
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 140.113.38.11

This content was downloaded on 28/04/2014 at 20:51

Please note that terms and conditions apply.

The scattered spectrum in a homogeneous isotropic turbulent medium

View the table of contents for this issue, or go to the journal homepage for more

1984 J. Phys. A: Math. Gen. 17 1357

(http://iopscience.iop.org/0305-4470/17/6/030)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 1357-1366. Printed in Great Britain 

The scattered spectrum in a homogeneous isotropic 
turbulent medium 

Yu-Faye Chao 
Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic 
of China 

Received 1 March 1983, in final form 9 November 1983 

Abstract. The spectral distribution of electromagnetic waves scattered by density fluctu- 
ations in a homogeneous, isotropic turbulent medium is studied. The time-dependent 
density fluctuations are derived from the hydrodynamic equations, which are quasi- 
linearised with respect to the acoustic parameters. The interaction between the acoustic 
field and the vortex field is retained. The scattered power spectrum due to refractive index 
fluctuations is evaluated for stationary turbulence at high Reynolds number, and the physical 
spectrum is evaluated for non-stationary turbulence at low Reynolds number. The frequency 
distribution of the scattered wave is found to be similar to that of a simple fluid. By 
including the turbulent acoustic effect, this work extends the results of Mountain. 

1. Introduction 

The spectrum of scattered radiation has long been used to probe the dynamics of 
matter (Chu 1974, Berne and Pecora 1976, Crosignani et af 1974). As early as the 
1930s, the Rayleigh line and Brillouin doublets of fluid were predicted (Brillouin 1922) 
and observed (Gross 1932). Due to the rapid progress of laser techniques, the fine 
structure of the Rayleigh and Brillouin spectra of fluids can be measured (Benedek 
1966). Mountain ( 1966) linearised the hydrodynamic equations, and successfully 
explained the fine structure of the Rayleigh and Brillouin spectra of a simple fluid. 

It was shown (Moyal 1952) that there are two distinct physical aspects to a 
compressible turbulent medium. One is called eddy turbulence, which is connected 
with the breakdown of laminar flow and the creation of a fluctuating eddy motion, 
that is, the generation of motion having non-zero vorticity. The other is connected 
with the existence of a fluctuating compression wave, having the character of random 
noise, the one that Mountain considered in a simple quiet fluid?. There is no interaction 
between these two effects in the first-order approximation; the nonlinear term, 
however, will represent the interaction of these two motions. At high levels of tur- 
bulence, the eddy turbulence can act as a source of acoustic waves. This phenomenon 
has been a subject of interest to aerodynamic physicists (Goldstein 1974, Laufer 1974) 
after Lighthill’s (1952) initiation of the theory of acoustic waves generated by tur- 
bulence. The primary purpose of our work is to analyse the spectrum of electromagnetic 
waves scattered by density fluctuations resulting from the effects of these two kinds 
of motion. 

t The quiet fluid is used for emphasising the fact that beside the local thermal noise there is no external noise. 
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2. The scattering theory of light 

The dielectric constant of a thermally fluctuating medium can be written as 

E ( r , t ) = E O + E l ( r , t )  

where E,, is the ensemble average value of the dielectric constant of the medium and 
E l ( r ,  t )  is the small fluctuating part, which is changing with respect to space r and time 
t. If we take the density p and temperature T as the thermal state variables, then the 
fluctuation of the dielectric constant depends on the fluctuation of these two variables. 
(Just like the dielectric constant, all the thermal variables with subscript zeros will 
indicate the ensemble averages of the variables; subscript ones will indicate the 
fluctuating quantities of the variables.) Since the effect due to the latter is less than 
the former, 

dE = ( a E / d p ) T  dp. 

The scattered wave intensity due to  the density fluctuations can be calculated from 
Maxwell’s equations. According to the definition of running spectrum (Benedek 1966), 
one can write the instantaneous power spectrum as 

x ([A( r, t )  + A*( r, t)][A( r, t - 7) + A*( r, t - T ) ] ) ,  (1) 
where 

A(r ,  t )  =exp[i(k,r-wot)] dr’  pl(r, t - / r - r ’ l / c , )  exp(ikl * r ’ ) ,  (2) 

( ) indicates the ensemble average, A*(r, r)  is the complex conjugate of A(r, t ) .  ko, Eo 
are the wave vector and the electric field of the incident wave respectively. The scattered 
wave vector k ,  = ko- (w,/c,)q, in which c, is the velocity of light in the medium, and 
q = r/lrl; then I) is the angle between Eo and q. 

The power spectrum and its Fourier transform, the autocorrelation function, are 
widely used as a powerful tool for analysing a stationary process, i.e. a time invariant 
process. If the density fluctuation is stationary, due to ergodic hypothesis, the ensemble 
average is equal to the time average, hence the autocorrelation function of the density 
only depends on the time difference of densities. The instantaneous power spectrum 
accordingly can be reduced to the conventional power spectrum ( Wiener-Khintchine 
theorem), and there is no physical ambiguity in the spectrum due to the fact that the 
correlation function has already been smoothed out in the time domain. But one does 
find physical ambiguities in some non-stationary stochastic processes (Bendat and 
Piersol 1971, Woodward 1953). Mark (1970) introduced a window function to smooth 
out the ambiguity and called it the physical spectrum. 

In this paper, we will evaluate the scattered power spectrum for a stationary 
turbulent medium, and the physical spectrum for a non-stationary turbulent medium. 

I 

3. The hydrodynamical equations and turbulent noise 

For a continuous medium, the fluctuations of density p and temperature T are 
determined by the hydrodynamical equations. By use of some thermal properties 
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(Hunt 1957), one can simplify the Navier-Stokes equation and obtain 

a u / a t + ( u .  v ) u = - ( c ~ / Y ) ( v  I ~ ~ + ~ v T ) + V V ~ V + ( ~ + ~ ~ ) ~ - ~ V ( V  - U), (3) 

where co is the speed of sound, y the ratio of specific heat, p the coefficient of thermal 
expansion, 6 the shear viscosity, 7 the bulk viscosity, and v the dynamic viscosity. 
Assuming all these thermal coefficients are constant and taking the divergence of (3),  
we have 

Ah!3 i+(u*  V)4- b V Z 4 + ( c i / r ) ( V 2 X + p V 2 T )  = - (av , /ax , )  av,/ax,, (4) 

where b = ( [ + $ 7 ) / p o ,  4 = V * U, and X = In ( p ) .  In a homogeneous turbulent medium, 
the thermal quantities X, T, and velocity U are all fluctuating about their mean values, 
which are independent of space and time. The fluctuation of the velocity can be 
separated into two parts, the irrotational part expressed as up (i.e. V X up= 0), and 
the rotational part expressed as us (i.e. V us = 0). Since lupl -- ( U / C ~ ) ~ ~ U ~ I  (Monin and 
Yaglom 1971) where U is the average speed of flow, in a subsonic flow lupl<< Ius[. 
Taking the lowest order of (av,/ax,)  av,/ax,, and neglecting the viscous dissipation of 
the medium (Hinze 1959), we can write down the quasi-linearised hydrodynamic 
equations as 

a x l / a t +  ( U -  v)xl + 41 = 0, 

a T,/ at + ( U v) T~ + [ ( Y - 1)/p]4~ - xv2 T~ = 0, 

where x = K / ~ ~ c ,  ( K  is the thermal conductivity of the medium, and c, is the specific 
heat at constant volume of the medium). For a homogeneous isotropic turbulent 
medium, we have to take U = 0, which can be achieved by moving the observer with 
the flow. Let 

ai(r, t )  = ( 8 ~  3 1 -1/2 I dkdl (k ,  t )  eik ' r  

indicate the Fourier transform relations of X 1 ,  Tl and &. By Fourier transforming 
(3, we have 

akl/at + 6, = 0, 

where 

The solution of this set of non-homogeneous differential equations contains the 
homogeneous solution and special solution. The homogeneous solution has been 
obtained by Mountain (1966), who used the solution to explain the scattered spectrum 
of a simple fluid. The purpose of this paper is to find the special solution of (6) 
and treat it as a medium with external noise, which is produced by the turbulence of 
the medium. This special solution can be obtained by introducing a set of Green 
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functions. Let 

Gi(k,t, t ’ ) =  dwgi(k,w)exp[-io(t-t’)] (7) I 
be the Green functions of RI, & and 
we have 

Substituting the relations of (7) into (6), 

From solving (8), we have 

gx = (k) ( ( i ~ ) ~  - ( bk2 + ~ k ~ ) ( i w ) ~  + (,ybk4 + cik2)(iw) - ( d k 2 /  y)xk2 

Let r = $ b + ( l - l / y ) ] ;  then Xk2/cok and Tk2/cok will be of the order of Wth/fdO, 

where wth is the frequency of thermal variation and wo is the frequency of the incident 
wave, which is always less than one for a continuous medium; hence the first-order 
approximation of the denominator of gx is 

iw - Xk2 

M = (iw -xk2/ y)(iw +icok - rk2 ) ( io  -icok -Tk2), 

and one finds 

1 Gx(k,t,t’)-- “’( 1-- ’) - [ exp ( - ? ’ ( t - t ’ )  - - e x p [ - ~ k 2 ( t - r ’ ) ] c o s c o k ( t - t ’ )  
cok Y cok 
+(c,k)-’ expC-rk2(t-r’)] sin cok(t-t‘), 

Gx (k, t, t ’ )  = 0, 

for ta t ’ ,  

for t < t ’ .  (9) 

Since the density fluctuation is affected by both the local thermal agitation and the 
turbulence of the medium, we can write the density fluctuations as 

$1 = b H  + i s  (10) 

where PIH is the density fluctuation due to the local thermal agitation, which is the 
homogeneous solution of (6), and $, is the density fluctuation due to the turbulent 
noise of the medium, which is the special solution of (6). By using the Green function 
Gx(k, t, t ’ ) ,  we can write 

The instantaneous fluctuating quantities usually are not measurable, so it is more 
practical just to find the correlation function or the structure function of the fluctuating 
quantities. However, we are only interested in the correlation function of densities. 
If we neglect the interaction between local thermal agitation and turbulent effect, we 
have 

(12) (bl(k t l )b l (k ,  f 2 ) > = ( b H ( k  f l ) b H ( k ,  t 2 ) ) + ( b s ( k  tl)bs(k, f 2 ) ) .  
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The first part on the right-hand side of (12), caused by the local thermal agitation of 
the medium, has been evaluated by Mountain (1966); the second part, caused by the 
turbulence of the medium, can be evaluated by substituting (1 1) into (12). According 
to the last statement, we have 

From (13) and the definition of fi( k, t ) ,  we can see that the density correlation function 
is determined by the quadrupole correlation of velocities. As the correlation function 
is very difficult to deal with, for simplicity, an isotropic homogeneous turbulent medium 
is assumed. This type of turbulence can be generated downstream from a regular array 
of rods. The velocity distribution in a homogeneous isotropic turbulent medium is 
approximately normal (Batchelor 1960), so one can decompose the quadrupole velocity 
correlation function to be the combination of double velocity correlation functions. 
By knowing the double correlation function of velocities, one can calculate the density 
correlation function and obtain the scattered spectrum. 

4. Turbulent noise power spectrum 

For evaluating the scattered spectrum due to turbulent effect, we write 

where AH indicates the local thermal effect, A, the turbulent effect. Substituting (11) 
into the definition of A(r, t ) ,  equation (2), we can write 

AAr, t )  =poexp[i(kor-wot)l dt‘ dx’exp(ik, x ) k i k { u i u ; G x ( k l ,  t - r / c , ,  t ’ ) .  5 1  
For avoiding the physical ambiguity in a non-stationary turbulent medium, we will 
evaluate the physical scattered spectrum for a non-stationary turbulent medium. In 
a stationary turbulent medium, there is no difference between the conventional power 
spectrum and the physical spectrum (Mark 1970); we will only evaluate the conven- 
tional power spectrum for the stationary case. 

4.1. Non-stationary turbulence and physical spectrum 

For a non-stationary stochastic process, a window function has to be introduced in 
order to have a practical power spectrum. Let w ( t  - p )  be the window function, which 
is positive in the neighbourhood of t - p = 0, and small outside this neighbourhood. 
If we have 

m 

W ( o ,  r, t ) = j - m d ~  w ( t - p ) [ h S ( r , p ) + A , * ( r , ~ ) 1 e i w ~ ,  (15) 

where &(r, t )  has been defined in (2), then the physical power spectrum can be defined 
as (I W(o,  r, t)I2). Thus the scattered physical power spectrum of a non-stationary 
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turbulent medium can be written as 

( 1  W ( o ,  r, t ) lz )  = p i  [ d p  [ d p ‘  5 dt‘ dt” [ dx’ [ dx“ 

x W ( f - p )  W ( t - p ’ ) G x ( k l ,  t - r / c , ,  t ’)Gx(k, t - r / c , ,  f ” )  

X i4k:k{k: k;“(uS(x’, t ’ )u ; (x ’ ,  t ’ )u;(x”,  t”)uS,(x”, t”)) 

x{exp[-iwo(p -p’)] exp[ikl (x’-x”)]+cc 

+exp (2ikl * r )  expC-iwo(p+p‘)]+cc}. 

The window function is taken as 

(2  a) -1 ’2  I t -pk Q, 
otherwise, 

where Q is the time width for short time averaging. The quadrupole correlation of 
velocities is evaluated for a homogeneous isotropic turbulent medium. The fluctuation 
of velocity is assumed to be normally distributed, so one can decompose the quadrupole 
correlation function into the combination of double correlation functions, that is 

( uiuju;uh) = ( U i U j ) (  u;u;> + ( U i U l ) (  U j U h )  + (up ; ) (  U j U l ) .  (17) 

Let 

Q i j ( 5 ,  t, t + A t )  =(ui(r,  t)uj(r’, t ’ ) ) ,  

where g = r - r ’  and A t =  t ’ - t ;  Eij(k,  t, t + A t )  is the Fourier transform of Qif The 
physical power spectrum can be evaluated by knowing that the energy spectrum tensor 
(Deissler 1960), 

Eij( k, t’, t”) = +( k, t ’ ,  t”)( k2&j - kikj), 

4(k,  t’, t ” ) = c k  exp(-2k2/k:) exp~-vk2(t’+r’’-2t0)], (18) 
where to is the initial time. For simplicity, we take 

(cok)- ’  expC-rk2(t-t’)] sin c o k ( t - t ’ ) ,  ta t’, 
otherwise, 

in place of (9) since both (1 - l/ y) and ,yk2/cok are smaller than 1. 

4.2. Stationary turbulence and power spectrum 

The conventional power spectrum ( Wiener-Khintchine theorem) is taken for evaluating 
the scattered spectrum of stationary turbulence. Substituting (14) into ( l ) ,  we have 

I J u ,  r, t )  = (factor) dT cos UT I dt’ I dt” I dx’ dx” 

xGx(kl,  t, t ‘ )Gx(k l ,  t--7, t”)i4kik{k:kr 

X(Uj(X’, t ’ ) U j ( X ’ ,  t’)U[(”’, t ” )U , (X” ,  t”))  

~ { e x p  (-iwoT) exp[iko * (x’-x”)]+cc 

+exp(2ikor) expC-iwo(2t- T)]+cc}. 
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A homogeneous isotropic turbulence is also assumed, and the velocity fluctuations are 
assumed to be normally distributed. But the energy spectrum of stationary turbulence 
is taken as (Kraichnan 1976) 

( 2 1 )  

where of is the characteristic velocity of large eddies. The energy spectrum is taken 
in the inertial sub-range, from kf to kd, which correspond to the largest and smallest 
scales of the eddies. 

E , ( k ,  t, t + A t )  = (constant)(K2Sij- k i k j ) ~ 2 ’ 3 k - 1 7 / 3  exH-4 k 2  U:( At)2], 

5. The differential cross section of the scattered wave 

In a turbulent medium, the density fluctuations contain not only the information of 
local thermal agitation, but also the information of turbulence. Without being in the 
region of turbulence, we hope to evaluate the turbulent noise effect in the scattered 
spectrum in order to predict the structure of turbulence. 

The differential cross section of the scattered wave is defined as 

7 

d a  I ( w ,  r, t ) r 2  C 
Io = - 

dw d o -  IO 4T 
-- 

2 d a  k:sin2 I,5 a& po  
d w d n -  ( 4 ~ ) ’  d p  E~ 
-- (--) 4V,4T 

1’ ( r k : ) 2  + ( r k : ) 2  
+ [ (r k:)’ + (U  - wo - co kl)’ (I- k:)2 + ( w  - wo + co kl)’ 4 

for the stationary fluctuation, and 
4 d a  k:sin21,5 aEpo a q 

d o d n  ( 4 ~ ) ~  apeo 2 CO 

-- - - ( -)2- (-) (16  X f) k i 3  V ,  

- 2-712 3’ (rk : I2  + +[ ( rk : ) ’+  ( w  - wo+ c0k1)’ ( r k : ) ’ + ( w  - wo- cok1)2 4 

x ex p[ -r k:( t - to - -31 ex p( 3)}, 
( rk : I2  

for the non-stationary fluctuation, but note the width is O( l / a )  instead of ( v k : )  or 
(W). 
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The initial condition of the energy spectrum tensor in (28) is taken as (Kraichnan 
1964) 

4 ( k , O )  = (16)(2/tr)V;k,'k4 exp(-k2/k:), 

where k, is the wavenumber at which the energy is maximum. An isotropic 
homogeneous turbulence was produced by Helland and Van Atta (1977) in a wind 
tunnel. By matching the energy spectrum tensor with the experiment (figure l), we 
find that k, is of the order of 10-'cm-'. Even the energy spectrum tensor of 
Kraichnan's model does not match with Helland's experiment very well; for theoretical 
reasons we adopt the data (table 1) from the experiment and evaluate the differential 
cross section for stationary and non-stationary turbulence (table 2). 

-2 .*I 
-L . 0. 

-6. -2. 

Fwre 1. Comparison of three-dimensional energy spectrum. A, Helland and Van Atta 
grid experiment; B, Kraichnan's work. 

Table 1. Parameters for calculation on scattering intensity. 

Air 
(non-stationary) 

Water 
(stationary) 

10-1 
6 x 
0.2 
3.15 X 10' 

1.4 
0.1 

104 

103 

300 
100 

102kl 
0.82 

103 
103k1 
io5 

1.004 

10-12 

100 
10-2 
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Table 2. The scattered differentia1 cross section. 

Stationary Non-stationary 

6. Conclusion and discussion 

The turbulent noise effect on the scattered spectrum should be observed outside the 
region of turbulence, or the local turbulent effect will be far more distinct than the 
turbulent noise effect. In an isotropic homogeneous turbulent medium, the scattered 
spectrum can only be measured inside the region of turbulence, so the central maximum 
is very large compared with the Brillouin doublet. Obviously a more practical system 
is needed in order to evaluate the turbulent noise effect on the scattered spectrum, 
such as a turbulent jet. For theoretical reasons, we did preliminary work in a 
homogeneous isotropic turbulent medium. By comparing the scattered spectrum of a 
quiet simple fluid (Berne and Pecora 1976), we find 

$c = the scattered intensity ratio at central maximum of an isotropic homogeneous 
medium to the quiet simple fluid 

for stationary turbulence, and 

for non-stationary turbulence, where KT is the isothermal compressibility of the 
medium, KB is the Boltzmann constant and A = vk:( t - to+ 1/ v k i  - r /  c,,,). The scat- 
tered intensity of non-stationary turbulence depends on time; we assume that the time 
interval is less than l /vk: and r/c,<< l/vk;. Since the Brillouin doublet is far less 
than the central maximum, we only estimate the order of magnitude of the scattered 
intensity at the central maximum. Water and air are taken as the scattered media for 
stationary and non-stationary turbulence respectively. 

In table 2, we find that 8;: is of the order of lo4 for both stationary and non-stationary 
turbulence. But the scattered intensity for air is only of the order of so the 
scattered spectrum in air is hardly detectable. We expect to measure the scattered 
spectrum in a dense medium. 
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