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用於主動消噪系統之新可變長度與

步階大小的 FXLMS演算法

研究生：楚斐韜 指導教授：吳文榕 博士

張大中 博士

國立交通大學 電機學院 電信學程 碩士班

摘 要

FxLMS演算法已廣泛的使用於主動消噪系統 (ANC)，之前一

些不同版本的 FxLMS演算法已研究過如何減少計算複雜度或增進

收斂速度。在一般的應用上，傳統的 FxLMS演算法雖其結構可能

容易實現，但因使用的濾波器長度較長，故其收斂速度十分緩慢。

在本篇論文中，提出新的可變長度及步階大小之 FxLMS演算法用

於消噪系統。有鑑於低通濾波器在消噪系統第二路徑的影響，控制

濾波器的脈衝響應之包跡以非對稱指數衰減函數來模擬，用以發

展我們的演算法。模擬結果顯示，相較於固定長度的 FxLMS演算

法與先前提出的可變步階大小的 FxLMS演算法，此一演算法確實

能夠顯著的改進收斂速度及訊噪比。
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ABSTRACT

The filtered-X least mean square (FxLMS) algorithm is widely used

for active noise cancellation (ANC). Some variants of FxLMS algorithms

have been studied to reduce computational complexity or to improve con-

vergence rate. In general applications, a long tap length is usually re-

quired for the conventional FxLMS method which convergence rate is

very slow though its structure is possibly very easy to implement. In this

paper, a new ANC system is proposed with a variable tap length and step

size FxLMS algorithm. Taking into account the effect of the lowpass

filter in the secondary path of an ANC system, the impulse response of

the control filter is modeled with an unsymmetric and exponential decay-
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ing envelope to develop our algorithm. Simulation results show that the

proposed algorithm does provide a significant performance improvement

on convergence rate and noise reduction ratio compared to the fixed tap

FxLMS and previously proposed variable step size FxLMS algorithms.
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σ2
ξ : variances of ξ(n)

ρ(n) : weighting factor

ix



Chapter 1 Introduction

1.1 Review and Background

The acoustic noise reduction problem [1] [2] has been explored for

many years, which is widely used in headphones, mobile phones, au-

tomobiles, and some industries which need to remedy the circumstance

of noise disturbance. Instead of using passive methods, the active noise

cancellation (ANC) system improves the efficiency in noise control with

lower volume and cost. One of most widely used algorithms for the

broadband ANC system is the filtered-X LMS (FxLMS) algorithm [3].

The FxLMS algorithm uses secondary path modeling and a control filter

to compensate for uncertain effects in the system, e.g., ADC, DAC, error

microphone, pre-amplifier, etc., because the FxLMS algorithm can lead

to smaller residual noise in the broadband ANC system.

The FxLMS algorithm used for ANC has some variants such as the

lattice ANC [4], frequency domain ANC, delayless subband ANC [5] [6],

etc. The lattice structure filter fails to provide a satisfying convergence

rate when the primary noise is broadband. Although the LMS processing

in frequency domain or subband turns to obtain a faster convergence rate

than the conventional time domain processing, it requires an additional
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complexity to implement the discrete-time Fourier transform (DFT) or

filter banks. Compared with the above variants, the transversal filter

structure is relatively simple but a long tap length is required such that the

maximum step size is limited in the FxLMS algorithm and consequently,

the convergence rate is significantly slow [7] [8]. To remain the advan-

tage of the simple LMS algorithm while increase the convergence rate,

we develop a new variable tap length and step size FxLMS algorithm for

ANC. In the literature, there are some existing variable tap length LMS

algorithm [9] [10] [11], which considered a constant exponential decay

envelope for the unknown impulse response plant in a system identifi-

cation model. Based on minimizing the mean square deviation (MSD)

of filter coefficients, the principle of the variable tap length algorithm is

to first approach the modeled part of the plant's impulse response with a

smaller tap length for using a larger step size which value is inverse to

the tap length. Then, the tap length is progressively increased and finally

converged to satisfy the minimumMSD criterion with a continuously de-

creasing step size. Hence, a fast convergence rate can be obtained.

For the application of ANC, the secondary path contains a lowpass fil-

ter model that results in a double-sided decaying envelope for the impulse

response. However, the maximum output of the unknown primary plant

is not necessarily at the middle of the impulse response. Hence, in or-
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der to develop a new variable tap length FxLMS algorithm for ANC, we

consider the unsymmetric and double-sided exponential decay impulse

response in our case. The adaptation method for the variable step size

is also developed in this thesis. Moreover, we propose a recursive form

for optimal tap length estimation in order to simplify the computational

complexity. Numerical results show that the new variable tap length and

step size FxLMS algorithm has a fast convergence rate compared to the

conventional FxLMS and variable step size algorithms. From the evalua-

tion of noise reduction for ANC, the proposed algorithm achieves a better

convergence performance than other compared methods as well.

1.2 Organization

The rest of this thesis is organized as follows: Chapter 2 describes the

basic ANC system model. The proposed variable tap length and step size

algorithm is addressed in Chapter 3, where a recursive form for variable

tap length estimation and the convergence problem are also mentioned.

In Chapter 4, we discuss how to achieve in the real system and the appli-

cation for online secondary path estimation. The simulation results are

collected in Chapter 5 and the conclusion is drawn in Chapter 6.
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Chapter 2 The FxLMS ANC System

A general ANC system using the FxLMS algorithm is depicted in Fig.

2.1, in which P (z) is an unknown plant in the primary path modeling the

acoustic response from the reference microphone to the error microphone

and an adaptive filter W (z) in the secondary path is used to compensate

for the loudspeaker system S(z) to cancel an undesired noise x(n) through

P (z). The unwanted background noise v(n) is usually uncorrelated to x(n)

and added to the cancellation error signal. In this model, the objective

of W (z) is to minimize the residual error signal e(n). Denote by d(n) the

output of P (z) and s(n) the impulse response of S(z). Consider that K

is a sufficient tap length for W (z), the coefficient vector of W (z) at time

index n is w(n) = [w0(n) w1(n) · · · wK−1(n)]
T , and the input noise vector

x(n) = [x(n) x(n − 1) · · · x(n − K + 1)]T . The residual error signal can be

expressed as

e(n) = d(n)− [xT (n)w(n)] ∗ s(n) + v(n), (2.1)

where ∗ denotes linear convolution.

The LMS algorithm can be used to find the recursive solution to w(n)

based on minimizing the mean square error (MSE). Let ξ(n) = e2(n), the

adaptive filter w(n) is then updated in the negative gradient direction with

4
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Figure 2.1: Block diagram of ANC system using the FXLMS algorithm.

step size µ as

w(n+ 1) = w(n)− µ

2
∇ξ̂(n) (2.2)

where ξ̂(n) is an instantaneous estimate of theMSE gradient at time nwith

∇ξ̂(n) = 2[∇e(n)]e(n). From (2.1), we have

∇e(n) = −s(n) ∗ x(n) = −x′(n) (2.3)

where x′(n) = [x′(n) x′(n− 1) · · · x′(n−K + 1)]T . Therefore, we have

∇ξ̂(n) = −2x′(n)e(n). (2.4)

5



Substituting (2.4) into (2.2), we have the updated equation of w(n),

w(n+ 1) = w(n) + µx′(n)e(n). (2.5)

From (2.5), the transfer function S(z) of the secondary path exists in

the updated equation of adaptive filter coefficients and is conventionally

called FxLMS algorithm. It is worth to note that S(z) is usually unknown,

so it should be modeled by filter Ŝ(z), as shown in Fig.2.1. That is,

x′(n) = ŝ(n) ∗ x(n), (2.6)

where ŝ(n) is the estimated impulse response of Ŝ(z). Without loss of

generality, we simply treat Ŝ(z) = S(z) in this work. The online secondary

path modeling and estimation methods can be referred to [8] [12].

In a typical ANC system, the length of the impulse responses of un-

known plant and secondary path may be very long, which directly affects

the tap length of the adaptive filter. As mentioned in [2], the range of the

step size is

0 < µ <
2

Px(K + 2 + 2∆)
, (2.7)

where Px is the power of the input signal x(n) for P (z) and ∆ accounts for

the secondary path delay. When the tap length is long, the convergence

6



speed becomes small because of a very small step size. Consequently, a

variable length and step size LMS algorithm is studied in order to improve

the ANC system.

7



Chapter 3 TheNewVariable TapLength

and Step Size FxLMSAlgorithm forANC

3.1 Proposed Algorithm

From (2.1), the z-transform of the residual error signal is

E(z) = [P (z)−W (z)S(z)]X(z) + V (z). (3.1)

As ignoring V (z), a simple insight into (3.1) is that the residual error is

close to zero, i.e., E(z) = 0, after the adaptive filter converges. Hence,

we can see that the control filter W (z) is to realize the optimal transfer

function with

W o(z) =
P (z)

S(z)
. (3.2)

In some circumstances, the power profiles of the impulse responses of

P (z) and S(z) may have exponentially decaying envelopes on both sides

of the maximum output response. For example, the loudspeaker system

model S(z) includes the D/A converter, reconstruction filter, power am-

plifier, etc., in which the lowpass reconstruction filter usually consists

of symmetric filter coefficients for a linear-phase concern. However, the

8



P (z)may have an unsymmetric decaying envelope. Here, we assume that

the impulse response ofW (z) also has an unsymmetric decaying envelope,

where the left tap length of the maximum output impulse response is M

while the right one is N including the maximum output impulse response.

We express the optimal coefficients for W (z) as follows:

wo
K = [wo

−M · · · wo
−1 wo

0 wo
1 · · · wo

N−1]
T (3.3)

and the following exponential function is used to model the envelope of

the impulse response coefficients

wo
i =


eiτ1rw(i), i = −M, · · · ,−1

e−iτ2rw(i), i = 0, 1, · · · , N − 1,

(3.4)

where i = −M, · · · ,−1, 0, 1, · · · , N−1, the decaying factor τ1 and τ2 are pos-

itive constants, and rw(i) is a zero-mean i.i.d. Gaussian random sequence

with variance σ2
rw .

The proposed FxLMS algorithm adaptively adjusts its tap length and

step size as time progresses. Denote by L(n), R(n) and µ(n) the left hand-

sides tap length, right hand-side tap length and step size at time n, re-

spectively, and L(n) + R(n) ≤ K. Using the notation L(n) + R(n) for the

subscript of wL(n)+R(n)(n) and x′
L(n)+R(n)(n) to represent L(n) +R(n)-tap fil-
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ter vector and input vector, respectively, and wL(n)+R(n)(n) = [w−L(n)(n) · · ·

w−1(n) w0(n) w1(n) · · · wR(n)−1(n)]
T and x′

L(n)+R(n)(n) = [x′(n+L(n)) · · · x′(n+

1) x′(n) x′(n− 1) · · · x′(n−R(n) + 1)]T , we can rewrite (2.5) as

wL(n+1)(n+ 1)

wR(n+1)(n+ 1)

 =



0L(n+1)−L(n)

wL(n)(n)

wR(n)(n)

0R(n+1)−R(n)


+ µ(n+ 1)e(n)x′

L(n+1)+R(n+1)(n). (3.5)

Here, we assume that the modeled part ofW (z) is expanded from the max-

imum impulse response of the filter, that is,wK(n) = [0T
L wT

L(n)+R(n)(n) 0
T
R]

T

where the left 0L denotes the 1 × (M − L(n)) zero vector and the right 0R

denotes the 1 × (N − R(n)) zero vector. Now, split wo
M+N into four parts

as

wo
K =



wo
M−L(n)

′

wo
L(n)

wo
R(n)

wo
N−R(n)

′′


, (3.6)
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and define the total coefficients error as

gK(n) =



0M−L(n)

wL(n)(n)

wR(n)(n)

0N−R(n)


−wo

K . (3.7)

From (3.2), we can express the output of P (z) as

d(n) = [xT
K(n) wo

K ] ∗ s(n). (3.8)

Substituting (3.8) into (2.1) and using (3.7), the residual error signal be-

comes

e(n) = [xT
K(n)wo

K − xTL(n)+R(n)(n)wL(n)+R(n)(n)]

∗s(n) + v(n)

= −[xT
K(n)gK(n)] ∗ s(n) + v(n)

= −x′T
K(n)gK(n) + v(n). (3.9)

Substituting e(n) in (3.5) with (3.9) and subtracting wo
K at both sides of

11



(3.5), we obtain

gK(n+ 1) = A(n)gK(n) + µ(n+ 1)v(n)



0M−L(n+1)

x′
L(n+1)(n)

x′
R(n+1)(n)

0N−R(n+1)


, (3.10)

where

A(n) = IK − µ(n+ 1)



0M−L(n+1)

x′
L(n+1)(n)

x′
R(n+1)(n)

0N−R(n+1)


x′T

K(n), (3.11)

and IK is the K ×K identity matrix.

To develop the recursive algorithm for L(n+ 1), R(n+ 1) and µ(n+ 1),

the MSD of gK(n) is explored. Define

Λ(n) ≡ E[∥gK(n)∥
2
2], (3.12)

where ∥.∥22 denotes ℓ2 norm andE[·] represents taking expectation. Assume

that x(n) and v(n) are two i.i.d. Gaussian sequences with variances σ2
x and

σ2
v, respectively. According to the similar assumption and analysis [9],

12



we have

Λ(n+ 1) = η(n+ 1)Λ(n) + (β(n+ 1)− η(n+ 1))Γ(n+ 1) + γ(n+ 1), (3.13)

where

Γ(n+ 1) = E
[wwwo

M−L(n+1)
′ww2

2

]
+ E

[wwwo
N−R(n+1)

′′ww2

2

]
(3.14)

η(n+ 1) = 1− 2µ(n+ 1)σ2
x′ + (L(n+ 1) +R(n+ 1) + 2)

×µ2(n+ 1)σ4
x′ , (3.15)

β(n+ 1) = 1 + (L(n+ 1) +R(n+ 1))µ2(n+ 1)σ4
x′ , (3.16)

γ(n+ 1) = (L(n+ 1) +R(n+ 1))µ2(n+ 1)σ2
x′σ2

v , (3.17)

and using (3.4) for wo
K, we have

E[∥wo
M−L(n+1)

′∥22] =
1− e2(M−L(n+1))τ1

1− e2Mτ1
E[∥wo

M∥22], (3.18)

E[∥wo
N−R(n+1)

′′∥22] =
e−2R(n+1)τ2 − e−2Nτw

1− e−2Nτ2
E[∥wo

N∥22], (3.19)

13



where

E[∥wo
M∥22] =

e−2Mτ1
(
1− e2Mτ1

)
1− e2τ1

σ2
rw , (3.20)

E[∥wo
N∥22] =

1− e−2Nτ2

1− e−2τ2
σ2
rw . (3.21)

Substituting (3.14), (3.18), (3.19), (3.20) and (3.21) into (3.13), the MSD

can be rewritten as

Λ(n+ 1) = η(n+ 1)Λ(n) + (β(n+ 1)− η(n+ 1))

×
(
e−2Mτ1 − e−2L(n+1)τ1

1− e2τ1
+

e−2R(n+1)τ2 − e−2Nτ2

1− e−2τ2

)
σ2
rw

+γ(n+ 1). (3.22)

The optimal tap length and step size can be found by minimizing the

MSD with respect to L(n + 1), R(n + 1) and µ(n + 1). Therefore, taking

the first-order derivative of Λ(n+ 1) with respect to L(n+ 1), R(n+ 1) and

µ(n + 1), respectively, and setting ∂Λ(n+1)
∂L(n+1)

, ∂Λ(n+1)
∂R(n+1)

and ∂Λ(n+1)
∂µ(n+1)

to zero, after

some mathematical manipulation we obtain

L(n+ 1) = − 1

2τ1
ln

µ(n+ 1)(σ2
x′Λ(n) + σ2

v)(1− e2τ1)

−4τ1(1− µ(n+ 1)σ2
x′)σ2

rw

, (3.23)
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R(n+ 1) = − 1

2τ2
ln

µ(n+ 1)(σ2
x′Λ(n) + σ2

v)(1− e−2τ2)

4τ2(1− µ(n+ 1)σ2
x′)σ2

rw

, (3.24)

and

µ(n+ 1) =
1− Γ(n+1)

Λ(n)

(L(n+ 1) +R(n+ 1) + 2)σ2
x′ +

(L(n+1)+R(n+1))σ2
v−2σ2

x′Γ(n+1)

Λ(n)

. (3.25)

We have tomention that (3.23), (3.24) and (3.25) are required to be solved

simultaneously for L(n+1), R(n+1) and µ(n+1). It is a tough work to get

the closed-form solution of the joint equations. Taking into consideration

a quasi-static assumption for L(n) ≈ L(n + 1) and R(n) ≈ R(n + 1) [11], a

suboptimal solution can be efficiently found by replacing L(n + 1) and

R(n+ 1) by L(n) and R(n) in (3.25). That is,

µ(n+ 1) =
1− Γ(n)

Λ(n)

(L(n) +R(n) + 2)σ2
x′ +

(L(n)+R(n))σ2
v−2σ2

x′Γ(n)

Λ(n)

. (3.26)

From (3.26) we can observe that when v(n) is ignored and the adaptive

filter approaches the perfect tap length, σ2
v = Γ(n) = 0 and thus µ(n +

1) ≈ 1
(K+2)σ2

x′
, which is consistent with the convergence condition (2.7)

excluding the effect of S(z) according to (3.2). Therefore, an alternating

calculation by (3.23), (3.24) and (3.26) can be used for L(n+ 1), R(n+ 1)

and µ(n+ 1).
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3.2 Recursive Form and Convergence

The more useful results in using (3.23) and (3.24) are to develop their

alternatives of recursive forms. First, as mentioned in [10], it can be

shown that σ2
e(n) = σ2

x′Λ(n) + σ2
v. After re-manipulating (3.26), we have

µ(n+ 1) =
Λ(n)− Γ(n)

2σ2
x′(Λ(n)− Γ(n)) + (L(n) +R(n))σ2

e(n)

=
1

2σ2
x′ + (L(n) +R(n))Φ(n)

(3.27)

where

Φ(n) =
σ2
e(n)

Λ(n)− Γ(n)
. (3.28)

Moreover, from (3.6), (3.7), and (3.12), we can prove that

Λ(n)− Γ(n) = E[∥gL(n)+R(n)(n)∥
2
2]. (3.29)

Now, let us move on writing the result of L(n + 1) − L(n) and R(n +

1)− R(n) based on (3.23) and (3.24). Note that although σ2
e(n) varies and

actually vanishes as time n progresses, the statistics of two successive

samples can be viewed very close, i.e., σ2
e(n) = σ2

e(n + 1) = σ2
e , when the

algorithm runs under convergence. Based on the above statement and
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some mathematical manipulation, we have

L(n+ 1)− L(n) = − 1

2τ1
ln

µ(n+ 1) (1− µ(n)σ2
x′)

µ(n) (1− µ(n+ 1)σ2
x′)

, (3.30)

and

R(n+ 1)−R(n) = − 1

2τ2
ln

µ(n+ 1) (1− µ(n)σ2
x′)

µ(n) (1− µ(n+ 1)σ2
x′)

. (3.31)

Substituting (3.27) into (3.30) and (3.31), we obtain the recursive form

for L(n+ 1) and R(n+ 1) as follows:

L(n+ 1) = L(n)− 1

2τ1
ln

(L(n− 1) +R(n− 1))Φ(n− 1) + σ2
x′

(L(n) +R(n))Φ(n) + σ2
x′

, (3.32)

R(n+ 1) = R(n)− 1

2τ2
ln

(L(n− 1) +R(n− 1))Φ(n− 1) + σ2
x′

(L(n) +R(n))Φ(n) + σ2
x′

. (3.33)

In practical use, the tap length is actually an integer number. Hence, we

also need to round down L(n + 1) and R(n + 1) obtained from (3.32) and

(3.33) to the nearest integers as the resultant.

The next question is whether the proposed recursion (3.32) and (3.33)

can converge. Return to (3.13), it is known that for the two parameters

L(n+ 1), R(n+ 1) and µ(n+ 1), the MSD is a convex function of them and

the recursions will find minimum MSD if we can prove that ∂Λ2(n+1)
∂µ2(n+1)

> 0,

∂Λ2(n+1)
∂L2(n+1)

> 0 and ∂Λ2(n+1)
∂R2(n+1)

> 0. Taking the second-order derivative of (3.13)
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with respect to µ(n+ 1), L(n+ 1) and R(n+ 1), respectively, we have

∂Λ2(n+ 1)

∂µ2(n+ 1)
= 2σ2

x′(L(n+ 1) +R(n+ 1))σ2
e(n) + 4σ4

x′(Λ(n)− Γ(n)), (3.34)

∂Λ2(n+ 1)

∂L2(n+ 1)
= 8τ 21µ(n+ 1)σ2

x′(1− µ(n+ 1)σ2
x′)

σ2
rw

(
−e−2L(n+1)τ1

)
1− e2τ1

, (3.35)

and

∂Λ2(n+ 1)

∂R2(n+ 1)
= 8τ 22µ(n+ 1)σ2

x′(1− µ(n+ 1)σ2
x′)

σ2
rwe

−2R(n+1)τ2

1− e−2τ2
. (3.36)

In (3.34), Λ(n) − Γ(n) ≥ 0 based on (3.29) and in (3.35) and (3.36), 1 −

µ(n + 1) > 0 in general situations. Therefore, the results of (3.34), (3.34)

and (3.35) are all positive and then, we have shown that the MSD is a

convex function of L(n + 1), R(n + 1) and µ(n + 1), and consequently, the

new variable tap length and step size FxLMS algorithm can converge to

the minimum MSD.
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Chapter 4 PracticeMethods and On-

line Secondary Path Systems

4.1 ProposedAlgorithmwithOnline Secondary

Path Estimation

In the previous section, the discussion is under the condition of Ŝ(z) =

S(z). However in practice, Ŝ(z) is different from S(z). In recent research

the deviation of Ŝ(z) from S(z) can be reduced with online secondary esti-

mation. Zhang's method [13] has better performance in online secondary

estimation structure, which is considered for the application of the pro-

posed algorithm.

The block diagram of the Zhang's method is depicted in Fig.4.1. The

coefficients ofW (z) is updated by e′(n), which differs from the traditional

FxLMS and is expressed in the following:

e′(n) = d(n)− y(n) + u(n)− û(n) + v(n), (4.1)

where u(n) = ε(n) ∗ s(n), û(n) = ε(n) ∗ ŝ(n). In order to investigate how

the auxiliary noise ε(n) affects the proposed algorithm on the online sec-
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ondary path estimation FxLMS system, we set the background noise v(n)

to zero. The auxiliary noise ε(n) is generated by white noise generator,

which is used for Ŝ(z) convergence. Using the same method to obtain

(3.9), we have

e′(n) = −x′T
K(n)gK(n)− ε(n) ∗ (̂s(n)− s(n))

= −x′T
K(n)gK(n)− (û(n)− u(n))

= −x′T
K(n)gK(n)− ξ(n). (4.2)

The residual error ξ(n) is obtained by the convolution output of the auxil-

iary noise ε(n) and the deviation of Ŝ(z)which equals û(n)−u(n). Then, in

addition to σ2
v in (3.17), (3.23), (3.24), (3.25) and (3.26), σ2

ξ is added. Ex-

isting the deviation of Ŝ(z) can make the convergence rate ofW (z) slower.

When Ŝ(z) converges to S(z), the convergence of W (z) will be not influ-

enced.

In practice, Ŝ(z) needs a initial value to speed up the convergence rate

and reduces the influence for the convergence of W (z). When the system

structure and components, such as DAC, ADC,microphone, loudspeaker,

etc., are fixed, an impulse signal into the DAC can be used to measure

the impulse response of S(z) as the output is received behind the ADC.

In practical situation, the initial value of Ŝ(z) can be obtained by some
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Figure 4.1: ANC system with online secondary-path estimation (Zhang's
method).

methods.

However, when the location of themaximum impulse response output

of Ŝ(z) has the offset from that of S(z), the convergence performance is

seriously affected. We can evaluate the performance of Λ to correct the

maximum output location of Ŝ(z). The related results will be shown in

the next section.

4.2 Proposed Algorithm Practice in Real Sys-

tem

In practice, the optimal coefficients wo
K is unknown. And its the two

hand side tap length M , N and the decaying factor τ1, τ2 are unknown as

well, which directly affect the calculations of the tap length and the step
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size in proposed algorithm. Next, we will introduce a method to get those

parameters.

First, use the fixed tap length with large step size LMS algorithm,

whose tap length is large enough to cover to the maximum power of im-

pulse response of the unknown plant. After hundreds of times iteration,

generally optimal coefficients of the W (z) can be obtained. We express

the generally optimal coefficients for W (z) as follows:

w'oK′ = [w′o
−M ′ · · · w′o

−1 w′o
0 w′o

1 · · · w′o
N ′−1]

T (4.3)

The K ′ is total tap length of the generally optimal coefficients w'oK′, and

theM ′ is left side tap length, andN ′ is right side tap length with maximum

output of generally optimal coefficients.

Second, we inverse all of the w'oK′ to positive. Then compare the two

hand side adjacent coefficients in order to get the each peak value like

w′o
n−1 < w′o

n > w′o
n+1, and others are set to zero. The peak coefficients can be

express as follows :

po
K′ = [po−M ′ · · · po−1 po0 po1 · · · poN ′−1]

T (4.4)

Then according to the 3.4, ignore the Gaussian random sequence and re-

22



verse the equation. We can rewrite the generally decaying factor

ifpoi > 0, τ ′i =


1
i
ln poi , i = −M, · · · ,−1

1
−i

ln po−i, i = 0, 1, · · · , N − 1.

(4.5)

Then take the average of τ ′i with two hand side in order to obtain the

generally decaying factor τ ′1 and τ ′2. Substitute τ ′1, τ ′2, M ′ and N ′ into 3.20,

3.21, 3.22, 3.23 and 3.24.

Third, we can use the the two hand side ℓ2 norm of the last 10 grown

taps are less than threshold L′ and R′ for the two hand side to terminate

the growth of the tap length.

Next, a real system simulation will be shown in the next section.
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Chapter 5 Simulation Results

5.1 Proposed Algorithm on FxLMS

In this section, some computer simulations are employed to compare

ANC performance of the proposed algorithm with different FxLMS al-

gorithms. The secondary path model S(z) includes the loudspeaker and

microphone system, and according to [8], a filter is used to model the sec-

ondary path model S(z) and the frequency response is shown in Fig.5.1.

We set the impulse response length of plant P (z) as 1088 and the length of

the loudspeaker model S(z) as L = 65. Hence, a proper length for the op-

timal impulse response W o(z) of W (z) is K = 1024. For simplicity, we let

Ŝ(z) equal S(z) and generate P (z) from P (z) = W o(z)S(z) and the impulse

response is shown in Fig.5.2. Once the estimate Ŵ (z) ofW (z) is obtained,

the MSD can be easily evaluated through 100 Monte Carlo simulations

by calculating ∥ŵ(n) − wo
K(n)∥22 for each iteration. Other simulation se-

tups include that rw(i) was generated by a zero-mean white Gaussian ran-

dom process with variance σ2
rw = 0.01; the exponential decaying factor τ1

and τ2 were 0.01 and 0.005; and the reference noise and the background

noise were zero-mean i.i.d. and uncorrelated Gaussian processes with

variances σ2
x = 1 and σ2

v = 0.01, respectively.
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Figure 5.1: Frequency response of S(z).

In Fig. 5.3, the comparison of the MSD performance in decibel (dB)

is shown for 50000 iterations. Since the tap length of W o(z) is 1024, we

choose the same tap length for the typical FxLMS algorithm with large

and small step sizes, where the large step size, according to (2.7), is set

as µmax =
1

(1024+2)×σ2
x′
and the small step size µmin = 0.2µmax because µmin pro-

vides the 1024-tap FxLMS algorithm a steady-state performance close

to the proposed algorithm in 50000 iterations. A 1024-tap FxLMS algo-

rithm with variable step size which is similar to [8] is also compared by

using

µ(n) = ρ(n)µmax + (1− ρ(n))µmin (5.1)

where ρ(n) is a weighting factor, 0 ≤ ρ(n) ≤ 1, and is calculated by ρ(n) =
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Figure 5.2: Impulse response of P(z).

Pe(n)−Pe,min
Pe,max−Pe,min

with Pe,max and Pe,min representing the maximum and minimum

average powers of e(n), respectively and Pe(n) = 1
T

∑n
i=n−T+1 e

2(n) where

T is an averaging constant with T = 200 herein. The maximum average

power Pe,max uses the average of the first 100 iterations of Pe(n) multiplied

by 1.3 and minimum average power Pe,min uses the average of the last 100

iterations of Pe(n) multiplied by 0.7. From Fig. 5.3, we can find that

the proposed algorithm has a much faster convergence rate than other

algorithms. However, if we set a fixed step size µmax for the proposed

algorithm, the converged MSD performance becomes worse in spite of

the same convergence rate. Although the variable step size FxLMS has

a better convergence rate than the large step size FxLMS and a better

converged performance than the small step size FxLMS, its step size is
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Figure 5.3: Comparison of the MSD convergence performance for dif-
ferent algorithms.

somewhat heuristic such that the overall performance is worse than the

proposed algorithm. By terminating the growth of the left tap lengthwhen

the ℓ2 norm of the last 10 grown taps is less than 10−2 and 10−5 for the right-

side, the total tap length approaches the number about 1104 as shown

in Fig. 5.4(a), however, the MSD performance almost saturates as the

variable step size can still decrease slowly as shown in Fig. 5.4(b).

An experiment to see the transient effect of noise reduction using the

proposed algorithm is shown in Fig. 5.5. Suppose the input noise x(n)

is exacerbated with variance σ2
x = 16 from the 25000th to the 40000th

iteration as shown in Fig. 5.5(a). From Fig. 5.5(b), the ANC output

remains its residual error approaching the background noise level. To
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Figure 5.4: Convergence comparison of tap-length and step size for pro-
posed algorithm and other FxLMS algorithms: (a) Tap length M(n); (b)
Step size µ(n).

evaluate the noise reduction performance for ANC, we define an index,

noise reduction ratio NRR (dB), which is given by

NRR(dB) = 10log
(
E[d2(n)]

E[e2(n)]

)
, (5.2)

where E[·] can be evaluated by ensemble average for simplicity. By NRR

(dB), Fig. 5.6 plots the comparison of the proposed algorithm with other

algorithms. In addition to a better MSD performance, the proposed algo-

rithm has the superior NRR (dB) performance for the ANC application

because of its fast convergence property.
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Figure 5.5: The transient effect of noise reduction: (a) Input reference
noise x(n); (b) Residual error e(n).

5.2 Proposed Algorithm on Online Secondary

Path Modeling FxLMS

We have two simulations about effect of Ŝ(z). The online secondary

path modeling is based on Zhang's method like Fig.4.1. The auxiliary

noise ε(n)was zero-mean i.i.d. and uncorrelated Gaussian processes with

variances σ2
ξ = 1. The initial value of Ŝ(z) uses the s(n) with weighted

standard deviation (0.5∗s(n))2) of Gaussian random noise. The step size of

Ŝ(z)was set to µs =
0.045

(65+2)σ2
v
, and the step sizeH(z)was set to µh = 0.01

(1024+2)σ2
x
,

and the other parameters were the same previous simulation.

In the first simulation, we compare with two initial values of Ŝ(z), one
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algorithms.

is s(n), and the other one is s(n) with weighted random noise. As Fig.5.7,

the variance of auxiliary noise σ2
ξ affects the step size(3.26) during the

convergence. Although the Ŝ(z) is almost the same as the S(z) at about

10000 iterations. That effect causes slightly different convergence speed,

which make the MSD have a little offset at the end of simulation.

In the second simulation, we shift the maximum power center of ini-

tial value of Ŝ(z) with one tap on two-hand sides,each for five times. As

Fig.5.8, no matter which side the maximum power center is shifted to or

no matter how many taps, Λ and MSD are very poor. However, when the

maximum power center is aligned, the Λ and MSD are the best.

To setup an appropriate variance of auxiliary noise, we run two sim-
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Figure 5.7: The MSD of proposed algorithm with online secondary path
modeling.

ulations: one is to change different variances of background noise on the

traditional FxLMS, and the other one is to change different variances of

auxiliary noise on the Zhang's method of online secondary path model-

ing FxLMS. In the first one, the variance of background noise σ2
v takes ten

numbers that make the SNR(10log(σ2
d

σ2
v
)) from 40dB to 2dB. Then we com-

pare the steady-state MSD of proposed algorithm in Fig.5.9. In the sec-

ond, the variance of auxiliary noise σ2
ε takes eleven numbers that make the

SNR(10log(σ2
d

σ2
ε
)) from 10dB to −10dB. Then we compare the steady-state

MSD of proposed algorithm on online secondary path modeling FxLMS

in Fig.5.10.

The v(n) and the ε(n) respectively in the traditional FxLMS and the on-
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Figure 5.8: The average of MSD and Λ of W (z) with different shifted
maximum power center.

line secondary path modeling FxLMS affect the covergence. In Fig.5.9,

when the SNR is smaller than 25dB, the steady-state MSD of proposed

algorithm is better than the others. According the Fig.5.7 and Fig.5.10,

the smaller auxiliary noise makes the convergence of Ŝ(z) slower and in-

directly makes the convergence of W (z) slower. However, in the Fig.4.1,

because the residual error e(n) includes the ε(n) ∗ s(n), the larger auxiliary

noise makes the residual error e(n) larger, too. Therefore, the variance of

auxiliary noise σ2
ε can not be set too large within the acceptable conver-

gence speed, so selecting SNR between 0dB to −6dB is the better choice

in this case.
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Figure 5.9: The steady-state MSD of different variances of background
noise v(n).

5.3 Proposed Algorithm Practice in Real Sys-

tem on Online Secondary Path Modeling

FxLMS

In accordance with the method described in the previous section, we

use a real system of P (z) and S(z) to verify the proposed algorithm. The

impulse response and frequency response of P (z) are shown as Fig.5.11

and Fig.5.12:

And the impulse response of S(z) is shown as Fig.5.13. The impulse

response sample length of P (z) and S(z) are 145 and 51 taps. Based on

these, the optimal coefficients of W (z) is 95 taps.
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Figure 5.10: The steady-state MSD of different variances of auxiliary
noises ε(n).

The simulation is to compare noise reduction ratio NRR (dB) of pro-

posed algorithmwith different on online secondary pathmodeling FxLMS

algorithms shown in Fig.5.14, Fig.5.15 and Fig.5.16. The NRR defini-

tion of the on online secondary path modeling FxLMS is different from

traditional FxLMS, which is given by

NRR(dB) = 10log
(
E[d2(n)]

E[e′2(n)]

)
. (5.3)

About the proposed algorithm setting, the generality optimal coefficients

parameters M ′ and N ′ are set to 64 and 316, the τ ′1 and τ ′2 are set to 0.0925

and 0.0626. The terminating threshold L′ and R′ are set to 10−1 and 5×10−4.

About the normalized LMS(NLMS) algorithm [2] setting, the smoothing
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Impulse response of P(z)

Figure 5.11: The impulse response of real P(z).

parameter is set to 0.99, the normalized step size α is set 0.4 and the tap

length L is set to 95. We use two 95-taps FxLMS algorithms one with a

large step size and the other with the small step size, where the large step

size is set as µmax = 1.2
(95+2)×σ2

x′
and the small step size µmin = 0.4

(95+2)×σ2
x′
. A

95-taps FxLMSwith variable step size is similar to [8], whose the param-

eters ρ,Pe,Pe,min and Pe,max are the same as the previous traditional FxLMS

simulation, and the maximum and minimum step sizes are between the

other two 95-taps FxLMS with large and small step size.

In Fig.5.14, we adjust the final performance of proposed algorithm,

NLMS [2], variable step size [8] and 95-taps FxLMS with small step size

are close, and then compare the convergence speeds. The step size of the

95-taps FxLMS with large step size is adjusted so that its convergence

speed is as close to proposed algorithm as possible, and then compare the
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Figure 5.12: The frequency response of real P(z).

final performance.

In Fig.5.15, the convergence speed of proposed algorithm is better

than the NLMS [2], variable step size [8] and 95-taps FxLMS with small

step size. The final performance of proposed algorithm is better than the

95-taps FxLMS with large step size.

In Fig.5.16(a), the tap length of proposed algorithm is terminated at 92

taps, which is close the tap length of optimal coefficients 95 taps. Shown

in Fig.5.16(b), the step size of proposed algorithm gradually decreases

slower than the others.
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Figure 5.13: The impulse response of real S(z).
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Figure 5.14: Comparison of NRR (dB) performance for different online
secondary path modeling FxLMS algorithm.
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Figure 5.15: The result of the comparison of NRR (dB) performance for
different online secondary path modeling FxLMS algorithm before 2000
iterations.
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Figure 5.16: Convergence comparison of tap-length and step size for pro-
posed algorithm and other online secondary path modeling FxLMS algo-
rithms: (a) Tap length M(n); (b) Step size µ(n).
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Chapter 6 Conclusion

We propose a new ANC system using a variable tap length and step

size FxLMS algorithm where a simple recursive form is obtained as well

to estimate the tap length. Here, the new FxLMS algorithm is developed

based on the assumption that the impulse response of the control filter

in the ANC secondary path has an unsymmetric and exponential decay-

ing enve- lope in order to deal with the lowpass filter in the loudspeaker

system. The proposed FxLMS algorithm has a much faster convergence

rate than the conventional and variable step size FxLMS algorithms with-

out intensively computational cost of implementing complicated DFT or

subband filters.
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