing the scheme above takes at most O(l.t" IPlI)
processing time. In the next section, we shall examine some data structures in
order to determine the parameter of performance mentioned above.

54 W. J. HSU AND M. W. DU

1

20/

Fig. 5, A depth first search,

19

3. Implementation.

Provided with some simple preprocessing, we may enumerate the immediate
0-successors for any given point rather efficiently; see the following example.
First recall that the jth-tuple of a matched point corresponds to a position in
string S~, and that the immediate 0-successor of a point P = (il, i2 ik), if it
exists, is given by (i'1, i~,..., i;,), where i~ = min {ilS~[i] = 0 and i > ii}, (1 ~< j ~< k)
(otherwise, the successor is given by o%).

Example
For a string S, a '0-list' is given by { i lS[i] = 0}. Fig. 6 shows the positions of

the strings partitioned into 0-1ists. Now, for any point, say (3, 1), which is a 'c'
match, we may search the two 'b'-lists, and find that (5, 2) is the immediate 'b'-
successor of (3, 1).0

123456

s I = a b c d b b Positions~ @
in

1234567 S 1

S2 = cb acba a

S 2

Fig. 6. 0-lists.

,'a'

1

3,6,7

i c' 'd'

3 4

1,4 nil

COMPUTING A LONGEST COMMON SUBSEQUENCE... 55

Observe that for a given position in a string, we need to know the next higher
position that contains 0. Hence, to avoid the searches on the 0-lists as done in
the example above, we rather prepare such 'next higher 0-positions' for each
position in a string. Consider the following example.

Example
In Fig. 8a, we prepare three lists of the next higher positions for the 3 distinct

symbols: a, b, and c.
The contents of the array A are determined thus:

A[i] = min {jIS[j] = 'a' and j > i}.

Thus A[1] = 4 denotes that position 4 of the string contains the first 'a' that
appeared after position 1. Similar statements apply to arrays B and C.

Preprocessin9
Here is how the lists of 'next higher 0-positions' are set up:

(Step 1) First, for each symbol, identify the positions in each string containing
that symbol, thus forming the 0-lists. For a string S, the '0-list' is given by
{ilS[i] = 0}. Again see Fig. 7b for example.

1 2 3 4 5 6 7

S = a b c a b b c

location in S

2 3 4 5 6 7

Array A

B

C - - - -

'a'

1,4

'b'

2,5,6

'C'

3,7

(a)

Fig. 7. Representation of 'next' O's.

(b)

(Step 2) Now, for each position i o f the string, with i running through 1, 2,..., in
that sequence, scan each of the 0-lists, and write the first value in the 0-list
which is greater than i into the ith position of the corresponding array (cf. Fig.
7).

Step 1 is called string-identification in [1]. Assuming the alphabet is known,
the work can be done in O(ISI) time using O(ltZtl+lSt) space, where S denotes

56 w. J. HSU AND M. W. DU

the length of the string under 'identification' and tlSII denotes the size of the
alphabet Z. (If the symbols are not known (given) beforehand, then with the use
of balanced search tree techniques [18, 33], the work requires at most O(ISIlog t)
time*, where t denotes the number of distinct symbols appearing in the string.)
It is also easy to implement Step 2 with at most O(ISI • t) time and O(IS l ' t) space.

where t still represents the number of distinct symbols appearing in S.
For all K strings, the total time/space required in Steps 1, 2 are bounded by

O (L ' t ') w h e r e L = ISII+IS21+...+ISKI, and t' is the number of the distinct
symbols that are common to all the strings. Since t'~< tl2:tt ~< C for some
constant C, the time bound may be expressed as O(L), that is, the preprocessing
takes an execution time which grows linearly with the total length of the input
strings.

With this preparation of the 'next higher positions', we may obtain an
immediate successor (a K-tuple) of any point in an amount of time which
depends only on K, the number of strings under consideration.

Also from this preprocessing, the data structure required in storing the R-
value of a point can be determined. We shall use one array for the points
matching a distinct symbol. Let Xij = {IISi[I] = 0 i, 1 <~ 1 <~ ISil}, which denotes
all the positions in S~ that contain 0 i , then the cartesian product
P1 = X l i x X 2 1 x ' ' ' × X K i is clearly the set of all the points matching the
symbol 0 i. We may use an IIXlilL × IX21ti ×- . . × ItXKilt array to store the R-values
of the points in Pi" See the following example.

EXAMPLE
Fig. 8 portrays parts of the 0-lists for some given strings.

Clearly, since I[Xl11[= 4, {[X211t = 2, tlX3111 = 3, a 4 x 2 x 3 array B1 can be
used to store the R-values for all the points matching 01.

~ 0 Common
is

strings

S 1

S 2

S 3

• Ol

1,4,7,11

3,14

2,5,6

Fig. 8. 0-lists.

%

* It is reasonable to assume that the representations of the symbols are linearly ordered so that
useful operations like test-for-ordering (i.e., x >/b?), rather than test for mere equality, (x = b?),
may be used.

C O M P U T I N G A L O N G E S T C O M M O N S U B S E Q U E N C E , . . 57

It is also clear that, in this arrangement, each point has a unique index in the
array and an access to the array takes a constant amount of time. The total
space required is clearly bounded by O(tIPII), where tt z = llzl w P2 u . . . w Pt-
For the example above, the R-value of the point (1, 14, 2) is in B1 [1, 2, 1].

Concluding these discussions, the arrangements can solve the general LCS
problem rather efficiently.

Main theorem
With O(L. t) preprocessing time, the K-string LCS problem can be soh,ed with

O(K" t" IIPII) processing time and O(lIPll+L' t) space, where L denotes the total
length of the strings (the input size) and t denotes the number of distinct symbols
that are common to the strings under consideration. H~zll is the number of K-tuples
denoting the matches among the strings.

For the usual applications, the number of the strings (K) and the alphabet
(Z) are both finite, i.e., there exist some constants C1, C2, such that K ~< C1 and
112711 ~< C2. Since t ~< IISII, we have the following asymptotic upper bound for the
K-string LCS problem:

COROLLARY For a constant number oj strings and an alphabet oJ bounded size,
the LCS problem can be solved with O(L) preprocessing time and 0(0 z) processing
time, where L denotes the input size and • denotes the number of matches.

4. Discussion.

A simple, systematic approach for generating common subsequences for a set
of strings has been proposed. Assuming a finite symbol set, it is shown that the
proposed scheme requires a preprocessing time that grows linearly with the total
length of the input strings and a processing time that grows linearly with K, the
number of strings, and IIP]I, the number of matches among them. The only
previous algorithm for the generalized LCS problem takes
O(K'JSlJ'JS2J'...'JSK]) execution time, where jSiJ denotes the length of the
string Si. Since typically HPtI is a very small percentage of ISII'tSzt'... 'ISKI, the
proposed method may be considered as much more effÉcient than the
straightforward dynamic programming approach.

Now, consider the conventional 2-LCS case. We first note that in several
recent works [12-15, 25] essentially the same string-identification preprocessing
as done in ours is required. With the matched poin.ts represented as a set of 0-
lists, Hirschberg's algorithm in [12] examines every matched point at least once,
hence the time complexity of his algorithm, when expressed in terms of lJPll (the
number of matches), is O(IIPII), i.e., is bounded below by IIPII asymptotically.
Again, let n denote the length of the longer string, the algorithms in [14, 15, 25]
require O(llPlllogn) time. Hence, asymptotically, the above algorithms are
outrun by the new one. The preceding arguments apply only when t, the total
number of distinct symbols that are common to the two strings, is bounded.

58 w. J. HSU AND M. W. DU

For tuna te ly , this is the usual case. Fu r the rmore , as ind ica ted in Section 1, the

new scheme is general enough so tha t the K str ings cases are hand led with the

same ease. The p r o p o s e d CS trees is hence a very useful concept for the LCS

problem.

Acknowledgements.

The au tho r s a re thankful for the comment s given by the reviewers

(anonymous) , which have cer ta inly improved the readabi l i ty of the paper. They

also wish to thank for the assis tance generously given by their colleagues, in

par t icular , Prof. C. G. Chung and Prof. W. T. Tsai.

REFERENCES AND BIBLIOGRAPHY

I. A. V. Aho, D. S. Hirschberg and J. D. Ullman, Bounds on the complexity of the longest common
subsequence problem, J. Assoc. Comput. Mach. 23(1) (Jan. 1976), 1-12.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
2nd printing, Addison-Wesley, Reading, Mass., 1976.

3. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev, On economic construction of
the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR 194 (1970), 487-488 (in
Russian), English transl, in Soviet Math., Dokl. 11, 5 (1970), 1209-1210.

4. V. Chavatal, D. A. Klarner, and D. E. Knuth, Selected combinatorial research problems, STAN-
CS-72-292, Stanford Univ., Stanford, Calif. 1972, p. 26.

5. V. Chvatal and D. Sankoff, Longest common subsequences of two random sequences. STAN-CS-
75-477, Stanford Univ., Stanford, Calif., Jan. 1975.

6. M. O. Dayhoff, Computer aids to protein sequence determination, J. Theoret. Biology 8, (Jan.
1965), 97-112.

7. M. O. Dayhoff, Computer analysis of protein evolution, Scientif. Amer. 221, 1 (July 1969), 86-95.
8. M. L. Fredman, On computing length of the longest increasing subsequences, Discrete Math. l l,

t (Jan. 1975), 29-36.
9. K.S. Fu and B. K. Bhargava, Tree systems for syntactic pattern recognition, IEEE Trans. Computs.

C-22, 12 (Dec. t973), 1087-1099.
10. J. Gallant, D. Maier and J. A. Storer, On finding minimal length superstrings, J. Comput. and

Sys. So. 20, (1980), 50-58.
11. D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Comm.

ACM 18(6) (June, 1975), 341-343.
12. D. S. Hirschberg, Algorithms for the longest common subsequence problem, J. Assoc. Comput.

Math. 24(4) (1977) 664-675.
13. W. J. Hsu and M. W. Du, A fast algorithm for the longest common subsequence problem, Yearly

Report for NSC Support, March (t982).
14. J. W. Hunt and M. D. Mcllroy, An algorithm for Differential File Comparison, Computing

Science Technical Report 41, 197.
15. J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subsequences,

Com. ACM 20(5) (May, 1977), 350-353.
16. S. Y. Itoga, The string merging problem, BIT 21 (1981), 20-30.
17. D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching algorithms, Technical Report

STAN-CS.74-440, Computer Science Dl~t., Stanford Univ,, Aug. (1974).
18. D.E. Knuth, The Art of Computer Programming, Vol. 1 : Fundamentat AIgorithms, Addison-Wesley,

Reading, Mass., See. ed., (1973).
19~ D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, Mass., (1973).

COMPUTING A LONGEST COMMON SUBSEQUENCE... 59

20. R. Lowrance and R. A. Wagner, An extension of the strin# to string correction problem, J. Assoc.,
Comput. Mach, 22(2), (1975), 177-183.

21. S. Y. Lu and K. S. Fu, A sentence-to-sentence clustering procedure for pattern analysis, IEEE
Trans. Syst., Man., Cybern., Vol. SMC-8(5), (May, 1978), 381-389.

22. D. Maier, The complexity of some problems on subsequences and supersequences, J. Assoc. Comput.
Mach. 25(2), (April, 1978), 322-336.

23. W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, J. Comput.
and Syst. Sci. 20 (1980), 18-31.

24. H. L. Morgan, Spelling correction in systems programs, Comm. ACM 13(2), (Feb. 1970), 90-94.
25. A. Mukhopadhyay, A fast algorithm for the lonyest-common-subsequence problem, Inf. Sci. 20,

(1980), 69-82.
26. D. Sankoff, Matching sequences under deletion insertion constraints,Proc. Nat. Acad. Sci., U.S.A.,

69 (1972), 4-6.
27. S. M. Selkow, The tree-to-tree editin# problem, Inform. Processing Letters, 6, 6 (Dec., 1977),

184-186.
28. P. H. Sellers, An algorithm for the distance between two finite sequences, J. Combinatorial Theory

Ser. A16: (1974), 253-258.
29. R. A. Wagner, Common phrases and minimum-space text storage, Comm. ACM, 16(3), (March,

1973), 148-152.
30. R. A. Wagner and M. J. Fischer, The strino-to-strin# correction problem, J. Assoc. Comput.

Mach. 21(1), (1974), 168-173.
31. P. A. Wagner, On the complexity of the extended string-to-string correction problem. Proc. Seventh

Annual ACM Symp. on Theory of Comput., (1975), 218-223.
32. C. K. Wong and A. K. Chandra, Bounds for the string editing problem, J. Assoc. Comput. Mach.

28(1) (Feb. 1976), 13-18.
33. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, Potomac,

Maryland, (1976).

