

電機學院 電子與光電學程 碩士論文

GaAs/In_(0.5)Ga_(0.5)P 雙接面太陽能電池 磊晶與製程的設計 Design,Epitaxy and fabrication of GaAs/In_(0.5)Ga_(0.5)P

Dual junction Solar cells

研 究 生:林志遠 指導教授:余沛慈 教授

中華民國一百年七月

GaAs/In(0.5)Ga(0.5)P雙接面太陽能電池 磊晶與製程的設計

Design, Epitaxy and fabrication of GaAs/In_{(0.5})Ga_(0.5)P Dual junction Solar cells

A Thesis Submitted to College of Electrical and Computer Engineering National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master of Science in Electronics and Electro-Optical Engineering July 2011 Hsinchu, Taiwan, Republic of China

GaAs/In_(0.5)Ga_(0.5)P雙接面太陽能電池 磊晶與製程的設計

學生:林志遠

指導教授:余沛慈 博士

國立交通大學 電機學院 電子與光電學程碩士班

摘 要

近幾年來,由於能源供應日漸缺乏,因此替代性能源的開發則備受重視。而太陽能 具備了龐大的能源供給量以及相當低的環境污染,是一種非常好的替代性能源,也因此 受到廣泛的研究。本實驗中所研究的多接面 III-V族太陽能電池具備了相當高的能量轉 換效率,是一個很好的研究方向。由於多接面太陽能電池是由不同能隙的半導體材料串 接在一起,所以整體元件的電流受到各部電池中最小電流的限制。因此,提升最小電流 值並達到電流匹配,對於提升轉換效率而言,是一個很重要的議題。

本實驗中先利用 PC1D 及 APSYS 模擬軟體先進行 GaAs 及 InGaP 單接面太陽能電 池結構以及 GaAs / InGaP 二接面太陽能電池結構的模擬。藉由模擬過程獲取材料種 類、薄膜厚度、掺雜濃度等參數對於轉換效率的影響,藉以達成結構優化的目的。再使 用有機金屬化學氣相沉積(MOCVD)來成長Ⅲ-V族太陽能電池結構,其中包括了 GaAs 及 InGaP 單接面太陽能電池結構以及 GaAs / InGaP 二接面太陽能電池結構。在此,我 們發現薄膜材料形成品質的優良與否有很大的關鍵原因在於反應腔體(reactor chamber) 內部流場的穩定性、溫度控制、溫度均勻性以及反應氣體的反應狀況等這幾種重要的因 素。因此針對可控制的長晶參數:如溫度、長晶速率(growth rate)、長晶壓力(reactor pressure)、V-Ⅲ比(V-Ⅲ ratio)、晶格常數(lattice constact)、基板(substrate)的選擇等, 即是攸關薄膜品質之探討分析的重點。

在本論文第一章中,將先針對太陽能電池發展歷史做一概述,而後再說明Ⅲ-V族 太陽能電池發展的優勢以及本實驗研究的方向。 第二章中,將介紹太陽能電池的工作原理、等效電路及常用的基本參數,以及化合物半導體太陽能電池的基本結構介紹。

第三章中將介紹 PC1D 及 APSYS 模擬軟體所進行的 GaAs、InGaP 單接面太陽能電 池及 GaAs/InGaP 二接面太陽能電池的模擬結果。其中包含模擬所需的各種物理參數設 定以及太陽能電池結構的規劃。

第四章中將對有機金屬化學氣相沉積法(MOCVD)原理及系統做介紹,並且包含了 MOCVD 反應物的特質、磊晶參數的考量與設定以及磊晶薄膜量測儀器的介紹說明。

最後在第五章中,將延續第三、四章的研究,利用有機金屬化學氣相沉積法 (MOCVD)來成長 GaAa、InGaP 單接面太陽能電池及 GaAs/InGaP 二接面太陽能電池。 並對量測結果進行分析與討論,最後在第六章為本論文做一個完整的結論及規劃未來工 作重點。

Design, Epitaxy and fabrication of GaAs/In_(0.5)Ga_(0.5)P Dual junction Solar cells

Student: Lin Chih Yuan

Advisors: Dr. Yu Pei Chen

Degree Program of Electrical and Computer Engineering National Chiao Tung University

ABSTRACT

In recent years, due to the shortage in energy supply, the development of alternative energy has caught great attention. Moreover, since solar energy is huge energy supply source and produces very low environmental contamination, it is thus very good alternative energy, and it thus has caught attention and is under wide research. The multi-junction III - V solar cell studied in this experiment has pretty high energy conversion efficiency, which is a pretty good research direction. Since multi-junction solar cell is serially connected by semiconductor materials of different energy gaps, the current of the entire device is thus limited by the smallest current in each part of the cell. Therefore, the enhancement of smallest current value and the reach of current match is a very important topic for the enhancement of conversion efficiency.

In the experiment, PC1D and APSYS simulation software is used first for the simulation of GaAs and InGaP single junction solar cell structure and GaAs / InGaP double junction solar cell structure. Through the simulation process, the results of the influence of the material type, thin film thickness and doping concentration on conversion efficiency were obtained, and the structure optimization objectives were then obtained. Then Metal organic chemical vapor deposition (MOCVD) method is used to grow III-V solar cell structure, which includes GaAs and InGaP single junction solar cell structure and GaAs / InGaP double

junction solar cell structure. Here, we found that the quality of the thin film material formed is mainly due to the internal flow field stability in the reactor chamber, temperature control, temperature uniformity, and the reaction situation of the reaction gas, etc. Therefore, the controllable crystal growth parameters are the key points to be investigated regarding the thin film quality, and the parameter are, for example, temperature, crystal growth rate, reactor pressure, V-III ratio, lattice constant, and substrate selection, etc.

In the first chapter of this thesis, an overview will first be done on the development history of the solar cell, then the development advantages of Ⅲ-V solar cell and the research direction of this experiment will be described.

In chapter 2, we are going to introduce the work principle, equivalent circuit and basic parameters of solar cell, then it will be introduction of the basic structure of compound semiconductor solar cell.

Chapter 3 will be introduction of the simulation result of GaAs, InGaP single junction solar cell and GaAs/InGaP double junction solar cell as performed by PC1D and APSYS simulation software. Wherein it includes the physical parameter setup as needed in the simulation and the planning of solar cell structure.

Chapter 4 will be introduction of the principle and system of MOCVD, which includes MOCVD reactant characteristics, epitaxial parameter consideration and setup, and the introduction and description of the measurement equipment for epitaxial thin film.

Finally, in chapter 5, it will be an extension of the study in chapter 3 and 4. It will use MOCVD to grow GaAs > InGaP single junction solar cell and GaAs/InGaP double junction solar cell. Moreover, analysis and discussion will be performed on the measurement result, and finally, a complete conclusion and the future work will be presented for chapter 6.

能夠順利完成碩士論文,我由衷地感謝我的指導教授<u>余沛慈</u>博士。加入綠能光電 實驗室的這兩年多研究生活中,深刻地體會到余老師所帶給我的除了專業知識的指導以 及研究課題相關的訓練之外,更有意義的是從余老師身上學到了獨立思考、勇於面對問 題努力不懈的精神,真得讓我受益良多。同時余老師對於研究上的專注及熱忱也令我印 像深刻,對於未來也提供給我一個很好的學習典範。

也很感謝實驗室博士班的家華學長,在論文研究上提供許多寶貴的建議、想法及經驗,讓實驗的過程更加有效率。同時也謝謝已畢業的孟儀學姐及正宇學長在模擬軟體操作及分析上細心的指導與協助,最後還得感謝實驗室中的峰瑜及國軒同學在後段製程上的大力協助,由於你們的協助才能讓我的論文得已順利完成,真是謝謝你們。另外還有一位很感謝的人,就是任職於晶元光電的陳金源 副總,感謝他對我長期的支持與鼓勵,讓我在學習的過程中更加有信心。

最後要感謝我親愛的家人:媽媽、淑真寶貝及翔翔寶寶,有你們的支持才能讓我無後顧 之憂,順利完成學業。再此向你們說聲謝謝,也辛苦你們了。

1896

中文摘要		i
英文摘要		iii
誌謝		V
目錄		vi
表目錄		viii
圖目錄		Х
第一章	序論	1
1.1	太陽能電池發展史 ·····	1
1.2	Ⅲ-Ⅴ族太陽能電池發展的優勢 ••••••	1
1.3	研究動機及研究方向 ••••••	3
第二章	文獻與回顧 ·····	4
2.1	前言	4
2.2	太陽能電池的基本原理	4
2.3	太陽能電池的等效電路	5
2.4	太陽能電池的基本參數 ···············	6
2.5	化合物半導體太陽能電池的基本結構介紹	8
第三章	模擬軟體之模型的建立 ······	16
3.1	前言	16
3.2	GaAs 單接面太陽能電池模擬結構、參數及結果 ·····	16
3.3	InGaP 單接面太陽能電池模擬結構、參數及結果 ······	33
3.4	GaAs/InGaP 二接面太陽能電池模擬結構、參數及結果 ······	41
第四章	有機金屬化學氣相沉積法 •••••	44
4.1	有機金屬化學氣相沉積法 (MOCVD)原理及系統介紹 ·····	44
4.2	實驗中 MOCVD 相關反應物的特質······	48
4.3	MOCVD 磊晶參數的考量及設定······	52
4.4	薄膜量測之儀器原理介紹・・・・・	58
第五章	MOCVD 磊晶結構的成長及量測 ·····	62
5.1	前言	62
5.2	GaAs 單接面太陽能電池磊晶結構及量測結果 ······	62
5.3	InGaP 單接面太陽能電池磊晶結構及量測結果 ······	70
5.4	GaAs 穿隧層薄膜成長及量測 ·····	78

5.5	GaAs / InGaP 二接面太陽能電池磊晶結構及量測結果 ·····	84
第六章	總結及未來工作	87
參考文獻		89
附錄一		94
自傳		95

表目錄

表 3-1	GaAs 光學參數表	17
表 3-2	GaAs 材料折射率	18
表 3-3	GaAs 材料消光係數	18
表 3-4	GaAs 材料吸收係數	19
表3-5	In@.5)Ga@.5)P光學參數表	19
表 3-5	In(0.5)Ga(0.5)P 材料折射率	20
表 3-6	In(0.5)Ga(0.5)P 材料消光係數	21
表 3-7	In(0.5)Ga(0.5)P 材料吸收係數	21
表 3-8	In(0.5)Ga(0.5)P 材料反射率	22
表 3-9	模擬 GaAs 單接面太陽能電池所得到的 Fill Factor 及轉換效率	24
表 3-10	Al(0.7)Ga(0.3)As 光學參數表	27
表 3-11	Al(0.7)Ga(0.3) As 材料折射率	28
表 3-12	Al(0.7)Ga(0.3) As 材料消光係數	29
表 3-13	Al(0.7)Ga(0.3) As 材料吸收係數 E S	29
表 3-14	Al(0.7)Ga(0.3) As 材料反射率	30
表 3-15	模擬 GaAs 單接面太陽能電池所得到的 Fill Factor 及轉換效率	31
表 3-16	GaAs 單接面太陽能電池, Window layer 採用 In(0.5)Ga(0.5)P 及	
	Al@7)Ga@3) As 模擬出來的 Fill factor 及轉換效率(η)	32
表 3-17	Al(0.5)In(0.5)P 光學參數表	34
表 3-18	Al@.5JIn@.5)P 材料折射率	35
表 3-19	Al@.5)In@.5)P材料消光係數	35
表 3-20	Al(0.5)In(0.5)P 材料吸收係數	36
表 3-21	Al(0.5)In(0.5)P 材料反射率	36
表 3-22	模擬 In(0.5)Ga(0.5)P 單接面太陽能電池所得到的 Fill Factor 及轉換效率	38
表 3-23	GaAs / InGaP 單接面太陽能電池比較表	40
表 3-24	模擬 GaAs / InGaP 二接面太陽能電池量所得到的 Fill Factor 及轉換效率	43
表 5-1	GaAs、InGaP 長晶速率及推算 MOCVD 長晶所需時間	65
表 5-2	GaAs 單接面太陽能電池各磊晶層掺雜濃度量測結果	67
表 5-3	GaAs 單接面太陽能電池各層磊晶參數	68
表5-4	GaAs 單階面太陽能電池所得到的 Fill Factor 及轉換效率	70
表 5-5	InGaP、AlInp 長晶速率及推算 MOCVD 長晶所需時間	72

表 5-6	InGaP 單接面太陽能電池各磊晶層掺雜濃度量測結果	75
表 5-7	InGaP 單接面太陽能電池各層磊晶參數	76
表 5-8	InGaP 單接面太陽能電池所得到的 Fill Factor 及轉換效率	77
表 5-9	穿隧層 Bulk 結構及參數	82
表 5-10	退火後穿隧層厚度與阻値的關係	83
表 5-11	GaAs / InGaP 二接面太陽能電池結構	84
表 5-12	GaAs/InGaP 二階面太陽能電池所得到的 Fill Factor 及轉換效率	86

圖目錄

圖 1-1	矽及Ⅲ-Ⅴ族半導體對光的吸收係數	2
圖 2-1	太陽能電池 PN 接面	4
圖 2-2	電子電洞對受空乏區內建電場影響而分離	4
圖 2-3	理想的太陽能電池等效電路圖	5
圖 2-4	考慮串聯及並聯電阻的太陽能電池等效電路圖	6
圖 2-5	太陽能電池照光後所量測得之 I-V 曲線圖	6
圖 2-6	太陽能電池的基本結構	8
圖 2-7	在一個接面結構中,光能量大於半導體材料能隙(hυ>Eg)時入射光的	
	光子被吸收後所造成一連串的反應行為	9
圖 2-8	GaAs 單接面太陽能電池結構	10
圖 2-9	InGaP 單接面太陽能電池結構	10
圖 2-10	GaAs/InGaP 二接面太陽能電池結構	10
圖 2-11	Ⅲ-V族 bandgap、lattice constant、wavelength 關係	11
圖 2-12	InGaP 單階面太陽能電池結構 ES 、 E	11
圖 2-13	內建電場示意圖 [6]	12
圖 2-14	BSF 機制示意圖 1896	13
圖 2-15	在穿隧層中電子移動示意圖	14
圖 2-16	二接面太陽能電池的等效電路圖	15
圖 2-17	二接面太陽能電池 I-V 曲線圖	15
圖 3-1	GaAs 單接面太陽能電池模擬結構	16
圖 3-2	GaAs 量測折射率及消光係數的結構圖	17
圖 3-3	Inco.5)Gaco.5)P 量測折射率及消光係數的結構圖	20
圖 3-4	模擬 GaAs 單接面太陽能電池量的 I-V Curve	22
圖 3-5	模擬 GaAs 單接面太陽能電池量的 Quantum efficiency	23
圖 3-6	模擬 Bsae 厚度調變後所得到的 Isc、Voc	24
圖 3-7	模擬 Bsae 厚度調變後所得到的 FF、QE	25
圖 3-8	模擬 Bsae 掺雜濃度調變後所得到的 Isc、Voc	26
圖 3-9	模擬 Bsae 掺雜濃度調變後所得到的 FF、QE	26
圖 3-10	GaAs 單接面太陽能電池模擬結構	27
圖 3-11	Al(0.7)Ga(0.3)As 量測折射率及消光係數的結構圖	28
圖 3-12	模擬 GaAs 單接面太陽能電池量之 I-V Curve	30

圖 3-13	模擬 GaAs 單接面太陽能電池量所得到的 Quantum efficiency	31
圖 3-14	In(0.5)Ga(0.5)P單接面太陽能電池模擬結構	33
圖 3-15	Al(0.5)In(0.5)P 量測折射率及消光係數的結構圖	34
圖 3-16	模擬 In(0.5)Ga(0.5)P 單接面太陽能電池量的 I-V Curve	37
圖 3-17	模擬In(0.5)Ga(0.5)P單接面太陽能電池量的Quantum efficiency	37
圖 3-18	模擬 Bsae 厚度調變後所得到的 Isc、Voc	38
圖 3-19	模擬 Bsae 厚度調變後所得到的 FF、QE	39
圖 3-20	GaAs/InGaP 單接面太陽能電池 EQE 比較表	40
圖 3-21	GaAs / InGaP二接面太陽能電池模擬結構	41
圖 3-22	GaAs / InGaP二接面太陽能電池模擬結構	42
圖 3-23	模擬 GaAs / InGaP 二接面太陽能電池量得之 I-V Curve	42
圖 3-24	模擬 GaAs / InGaP 二接面太陽能電池量得之 Quantum efficiency	43
圖 3-25	模擬 GaAs / InGaP 二接面太陽能電池量所得到的 Fill Factor 及轉換效率	43
圖 4-1	有機金屬化學氣相沉積(MOCVD)反應過程	44
圖 4-2	MOCVD(Aixtron 2600)系統設備圖	45
圖 4-3	MOCVD 硬體組件圖 ES A	46
圖 4-4	MOCVD 流量控制器管路面盤 8	47
圖 4-5	MOCVD 反應腔體內部結構 1896	47
圖 4-5	MOCVD 後端之廢氣處理系統	48
圖 4-6	三甲基鎵(TMGa)裂解率與溫度的關係	49
圖 4-7	三甲基銦(TMIn)裂解率與溫度的關係	50
圖 4-8	砷化氫(AsH3)裂解率與溫度的關係	50
圖 4-9	磷化氫(PH3)裂解率與溫度的關係	51
圖 4-10	氣體流速及腔體壓力與長晶速度的關係	53
圖 4-11	n型掺雜與磊晶壓力的關係	53
圖 4-12	p型掺雜與長晶溫度的關係	54
圖 4-13	AlGaAs 材料及含鋁組成與長晶溫度的關係	54
圖 4-14	V-Ⅲ比對 GaAs 電性的影響	55
圖 4-15	lattice mismatch 程度大小與 PL 強度的關係	56
圖 4-16	GaAs 材料中,不同的基板角度與掺雜的關係	57
圖 4-17	TMGa 在不同的砷化鎵基板角度與長晶速率的關係	57
圖 4-18	兩道光的光程差為 BC+BD = 2d sin θ	58
圖 4-19	X 光繞射儀	59

圖 4-20	光激發螢光(Photoluminescence)量測儀器	60
圖 4-21	光激發螢光(Photoluminescence; PL)過程示意圖	60
圖 4-22	電化學電容電壓(ECV)量測儀器	61
圖 5-1	MOCVD 成長 GaAs 單接面太陽能電池結構	62
圖 5-2	GaAs、InGaP 長晶速率確認 Bulk sample	63
圖 5-3	GaAs、InGaP長晶速率確認之 SEM 量測結果	63
圖 5-4	GaAs 高長晶速率確認 Bulk sample	64
圖 5-5	GaAs 高長晶速率確認之 SEM 量測結果	64
圖 5-6	GaAs、InGaP之P型掺雜 Bulk sample	65
圖 5-7	GaAs、InGaP之P型掺雜ECV量測結果	66
圖 5-8	GaAs、InGaP之N型掺雜Bulk sample	66
圖 5-9	GaAs、InGaP之N型掺雜 ECV 量測結果	67
圖 5-10	GaAs 單接面太陽能電池 x-ray 量測結果	68
圖 5-11	GaAs 單接面太陽能電池結構 I-V Curve 量測結果	69
圖 5-12	GaAs 單接面太陽能電池結構 Quantum efficiency 量測結果	69
圖 5-13	MOCVD 成長 InGaP 單接面太陽能電池結構	70
圖 5-14	AlInP長晶速率確認 Bulk sample 8	71
圖 5-15	AlInP 長晶速率確認之 SEM 量測結果	72
圖 5-16	InGaP、AlInP之P型掺雜Bulk sample	73
圖 5-17	InGaP、AlInP之P型掺雜 ECV 量測結果	73
圖 5-18	InGaP之N型掺雜 Bulk sample	74
圖 5-19	InGaP之N型掺雜 ECV 量測結果	74
圖 5-20	InGaP之N型掺雜 ECV 量測結果	75
圖 5-21	InGaP單接面太陽能電池 x-ray 量測結果	76
圖 5-22	InGaP 單接面太陽能電池量結構 I-V Curve 量測結果	77
圖 5-23	掺雜濃度與V-Ⅲ比的關係	78
圖 5-24	掺雜濃度與反應腔壓力的關係	79
圖 5-25	掺雜濃度與長晶溫度的關係	79
圖 5-26	P型掺雜濃度與V-Ⅲ比的關係	80
圖 5-27	N型掺雜濃度與V-Ⅲ比的關係	80
圖 5-28	掺雜濃度與反應腔壓力的關係	81
圖 5-29	掺雜濃度與長晶溫度的關係	81
圖 5-30	穿隧層 Bulk 結構 annel 前後的差異	82

圖 5-31	GaAs / InGaP 單接面太陽能電池 x-ray 量測結果	85
圖 5-32	GaAs/InGaP二接面太陽能電池結構 I-V Curve 量測結果	85
圖 5-33	GaAs/InGaP二接面太陽能電池結構 Quantum efficiency 量測結果	86

第一章 序論

1.1 太陽能電池發展史

第一顆單晶砂太陽能電池出現於 1954年,由美國貝爾實驗室所研發、製造出來的, 當時的太陽能電池光電轉換效率只有百分之二到六之間 [1],換算當時的發電成本約為 1785 美金/瓦特,發電成本相當昂貴。然而經過改良,將光電轉換效率提升至百分之十。 但高成本的太陽能發電缺乏商業價值,故僅被應用於太空領域上面,作為人造衛星、太 空載具、等裝置的動力來源。故太陽能電池的應用範圍便受到了相當的限制。1970年代 爆發了中東戰爭,石油輸出國減少石油輸出與提高石油價格,因而引發了世界性的能源 危機。也因為此原因,太陽能電池發展才又開始受到世界各國的重視。而美國在當時立 刻研擬國家級的新能源開發計畫,並提高了太陽能電池方面的研究預算,以加速太陽能 電池的開發與普及。1974 第一個非晶矽太陽能電池誕生,而使用其他半導體作為材料的 太陽能電池的光電轉換效率也在這個時期陸陸續續地獲得提升。

然而從 1990 年代到現在,世界各國深深體認到石油等傳統能源在經過長期大量使 用下存量已極劇縮減,同時也深刻感受大量使用石油能源之後所此引起的地球天氣及環 境巨變,如溫室效應或聖嬰現像等氣候災害均對世人提供了許多警訊。也因如此太陽能 電池得以持續受到各個國家的重視,截至 2007 年,全球太陽能的總產量已達 9.1GWp, 總產値約達到 186 億美元,預估未來十年後的 2020 年可達到 1000 億美元。而我國許多 單位仍持續針對太陽能電池效率提升積極的開發新及研究。

1980年國內太陽電池的發展即已開始,由工研院能源所進行研發工作。早期是以小 尺吋的2吋單晶矽及多晶矽太陽電池晶圓為主,當時的轉換效率約可達11%。到了2000 年茂迪公司成立太陽光電事業部,正式投入太陽能電池營運與銷售的領域。之後2002 年益通光能公司成立,以生產結晶矽太陽電池為主,並於2003年後半年開始量產。現 在國內已有茂迪、益通光能、旺能公司、中美矽晶、綠能科技及合晶等公司投入生產太 陽電池相關產品。台灣位處亞熱帶,擁有良好的日照條件,適合發展太陽能產業的發展。 同時台灣半導體產業具備成熟的製程技術,對於進入太陽能電池領域的發展是不具困難 度的。相信太陽能電池產業在台灣能有很好的發展。

1.2 Ⅲ-Ⅴ族太陽能電池發展的優勢

由於半導體產業近幾十餘年來迅速發展,許多種類太陽能電池陸續被開發及應用,除了早期單晶矽太陽能電池,還有多晶矽、非晶矽(a-Si)太陽能電池,II-VI 族銅銦鎵硒(CIGS)太陽能電池、III-V 族銻化鎘(CdTe)太陽能電池、砷化鎵(GaAs)太陽能電池、染料敏化太陽能電池(DSSC)、高分子太陽能電池...等。如此多種類太陽能電池已經被開發,各種電池亦各有優缺點[2],目前因地球上矽含量豐富以及矽半導體 材料發展時間較長久,所以矽太陽能電池還是佔大部分使用率;但是近年來由於化合物 半導體磊晶技術成熟,加上III-V族半導體產業的開發,使得III-V族太陽能電池變得有 研究價值。

目前主流的矽作為太陽能電池材料,但因矽為間接能隙的半導體材料,光的吸收係 數 α 小 [3],所以光的吸收效率不佳,如圖 1-1,也因此矽太陽能電池的轉換效率也不 高。因此矽並非最理想的太陽能電池材料。而 III-V 族半導體太陽能材料具備了薄膜化 及轉換效率高的優點,成為近年來太陽能電池研究及發展的重點。

太陽能電池的轉換效率與半導體的能隙有關、而III-V的砷化鎵(GaAs)能隙為 1.4eV,矽(Si)能隙為1.1eV,因此III-V的砷化鎵(GaAs)半導體對光則具備了較佳吸收。 同時還可利用不同能隙的III-V半導體構成多接面(multi-junction)的太陽能電池,範圍包 含了太陽能光譜的可見光、紅外光及紫外光等區域,藉以提升III-V太陽能電池的轉換 效率。

圖 1-1: 矽及Ⅲ-V族半導體對光的吸收係數[3]

1.3 研究動機及研究方向

近幾年來因III-V半導體產業被廣汎應用及發展,如發光二極體(LED)、面射型雷射(VCSEL)等,以及高效率的優勢,因此採用多接面的III-V族太陽能電池作為研究的主要方向。其結構則以 InGaP/GaAs 所構成的二接面太陽能電池結構(Dual Junction)。 先以PC1D模擬GaAs及InGaP一階面(Single Junction),再以APSYS模擬Dual Junction 結構,以獲取轉換效最佳的磊晶結構。再利用有機金屬化學氣相沉積法(Metal-organic Chemical Vapor Deposition, MOCVD)來實現最佳化的磊晶結構。

第二章 文獻與回顧

2.1 前言

本章將介紹太陽能電池的基本原理、太陽能電池的等效電路、太陽能電池的參數及 太陽能電池的基本結構介紹,方便讀者了解接下來章節中的研究內容。

2.2 太陽能電池的基本原理

太陽能電池為一個基本 PN 接面(PN Junction),(圖 2-1),是利用光伏效應 (photovoltaic effect)的原理,當一個 PN 階面的二極體被光照射之後,當光源能量大於 半導體材料的能隙時,即會產生電子電洞對(electron-hole pair)。當電子電洞對漂向空乏 區(delpletion region)時,會受到空乏區中內建電場的影響,電子電動對會被分離到二端 (電子靠 N 側,電洞靠 P 側),若經過一個外接負載則會產生一個逆偏電流,此電流即為 光電流 (photocurrent),(圖 2-2)。

delpletion region

圖 2-1:太陽能電池 PN 接面

圖 2-2:電子電洞對受空乏區內建電場影響而分離

2.3 太陽能電池的等效電路

一個理想的太陽能電池,其等效電路圖如圖 2-3 所示。包含了一個理想表示的 PN 接面二極體,一個電流源 Iph,以及太陽能電池的負載 R_L [4]。Iph 表示 PN 接面在照光 後所產生的光電流。不過實際的狀況下太陽能電池是必須考慮串聯電阻(series resistance; Rs)以及並聯電阻(parallel resistance; Rp)的影響。原因在於串聯電阻包含 了電極的電阻、電池表面到電極之間的損耗等,如圖 2-4 所示。實際磊晶結構當中,因 為有 contact layer 的關係,因此可以有效地降低電極與電池間的電阻值。而對於電池主 體的部份(GaAs cell、InGaP cell、Ge cell 等)的電阻和其它部份的電阻比較起相對低許 多。故串聯電阻主要是由電極的電阻、電池表面到電極之間的損耗以及穿隧層(tunnel junction)的損耗所組成。而並聯電阻則是指元件是由二極體接面的漏電流或是電池邊緣 的漏電流所引起。這一類的影響就以並聯電阻來表示[5],如圖 2-3 所示,即是太陽能電 池考慮串聯電阻及並聯電阻時的等效電路圖。由克西荷夫電壓定律,可以得到等效電路 圖中電流-電壓之間的關係式

$$I = I_{0} \left\{ exp \left[\begin{array}{c} q (V - IRs) \\ n \ k_{B} T \end{array} \right] - 1 + \begin{array}{c} F \\ -1 \end{array} + \begin{array}{c} V - IRs \\ Rsh \end{array} \right] - I_{0} + \begin{array}{c} I_{0} \\ Rsh \end{array} \right]$$
(2-1)

圖 2-3:理想的太陽能電池等效電路圖 [5]

Iph 表示 PN 接面在照光後所產生的光電流,Rs 表示半導體材料本身或元件內部所產生的串聯電阻,Rp 表示元件漏電流的問題。

圖 2-5:太陽能電池照光後所量測得之 I-V 曲線圖

2.4.1 短路電流 Isc

短路電流是太陽能電池在無負載的情況下,也就是外部電路短路時所量測到的電流,即稱之為短路電流(short circuit current, Isc)[8]。此時 Vd=0時,可以由(2-1)式得

$$I = I_{ph} = I_{sc}$$
(2-2)

影響短路電流的因素主要有下列幾點 [7]:

(1) 光電流的影響:

理論上短路電流即代表光電流,一般而言這個數值直接受到照光強弱的影響,如照 光面積或是電池表面反射狀況都會影響光電流的大小。

(2) 材料中載子復合(Recombination)的現像:

電池中載子復合現象會造成短路電流的下降,而載子復合現象的主要來源是 Radiative Recombination、Auger Recombination及表面的載子復合。其中 Radiative Recombination發生於直接能隙的半導體材料。Auger Recombination則發生於高攙雜 濃度的材料。

1896

(3) 串聯電阻與並聯電阻的影響

並聯電阻(parallel resistance)是由二極體接面的漏電流或是電池邊緣的漏電流所引起,對於電池的短路電流(Isc)並不會有太大的影響。而串聯電阻(series resistance) 是原件內部各接面的電阻以及包含了電極的電阻、電池表面到電極之間的電阻,因此串聯電阻對電池的短路電流(Isc)及填充因子(Fill Factor)有很大的影響力,也因此 關係著電池的轉體效率。

2.4.2 開路電壓 Voc

開路電壓(open circuit voltage; Voc)是指當太陽能電池負載無限大時,量測到的電壓,並考慮串聯電阻 Rs=0及並聯電阻 $Rp=\infty$ 的情況之下,此時輸出電流 I=0,利用未照光情況下的二極體電流(dark current; Id)來推導出開路電壓 Voc [8]。

$$I_{d} = I_{0} \left\{ exp\left(\frac{q \, Vd}{k_{B} \, T}\right) - 1 \right\}$$
(2-3)

$$V_{oc} = \frac{n \, \text{kB T}}{q} \ln \left(\frac{I_{sc}}{I_o} + 1 \right)$$
(2-4)

由圖 2-5 所示, I-V 關係曲線中為在 X 軸(I=0)的位置上, 其電壓值即為開路電壓 Voc。同時開路電壓也會受到半導體材料能隙大小所影響。

2.4.3 填充因子 FF

填充因子(Fill Factor)定義為太陽能電池在最大功率輸出時,輸出功率值 Pmax 與 Voc 乘上 Isc 的比值 [8],公式如下

$$FF = \frac{P_{max}}{I_{sc} V_{oc}} = \frac{I_{max} V_{max}}{I_{sc} V_{oc}}$$
(2-5)

因此減少串聯電阻(Rs)對於提升填充因子是有幫助的。

2.4.4 轉換效率(η)

太陽能電池的轉換效率(η)是將太陽光的能量轉換成電能的百分比。而轉換效率的 定義為太陽能電池的最大輸出功率(Pmax)與入射光功率(Pin)的比值。因此只要知道太陽 能電池的 Voc、Isc、FF 以及入射光功率 Pin 即可換算出轉換效率 η [8]。因此 F.F、Jsc、 Voc 的轉換效率是有正比關係的。

$$\eta = \frac{P_{\text{max}}}{P_{\text{in}}} = \frac{I_{\text{max}} V_{\text{max}}}{P_{\text{in}}} = \frac{FF I_{\text{sc}} V_{\text{oc}}}{P_{\text{in}}}$$
(2-6)

2.5 化合物半導體太陽能電池基本結構介紹

由於化合物半導體太陽能電池無論在效率、長時間的穩定性、高溫操作的能力,因此化合物半導體太陽能電池所扮的角色也日趨重要。以下將針對Ⅲ-V化合物半導體電池的結構簡易介紹。太陽能電池的主要功能是將太陽光的光能轉換成為電能,其中Ⅲ-V太陽能電池的主體結構如圖 2-6,包含了基板(substrate)、光吸收層、電極層 [6]。

電極層				
光吸收層				
基板				

圖 2-6:太陽能電池的基本結構

而基板是太陽能電池元件當中的主體,而後的製程方法及程續也都得依基板的選擇 後才開始處理,位在基板上面的光吸收層及電極層各利不同的製程方式製作於基板上。 光吸光層是元件經過照光後由光能轉換成電能的地方,因此光吸收層的好壞即決定了光 電轉換效率的高低。電極層的目的則是將所產生的光電流傳導出來到負載上。化合物半 導體太陽能電池主要是靠半導體材料能隙(Eg)來吸光,根據光子能量公式

E = h v

(2-7)

當入射光能量小於半導體能隙時,光子不會被半導體吸收,而這個入射光能量與半導體 能隙的能量差就會轉變爲晶格振動(聲子),以及溫度的上升(熱能)。若入射光能量大於 半導體能隙時,光子即會被吸收。以圖 2-7 來說明 [6],光子被半導體材料吸收後,會 激發能帶中的電子處於高激發態(圖中反應1),而位處於高激發態的電子與電洞會將能 量傳遞給聲子(Phonon)的方式回到能帶邊緣(圖中反應 2),而後有可能會發生電子與電 洞復合放光的情況(圖中反應 3),或是被空間電荷(Space charge region)的內建電場分離 而形成光電流(圖中反應 4)。

圖 2-7:在一個接面結構中,光能量大於半導體材料能隙(hv>Eg)時 入射光的光子被吸收後所造成一連串的反應行為 [6]

Ⅲ-V太陽能電池可依據光吸收層結構的不同做一個簡單的分類,可分為單接面(single junction)及多接面(multi junction)。在圖 2-7 中的反應 2 其實是一種能量的浪費,為獲取更高效率才有多接面(multi junction)太陽能電池的發展。以本實驗結構來說明,單接面太陽能電池有 GaAs 接面及 InGaP 接面 [6],如圖 2-8、2-9。

圖 2-8:GaAs 單接面太陽能電池結構 [6]

而多接面太陽能電池則是由 GaAs / InGaP 所組成的二接面(Dual Junction)太陽能電池, 結構如圖 2-10。其中 GaAs 接面與 InGaP 接面是靠穿穟層(Tunnel Junction)來串接,其 主要的功能是讓低能隙接面產生的電子能夠透過穿隧效應和高能隙接面所產生的電洞 相結合。而 GaAs 材料的晶格常數為 5.6533Å, In(x)GaP 材料(X=0.5)的晶格常數為 5.6095, 其兩個材料的晶格常數差異只有 0.1%,對於材料的磊晶成長是不困難的,圖 2-11。

電極層
InGaP Junction 光吸收層
Tunnel Junction
GaAs Junction 光吸收層

圖 2-10: GaAs/InGaP 二接面太陽能電池結構 [6]

圖 2-11: Ⅲ-V族 bandgap、lattice constant、wavelength 關係 [9]

對於一個多接面的太陽能電池而言,除了電池的 p-n 接面之外,還需要許多不同功能的 layer 存在,以如圖 2-10 的二接面太陽能電池來介紹實際的化合物半導體太陽能電池的組成結構,如圖 2-12。

p-Window layer
p-Emitter layer
n-Base layer
n-BSF layer
n-Tunnel junction
p-Tunnel junction
p-Window layer
p-Emitter layer
n-Base layer
n-BSF layer
n-GaAs 基板

圖 2-12: InGaP 單接面太陽能電池結構,此結構範例所示 並非實際結構的厚度尺寸,也沒有考慮電極及抗反射層。[10] 由圖 2-12 所示,在一個一接面電池結構當中一定包含了 Back Surface Field layer (BSF)、Base layer、Emitter layer、Window layer 這四種。而 Base 及 Emitter layer 就是 電池中的 p-n junction。另外還包含串接上下電池所構成的穿隧層(Tunnel junctio)。下 面將為這五種 layer 的功能作說明。

(1) 視窗 (Window layer)

Window layer 的目的可以減少 Emitter layer 表面的缺陷,降低表面復合(surface recombination),進而提高整體的外部量子效應(EQE:External Quantum Efficient)。同時 window layer 材料的選定必需是 window layer 能隙比電池中其它 layer 的能隙還 要來得高才可以,目的是為了避免當照光時 window layer 吸走的電池所要吸收的光 波段。因此以本實驗來舉例,Window layer 的選擇則可以選定 AlInP、InGaP 這兩個 晶格常數相近的半導體材料。同時 window layer 的厚度不可太厚,仍需符合 λ /4n 的 光學厚度,目的再於降低入射太陽光的反射比例 [12]。

(2) p-n 接面:

化合物半導體太陽能電池當中最主要的吸光區域就是 p-n 接面,在先前已有提到, 受到 p-n 接面的內建電場影響,將電子與電洞分開到空乏區的兩側,其中電子靠 n 側, 電動靠 p 側,如圖 2-1。而內建電場的產生是由於 n type 半導體與 p type 半導體在接 面處的自由載子發生了復合而消失,只剩下的無法移動的正離子與負離子,形成一個 由 n type 指向 p type 的內建電場,如圖 2-13 的 Eo。而這個只有存在正離子與負離子 沒有自由載子的區域即稱爲空乏區(depletion region),如圖 2-13。

delpletion region

圖 2-13:內建電場示意圖[11]

(3) 背電場(Back surface field , BSF)

BSF 位在 Base layer 下方,而這一層的目的是為了侷限住太陽能電池底部所產生的少數載子,故 BSF layer 會採用重掺雜的方式讓這些擴散到這裡的少數載子能否被擋下並反彈回去,增加少數載子有效地被 p-n 接面收集機會 [12],如圖 2-14。為了避免增加 BSF layer 造成元件串聯電阻的增加,所以 BSF 除了採用重掺雜的方法之外, 另外厚度通常也很薄。

(4) 穿隧層(Tunnel junction)

穿隧層(tunnel junction)主要是由一組 p-n 接面所組成,其中 p type 及 n type 都必須 是重掺雜的半導體,又稱爲簡併半導體(Degenerate semiconductor),所以導電帶與 價電帶的距離會很靠近。同時厚度也非常薄,以本研究的結構來說明,如圖 2-15, 上電池的電子會 n type 高掺雜的導電帶穿透進入 p type 高掺雜的價電帶裡,再被傳 送到下電池的價電帶裡,達到傳輸的目的 [13]。

以本論文實驗來說明,在 GaAs 及 InGaP 所構成的二接面太陽能電池當中,除了電池材料能隙的選定非常重要之外,因爲關係著獨立電池的吸光頻譜,另外還要考慮電池間電流匹配度的問題,如圖 2-16,由圖中可以見到兩個電池的連接方式是以串聯的形式,圖中 Rs 爲獨立電池內部的串聯電阻,Rp 爲獨立電池內部的並聯電阻,RL 爲整體太陽能電池的外內部負載電阻。在兩個串接的太陽電池中,因每個獨立的電池各自擁有不同的開路電壓(V1,V2),以及短路電流(Isc1,I2c2),如圖 2-17。當上下兩電池串接時,對總體元件而言,總電壓會是 V1+V2,但總電流卻只有 I1 或 I2 兩者比較小的那個電流值會存在,這是因爲電路裡串聯的關係,所造成總電流受到最小電流的侷限,此稱爲限制電流(Limited current),因此理想的設計是要讓串聯在一起的子電池所產生的電流能夠匹配。

圖 2-16:二接面太陽能電池的等效電路圖 [6]

圖 2-17:二接面太陽能電池 I-V 曲線圖

第三章模擬軟體之模型的建立

3.1 前言

本論文研究的結構中主要是針對 GaAs / InGaP 這兩種化合半導體所構成的二接面 太陽能電池,因此會先採由澳洲新南威爾斯大學(UNSW)開發出來而且是免費下載的軟 體 PC1D 來進行單接面太陽能電池的模擬,並求得最佳化的結構。之後再使用加拿大 Crosslight 公司所開發出來的 APSYS,針對二接面太陽能電池的模擬,並求得最佳化的 結構。

3.2 GaAs 單接面太陽能電池模擬結構、參數及結果

本章節主要是以 PC1D 模擬軟體針對 GaAs 單接面太陽能電池結構進行模擬,並參 考 IEEE 期刊 [15] [16] 上所使用的結構上的材料、材料組成、n及p type 掺雜濃度、 Layer 厚度,如圖 3-1 所示。單接面太陽能電池材料選擇是能隙為 1.424 ev 的 GaAs,因 此該電池中元件中的 Base layer 及 Emitter layer 的材料是採用 GaAs ,而 Window layer 及 BSF layer 的材料則是選用 InGaP,其中 In 的組成是 50%。同時 BSF 採用 In(0.5)Ga(0.5)P 這個材料的好處在於,該材料的能隙為 1.805 ev ,能夠有效阻擋 Base layer 擴散過來的 電子。

而每一層 layer 的掺雜濃度由上而下分別是: Window layer P type 掺雜,濃度 5.0E18、 Emitter layer layer P type 掺雜,濃度 1.0E18、Base layer N type 掺雜,濃度 5.0E17、BSF layer N type 掺雜,濃度 1.0E18。而每一層 layer 的厚度由上而下分別是: Window layer 0.05 um、 Emitter layer 0.12 um、Base layer 2.0 um、BSF layer 0.13 um。關於各層厚度參數的設定僅 是初步設定,最終將會以模擬中所得到的最佳轉換效率為主。

Window	In(0.5)Ga(0.5)P	Ρ	0.05 um	5.00E+18
Emitter	GaAs	Ρ	0.12 um	1.00E+18
Base	GaAs	Ν	2.0 um	5.00E+17
BSF	In(0.5)Ga(0.5)P	N	0.13 um	1.00E+18

GaAs single junction (Eg = 1.424 ev)

圖 3-1: GaAs 單接面太陽能電池模擬結構

在 PC1D 模擬軟體中所需使用到的光學參數包含有:介電常數(Dielectric constant)、 本質濃度(Intrinsic concentration)、表面復合率(Surface recombination, Sn/Sp)、壽命時間 (life time, τ_n/τ_p)、折射率(refractive index, n)、消光係數(Extinction Coefficient or Absorption Coefficient, K)、 吸收係數(absorption coefficient, α)。參考文獻 [17]查出 半導體材料 GaAs 的光學參數:介電常數、本質濃度、表面復合率(Sn/Sp)、壽命時間(τ_n / τ_p),如表 3-1, 而折射率(n)、消光係數(K)、吸收係數(α)這三個參數採用實際量 測所得,而量測的結構將在後面說明。

	GaAs material	unit			
Bandgap (Eg)	1.424	ev			
Dielectric constant	12.5				
Intrinsic concentration	1.00E+04	cm ³			
Surface recombination (Sn / Sp)	5.00E+06	cm/s			
tau n (T n)	1.00E-08	s			
taun(Tp)	1.00E-08	ន			
表 3-1: GaAs 光學參數表 [17]					

針對折射率(n)、消光係數(K)、吸收係數(α)這三個參數採用實際量測所得,因此 GaAs 這個半導體材料的量測結構及結果如後所示。

圖 3-2: GaAs 量測折射率及消光係數的結構圖

波長	折射率	波長	折射率	波長	折射率
(nm)	(n)	(nm)	(n)	(nm)	(n)
103	0.1033	326	3.501	564	4.013
124	0.124	344	3.495	574	3.983
207	1.288	365	3.596	590	3.94
214	1.311	388	3.938	620	3.878
221	1.349	413	4.509	653	3.826
230	1.43	428	5.052	689	3.785
238	1.599	443	4.959	729	3.742
248	2.273	459	4.694	775	3.7
258	3.342	477	4.492	827	3.666
270	3.769	496	4.333	886	3.614
282	4.004	517	4.205	900	3.614
295	3.81	539	4.1		
310	3.601	549	4.063		

表 3-2: GaAs 材料折射率

(量測儀器:n&k analyzer 1280)

表 3-3: GaAs 材料消光係數

					1
波長	吸收係數	波長	吸收係數	波長	吸收係數
(nm)	(α)	(nm)	(α)	(nm)	(α)
103	1088410	326	735153	564	61535
124	925250	344	716891	574	56257
207	1554176	365	715310	590	51076
214	367364	388	741983	620	42766
221	1597551	413	592241	653	34466
230	1684968	428	505786	689	27545
238	1835987	443	281203	729	19295
248	2069397	459	190441	775	14755
258	1833879	477	142020	827	12161
270	1477298	496	111729	886	240
282	1210628	517	90235	900	240
295	880639	539	74587		
310	778304	549	68939		

(量測儀器:n&k analyzer 1280)

表 3-4:GaAs 材料吸收係數

參考文獻 [17]查出半導體材料 In0.5Ga(0.5P 這個半導體材料做的光學參數:介電常數、本質濃度、表面復合率(Sn/Sp)、壽命時間(てn/てp),如表 3-5。而折射率(n)、 消光係數(K)、吸收係數(a)這三個參數的量測,也是採用量測所得,量測結構及結果 如圖 3-5 所示,因為 GaAs 單接面太陽能電池的 Window layer 是會採用 In0.5Ga(0.5)P 這個 材料,因此還需針對這個材料做表面反射率的量測,其量測結果如後。

· · · · · · · · · · · · · · · · · · ·	· /	
Bandgap (Eg)	1.805	ev
Dielectric constant	11.8	
Intrinsic concentration	1.00E+05	cm ³
Surface recombination (\mbox{Sn}/\mbox{Sp})	4.00E+03	cm/s
taun (7 n)	1.00E-10	s
taun(Tp)	1.00E-10	s

In@.5Ga@.5P material unit

19

表 3-5: In(0.5)Ga(0.5)P 光學參數表 [17]

圖 3-3:In(0.5)Ga(0.5)P 量測折射率及消光係數的結構圖

波長	折射率	波長	折射率	波長	折射率
(nm)	(n)	(nm)	(n)	(nm)	(n)
1000	3.2301 🔪	720	3.3909	440	3.9323
980	3.2376	700 E	S 3,4095	420	4.0186
960	3.2456	680	3.4297	400	4.1177
940	3.2540	660	3.4517	380	4.2306
920	3.2629 之	640	8 3.47 58	360	4.3558
900	3.2723	620	3.5022	340	4.4857
880	3.2823	600	3.5313	320	4.5958
860	3.2929	580	3.5634	300	4.6237
840	3.3042	560	3.5992	280	4.4368
820	3.3162	540	3.6391	260	3.8549
800	3.3291	520	3.6839	240	2.8852
780	3.3429	500	3.7344	220	1.9463
760	3.3577	480	3.7918	200	1.4177
740	3.3737	460	3.8573	190	1.3064

表 3-5: In(0.5)Ga(0.5)P 材料折射率

(量測儀器:n&k analyzer 1280)

波長 (nm)	消光係數 (k)	波長 (nm)	消光係數 (k)	波長 (nm)	消光係數 (k)
1000	0.0240	720	0.0596	440	0.3186
980	0.0253	700	0.0648	420	0.3852
960	0.0267	680	0.0707	400	0.4738
940	0.0282	660	0.0775	380	0.5943
920	0.0299	640	0.0852	360	0.7621
900	0.0317	620	0.0942	340	1.0009
880	0.0337	600	0.1047	320	1.3446
860	0.0359	580	0.1170	300	1.8322
840	0.0383	560	0.1315	280	2.4668
820	0.0410	540	0.1489	260	3.1008
800	0.0440	520	0.1699	240	3.3655
780	0.0472	500	0.1956	220	3.0369
760	0.0509	480	0.2274	200	2.3870
740	0.0550	460	0.2674	190	2.0604

表 3-6:Inc.5,Gao.5)P 材料消光係數

(量測儀器:n&k analyzer 1280) 1896

波長	吸收係數	波長	吸收係數	波長	吸收係數
(nm)	(α)	(nm)	(α)	(nm)	(α)
1000	3014	720	10401	440	90982
980	3243	700	11633	420	115252
960	3496	680	13068	400	148852
940	3776	660	14750	380	196542
920	4086	640	16735	360	266037
900	4432	620	19095	340	369916
880	4818	600	21922	320	528029
860	5251	580	25339	300	767473
840	5737	560	29507	280	1107086
820	6285	540	34646	260	1498662
800	6905	520	41055	240	1762169
780	7610	500	49153	220	1734686
760	8415	480	59532	200	1499765
740	9338	460	73051	190	1362716

表 3-7: In(0.5)Ga(0.5)P 材料吸收係數
波長 (nm)	反射率	波長 (nm)	反射率	波長 (nm)	反射率
(1111)	(R)	(1111)	(10)	(1111)	(R)
1000	0.3565	720	0.2872	440	0.3745
980	0.3404	700	0.2675	420	0.3938
960	0.2961	680	0.3245	400	0.4207
940	0.2381	660	0.3210	380	0.4476
920	0.2022	640	0.3080	360	0.4423
900	0.2257	620	0.3218	340	0.4196
880	0.2965	600	0.3194	320	0.4096
860	0.3513	580	0.3227	300	0.4169
840	0.3495	560	0.3255	280	0.4531
820	0.2953	540	0.3303	260	0.5395
800	0.2330	520	0.3345	240	0.6101
780	0.2495	500	0.3425	220	0.5643
760	0.3227	480	0.3499	200	0.4897
740	0.3436	460	0.3603	190	0.4940

表 3-8: Inco.5)Gaco.5P 材料反射率

依先前所題到的 GaAs 單接面太陽能電池模擬結構,如圖 3-1,軟體的光源設定為 AM1 的光譜強度作為模擬時的能量依據,及太陽能電池的元件面積為 100 平方公分。並 且模擬的結構中並沒有包含抗反射層(ARC)及電極。模擬結果的 I-V curve、及 Quantum efficiency 如圖 3-4。

圖 3-4: 模擬 GaAs 單接面太陽能電池量的 I-V Curve

$$\mathbf{F.F} (\%) = \underbrace{\frac{\text{Max Output Power}}{\text{I} (\mathbb{P}(\Delta) * V (\mathbb{P}(\Delta) \vee 1))} \times 100 \qquad (3-1)$$
$$\boldsymbol{\eta} (\%) = \underbrace{\frac{\text{Power max}}{\text{Pin = constant intensity * } \overline{\text{m}} \overline{\text{f}}}_{\text{Pin = constant intensity * } \overline{\text{m}} \overline{\text{f}}} \times 100 \qquad (3-2)$$

Power max output (W)	1.557
Isc (mA/cm²)	18.23
Voc (V)	1.012
F.F (%)	84.4%
η (%)	15.6%

表 3-9: 模擬 GaAs 單接面太陽能電池所得到的 Fill Factor 及轉換效率

同圖 3-1 之 GaAs 單接面太陽電池結構,將針對 Base layer 厚度調變後對 Isc、Voc、 以及轉換效率、Fill Factor 的關係。模擬結果如圖 3-6、3-7 所示。

圖 3-6: 模擬 Bsae 厚度調變後所得到的 Isc、Voc

圖 3-7: 模擬 Bsae 厚度調變後所得到的 FF、QE

由圖 3-6 所示,模擬的結果得到,Base layer 厚度由 1.0 um 持續增加時,短路電流 及開路電壓也會隨之上升,但當 Base layer 為 4.0 um 時短路電流接近飽合,Base layer 厚 度為 2.0 um 時開路電壓也接近飽合,同時參考圖 3-8,Base layer 厚度與轉換效率及 Fill Factor 的關係時,Fill Factor 雖然會因未 Base layer 厚度增加而下降,不過 Base layer 厚度 由 1.0 um 增加到 6.0 um 時,Fill Factor 也僅下降 1%。眾合以上幾項特性,GaAs 單階面 太陽能電池要獲得比較好的轉換效率(η),則 Base layer 厚度需設定在 4.0 um 較佳。

同樣以圖 3-1 之 GaAs 單接面太陽電池結構,針對 Base layer 的掺雜濃度來調變,其 Isc、Voc、模擬結果如圖 3-8 所示,隨著 Base layer 掺雜提高而使得 Isc 及 Voc 都有下降 的趨勢,其原因藉由模擬過程中來觀查,當 Base layer 掺雜濃度為 5E18 時,此時 Base layer 的掺雜濃度已大於 BSF 的掺雜濃度(1E18)如圖 3-1,太陽能電池的轉換效率呈現下降的 趨勢,如圖 3-9,這個現像的主要原因在於 Base layer 的掺雜濃度大於 BSF 的掺雜濃度, 造成 BSF layer 無法有效阻擋 Base layer 擴散到這裡的少數載子,而影響了少數載子有效 地被 p-n 接面收集機會,而使得太陽能電池的轉換效率呈現下降的趨勢。

圖 3-9: 模擬 Bsae 掺雜濃度調變後所得到的 FF、QE

同樣以圖 3-1 之 GaAs 單接面太陽電池結構,將 Window layer 的半導體材料由 In(0.5)Ga(0.5)P [18] 改用能隙比較高的 Al(0.7)Ga(0.3)As [19-21] 如圖 3-10,讓 p-n 接面材料 的能隙和 window layer 能隙能夠有明顯的差異,其目的在於為了避免照光時 window layer 吸走的 p-n 所要吸收的光波段。

Window	Al(0.7)Ga(0.3)As	Р	0.05 um	5.00E+18	1
Emitter	GaAs	Р	0.12 um	1.00E+18	
Base	GaAs	Ν	2.0 um	5.00E+17	
BSF	In(0.5)Ga(0.5)P	Ν	0.13 um	1.00E+18	

GaAs single junction (Eg = 1.424 ev)

圖 3-10:GaAs 單接面太陽能電池模擬結構 Window layer 採用 Al(0.7)Ga(0.3)As

參考文獻 [17]查出半導體材料 Al(0.7)Ga(0.3)As 這個半導體材料做的光學參數:介電 常數、本質濃度、壽命時間(てn/てp),如表 3-10。而折射率(n)、消光係數(K)、吸 收係數(a)這三個參數的量測,也是採用量測所得,因此量測結構如圖 3-11,量測結果 的結果如後所示。因為本節的 GaAs 單接面太陽能電池之 Window layer 將改用 Al(0.7)Ga(0.3)As 這個材料,因此還需針對 Al(0.7)Ga(0.3)As 這個材料做表面反射率的量測, 其量測結果如後。

	Al@.7)Ga@.3)As material	unit
Bandgap (Eg)	2.092	ev
Dielectric constant	10.912	
Intrinsic concentration	4.30E+01	cm ³
taun(τn)	5.00E-03	ន
taun(τp)	5.00E-03	s

表 3-10: Al(0.7)Ga(0.3)As 光學參數表 [17]

圖 3-11: Al(0.7)Ga(0.3)As 量測折射率及消光係數的結構圖

波長	折射率	波長	折射率	波長	折射率
(nm)	(n)	(nm)	(n)	(nm)	(n)
207	1.3770	270	4.1440	387	4.4710
210	1.3660	276	4,1420	400	4.3250
214	1.3650	282	4.0280	413	4.1960
218	1.3750	288	3.9320	428	4.0840
221	1.4070	295	3.8680	443	3.9870
225	1.4260	302	3.8350	459	3.9060
230	1.5450	310	3.8360	477	3.8230
234	1.6620	318	3.8680	496	3.7460
238	1.8290	326	3.9470	517	3.6960
243	2.0490	335	4.1030	539	3.5950
248	2.3540	344	4.3190		
253	2.7770	354	4.5020		
258	3.2140	365	4.6650		
264	3.7580	376	4.6150		

表 3-11: Al(0.7)Ga(0.3) As 材料折射率

(量測儀器:n&k analyzer 1280)

波長	消光係數	波長	消光係數	波長	消光係數
(nm)	(k)	(nm)	(k)	(nm)	(k)
207	2.4299	270	3.1551	387	0.7341
210	2.4910	276	2.6493	400	0.5740
214	2.5835	282	2.3665	413	0.4596
218	2.6936	288	2.2032	428	0.3744
221	2.8036	295	2.1093	443	0.3071
225	2.9401	302	2.0520	459	0.2449
230	3.1030	310	2.0230	477	0.1840
234	3.2695	318	2.0093	496	0.1290
238	3.4383	326	2.0041	517	0.0690
243	3.6180	335	1.9922	539	0.0020
248	3.7880	344	1.8746		
253	3.8721	354	1.6766		
258	3.8480	365	1.3581		
264	3.6393	376	0.9806		

表 3-12: Al(0.7)Ga(0.3) As 材料消光係數

(量測儀器:n & k analyzer 1280)

		<u> </u>	6 //>		
波長	吸收係數	波長	吸收係數	波長	吸收係數
(nm)	(a)	(nm)	(α)	(nm)	(a)
207	1475130	270	1468441	387	238356
210	1490605	276	1206220	400	180327
214	1517065	282	1054562	413	139852
218	1552717	288	961307	428	109915
221	1594145	295	898516	443	87113
225	1642040	302	853854	459	67038
230	1695366	310	820057	477	48482
234	1755816	318	794022	496	32683
238	1815435	326	772507	517	16782
243	1870970	335	747304	539	466
248	1919412	344	684786		
253	1923232	354	595180		
258	1874254	365	467570		
264	1732325	376	327739		

表 3-13: Al(0.7)Ga(0.3) As 材料吸收係數

波長	反射率	波長	反射率	波長	反射率
(шп)	(K)	(шп)	(K)	(шп)	(K)
1000	0.2960	730	0.3053	460	0.3434
980	0.2960	710	0.3059	440	0.3406
960	0.2960	690	0.3062	420	0.3023
940	0.2960	670	0.3061	400	0.2982
920	0.2960	650	0.3073	380	0.3281
900	0.2960	630	0.3080	360	0.3859
880	0.2960	610	0.3093	340	0.4053
860	0.2963	590	0.3115	320	0.4068
840	0.3038	570	0.3134	300	0.4239
820	0.3036	550	0.3168	280	0.4655
800	0.3037	530	0.3218	260	0.5585
780	0.3048	510	0.3275	240	0.5644
760	0.3049	490	0.3342	220	0.5094
740	0.3049	470	0.3409	200	0.4423

表 3-14: Al(0.7)Ga(0.3) As 材料反射率

(量測儀器:Hitachi U-4100)

依圖 3-10 的 GaAs 單接面太陽能電池模擬結構,Window layer 採用 Al@.7)Ga@.3) As 材料。並且軟體的光源設定為 AM1 的光譜強度作為模擬時的能量依據,及太陽能電池的元件面積為 100 平方公分。並且模擬的結構中並沒有包含抗反射層(ARC)及電極。模擬結果的 I-V curve、及 Quantum efficiency 如下圖,

圖 3-12: 模擬 GaAs 單接面太陽能電池量之 I-V Curve, Window layer 採用 Al(0.7)Ga(0.3)As

所得到的短路電流(Isc)、開路電壓(Voc)經公式(3-1)、(3-2)計算 [6]後所求得的 Fill Factor 及轉換效率(η)如表 3-15,在模擬軟體內的 Pin 設定為 0.1W/平方公分,元件面 積為 100 平方公分。

Power max output (W)	1.579
Isc (mA/cm²)	17.94
Voc (V)	1.009
F.F (%)	87.2%
η (%)	15.8%

表 3-15: 模擬 GaAs 單接面太陽能電池所得到的 Fill Factor 及轉換效率 Window layer 採用 Al(0.7)Ga(0.3)As

綜合以上模擬的結果, GaAs 單接面太陽能電池結構的 Window layer 採用 In(0.5)Ga(0.5)P及 Al@7)Ga@3 As 這兩種材料所模擬出來的結果中,Fill factor 及轉換效率(η) 幾近相同,如表 3-16。雖然採用比較高能隙的 Al(0.7)Ga(0.3)As 材料來當 window layer,希 望能讓 p-n 接面材料的能隙和 window layer 能隙能夠有明顯的差異,進而提升照光時 p-n 接面的光吸收量。不過依模擬結果而論, In(0.5)Ga(0.5)P及 Al@7)Ga@3 As 兩種材料作為 GaAs 單接面太陽能電池的 window layer 所得到的轉換效率是一樣的。

GaAs 單接面太陽能電池

Window layer material	In(0.5)Ga(0.5)P	Al(0.7)Ga(0.3)As
Power max output (W) :	1.557	1.579
Isc (mA/cm ²) :	18.23	17.94
Voc(V):	1.012	1.009
F.F (%):	84.4%	87.2%
η (%);	15.6%	15.8%

表 3-16 GaAs 單接面太陽能電池, Window layer 採用 In(0.5)Ga(0.5)P 及 Al@7)Ga@3 As 模擬出來的 Fill factor 及轉換效率(η)

3.3 InGaP 單接面太陽能電池模擬結構、參數及結果

本章節主要是以 PC1D 模擬軟體針對 In(0.5)Ga(0.5)P 單接面太陽能電池結構進行模擬,並參考 Elsevier 期刊論文 [22]、IEEE 期刊論文[23-27]及 Jpn.J.Appl.Phys 期刊論文 [28] 上所使用的結構上的材料、材料組成、n 及 p type 掺雜濃度、Layer 厚度,如圖 3-14 所示。

Window	A1(0.5)In(0.5)P	Ρ	0.05 um	5.00E+18
Emitter	In(0.5)Ga(0.5)P	Ρ	0.12 um	1.00E+18
Base	In(0.5)Ga(0.5)P	Ν	4.0 um	5.00E+17
BSF	In(0.5)Ga(0.5)P	Ν	0.13 um	1.00E+18

InGaP single junction (Eg = 1.805 ev)

圖 3-14:In(0.5)Ga(0.5)P 單接面太陽能電池模擬結構

單接面太陽能電池材料選擇是能隙為 1.805 ev 的 In(0.5)Ga(0.5)P,因此該電池中元件中的 Base layer、Emitter layer、BSF layer 的材料是採用 In(0.5)Ga(0.5)P,而 Window layer 的材料 則是選用 AlInP,其中 In 的組成是 50%。而每一層 layer 的掺雜濃度由上而下分別是: Window layer P type 掺雜,濃度 5.0E18、Emitter layer layer P type 掺雜,濃度 1.0E18、Base layer N type 掺雜,濃度 5.0E17、BSF layer N type 掺雜,濃度 1.0E18。而每一層 layer 的 厚度由上而下分別是:Window layer 0.05 um、Emitter layer 0.12 um、Base layer 則以 GaAs 單接面太陽能電池所模擬出來轉換效率最佳的 4.0 um 為主、BSF layer 0.13 um。關於各 層厚度參數的設定僅是初步設定,最終將會以模擬中所得到的最佳轉換效率為主。

本節仍是使用 PC1D 模擬軟體進行模擬,參考圖 3-14, InGaP 單接面太陽能電池的 結構中共包含兩種半導體材料,一個是 In(0.5)Ga(0.5)P 材料,另一個是 Al(0.5)In(0.5)P 材料。 其中 In(0.5)Ga(0.5)P 光學參數:介電常數(Dielectric constant)、本質濃度(Intrinsic concentration)、壽命時間(life time, τ_n / τ_p)同表 3-5 所示。折射率(refractive index, n) 同表 3-5 所示。、消光係數(Extinction Coefficient or Absorption Coefficient, K) 同表 3-6 所示。、吸收係數(absorption coefficient, α) 同表 3-7 所示。

33

參考文獻 [17]查出半導體材料 Al(0.5)In(0.5)P 的光學參數:介電常數、壽命時間(て n / て p),如表 3-17。

Al@.5In@.5P material unit				
Bandgap (Eg)	2.275	ev		
Dielectric constant	11.1			
taun(τn)	1.00E-05	s ⁻³		
taun (τp)	1.00E-05	s		

衣 5-1 / ・ Al(0.5)ln(0.5)P 光学参嬰	數表
--------------------------------	----

圖 3-15: Al(0.5)In(0.5)P 量測折射率及消光係數的結構圖

波長	折射率	波長	折射率	波長	折射率
(nm)	(n)	(nm)	(n)	(nm)	(n)
1000	2.9320	720	3.1225	440	3.7244
980	2.9410	700	3.1445	420	3.8083
960	2.9504	680	3.1682	400	3.8978
940	2.9604	660	3.1940	380	3.9881
920	2.9710	640	3.2221	360	4.0686
900	2.9822	620	3.2529	340	4.1166
880	2.9940	600	3.2866	320	4.0893
860	3.0066	580	3.3237	300	3.9179
840	3.0200	560	3.3646	280	3.5251
820	3.0343	540	3.4099	260	2.9001
800	3.0496	520	3.4601	240	2.1817
780	3.0659	500	3.5161	220	1.5885
760	3.0834	480	3.5784	200	1.2347
740	3.1022	460	3.6477	190	1.1417

表 3-18: Al(0.5) In(0.5) P 材料折射率

(量測儀器:n&k analyzer 1280)

波長	消光係數	波長	消光係數	波長	消光係數		
(nm)	(k)	(nm)	(k)	(nm)	(k)		
1000	0.0374	720	0.0938	440	0.4999		
980	0.0395	700	0.1020	420	0.6008		
960	0.0417	680	0.1114	400	0.7321		
940	0.0441	660	0.1222	380	0.9049		
920	0.0468	640	0.1345	360	1.1338		
900	0.0497	620	0.1488	340	1.4356		
880	0.0528	600	0.1654	320	1.8221		
860	0.0563	580	0.1849	300	2.2791		
840	0.0601	560	0.2079	280	2.7293		
820	0.0643	540	0.2355	260	3.0147		
800	0.0690	520	0.2687	240	2.9876		
780	0.0742	500	0.3091	220	2.6639		
760	0.0800	480	0.3589	200	2.2038		
740	0.0865	460	0.4212	190	1.9721		

表 3-19: Al@.5)In@.5)P 材料消光係數

(量測儀器:n&k analyzer 1280)

波長	吸收係數	波長	吸收係數	波長	吸收係數
(nm)	(a)	(nm)	(a)	(nm)	(a)
1000	4704	720	16366	440	142759
980	5064	700	18318	420	179765
960	5461	680	20592	400	230001
940	5901	660	23260	380	299242
920	6390	640	26408	360	395769
900	6935	620	30152	340	530601
880	7543	600	34637	320	715526
860	8225	580	40056	300	954667
840	8991	560	46662	280	1224892
820	9856	540	54798	260	1457049
800	10836	520	64926	240	1564327
780	11950	500	77685	220	1521593
760	13223	480	93971	200	1384685
740	14683	460	115052	190	1304311

表 3-20: Al(0.5)In(0.5)P 材料吸收係數

波長	反射率	波長	反射率	波長	反射率	
(nm)	(R) 🗸	(nm)	(R)	(nm)	(R)	
1000	0.2593	720	0.3028	440	0.3365	
980	0.2260	700	0.2383	420	0.3469	
960	0.1991	680	0.2187	400	0.3619	
940	0.1935	660	0.2864	380	0.3813	
920	0.2161	640	0.3269	360	0.4144	
900	0.2581	620	0.2515	340	0.4427	
880	0.3013	600	0.2416	320	0.4361	
860	0.3202	580	0.3439	300	0.4248	
840	0.2968	560	0.2426	280	0.4475	
820	0.2472	540	0.3291	260	0.5345	
800	0.2045	520	0.2695	240	0.5841	
780	0.2126	500	0.3678	220	0.5450	
760	0.2693	480	0.3283	200	0.4786	
740	0.3149	460	0.3253	190	0.4890	

表 3-21: Al(0.5)In(0.5)P 材料反射率

(量測儀器:Hitachi U-4100)

依圖 3-14 之 In(0.5)Ga(0.5)P 單接面太陽能電池模擬結構進行模擬,模擬軟體 PC1D 的 光源設定為 AM1 的光譜強度作為模擬時的能量依據,及太陽能電池的元件面積為 100 平方公分。模擬的結構中並沒有包含抗反射層(ARC)及電極。模擬結果的 I-V curve、及 Quantum efficiency 如圖 3-16、圖 3-17。

圖 3-17: 模擬 In(0.5)Ga(0.5)P 單接面太陽能電池量的 Quantum efficiency

所得到的短路電流(Isc)、開路電壓(Voc)經公式(3-1)、(3-2)計算後可求得的 Fill Factor 及轉換效率(η)如表 3-22,在模擬軟體內的 Pin 設定為 0.1W/平方公分,元件面積為 100 平方公分。

Power max output (W)	1.115
Isc (mA/cm²)	10.73
Voc (V)	1.204
F.F (%)	86.3%
η (%)	11.2%

表 3-22: 模擬 In(0.5)Ga(0.5)P 單接面太陽能電池所得到的 Fill Factor 及轉換效率

同圖 3-14 之 In(0.5)Ga(0.5)P 單接面太陽電池結構,將針對 Base layer 厚度調變後對 Isc、 Voc、以及轉換效率、Fill Factor 的關係。模擬結果如圖 3-18、3-19 所示。

圖 3-18: 模擬 Bsae 厚度調變後所得到的 Isc、Voc

圖 3-19: 模擬 Bsae 厚度調變後所得到的 FF、QE

由圖 3-18 所示,模擬的結果得到,在 Inc0.5)Ga(0.5)P 單接面太陽電池結構中 Base layer 厚 度由 1.0 um 持續增加時,短路電流 Isc 也會隨之上升,但當 Base layer 為 3.0 um 時短路 電流接近飽合,不過開路電壓 Voc 卻不會因 Base layer 厚度增厚而增加。同時參考圖 3-19,Base layer 厚度與轉換效率及 Fill Factor 的關係時,Fill Factor 雖然隨 Base layer 厚度 增加而上升,不過 Base layer 厚度由 1.0 um 增加到 6.0 um 時,Fill Factor 也僅上升 0.5%。 眾合以上幾項特性, Inc0.5)Ga(0.5)As 單階面太陽能電池要獲得比較好的轉換效率(η),則 Base layer 厚度需設定在 2.0 um 較佳。

同時比較 3-1 節中所分析的 GaAs 單接面太陽電池及本節所分析的 In(0.5)Ga(0.5)P 單 接面太陽電池,可以發現 GaAs 單接面太陽電池所得到的短路電流 Isc 會比 In(0.5)Ga(0.5)P 單接面太陽電池還要來的高,如表 3-23,這種現象值得注意,一旦結構延伸到 GaAs 串 接 InGaP 的二接面太陽能電池時,就必需考慮電流匹配的問題。而 In(0.5)Ga(0.5)P 單接面 太陽電池的轉換效率僅達 11%,比 GaAs 單接面太陽能電池所獲得的 15.6%轉換效率來 的低,原因推測在於 GaAs 接面的能隙較低,所吸收的太陽光譜較寬,因此可獲取到較 高的外部量子效率,相對的所獲得的最大輸出功率及轉換效率也會比較高,如圖 3-20。

	GaAs	InGaP
	cell	cell
Power max output (W) :	1.557	1.115
Isc (mA/cm²) :	18.2	10.7
Voc (V):	1.012	1.204
F.F (%):	84.4%	86.3%
η (%):	15.6%	11.2%

表 3-23: GaAs / InGaP 單接面太陽能電池比較表

3.4 GaAs / InGaP 二接面太陽能電池模擬結構、參數及結果

本章節主要是以加拿大 Crosslight 公司所開發出來的 APSYS 模擬軟體針對 GaAs / InGaP 所組成的二接面太陽能電池結構進行模擬,模擬的結構圖如圖 3-21 所示[29-35]。 二接面太陽能電池結構上的材料、材料組成、n 及 p type 掺雜濃度、Layer 厚度等條件都 是依據 3.2 節之 GaAs 單接面太陽能電池結構及 3.3 節 InGaP 單接面太陽能電池結構所 模擬出最佳化的條件。因此在 GaAs / InGaP 二接面太陽能電池結構的模擬中所使用到的 半導體材料有 GaAs、InGaP、AlInP,同時模擬中所需要的參數:折射率(n)、消光係數 (K)、吸收係數(a)則參考 3.2 節及 3.3 節。因此本章節模擬的重點在於 InGaP 材料所組 成的上電池(Top cell)之 Base 厚度的最佳化,以及 GaAs 材料所組成的穿隧層(Tunnel junction)對於整體二接面太陽能電池元件轉換效率的關係。模擬的結構中並沒有包含抗 反射層(ARC)。APSYS 模擬軟體的操作由實驗室黃國軒同學來進行模擬操作。

					_
Window	Al(0.5)In(0.5)P	Р	0.05 um	5.00E+18]↑
Emitter	In(0.5)Ga(0.5)P	ES	0.12 um	1.00E+18	InGaP single junction
Base	In(0.5)Ga(0.5)P	N	0.20 um	5.00E+17	(Eg = 1.805 ev)
BSF	In(0.5)Ga(0.5)P	1 \$ ¹ 96	0 13 um	1.00E+18] 🕹
Tunnel	GaAs	N	28 nm	2.00E+19	
Junction	GaAs	Р	26 nm	4.50E+19	
Window	In(0.5)Ga(0.5)P	Р	0.05 um	5.00E+18] ↑
Emitter	GaAs	Р	0.12 um	1.00E+18	GaAs single junction
Base	GaAs	Ν	4.00 um	5.00E+17	(Eg = 1.424 ev)
BSF	In(0.5)Ga(0.5)P	N	0.13 um	1.00E+18] 🖡

圖 3-21: GaAs / InGaP 二接面太陽能電池模擬結構

APSYS 模擬軟體可模擬多層磊晶層的結構,因此連同促使材料晶格匹配(lattice match)的緩衝層也一倂加入模擬結構中,所以真正的磊晶結構如圖 3-22 所示。

Contact layer	GaAs	Ρ	100 nm	1.00E+19
Buffer	In(0.5)Ga(0.5)P	Ρ	35 Å	8.00E+18
Window	A1(0.5)In(0.5)P	Ρ	0.05 um	5.00E+18
Emitter	In(0.5)Ga(0.5)P	Ρ	0.12 um	1.00E+18
Base	In(0.5)Ga(0.5)P	N	0.20 um	5.00E+17
BSF	In(0.5)Ga(0.5)P	N	0.13 um	1.00E+18
Tunnel	GaAs	N	28nm	2.00E+19
Junction	GaAs	Ρ	26 nm	4.50E+19
Window	In(0.5)Ga(0.5)P	Ρ	0.05 um	5.00E+18
Emitter	GaAs	Ρ	0.12 um	1.00E+18
Base	GaAs	N	4.00 um	5.00E+17
BSF	In(0.5)Ga(0.5)P	N	0.13 um	1.00E+18

圖 3-22: GaAs / InGaP 二接面太陽能電池模擬結構 包含 AlInP 與 GaAs contact layer 間的緩衝層

896

模擬結果之 I-V curve 如圖 3-23 所示,短路電流 = 8.79 mA,開路電壓 = 2.49 V,以及 Quantum efficiency 如圖 3-24。其中紅色 curve 爲實作結果,將在 5.5 節詳細描述。

圖 3-23: 模擬 GaAs / InGaP 二接面太陽能電池量得之 I-V Curve

圖 3-24:模擬 GaAs / InGaP 二接面太陽能電池量得之 Quantum efficiency

表 3-24:模擬 GaAs / InGaP 二接面太陽能電池量所得到的 Fill Factor 及轉換效率

第四章 有機金屬化學氣相沉積法

4.1 有機金屬化學氣相沉積法 (MOCVD)原理及系統介紹

MOCVD (Metal-OrganicChemicalVaporDeposition)金屬有機物化學氣相沉積,於 1968 年由美國洛克威爾公司提出來的一項化合物半導體單品薄膜的新技術。MOCVD 設備結 合了精密機械、半導體材料、真空電子、流體力學、光學、化學等科學技術為一體,而 且具備自動化控制的機能,因此設備價格昂貴。MOCVD 成長薄膜時,主要將載流氣體 (Carrier gas)通過有機金屬反應源的容器時,將反應源的飽和蒸氣帶到反應腔中與其它 反應氣體混合,然後在被加熱的基板上面發生化學反應促成薄膜的成長。一般而言,載 流氣體(Carrier gas)通常是<u>氫氣</u>,但是也有些特殊情況下採用<u>氦氣</u>,例如:成長<u>氦化銦</u> 錢(InGaN)薄膜時。以本論文實驗所的成長的砷化鎵(GaAs)、磷化鎵銦(InGaP)、磷 化鋁銦(AlInP)這些Ⅲ-V族化合物半導體都是使用氫氣當載流氣體(Carrier gas)。

有機金屬氣相磊晶的基本原理 [36],如圖 4-1、是將有機金屬(如三甲基鎵:TMGa、 三甲基銦:TMIn)及氫化物(如砷化氫:AsH3或磷(L氫:PH3)作為原料,通入高溫的 反應腔內(如圖 4-1內編號 1-7),使得這些通入的有機金屬及氫化物分解成烷類、氫及 單一的元素原子,而這些單一的元素原子會沉積在基板上進而形成磊晶層(如圖 4-1內 編號 3 及 5),而沒有參與反應形成磊晶層的元素原子即會被帶離開反應腔(如圖 4-1內 編號 6 及 7)。因此控制進入反應腔內的有機金屬及氫化物種類就可以控制磊晶層形成 的材料種類,同時控制進入反應腔內的有機金屬及氫化物的多寡就可以來控制磊晶層形 成後材料組成。現今 MOCVD 磊晶法用來成長化合物半導體的應用相當廣泛,幾乎所有 的三五族及二六族半導體材料都可以成長,而且對薄膜厚度的控制能力很好,也可控制 元素的比例來改變成長的材料,因此已成為現今許多半導體產業裡主要的薄膜成長方 式。

圖 4-1: 有機金屬化學氣相沉積(MOCVD)反應過程

MOCVD 設備的反應腔設計,有幾個重要的科學理論基礎,一個是流體動力學與質傳理論,另一個是熱力學與動力學。以下將分別針對各理論與 MOCVD 的關係做簡易描述。

4.1.1 流體動力學與質傳理論

MOCVD中,在流體動力學方面,以反應腔的設計和 MOCVD 反應腔體壓力影響比較大,設計良好的反應腔可以減少熱對流及擾流的影響,藉以提高磊晶層的均匀度。而降低反應時的腔體壓力可以加快流速,減少滯流層(boundary layer)厚度,並降低反應物在氣相中熱解的程度。當磊晶時基板上的高溫,會形成流速相當低的滯留層,此滯留層會造成三族反應物的空乏,反應物必須由滯留層向外擴散到基板表面,因此供應反應物的速率必需取決於滯留層中反應物分布梯度,也就是由氣相中反應物的濃度以及滯留層厚度決定,此稱為質傳理論(mass transport)。

4.1.2 熱力學與動力學

由於 MOCVD 的反應機制相當複雜,所以只能藉由一些理論的長晶模型來描述磊晶 參數對磊晶層的影響。晶體的成長理論可分爲熱力學及動力學兩部份,熱力學是說明了 磊晶時的反應方向,並以反應過程中的假想驅動力(driving force)來估算磊晶速率及固 相中元素的含量。而動力學則是定義磊晶過程中之各種反應速率,包含反應熱解速率、 表面反應速率、載流氣體或是原料催化作用等。

MOCVD 系統(圖 4-2)的組件可大致分為 [37]:氣體反應來源(a)、氣體控制及混 合系統(b)、反應腔(c)、廢氣處理系統 (d)這四個主要部份,如圖 4-3。以下將針對 MOCVD 四個主要組件作簡易的說明。

圖 4-2: MOCVD(Aixtron 2600)系統設備圖 [37]

a.氣體反應來源:

氣體的反應來源可以分為兩種,第一種是有機金屬氣體來源,第二種是氫化物(Hydride)氣體來源。而有機金屬氣體來源是儲藏在密封的不鏽鋼罐(cylinder bubbler)內,當要使用金屬氣體鋼瓶時載流氣體(carrier gas)會先由不鏽鋼罐入口端流入,經不鏽鋼罐內部帶出具有飽合蒸氣的機金屬氣體由不鏽鋼罐出口端流出,經 MOCVD的流量控制器(Mass flow controller : MFC)的調節來控制管路氣體流入反應腔內。而氫化物(Hydride)氣體儲存於氣密鋼瓶內,經由壓力調節器(Regulator)及流量控制器來控制流入反應腔的氣體流量。不論是有機金屬氣體或是氫化物氣體,都是具有毒性的物質,且部份有機金屬氣體接觸空氣後易燃,所以使用時必需要特別小心。而本論文實驗所用到的有機金屬氣體有 TMGa(Trimethylgallium)、TMAI(Trimethylaluminum)、TMIn(Trimethylindium)、 CP2Mg(Cyclopentadienylmagnesium),氫化物氣體有砷化氫(AsH3)、磷化氫(PH3)、矽乙烷(Si2H6),而這些反應氣體的基本特性將會在下個章節中做簡易描述。

b.氣體控制及混合系統:

載流氣體(carrier gas)從系統最上端的供應端流入 MOCVD 系統,經流量控制器(Mass flow controller: MFC)的調節來控制各管路中氣體流入反應腔的流量,如圖 4-4。 而這些氣體在流入反應腔之前必需先經過氣體切換器(Run/Vent switch),其目的是用來 決定管路裡的氣體是要流入反應腔體內或是排入反應腔後端的廢氣管路(Vent line)。而 選擇流入反應腔的氣體則是參與反應進而形成薄膜,相反地選擇流入廢氣管路(Vent line)則是不會有氣體反應而形成薄膜的情況。

圖 4-4: MOCVD 流量控制器管路面盤 [37]

c.反應腔:

反應腔(Reactor Chamber)主要是所有氣體混合及氣體發生反應的地方,因為腔體內 部在長晶過程中長處理高溫及低壓的還境當中,因此腔體通常是由不鏽鋼或是石英的材 質,而腔體內壁通常是以石英或是陶瓷材質的零件置於腔體內圈。在腔體中會有一個乘 載盤用來放置基板,而這個乘載盤材質大多數是以石墨為主,主要是因為石墨能夠有效 地吸收加熱器所提供的能量,進而提供薄膜成長時所需要的溫度,而且石墨還有一個好 處在於石墨不會和腔體內的氣體產生反應。

圖 4-5: MOCVD 反應腔體內部結構 [38]

d.廢氣處理系統:

廢氣處理系統是位在 MOCVD 設備機台的後面,主要的工作是在處理由 MOCVD 流出的有毒氣體,以減少對環境的污染,如圖 4-6。

圖 4-5: MOCVD 後端之廢氣處理系統 [37]

Miller,

4.2 實驗中 MOCVD 相關反應物的特質

本論文實驗中所用到的有機金屬氣體及氫化物氣體有 TMGa(Trimethylgallium)、砷 化氫(AsH3)用來成長 GaAs layer。、TMIn (Trimethylindium)、 TMGa(Trimethylgallium)、磷化氫(PH3)用來成長 InGaP layer。 TMAl(Trimethylaluminum)、TMIn(Trimethylindium)、磷化氫(PH3)用來成長 AlInP layer。TMAl(Trimethylaluminum)、TMGa(Trimethylgallium)、砷化氫(AsH3)用來成長 AlGaAs layer。而掺雜形成 p type 的反應物是用 CP2Mg (Cyclopentadienylmagnesium), 掺雜形成 n type 的反應物是用砂乙烷(Si2H6)。以下將針對這些反應物的特性做簡易描 述。

4.2.1 TMAI

三甲基鋁(Trimethylaluminum,TMAl)分子式:Al(CH₃)₃,熔點為+15℃,沸點:+126 ℃,飽合蒸氣壓在常溫 20℃時為 8.7mmHg,溫度達 30℃時飽合蒸氣壓為 15.7mmHg [39],一般含鋁的反應物在室溫下時都具有較低的飽合蒸氣壓。而鋁的活性大,容易與 氧或是碳發生反應。

4.2.2 TMGa

三甲基鎵(Trimethylgallium,TMGa)分子式:Ga(CH₃)₃,熔點為 -16℃,沸點:+55 ℃,飽合蒸氣壓在常溫 20℃時為 182mmHg,溫度達 30℃時飽合蒸氣壓更可高到 281mmHg [39],在有機金屬體氣中的飽合蒸氣壓算是很高的。TMGa 在氫氣中,溫度達 380℃時開使裂解,溫度約 450℃時的裂解率約 50%,溫度達 480℃時裂解率達 100%, 如圖 4-6。同樣的三甲基鎵在氦氣(N2)、氦氣(He)或是氘氣(D2)的環境下裂解率達 100%時的溫度大約也是在 490~530℃之間。

4.2.3 TMIn

三甲基銦(Trimethylindium,TMIn)分子式:In(CH₃)₃,熔點為+88℃,沸點:+133 ℃,飽合蒸氣壓在常溫 20℃時為 1.7mmHg,溫度達 30℃時飽合蒸氣壓為 3.7mmHg [39]。 同時 TMIn 是以固態的狀態存在,因此飽合蒸氣壓較低,因此 TMIn 在使用上比較配合 MOCVD 硬體上的設體,讓載流氣體攜帶出來的銦流量能夠滿足長晶所需要的反應量。 如圖 4-7 所示,三甲基銦(TMIn)在氫氣環境下時,溫度約在 250℃時就開始裂解,溫度 約在 325℃時裂解效率可達 50%,溫度約在 350℃時裂解效率可以達到 100%。三甲基銦 在氦氣(He)或是氘氣(D2)的環境下裂解率達 100%時的溫度大約也是在 350~400℃之 間。雖然三甲基銦能在低溫下達成 100%的裂解率,不過當三甲基銦處於偏高溫狀態時, 反而容易在反應腔體內流失而不容易參與反應。

圖 4-7:三甲基銦(TMIn)裂解率與溫度的關係 [40]

MILLIN.

4.2.4 AsH3

砷化氫的分子式:AsH3,熔點:-117℃,沸點:-63℃,以氣態狀況存在,是最簡 單的砷化合物,是一種能夠自然而且無色密度高過於空氣的高毒性危險氣體。常溫下分 解成氫及砷的速度很慢,溫度達 400℃時便迅速分解,溫度約達 500℃時分解率可達 100%,如圖 4-8。其分解率除了和溫度有關之外,也與基板材料有關,圖 4-8 中 GaAs 基板對於砷化氫的裂解溫度及速度就比二氧化矽還要來的低溫及快速。

圖 4-8: 砷化氫(AsH3)裂解率與溫度的關係 [40]

4.2.5 PH3

磷化氫的分子式:PH3,熔點:-134℃,沸點:-88℃,以氣態狀況存在,是一種能夠自燃而且無色密度高過於空氣的高毒性危險氣體。與氨相似,也有孤對電子,因此磷化氫也是一種路易斯鹼。與氫離子結合則生成鏻離子。

4.2.6 CP2Mg

二環戊烷鎂(Bis Cyclopentadienylmagnesium)分子式:Mg(C2H5)2,熔點為+180℃, 沸點:+150℃/0.1mmHg,飽合蒸氣壓在常溫25℃時為0.04mmHg,溫度達60℃時飽合蒸 氣壓為0.75mmHg[39]。同時CP2Mg是以固態的狀態存在,因此飽合蒸氣壓較低,所以 載流氣體(carrier gas)的攜出的等效流量相當小,同時CP2Mg主要用來掺雜成為P型材 料,同時具有高度的記憶效應(Memory effect),因此需配合MOCVD硬體上的設定,讓 載流氣體攜帶出來的銦流量能夠滿足長晶所需要的反應量。

4.2.7 Si2H6

砂乙烷的分子式:Si2H6,熔點:-132℃,沸點:-14.2℃ [40],以氣態狀況存在,
是一種能夠自燃而且無色且氣體比重高過於空氣的高毒性危險氣體,與空氣接觸會自燃,與很多物質會劇烈反應或產生爆炸。主要用來掺雜成為 n 型材料,和用來掺雜成為
P 型材料的 CP2Mg 比較起來,砂乙烷(Si2H6)使用上的缺點在於容易在材料內有擴散
(diffusion)的效應。

4.3 MOCVD 磊晶參數的考量及設定

本論文實驗是以有機金屬化學氣相沉積法(MOCVD)做為各種薄膜材料(GaAs、 InGaP、AlInP、AlGaAs)形成的主要方法,而薄膜材料形成品質的優良與否有很大的關 鍵原因在於反應腔體(reactor chamber)內部流場的穩定性、溫度控制及均勻性以及反應 氣體的反應狀況等這幾種重要的因素。而早在反應腔體設計時也決定了反應腔體內部流 場的穩定性,因此其它可控制的長晶參數:溫度、長晶速率(growth rate)、長晶壓力 (reactor pressure)、V-III比(V-III ratio)、晶格常數(lattice constact)、基板(substrate) 的選擇等,即是如何取得最佳薄膜品質之探討分析的重點。因將陸續針對這幾個重要的 長晶參數做簡易說明。

4.3.1 磊晶速率

July .

決定 MOCVD 的磊晶速率有兩個主要的原因,一個是反應氣體(有機金屬氣體及氫 化物氣體)的分解率,二是反應腔中滯留層的厚度。在反應氣體的分解率中,一般而言 溫度越高,分解率也越高,這在4.2 節中都有說明。MOCVD 在低溫成長時,因爲反應 氣體的分解率低於擴散速率,因此在低溫成長時的磊晶速率是由反應氣體的分解率來決 定。而當在高溫成長時,因爲長晶溫度大於反應氣體完全裂解溫度,使得反應氣體分解 率大於擴散速度,所以磊晶速率將由擴散速率來決定。但是擴散速率幾乎是一個定值, 因此在某個溫度範圍內,磊晶速率是不會隨溫度而改變的,而這個溫度範圍稱爲質傳區 (Mass control region)。如果溫度再往上提升,可能會造成反應氣體開始在反應腔內壁上 熱分解,使得氣相中的濃度降低,而使得磊晶速率下降。

反應腔中滯留層的厚度與反應腔壓力大小及氣體流速有關,因為在滯流層中氣體分子的流速接近零,因此分解的反應氣體都是靠擴散方式(diffusion)通過滯留層到達晶片表面來進行反應,因此調變反應腔壓力及氣體流速來改變磊晶效率。如圖 4-10,A 及 C 兩組長晶參數只有長晶壓力的差異,對磊晶效率就有明顯不同。A 及 B 兩組長晶參數只有氣體流速的差異,對磊晶效率也是有明顯不同。

圖 4-10: 氣體流速及腔體壓力與長晶速度的關係 [41]

4.3.2 磊晶壓力

長晶中反應腔的壓力改變了滯留層的厚度,進而影響的磊晶速度,而磊晶速度對於 掺雜也會有明顯的影響,如圖 4-11 所示,提高反應腔體壓力會提高掺雜濃度。

圖 4-11:n 型掺雜與磊晶壓力的關係 [42]

磊晶溫度對磊晶效率的影響在 4.3.1 已說明,長晶溫度除了影響反應氣體分解率進 而改變磊晶效率之外,磊晶溫度對掺雜濃度也是有很大的影響力,如圖 4-12,p 型掺雜 中,隨著溫度的上升使得掺雜濃度下降。在圖 4-13 所示,AlGaAs 材料上做 p 型掺雜時 反而是磊晶溫度越高可獲得較高的掺雜濃度,原因在於含鋁量較高的材料上,比較高溫 的磊晶溫度時,Al比較不易與不純物質反應,進而提升的掺雜濃度。

4.3.3 V-Ⅲ比

V-Ⅲ比的定義是指通入反應腔中,V族反應氣體的莫耳數總和除以Ⅲ族反應氣體 的莫耳數總和。雖然在固相的磊晶層之中,V族原子和三族原子的原子比幾乎是一比 一,但是若是通入等量的V族及Ⅲ族反應氣體時,卻無法得到較好品質的磊晶層,而且 會發現通常是Ⅲ族原子會比較多的情況,這原因是因爲在比較高溫的磊晶過程中,V族 原子比較容易從晶片表面脫離,而Ⅲ族的原子卻是在接觸到晶片表面後幾乎是不會脫 離,因此爲了有相等數量的V族及Ⅲ族的原子數量,必需使用大於1的V-Ⅲ比,來獲 取比較好品值的磊晶層。

在不加入任何掺雜的情況之下, V-Ⅲ比會影響 GaAs 磊晶層的電性, 如圖 4-14 中 顯示, 在低V-Ⅲ比時 GaAs 會呈現 p型, 原因在於反應過程中產生了碳原子並殘留於磊 晶層中, 使得 GaAs 掺雜成 p型。當在高V-Ⅲ比時, 因為 AsH3 的濃度增加, 使的碳原 子濃度會下降, 讓磊層形成 n型。

圖 4-14: V-Ⅲ比對 GaAs 電性的影響 [40]

4.3.5 晶格匹配

首先晶格的定義即是指原子有規則的排列。而晶格匹配(lattice match)則是描述磊 晶時,磊晶層之間晶格常數的相差程度,定義如下公式:

Lattice mismatch = $\triangle a / a$, 單位% , 或是以 ppm 來表示 (4-1)

舉例來說明, GaAs 材料的晶格常數為 5.653Å, GaP 材料的晶格常數為 5.451Å, 因此兩個材料的 lattice mismatch = (5.653 - 5.451)/5.653 = 0.035%,也可表示 = 3500 ppm。兩種不同材料要達成晶格完全匹配其實並不容易達到,所以在實際的長晶上會把材料 mismatch 的程度定義在某個範圍之內,就可算是符合晶格匹配(lattice match)的條件,而這個可接受的範圍大約是-1000ppm ~ + 2500ppm 之間。相對的,如果 mismatch 的程度太大,就稱為晶格不匹配(lattice mismatch),而一旦 lattice mismatch 超過材料所能承受的程度時,則會以差排(dislocation)來釋放應力。如圖 4-15 所示, lattice mismatch = 0%時,可以得到最佳的 PL 強度,相反的,隨的 mismatch 往正/負端加大時,造成磊晶時有應力造成 dislocation,使得 PL 強度即會隨之減弱。

圖 4-15: lattice mismatch 程度大小與 PL 強度的關係 [41]

4.3.6 基板的選擇

本論文實驗一開始即決定使用砷化鎵基板(GaAs substrate),原因在於砷化鎵基板和 本實驗中所要磊晶的半導體材料(GaAs、InGaP、AlInP、AlGaAs)在晶格常數上是匹配 的,因此可以確保獲得較好的薄膜品質。同時砷化鎵基板在目前光電產業的使用也非常 普遍,因此可以輕易取得。而基板有不同的角度供選用,這些基板的角度其實是代表著 晶體中晶格面的方向,而這些不同的方向基板各自會有不同的特性,如長晶溫度、掺雜 濃度、長晶速率等。如圖 4-16 所示,GaAs 材料中,不同的基板角度與掺雜的關係,及 圖 4-17,使用三甲基鎵(TMGa)在不同的砷化鎵基板角度與長晶速率的關係。

4.4 薄膜量測之儀器原理介紹

本論文實驗中利用有機金屬化學氣相沉積法(MOCVD)來成長III-V族化合物半導 體薄膜層,包括有 GaAs、InGaP、AlInP、AlGaAs 這幾種材料的半導體薄膜。因此一旦 要實現單接面太陽能電池結構(如圖 3-1、3-10、3-14 所示之結構)或是二接面太陽能 電池結構(如圖 3-21 所示之結構)等多層磊晶層結構時,則必需利用量測儀器來檢測所 成長的薄膜是否符合實驗所設定的目標,這些目標包含有薄膜厚度、掺雜濃度、晶格匹 配程度及各磊晶層間的成長品質等。因此將針對下列幾種檢測磊晶薄膜品質的量測儀器 做簡易介紹。

4.4.1 X 光繞射(X-ray)量測儀器

X 光對晶體可作結構分析,主要是利用光遇到適當的阻礙所產生繞射(diffraction) 的物理現象。一般 X 光的波長約在 1A 附近,該長度也正好接近固體內原子與原子 間的距離,對於一個三度空間排列整齊的結晶固體結構,正好可被視為一種光柵。 而當在光學系統中,光源通過一雙狹縫時,若雙狹縫的間距非常接近光波的波長時, 即會發生干射現象 [43]。而產生干射的原因是 X 光進入晶體後,X 光被各層原子反 射出來的路徑不一樣,造成了光程差所致。若光柵間的的距離為 d,入射光的入射角 為 θ 時,則兩道光的光程差距離為 BC+BD,也就是 2d sin θ (如圖 4-18 所示)。 當光程差不是 X 光波長的整數倍時,即發生破壞性干射(舉例:½ n λ = 2d sin θ)。 相反的,如果光程差為 X 光波長的整數倍時(2 n λ = 2d sin θ),即發生建設性干射, 而這個建設性干射也就是布拉格原理: n λ = 2d sin θ 。只要符合布拉格方程式時, 就會出現建設性的干射。

圖 4-18:兩道光的光程差為 BC+BD = 2d sin θ

本論文實驗中所使用的 X 光單晶繞射儀(如圖 4-19)為半導體量測儀器製造商 Bruker 所生產,此類量測屬於非破壞性量測可應用於化合物半導體薄膜的量測,組成的分析,及晶體堆疊狀況等,目前主要大量應用於 LED 磊晶層間量測與分析。

4.4.2 光激發螢光(Photoluminescence)量測儀器

本論文所使用的光激發螢光量測系統(如圖 4-20)為 RPM2000,量測光源採用氦氛(He-Ne)雷射作為連續光光源,光源波長為 532nm。

圖 4-20:光激發螢光(Photoluminescence)量測儀器

光激發螢光(Photoluminescence)量測是研究半導體材料物理特性很常見的量測方法,也 是屬於非破壞性量測,可以在量測後所得到的光譜圖形中的半高波寬(FWHM)或是光強 度來判別量測物的能隙、材料組成、及薄膜層的缺陷等。同時要注意所要量測的半導體 材料必須是直接能隙的材料,當所吸收的光能量大於能隙時,電子會由價電帶被激發到 導電帶,而會在很短的時間之內大部份的高階電子又會返回初始能態上並產生光子[44], 如圖 4-21。

圖 4-21:光激發螢光(Photoluminescence; PL)過程示意圖

4.4.3 電化學電容電(ECV)壓量測儀器

本論文實驗中利用有機金屬化學氣相沉積法(MOCVD)來成長III-V族化合物半導 體薄膜層,包括有 GaAs、InGaP、AlInP、AlGaAs 這幾種材料的半導體薄膜,為了確保 各薄膜層的掺雜濃度,採用 Sansho shoji 生產,型號 PN4300 電化學電容電壓 (Electrochemical Capacitance-Voltage :ECV)量測儀器來確認,如圖 4-22。電化學電容電 壓(ECV)量測技術是利用輸入電流大小來控制量測時的蝕刻速度,同時取得量測過程中 所產生的電容值的倒數及電壓值,在這兩個數值關係中的斜率來求得掺雜濃度對磊晶深 度的關係。因爲蝕刻過程中會對磊晶片表面有破壞的行爲且無法回復,因此屬於破壞性 量測。

圖 4-22:電化學電容電壓(ECV)量測儀器

第五章 實驗結果及量測

5.1 前言

本章節將使用有機金屬化學氣相沉積法(MOCVD)來成長 GaAs、InGaP 單接面太陽能電池結構及 GaAs/InGaP 二接面太陽能電池結構。同時將採用 GaAs n 型掺雜基板(substrate)。反應的有機金屬氣體包含有:三甲基鎵(TMGa)、三甲基銦(TMIn)、三甲基鋁(TMAl)。反應的有氫化物氣體包含有:砷化氫(AsH3)、磷化氫(PH3)。n/p 型掺雜的氣體包含有:二環戊烷鎂(CP2Mg)、矽乙烷(Si2H6)。磊晶後的薄膜將會使用 X 光 繞射(X-ray)量測儀器、光激發螢光(Photoluminescence)量測儀器、電化學電容電(ECV) 壓量測儀器這幾種儀器來確認磊晶薄膜的品質及掺雜濃度,以及使用掃瞄式電子顯微鏡(SEM)來確認薄膜厚度,進而推算長晶速率及正確的薄膜厚度。

(長晶完成後的磊晶片由實驗室張峰瑜及黃國軒同學來執行後段製程的作業,詳細的 process flow 如附錄一)。

5.2 GaAs 單接面太陽能電池磊晶結構薄膜成長及量測

參考圖 3-1,將使用有機金屬化學氣相沉積法(MOCVD)來實現 GaAs 單接面太陽能電池結構,但因為已考慮選用 GaAs 基板的因素,所以在 GaAs 單接面太陽能電池結構與基板間會加入緩衝層(Buffer layer),藉以緩衝基板表面缺陷造成磊晶層實際的 GaAs 單接面太陽能電池結構 [45-48],如圖 5-1 所示。

	Material	conposition (X)	Туре
Contact layer	GaAs		Р
Window	In(x)Ga(1-x)P	0.5	Р
Emitter	GaAs		Р
Base	GaAs		Ν
BSF	In(x)Ga(1-x)P	0.5	Ν
Buffer	GaAs		N
substrate	GaAs 15 off		N

圖 5-1:MOCVD 成長 GaAs 單接面太陽能電池結構

如圖 5-1 的 GaAs 單接面太陽能電池完整結構成長之前,必需先對單層薄膜層的條件做 確認,如各層的掺雜濃度、各層長晶速率確認,進而推算正確的長晶時間。另外參考 4.2 結中所提到各種反應氣的特性,因此決定 GaAs 及 InGaP 兩種材料在 MOCVD 設備成長時,機台將設定在低長晶壓力(50 mbar)、低長晶溫度(695℃)下進行薄膜成長。

5.2.1 各層的長晶速率確認

如圖 5-1 的 GaAs 單接面太陽能電池結構中,首先針對 GaAs、InGaP 兩種材料所構成的 Window layer、Emitter layer、BSF layer 的長晶速率做確認,長晶速率的確認是利用 長晶時間與 SEM 量測膜厚來推算,因此必需先獨立成長一片 bulk,如圖 5-2。此 bulk 僅 成長 GaAs 及 InGaP 薄膜層。SEM 量測結果如圖 5-3 所示。

	長晶時間	長晶溫度	v-∎£Ł
InGaP	140 sec	695 °C	200
GaAs	ES 600 sec	695 °C	150
GaAs substrate	189	6	

圖 5-2:GaAs、InGaP 長晶速率確認 Bulk sample

圖 5-3:GaAs、InGaP 長晶速率確認之 SEM 量測結果

而 Base layer 因為預設定的厚度偏厚,故計劃加快長晶速率來縮短長晶時間,所以長晶 速率的確認 bulk 如圖 5-4 所示, SEM 量測的結果如圖 5-5 所示。

	長晶時間	長晶溫度	v-Ⅲ比
GaAs	1800 sec	695 °C	30
GaAs substrate			

圖 5-4:GaAs 高長晶速率確認 Bulk sample

圖 5-5:GaAs 高長晶速率確認之 SEM 量測結果

參考圖 5-2、5-4 的薄膜成長條件及圖 5-3、5-5 的 SEM 各層膜厚量測結果,可推算出 GaAs 高/低長晶速率下及 InGaP 的長晶速率,同時推算出預計長晶膜厚 MOCVD 所需的長晶時間,如表 5-1 所示。

	Material	長晶速率	厚度 target	推算長晶時間
				(sec)
Contact layer	GaAs	3.5 Å/sec	180 nm	514
Window	In(x)Ga(1-x)P	3.7 Å/sec	50 nm	135
Emitter	GaAs	3.5 Å/sec	120 nm	343
Base	GaAs	27.3 Å/sec	4.0 um	1465
BSF	In(x)Ga(1-x)P	3.7 Å/sec	130 nm	351
Buffer	GaAs			
substrate	GaAs 15 off			

表 5-1:GaAs、InGaP 長晶速率及推算 MOCVD 長晶所需時間

5.2.2 各層的掺雜濃度確認

如圖 5-1 的 GaAs 單階面太陽能電池結構中,將針對 GaAs、InGaP 兩種材料所構成 的 Window layer、Emitter layer、Base layer、BSF layer 的掺雜濃度做確認,其中 Window layer 及 Emitter layer 為 P 型,將採用二環戊烷鎂(CP2Mg)做為 P 型掺雜的反應氣體。 Base layer、BSF layer 為 N 型,將採用矽乙烷(Si2H6)做為 N 型掺雜的反應氣體。

首先獨立成長一片由 GaAs、InGaP 所構成的 bulk,此 bulk 為 P 型掺雜,結構圖 5-6。成 長後的 bulk 晶片透過電化學電容電壓量測儀器(ECV)來量測掺雜的濃度,量測結果如 圖 5-7 所示。

	長晶溫度	v-m比	Mg dope MFC flow (Source/Push/Dilute/Pressure)
Window layer : InGaP	695 °C	200	450/100/200/1000
Emitter layer : GaAs	695 °C	150	450/100/200/1000
GaAs substrate			

圖 5-6:GaAs、InGaP 之 P 型掺雜 Bulk sample

P型掺雜確認後,同樣方式再成長一片由 GaAs、InGaP 所構成的 bulk,此 bulk 為 N 型 掺雜,結構圖 5-8。成長後的 bulk 晶片透過電化學電容電壓量測儀器(ECV)來量測掺雜 的濃度,量測結果如圖 5-9 所示。其中 X 軸代表量測磊晶層的厚度,此 bulk 的厚度並非 是 GaAs 單接面太陽能電池各磊晶層厚度的設定值,僅是為了方便 ECV 量測所設定的厚度。

	長晶溫度	v-皿比	Si dope MFC flow (Source/Push/Dilute/Pressure)
BSF layer : InGaP	695 °C	200	50/100/50/1800
Base layer : GaAs	695 °C	30	80/100/80/1800
GaAs substrate			-

圖 5-8:GaAs、InGaP 之 N 型掺雜 Bulk sample

綜合圖 5-6、5-7、5-8、5-9 的結果,N/P 掺雜的流量設定及 ECV 所量測到的掺雜濃度 如表 5-2 所示。

	長晶溫度	v-IIH	Туре	Dope	dope MFC flow (Source/Push/Dibme/Pressure)	ECV 量測結果
Window layer : InGaP	695 °C	200	Р	Mg	450/100/200/1000	1.10E+19
Emitter layer : GaAs	695 °C	150	Р	Mg	450/100/200/1000	1.10E+18
BSF layer : InGaP	695 °C	200	И	Si	50/100/50/1800	5.50E+17
Base layer : GaAs	695 °C	30	И	Si	80/100/80/1800	1.50E+18
GaAs substrate						

表 5-2: GaAs 單接面太陽能電池各磊晶層掺雜濃度量測結果

5.2.3 磊晶層品質確認

Substrate

GaAs 15 off

經過 5.2.1 節對各層厚度長晶速率確認進而推算正確的長晶時間,以及 5.2.2 節對各 磊晶層掺雜濃度做確認,因此 GaAs 單接面太陽能電池結構的實際結構及磊晶參數如表 5-3 所示。

	Material	conposition (X)	Туре	dope concentration	thickness
Contact layer	GaAs		Р	1.10E+19	180 nm
Window	In(x)Ga(1-x)P	0.5	Р	1.10E+19	50 nm
Emitter	GaAs		P	1.10E+18	0.12 um
Base	GaAs		N	5.50E+17	4.00 um
BSF	In(x)Ga(1-x)P	0.5	И	1.50E+18	0.13 um
Buffer	GaAs		17.		

表 5-3: GaAs 單接面太陽能電池各層磊晶參數

衣 5-5 · GaAs 单按阻入防能电池合層磊晶参数

如表 5-3 的磊晶結構,將磊晶片做 X 光繞射(X-ray)量測,確認 GaAs 單接面太陽能電 池的磊晶品質,量測結果如圖 5-10。經 X-ray 儀器計算後 GaAs 基板與 InGaP 磊晶層的 晶格常數差異僅只有 800ppm,依先前在 4.3.5 節所規範,本次量測是符合晶格匹配(lattice match)的條件。

206

圖 5-10: GaAs 單接面太陽能電池 x-ray 量測結果

5.2.4 GaAs 單接面太陽能電池量測結果

依表 5-3 的磊晶結構及參數成長 GaAs 單接面太陽能電池結構,結構中並沒有包含 抗反射層(ARC),量測結果的 I-V curve 如圖 5-11 及 Quantum efficiency 量測結果如圖 5-12。

圖 5-12:GaAs 單接面太陽能電池結構 Quantum efficiency 量測結果

所得到的短路電流(Isc)、開路電壓(Voc)經公式 3-1、及 3-2 計算後所求得的 Fill Factor 及 轉換效率(η), 如表 5-4。

Cell area :	1 cm ²
Isc (mA) :	20.39 mA / cm ²
Voc (V):	0.96 V
F.F (%):	79.74 %
η (%):	15.55 %

表 5-4: GaAs 單接面太陽能電池所得到的 Fill Factor 及轉換效率

5.3 InGaP 單接面太陽能電池磊晶結構薄膜成長及量測

同 5.2 節之 GaAs 單接面太陽能電池結構,將 GaAs 接面替換成 InGaP 接面,並使用 有機金屬化學氣相沉積法(MOCVD)來實現 InGaP 單接面太陽能電池結構,磊晶薄膜層 主要長在 GaAs 基板,實際的磊晶結構如圖 5-13 所示 [49-52]。

	Material	conposition (X)	Туре
Contact layer	GaAs		Р
Window	Al(x)In(1-x)P	0.5	Р
Emitter	In(x)Ga(1-x)P	0.5	Р
Base	In(x)Ga(1-x)P	0.5	Ν
BSF	In(x)Ga(1-x)P	0.5	Ν
Buffer	GaAs		N
substrate	GaAs 15 off		N

圖 5-13:MOCVD 成長 InGaP 單接面太陽能電池結構

如圖 5-13 的 InGaP 單接面太陽能電池完整結構成長之前,必需先對單層薄膜層的條件做 確認,如各層的掺雜濃度、各層長晶速率確認,進而推算正確的長晶時間。參考 5.2.1 節所求得的 InGaP 長晶速率的磊晶條件,另外還需求得 AlInP 材料的磊晶參數。另外參 考 4.2 節中所提到各種反應氣的特性,因此決定 InGaP 材料在 MOCVD 設備成長時,機 台將設定在低長晶壓力(50 mbar)、低長晶溫度(695℃)下進行薄膜成長,而 AlInP 材料 於 MOCVD 設備成長時,機台將設定在低長晶壓力(50 mbar)、低長晶溫度(755℃)下進 行薄膜成長。

5.3.1 各層的長晶速率確認

如圖 5-13 的 InGaP 單階面太陽能電池結構中, InGaP 材料所的組成的 Emitter layer、 Bsse layer、BSF layer 因為在 5.2.1 節已確認了 InGaP 的長晶速率,所以本節僅需要確認由 AlInP 材料所構成之 Window layer 的長晶速率做確認。而長晶速率的確認是利用長晶時 間與 SEM 量測膜厚來推算,因此必需先獨立成長一片 bulk,如圖 5-14。Bulk 之 SEM 量 測結果如圖 5-15 所示。

	1896					
	長晶時間	長晶溫度	V-Ⅲ 比			
AlInP	1800 sec	755 ℃	200			
InGaP buffer						
GaAs buffer						
GaAs substrate						

圖 5-14: AlInP 長晶速率確認 Bulk sample

圖 5-15: AlInP 長晶速率確認之 SEM 量測結果

參考圖 5-14 的薄膜成長條件及圖 5-15 的 SEM 各層膜厚量測結果,可推算出 AlInP 長晶 速率,同時參考 5.2.1 節所計算出的 InGaP 的長晶速率,來推算出 InGaP 單接面太陽能電 池結構預計膜厚於 MOCVD 成長時所需的長晶時間,如表 5-5 所示。在此說明:本結構 中爲了讓 Window layer 及 Contact layer 的晶格常數能匹配,所以在 Window layer 與 Contact layer 間加入 InGaP 緩衝層,同時讓 Window layer 符合 λ / 4n 的光學膜厚,所以 Window layer 及 InGaP 緩衝層的總厚度經計算後如表 5-5。

	Material	長晶速率	厚度 target	推算長晶時間 (sec)
Contact layer	GaAs	3.5 Å/sec	100 nm	29
Buffer	In(x)Ga(1-x)P	3.7 Å/sec	56 Å	15
Window	Al(x)In(1-x)P	3.1 Å/sec	0.03 um	97
Emitter	In(x)Ga(1-x)P	3.7 Å/sec	0.10 um	27
Base	In(x)Ga(1-x)P	3.7 Å/sec	2.00 um	5405
BSF	In(x)Ga(1-x)P	3.7 Å/sec	0.10 um	27
Buffer	GaAs			
substrate	GaAs 15 off			

表 5-5:InGaP、AlInp 長晶速率及推算 MOCVD 長晶所需時間

5.3.2 各層的掺雜濃度確認

如圖 5-13 的 InGaP 單接面太陽能電池結構中,將針對 InGaP、AlInP 兩種材料所構成的 Window layer、Emitter layer、Base layer、BSF layer 的掺雜濃度做確認,其中 Window layer 及 Emitter layer 為 P 型,將採用二環戊烷鎂(CP2Mg)做為 P 型掺雜的反應氣體。 Base layer、BSF layer 為 N 型,將採用矽乙烷(Si2H6) 做為 N 型掺雜的反應氣體。 首先獨立成長一片由 GaAs、InGaP 所構成的 bulk,此 bulk 為 P 型掺雜,結構圖 5-16。 成長後的 bulk 晶片透過電化學電容電壓量測儀器(ECV)來量測掺雜的濃度,量測結果 如圖 5-17 所示。

圖 5-17: InGaP、AlInP 之 P 型掺雜 ECV 量測結果

P型掺雜確認後,同樣方式再成長一片由 InGaP 所構成的 bulk,此 bulk 選用 Si 作為 N 型掺雜,共分三層不同掺雜流量的結構,如圖 5-18。成長後的 bulk 晶片透過電化學電容 電壓量測儀器(ECV)來量測掺雜的濃度,量測結果如圖 5-19、5-20 所示。

	長晶溫度	V一Ⅲ比	Si dope MFC flow (Source/Push/Dilute/Pressure)
InGaP	695 °C	200	dope 1
InGaP	695 °C	200	dope 2
InGaP	695 °C	200	dope 3
Buffer layer : GaAs			
GaAs substrate]		

圖 5-19: InGaP 之 N 型掺雜 ECV 量測結果

綜合 N/P 掺雜的流量設定及 ECV 所量測到的掺雜濃度如圖 5-16、5-17、5-18、5-19、 5-20 的結果,得到 InGaP 單接面太陽能電池磊晶結構之磊晶參數如表 5-6 所示。

	長晶溫度	v-皿比	Type	Dope	dope MFC flow (Source/Push/Dibute/Pressure)	ECV 量測結果
Window layer : AlInP	755 °C	200	Р	Mg	350/100/150/1000	1.50E+18
Emitter layer : InGaP	695 °C	200	Р	Mg	350/100/100/1000	8.00E+18
BSF layer : InGaP	695 °C	200	N	Si	10/200/10/1800	2.00E+17
Base layer : InGaP	695 °C	200	N	Si	30/100/30/1800	1.20E+19
Buffer layer : GaAs						
GaAs substrate						

表 5-6: InGaP 單接面太陽能電池各磊晶層掺雜濃度量測結果

5.3.3 磊晶層品質確認

經過 5.3.1 節對所各層厚度長晶速率確認進而推算正確的長晶時間,以及 5.3.2 節對各 磊晶層掺雜濃度做確認,因此 InGaP 單接面太陽能電池結構的實際結構及磊晶參數如表 5-7 所示。

	Material	conposition (X)	Туре	dope concentration	thickness
Contact layer	GaAs		Р	1.10E+19	100 nm
Buffer	In(x)Ga(1-x)P		Р	1.10E+19	56 Å
Window	Al(x)In(1-x)P	0.5	Р	1.10E+19	0.03 um
Emitter	In(x)Ga(1-x)P	0.5	Р	1.10E+18	0.10 um
Base	In(x)Ga(1-x)P	0.5	И	5.50E+17	2.00 um
BSF	In(x)Ga(1-x)P	0.5	N	1.50E+18	0.10 um
Buffer	GaAs				
Substrate	GaAs 15 off				

te GaAs 15 off ES

表 5-7:InGaP 單接面太陽能電池各層磊晶參數

1896

如表 5-7 的磊晶結構,將磊晶片做 X 光繞射(X-ray)量測,確認 InGaP 單接面太陽能電池的磊晶品質,量測結果如圖 5-21。經 X-ray 儀器計算後 GaAs 基板與 InGaP 磊晶層的晶格常數差異僅只有 1500ppm,GaAs 基板與 AlInP 磊晶層的晶格常數差異僅只有 800ppm 依先前在 4.3.5 節所規範,本次量測是符合晶格匹配(lattice match)的條件。

圖 5-21:InGaP 單接面太陽能電池 x-ray 量測結果

5.3.4 InGaP 單接面太陽能電池量測結果

依表 5-7 的磊晶結構及參數來成長 InGaP 單接面太陽能電池結構,量測 I-V curve 的結果如圖 5-22。磊晶結構中並沒有包含抗反射層(ARC)。

所得到的短路電流(Isc)、開路電壓(Voc)經公式 3-1、及 3-2 計算後所求得的 Fill Factor 及 轉換效率(η),如表 5-8。

Cell area:	1 cm ²
Isc (mA) :	13.20 mA / cm ²
Voc(V):	1.37 V
F.F (%):	70.25 %
η (%):	12.75 %

表 5-8:InGaP 單接面太陽能電池所得到的 Fill Factor 及轉換效率

5.4 GaAs 穿隧層薄膜成長及量測

本論文實驗中的穿隧層(tunnel junction)是由一組重掺雜濃度的 p-n 接面所組成,同時厚度也非常薄,目的是為了將上電池所產生的電子傳送到下電池裡。同時考慮薄膜材料於長晶時晶格匹配的問題,因此決定採用 GaAs 做為穿隧層的材料。而在 GaAs 材料中為了能夠達到大於 1E19 的重掺雜濃度,參考文獻[53-68]後整理出會影響 GaAs 掺雜 濃度的因素。

5.4.1: 影響 GaAs 掺雜濃度的因素

(A) V-Ⅲ比:

如圖 5-23 所示, P 型掺雜須保持於低五三比, 而 N 型掺雜必需保持較高的五三比才 容易提高掺雜濃度。

圖 5-23: 掺雜濃度與V-Ⅲ比的關係 [40]

(B) 長晶壓力:

MOCVD 於薄膜成長時,反應腔體內的操作壓力也會對掺雜有所影響,如圖 5-24, P 型掺雜於反應腔壓力越低時越容易達成高掺雜濃度,而在 N 型掺雜於反應腔壓力 越高時越容易達成高掺雜濃度。

圖 5-24: 掺雜濃度與反應腔壓力的關係 [40]

(C) 長晶溫度:

以 GaAs 材料為研究對象時,當長晶溫度越低則越容易達成高掺雜的濃度,如圖 5-25 所示,當長晶溫度低於 550℃,則 GaAs 材料作 P 型掺雜可達到 5E19 的掺雜濃度。

圖 5-25: 掺雜濃度與長晶溫度的關係 [42]

5.4.2 穿隧層量測結果

參考文獻後將V-Ⅲ比、反應腔壓力這兩種可提升掺雜濃度的的方式導入實驗,而 量測結果如圖 5-26、5-27、5-28、5-29 所示。

圖 5-27:N 型掺雜濃度與V-Ⅲ比的關係

Miller.

綜合上述結果,選用適當的長晶壓力及V-III比將可將穿隧層的掺雜濃度提昇到 1.0E19, 不過對於有效率運作穿隧層標準似乎仍待改善,因此參考文獻後如圖 4-6、4-8 再調降 長晶溫度,其結果如圖 5-29 所示。

圖 5-29: 掺雜濃度與長晶溫度的關係

參考文獻[58]將設計一組 GaAs 材料所構成的穿隧層 Bulk,其主要目的在於測試所採用的穿隧層條件是否可正常運作。Bulk 結構設計如表 5-9 所示,量測前後的結果如圖 5-30 所示。

Buffer	GaAs	Ρ	2.00E+18	100 nm
Barrier	AlGaAs	Ρ	1.00E+19	30 nm
TD-P	GaAs	Ρ	3.50E+19	
TD-N	GaAs	Ν	1.50E+19	
Barrier	GaInP	Ν	5.00E+18	30 nm
Buffer	GaAs	Ν	2.00E+18	345 nm

	thickness (nm)				
	TD-P	TD-N			
A	28	26			
В	10	10			
С	5	5			

表 5-9:穿隧層 Bulk 結構及參數 [58]

圖 5-30: 穿隧層 Bulk 結構 anneal 前後的差異

在圖 5-30 的量測及結果顯示出不同的穿隧層厚度的 Bulk 結構,經過 anneal 後所量測到 的 I-V curve,在厚度最薄的 C 組看到退火後的阻値偏大,厚度較厚的 A 組則阻抗最小。 將各組的 sample 取平均值後再來比較不同厚度三組的阻抗差異性,如表 5-10。而穿隧 層厚度偏薄會造成阻抗偏大此特性的主要原因,推測是因為 N/P type 掺雜所使用的 Si/Mg 因為 anneal 時受到溫度的影響而發生 duffusion 的行為,此行為會造成穿隧層掺 雜濃度流失,而促使穿隧層的阻值上升,這將會直接影響到多接面太陽能電池串接時電 子的傳送效率及整體的轉換效率。

	thickne	ss (nm)	I-V o	curve	ave	erage	
	TD-P	TD-N	$\mathbb{V}(\mathbb{V})$	I(mA)	$\mathbb{V}(\mathbb{V})$	I (mA/cm²)	R=V/I (Ωcm^2)
A	28	26	0.2 0.3	400 400	0.267	356	0.750
в	10	10	0.3 0.3 0.1	270 180 400	0.233	283	0.823
С	5	5	0.15 0.5 0.5	400 S 200 120	0.38	240	1.583

1896 表 5-10:退火後穿隧層厚度與阻値的關係

5.5 GaAs / InGaP 二接面太陽能電池磊晶結構薄膜成長及量測

綜合 5.2、5.3 節中 GaAs 及 InGaP 單接面太陽能電池結構中所量測到的最佳長晶條件,以及 5.4 節中 GaAs 穿隧層所量測得到的較佳的磊晶參數,構成 GaAs 及 InGaP 兩種材料所組成的二接面太陽能電池結構,結構如表 5-11 所示。其中穿隧層共有分 A 及 B 這兩組不同的厚度。

	Material	Conposition (X)	Туре	dope concentration	thickness
Contact layer	GaAs		Р	1.00E+19	100 nm
Buffer	In(x)Ga(1-x)P	0.5	р	8.00E+18	35 Å
Window	Al(X)In(1-X)P	0.5	Р	1.50E+18	0.03 um
emitter	In(x)Ga(1-x)P	0.5	Р	8.00E+18	0.10 um
Base	In(x)Ga(1-x)P	0.5	N	2.00E+17	1.60 um
BSF	In(x)Ga(1-x)P	0.5	N	1.50E+19	0.10 um
Tunnel	GaAs		N	2.00E+19	28 nm
junction	GaAs		P	4.50E+19	26 nm
window	In(x)Ga(1-x)P	0.5	Р	1.00E+19	50 nm
emitter	GaAs		P	1.00E+18	140 nm
base	GaAs		8 N	5.00E+17	4.0 um
BSF	In(x)Ga(1-x)P	0,5896	N	3.00E+18	130 nm
buffer	GaAs		N		
substrate	GaAs 15 off		N		

表 5-11:GaAs / InGaP 二接面太陽能電池結構

如表 5-11 的二接面太陽能磊晶結構,將磊晶片做 X 光繞射(X-ray)量測,確認二接面太陽能電池的磊晶品質,量測結果如圖 5-31 所示。經 X-ray 量測儀器並計算後得到 GaAs 基板與 InGaP 磊晶層的晶格常數差異僅只有 1400ppm,而 GaAs cell 磊晶層因為與基板 材料相同,所以 X-ray 訊號是相同的,不過訊號強度會因為加上的 GaAs cell 後而變得 更強。同先前在 4.3.5 節所規範,本次量測 GaAs / InGaP 二接面太陽能電池的磊晶層結 構是符合晶格匹配(lattice match)的條件。

圖 5-31: GaAs / InGaP 單接面太陽能電池 x-ray 量測結果

依表 5-11 的磊晶結構及參數來成長 GaAs / InGaP 二接面太陽能電池結構,結構中並沒有 包含抗反射層(ARC),量測結果的 I-V curve 如圖 5-32 及 Quantum efficiency 量測結果如圖 5-33。

圖 5-32:GaAs/InGaP 二接面太陽能電池結構 I-V Curve 量測結果

圖 5-33:GaAs/InGaP 二接面太陽能電池結構 Quantum efficiency 量測結果

所得到的短路電流(Isc)、開路電壓(Voc)經公式 3-1、及 3-2 計算後所求得的 Fill Factor 及 轉換效率(η),如表 5-12。 1896

	Voc (V)	Isc (m A/cm²)	F.F (%)	η (%)
DJ-A	2.27	6.79	69.54	10.70
DJ-B	2.24	7.00	62.11	9.76
DJ-C	2.30	7.36	77.03	13.05
DJ-D	2.03	7.74	79.81	14.22

表 5-12: GaAs/InGaP 二接面太陽能電池所得到的 Fill Factor 及轉換效率

第六章 總結及未來工作

本論文前段中,分別使用 PC1D 及 APSYS 模擬軟體進行 GaAs、InGaP 單接面太陽 能電池及 GaAs/InGaP 二接面太陽能電池結構的模擬分析。代入所獲取的光學參數:如 介電常數(Dielectric constant)、本質濃度(Intrinsic concentration)、表面復合率(Surface recombination, Sn/Sp)、壽命時間(life time, τ_n/τ_p)、折射率(refractive index, n)、 消光係數(Extinction Coefficient or Absorption Coefficient, K)、 吸收係數(absorption coefficient, α)。最終太陽能電池的模擬結果如下: GaAs single junction: Isc=18.2 mA/cm², Voc=1.0v, F.F=84%, η =15.6% InGaP single junction: Isc=10.7 mA/cm², Voc=1.2v, F.F=86%, η =11.2% GaAs/InGaP dual junction: Isc=7.8 mA/cm², Voc=2.26v, F.F=84%, η =15.1% 從模擬的結果可知,不同能隙所組成的太陽能電池,因吸收波段的差異所產生的電流也 有所不同,進而影響了二接面太陽能電池中電流匹配的情況。

在論文的後段中,利用了有機金屬化學氣相沉積 (MOCVD)來實現單接面及二接面的太陽能電池結構。在磊晶的過程中,必須精準地控制長晶溫度、長晶壓力、V-III比、 長晶速率等參數,因為這些參數會直接影響長晶材料的掺雜濃度、長晶厚度以及半導體 材料堆疊後的磊晶品質,因此 MOCVD 設備的硬體狀況必須保持在較佳的狀態,以獲取 比較好的磊晶品質。在未包含抗反射層的結構下,磊晶所得到的 GaAs 及 InGaP 單接面 太陽能電池量測的結果如下:

GaAs single junction : Isc=20.4 mA/cm² , Voc=0.96v , F.F=80% , $\eta = 15.5\%$

InGaP single junction: Isc=13.2mA/cm² , Voc=1.37v, F.F=70%, η=12.8% 單接面太陽電池的實作結果與模擬結果中的短路電流、開路電壓及轉換效率相近,因此 磊晶過程的掌控及磊晶的品質是不錯的。

製作 GaAs/InGaP 二接面太陽能電池的過程中,因為 GaAs 及 InGaP cell 中間是靠 GaAs 穿隧層串接而成,因具備了將上電池所產生的電子傳遞到下電池的功能,因此穿 隧層在磊晶時必須克服 n、p 型重掺雜的困難性,因此採用低長晶速率、低長晶溫度及 適當的 V-III 比來達成重掺雜的需求。穿隧層的掺雜能力,N type 可達 2e19,P type 可 達 4.5e19。同時利用穿隧層的 bulk 經 annel 後量測 I-V curve 並計算出最佳阻値來定義最 佳的穿隧層厚度,而量測所得的最佳阻值 =0.75 Ω cm²,對應到的厚度為 28/26nm。並 將此長晶條件代入的 GaAs/InGaP 二接面太陽能電池的製作過程。在未包含抗反射層的 結構下,磊晶所得到的 GaAs/ InGaP 二接面太陽能電池量測的結果如下:

87

Isc=7.74mA/cm² , Voc=2.03v , F.F=80% , $\eta = 14.2\%$

而所得到的二接面太陽能電池結構整體轉換效率不佳的原因分析如下:

- (1) 上/下電池電流不匹配(Jsc-top=12.16 mA/cm², Jsc-bot=7.81 mA/cm²) 上電池厚度偏厚而減損了下電池的光吸收
- (2) 穿隧層仍有過多阻抗,造成上電池的電子無法順利傳送到下電池
- (3) 穿隧層所使用的 n type dope: Si 的 diffusion 情況嚴重,造成穿隧層的功能減損
- (4) 穿隧層所使用的 p type dope: Mg 的 mobility 和業界所採用的 C 比較起來相對偏低 實驗過程中, Mg 及 Si 是僅能使用的掺雜元素。

未來工作:

July 1

針對二接面太陽能電池轉換效率的提升則列出兩項改善的方向

- (1) 提升元件的 Jsc,因此可以降低 top cell 的厚度 (Base layer)來增加下電池的光吸收 量,進而提升下電池的 Jsc。
- (2) 降低 tunnel junction 阻抗: 1896 可提高 dope 濃度,或降低 diffusion 來保持 tunnel junction 維持重掺雜的水準,因此 可採用業界常用的掺雜元素,如 Te, Se for N type dope, C、Zn for P type dope。

參考文獻

- [1] D.M. Chapin, C.S. Fuller, G.L. Pearson, <u>A New Silicon p-n Junction Photocell for</u> <u>Converting Solar Radiation into Electrical Power</u>, Journal of Applied Physics, v25, p676-677, 1954
- [2] 莊家琛,「太陽能工程-太陽能電池篇」, 全華出版社, 台北, 2005
- [3] 施敏,「半導體元件物理與製作技術」,高立圖書,台北,2001
- [4] 林明獻,「太陽能電池技術入門」,台北,全華出版社,2007
- [5] S.O.Kasap, 陳金嘉、黃俊達、楊奇達、楊國輝、雷伯勳、黃俊達譯, "Optoelectronics and Photonics: Principles and Practices", 高立圖書, 台北, 2011
- [6] 戴寶通, 鄭晃忠, 「太陽能電池技術手冊」, 台灣電子材料與元件協會, 新竹, 2008
- [7] 畢無量,「Numerical studies on InGaP/GaAs/Ge Trip-junction tendem solar cell」,國立 師範大學, 碩士論文, 民國 98 年
- [8] 蔡進譯, 超高效率太陽能電池, 物理雙月刊, p701-719 第 27 卷 5 期, 2005
- [9] G.B Stringfellow, M. G. Craford, "High Brightness Light Emitting Diodes (Semiconductors and Semimetals) volume48", USA,1997
- [10] 紀國鐘, 蘇炎坤, 「太陽能電池技術手冊」, 台灣電子材料與元件協會, 新竹, 2002
- [11] M.Yamaguchi, M.D. Archer, R.Hill, "Clean electricity from photovoltaics ", World Scientific Publishing Company, 2001
- [12] J.Nelson, "The physics of solar cells", Baker & Taylor Books, 2003
- [13] I.M. Dharmadasa, <u>Third generation multi-layer tandem solar cells for achieving high</u> <u>conversion efficiencies</u>, v85, p293-300, 2005
- [14] M. Baudrit, C.Algora, <u>Modeling of GaInP/GaAs dual junction solar cell including tunnel</u> junction, p1-5, IEEE, 2008
- [15] H.Matsubara, T.Tanabe, A.Saegusa, S.Takagishi, T.Shirakawa, <u>GaAs solar cell with</u> <u>GaInP window grown by all metalorganic source MOVPE</u>, p1871, v2, IEEE, 1994
- [16] P. Leinonen', M. Pessa', J. Haapamaa', and K. Rakennus, <u>Advances in production MBE</u> grown GaInP/GaAs cascade solar cells, p1177-1180, IEEE,2000
- [17] M.Levinshtein, S.Rumyantsev, M.Shur ,"Handbook series on semiconductor parameter", loffe institute, 1990
- [18] H.Matsubara, T.Tanabe, A.Saegusa, S.Takagishi, T.Shirakawa, <u>GaAs Solar cell with</u> <u>GalnP window grown by all metalorganic source MOVPE</u>, p1871,IEEE,1994

- [19] R.Sahai, D.D.Edwall, J.S.Harris, <u>High-efficiency AlGaAs/GaAs concentrator solar cells</u>, v34, p147-149, IEEE, 1979
- [20] M.M.Sanfacon, S.P.Tobin, <u>Analysis of AlGaAs/GaAs solar cell structures by optical</u> reflectance spectroscopy,v37, p450-454, IEEE, 1990
- [21] R.P.Gale, J.C.C.Fan, G.W.Turner, R.L.Chapman, J.V.Pantano, <u>Efficient AIGaAs</u> <u>shallow-homojunction solar cells</u>, v44, p632-634, AIP , 1984
- [22] M.B.Chen, R.Q.Cui, Z.W. Zhang, J.F. Lu, L.X. Wang, W.Y. Chi, X.B.Xiang, X.B. Liao, <u>Field-aided collection in GaInP top solar cells</u>, v80,pp265-272, Elsevier, 2003
- [23] T.Tankamoto, E.Ikeda, H.KURITA, M. Ohmori, M.Yamaguchi, M.J. Yang, <u>Two-Terminal Monolithic In(0.5)GaP / GaAs Tandem Solar Cells with a high conversion</u> <u>dfficiency of over 30%</u>, v36, p6215-6220, Japanese Journal of Applied Physics, 1997
- [24] N.H.Karam, R.R.King, B.T.King, D.D.Krut, J.H. Ermer, M.Haddad, L.Cai, D.E.Joslin, M.Takahashi, J.W.Eldredge, W.T.Nishikawa, D.R.Lillington, B.M.Keyes, R.K.Ahrenkiel, <u>Development and characterization of high efficiency GaInP/GaAs/Ge</u> <u>dual and triple junction solar cells</u>, v46, p2116-2125, IEEE, 1999
- [25] H. Jianmina, W.Yiyonga, X.Jingdonga, Y,Dezhuanga, Z.Zhongweic, <u>Degradation</u> <u>behaviors of electrical properties of GaInP/GaAs/Ge solar cells under <200 keV proton</u> <u>irradiation</u>, p1652-1656, Solar energy materials& solar cells, 2008
- [26] T. Takamoto, E. Ikeda, H. Kurita, M.Ohmori, <u>Over 30% Efficient InGaP/GaAs Tandem</u> <u>Solar Cells</u>,v70,p381-383, Applied Physics Letters, 1997.
- [27] P.Leinonen, M.Pessa, J.Haapamaa, K.Rakennus, <u>Advances in production MBE grown</u> <u>GalnP/GaAs cascade solar cell</u>, p1177-1180, IEEE, 2000
- [28] T.Takamoto, E.Ikeda, H.Kurita, M.Ohmori, M.Yamaguchi, M.J.Yang, <u>Two-Terminal</u> <u>Monolithic In0.5Ga0.5P/GaAs Tandem Solar Cells with a High Conversion Efficiency</u> <u>of Over 30%</u>, v36, p6215-6220, Japanese Journal of Applied Physics, 1997
- [29] G.H.Olsen, M.Ettenberg, R.V.O'AieliO, <u>Vapor-grown InGaP/GaAs solar cells</u>, v33, p606-608, Applied Physics Letters, 1978
- [30] M.Yamaguchi, T.Takamoto, K.Araki, <u>Super High-Efficiency Multi-Junction and</u> <u>Concentrator Solar Cells</u>, v90, p3068-3077, Solar Energy Materials and Solar Cells, 2006.
- [31] I.Garcia, I.R.Stolle, B.Galiana, C. Algora, <u>A 32.6% efficient lattice-matched dual</u> junction solar cell working at 1000 suns, v94, Applied Physics Letters, 2009

- [32] M.J.Archer, D.C.Law, S. Mesropian, M. Haddad, C.M.Fetzer, A.C.Ackerman, C.Ladous, R.R.King, H.A.Atwater, <u>GaInP/GaAs dual junction solar cells on Ge/Si epitaxial</u> <u>templates</u>, v92, Applied Physics Letters, 2008
- [33] J.W.Leem, J.S.Yu, Y.T.Lee, <u>Optimum design of InGaP/GaAs dual-junction solar cells</u>, p83-84, 2009
- [34] M.Baudrit, C.Algora, <u>Modeling of GaInP/GaAs Dual-Junction Solar Cells including</u> <u>Tunnel Junction</u>, p1-5, IEEE, 2008
- [35] M.R.Lueck, C.L.Andre, A.J.Pitera, M.L.Lee, E.A.Fitzgerald, S.A.Ringel, <u>Dual Junction</u> <u>GaInP/GaAs Solar Cells Grown on Metamorphic SiGe/Si Substrates With High Open</u> <u>Circuit Voltage</u>, v27, IEEE, 2006
- [36] 莊允中,「奈米鍍膜技術動向分析-第二章奈米鍍膜技術概論」,經濟部,2004
- [37] R.reichert, "Aixtron2600G3 operation manual", Germany, 2000
- [38] R.reichert, "Aixtron2600G3 Mechanical documentation", Germany, 2000
- [39] F.Wicks, "EPICHEM(SAFC) High purity chemicals for the electronics chemical properties industry", USA, 2005
- [40] G.B.Stringfellow, "Organometallic Vapor-Phase Epitaxy Theory and Practice, Academic Practice", 1998
- [41] M.L.Hitchman, K.F.Jensen, "Chemical Vapor Deposition Principles and Applications", Academic Press, 1993
- [42] E.F.Schubert, "Doping in III-V Semiconductors (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering)", Cambridge University Press, 1993
- [43] 林麗娟,「工業材料86期:X光材料分析技術與應用專題-X光繞射原理及其應用」, p100-109, 1994
- [44] 謝嘉民, 賴一凡, 林永昌, 枋志僥, 「奈米通訊期刊第12卷第2期-光激發螢光量測的 原理、架構及應用」, p28-39
- [45] X.Tang, P.J.M.Boots, L.J.Giling, <u>OBIC STUDIES: Classification of structural defects</u> and their influence on the performance of MOCVD grown GaAs solar cells, v1, p348-352, IEEE, 1990
- [46] H.Cotal, C.Fetzer, J.Boisvert, G.Kinsey, R.King, P.Hebert, H.Yoon, N.Karam, <u>III–V</u> <u>multijunction solar cells for concentrating photovoltaics</u>, p174-192, The Royal Society of Chemistry, 2009

- [47] J.Lammasniemi, A.B.Kazantsev, R.Jaakkola, M.Toivonen, M.Jalonen, R.Aho, M.Pessa, <u>GaInP/GaAs cascade solar cells grown by Molecular Beam Epitaxy</u>, p823-826, IEEE, 1997
- [48] M.Umeno, Y.Azuma, T.Egawa, T.Soga, T.Jimbo, <u>AIGaAs/Si Monolithic Two-Terminal</u> <u>Tandem Solar Cell Grown by MOCVD</u>, p741-746, IEEE, 1993
- [49] I.Garcia, I.R.Stolle, B.Galiana, C.Algora, <u>Choices for the epitaxial growth of</u> <u>GaInP/GaAs dual junction concentrator solar cells</u>, p251-254, IEEE, 2005
- [50] A.Khan, M.Yamaguchi, T.Takamoto, <u>Performance of single-junction and dual-junction</u> <u>InGaP/GaAs solar cells under low concentration ratios</u>, v85, p3098-3100, Applied Physics Letters, 2004
- [51] M.B.Chen, Z.W.Zhang, X.B.Xiang, W.H.Du, J.F.Lu, L.X.Wang, W.Y.Chi, X.L.Chang,
 W.J.Wang, X.B.Liao, <u>Study of p-on-n GaInP2/GaAs tandem cells</u>, p900-903, IEEE,
 2002
- [52] J.M.Olchowik, H.Soumana, M.Gavand, L.Mayet, A.Laugier, <u>Ga1-xInxP graded layers</u> grown by isothermal liquid phase epitaxy on GaAs solar cells, p403-408, IEEE, 1991
- [53] J.F.Wheeldon, C.E.Valdivia, A.Walker, G.Kolhatkar, T.J.Hall, K.Hinzer, D.Masson, S.Fafard, A.Jaouad, A.Turala, R.Ares, V.Aimez, <u>AlGaAs tunnel junction for high</u> <u>efficiency multi-junction solar cells: Simulation and measurement of</u> <u>temperature-dependent operation</u>, p106-111, IEEE, 2009
- [54] F.W.Ragay, M.R.Leys, J.H.Wolter, Application of δ -doping in GaAs tunnel junctions, v30, IEEE, 1994
- [55] W.Li, J.Lammasniemi, A.B.Kazantsev, R.Jaakkola, T.Makela, M.Pessa, <u>GalnP/AllnP</u> <u>tunnel junction for GalnP/GaAs tandem solar cells</u>, v34, p406-407, IEEE, 1998
- [56] T.Agui, T.Takamoto, E.Ikeda, H.Kurita, <u>High efficient dual junction InGaP/GaAs solar</u> cells with improved tunnel interconnect, p203-206, IEEE, 1998
- [57] M.Baudrit, C.Algora, <u>Modeling of GalnP/GaAs Dual-Junction Solar Cells including</u> <u>Tunnel Junction</u>, p1-5, IEEE, 2008
- [58] M.Hermle, S.P.Philipps, G.Letaj, A.W.Bett, <u>Numerical simulatin of tunnel diodes and</u> <u>multi-junction solar cells</u>, IEEE, 2008
- [59] K.A.Bertness, D.J.Friedman, J.M.Olson, <u>Tunnel junction interconnects in GaAs-based</u> <u>multijunction solar cells</u>, v2, p1859-1862, IEEE, 1994
- [60] M.B.Small, R.M.Potemski, W.Reuter, R.Ghez, <u>Anomalous diffusion behavior of Mg in</u> <u>GaAs</u>, v11, p1068-1070, IEEE, 1982

- [61] H.G.Robinson, M.D.Deal, D.A.Stevenson, <u>Damage-Induced uphill diffusion of</u> <u>implanted Mg and Be in GaAs</u>, v56, p554-556, Applied Physics Letters, 1990
- [62] M.Watanabe, H.Shiozawa, O.Horiuchi, Y.Itoh, M.Okada, A.Tanaka, K.Gen-ei, N.Shimada, H.Okuda, K.Fukuoka, <u>High-Temperature Operation (70 C, 50 mW) of</u> <u>660-nm-Band InGaAlP Zn-Diffused Window Lasers Fabricated Using Highly Zn-Doped</u> <u>GaAs Layers</u>, v5, p750-755, IEEE, 1999
- [63] H.G.Robinson, M.D.Deal, D.A.Stevensona, <u>Hole-dependent diffusion of implanted Mg</u> <u>in GaAs</u>, v58, p2800-2802, Applied Physics Letters, 1991
- [64] H.Tews, R.Neumann, A.Hoepfner, S.Gisdakis, <u>Mg implant activation and diffusion in</u> <u>GaAs during rapid thermal annealing in arsine ambient</u>, v67, p2857-2861, Journal of Applied Physics, 1990
- [65] D.H.Yeh, L.Z.Hsieh, L.B.Chang, M.J.Jeng, P.Y.Kuei, <u>Palladium Diffusion Transport in</u> <u>n-Type GaAs</u>, v46, p968-970, Japanese Journal of Applied Physics, 2007
- [66] K.KADOIWA, K.ONO, H.NISHIGUCHI, K.MATSUMOTO, Y.OHKURA, T.YAGI, <u>p-Substrate Partially Inverted Buried Heterostructure Distributed Feedback Laser Diode</u> <u>Performance Improvement by Inserting Zn Diffusion-Stopping Layer</u>, v45, p7704-7708, Japanese Journal of Applied Physics, 2006
- [67] S.T.Shishiyanu, T.S.Shishiyanu, Impact of light quantum in Rapid Photothermal <u>Diffusion of Zn in GaAs</u>, v1, p251-254, IEEE, 2010
- [68] A.S.Gudovskikh, N.A.Kaluzhniy, V.M.Lantratov, S.A.Mintairov, M.Z.Shvarts, V.M.Andreev, Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows, p6739-6743, ELSEVIER, 2007

Process flow

志遠民國六十五年出生於台北縣。自幼時便與全家人定居於苗栗縣竹南鎮。家中排 行老大,另有兩位小妹。志遠於國中畢業後順利考取國立台北工專電子科。在五年的專 科時期培養出對電子相關科系的興趣,如ASSEMBLY、PASSCAL、TURBO-C 高低階程 式語言的撰寫,以及 8051 單晶片的硬體實作。而後進入中華大學電機系,兩年求學期 間,除與先前專科相關課程有所銜接之外,另又接觸到積體電路設計的相關課程。此也 與目前工作及產業潮流趨勢相近,遂自產生莫大的興趣;之後又幸運考取國立交通大學 電機學院-電子與光電乙組研究所,學期間主要是從事三五族太陽能結構的開發,由最 早期的 GaAs 及 InGaP 單接面太陽能電池到後期的 GaAs/InGaP 二接面太陽能電池的結構 開發,期待能夠在此領域的研究上有所收穫。

志遠自國小到專科時期均參加桌球校隊及科隊,曾獲得苗栗縣竹南鎭中學桌球團體 賽冠軍,及台北工專新生杯桌球賽團體賽冠軍。期間與隊友們培養出團隊互助互信的 精神及默契。進入晶元光電服務期間成立游泳社團,並擔任第一、二屆的游泳社社長。 常利用夜間下班空檔開設游泳初學課程,教導公司同事們游泳相關的基本技巧。更於民 國九十三、九十四年帶領晶元光電游泳社順利挑戰橫渡日月潭、萬里海泳折返賽。社團 活動除強健個人身體體能之外,也從中學習社團運作與經營,及團隊互助互信的精神。 而個人的工作項目包含有 MOCVD 磊晶機合的故障排除、AlGaInP 四元 LED 磊晶結構最 佳化、結構分析及光電特性改善(Power / Flux / Power / Reliability …)、分析儀器的應用 (TEM /SEM / SIMS / PL / X-ray / ECV)等,在歷經多年來的學習與努力,已有豐碩的經驗 累積及知識的成長。

志遠重視每一次的學習的機會,不論是在校學習或是職場間,均以認真負責、態度 嚴謹地工作與學習,因此總是獲得老闆的賞識。此外,更從工作經驗學習到職場上因應 進退,以及積極進取的態度,因此擁有相當好的人際關係,不論在師長、同儕或主管之 間皆獲得良好的印象與評價,並從中深刻體會到與人和諧相處的重要性。過去的成就與 挫折都已過去,也無法改變,但未來卻是可掌握的。如今的我對未來有著高度的期許, 就如愛因斯坦曾說「困難中潛藏著機會」,這也是我的座右銘,我都是這樣鼓勵自己的, 不僅過去,現在、未來更是如此。

95