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The Study of a New Perfect Hash Scheme
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Abstract-A new approach is proposed for the design of perfect hash
functions. The algorithms developed can be effectively applied to key
sets of large size. The basic ideas employed in the construction are
rehash and segmentation. Analytic results are given which are appli-
cable when problem sizes are smalL Extensive experiments have been
performed to test the approach for problems of larger size.

Index Terms-Hashing, perfect hash functions, rehash, segmentation.

I. INTRODUCTION
ASHING has been considered as an effective means to

Horganize and retrieve data in program design and has
been widely used in database management, compiler construc-
tion, and many other applications. In order to use hashing
techniques in a specific application, one has to first choose a
suitable hash function, then select a method for collision
resolution. Quite a number of ways have been proposed to
design hash functions [2], [13], [16], [17], [211. Two colli-
sion resolving methods, chaining and open addressing, have also
been explored in many papers [12], [15] [17] -[201, [23].

If a hash function can be found which is one-to-one from
the set of keys in the key space to the address space then that
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hash function will become much easier to use since the bother-
some key collision problem can be avoided. There exist a

number of methods for the design of a one-to-one hash func-
tion [1], [3], [8]-[10], [22] or called perfect hashing func-
tion in [221. In suitable situations their methods may yield
good hash functions as far as the memory space used or the
execution time are concerned.
In this paper an entirely new approach is proposed for the

design of perfect hash functions. An indicator table is used
in the construction of a perfect hash function with table
size in linear proportion to the number of keys. Compared
to other methods proposed in the literature for designing
perfect hash functions [1], [3], [8] -[101, [22], the construc-
tion procedures here have the advantages that they are easy
to implement and can be effectively applied to key sets of
large size.
The basic ideas employed in our construction are rehash and

segmentation. In Sections II-IV we will show how random
hash functions are organized by using a hash indicator table to
construct a desired perfect hash function. Analytic results are
given which are applicable when problems sizes are small. In
Section V, two algorithms are designed for the construction of
the hash indicator table. Extensive experiments have been
performed to test the new approach for problems of large size.
The results are presented in Section VI.
Formulas for calculating probabilities and expectations dis-

cussed in the context are listed in the Appendix.

II. RANDOM HASH FUNCTIONS
We shall consider random hash function first. Fig. 1 shows

the basic model which will be considered throughout this
paper. In the model, a set of n nonequal keysK, ,K2,* ,Kn
in the key space is mapped into an address space withm entries
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Fig. 1. Basic hash model.

by a hash function h. No interrelations will be assumed to
exist among the n keys. The keys can be thought of as just
arbitrary binary strings. Therefore, the hash function can be
fully characterized by the listing of the values h (Ki) for all
1 .i.n, where 1 .h(Ki)<m. h is called a random hash
function whenever all the h (Ki)'s are selected randomly from
{1, 2, * m}
We say that a collision occurs if for some i # j, h (Ki) = h (K1).

In such situation, we also say that Ki and K1 are collided keys
under h.
Definition 1: h is a perfect hash function iff no collision

occurs in h.
We define below a probability which will be used to measure

the likelihood of constructing perfect hash functions.
Definition 2: Let F be a set of possible distinct functions

obtainable from a construction procedure P, with the func-
tions mapping from a set of keys into an address space. As-
sume that there are np perfect hash functions among the nF
functions in F. If a hash function h is selected randomly from
F, the probability of h being perfect, denoted as pbp(h), is
equal to np/nF-

It should be noted that h is a formal name representing a
function selected randomly from F in Definition 2. It can also
be thought of as the formal name representing a function con-
structed by the procedure P. Clearly, pbp(h) depends entirely
on how procedure P constructs perfect hash functions.
As an example, assume that h is a mapping function selected

randomly from Fn Xm, the set of all functions that map n keys
into an address space with m entries. The chances that h is a
perfect hash function are ordinarily quite small. Actually,
pbp(h)=0 if n>m, and is equal to m!/(m- n)! X(1/ma)
if n < m. When n = m = 10 pbp(h) = 0.0003629. Even when
m is much larger than n, the probability is still very small.
When n = 23 and m = 365, we have the famous "birthday para-
dox" [7], [13]. The probability is only 0.4927, still less than
half!
We say that a hash function h has k singletons if there are

k entries in the address space with a single key hashed by h
to each of them. In general, we can find the probability for
h having exactly k singletons by the following theorem.
Theorem 1: Assume that h is a random hash function from

n keys to an address space of size m. Let us denote the proba-
bility distribution of the number of singletons k(O < k <
min (m, n)) as Pk (n, m). Then

Pk(n,m)-=e(nm)

where

ek )n !mJ)nnk kLm kJ (m-r-k)n-r-k

This theorem can be proved by first finding the number of
possible h functions having at least i singletons, using the ordi-
nary enumerator (xl + x2 + * + Xmn)n of the number of
ways in which n distinct objects can be distributed into m
distinct cells, then applying the principle of inclusion and
exclusion [6], [14] togetpk(n,m).
By using the distribution function in Theorem 1, closed

form for the mean ofPk (n, m) can be found [41, [I 1 ] as

E[k] =nX(1- (2)

Let us assume that n = am, the formula n X (1 - (lm))n-1
approaches n X e-° when n becomes very large. Therefore,
is h is selected randomly from Fnxm, ordinarily it will be far
from being a perfect hash function. To improve this situation,
some information about the keys should be used to construct
the hash function. In the next section we use rehash to con-
struct a new hash function from a number of hash functions
selected from Fnxm . Information related to the keys and the
hash functions selected is kept in a table called hash indicator
table (HIT).

III. FIRST LEVEL REHASH

Fig. 2 shows the first-level rehash model where the hash
function h is constructed from a number of hash functions,
hl, h2,* * * , hs, selected randomly from Fn m, In the figure,
the HIT has the same number of entries as that of the address
space. In fact, entry d in HIT corresponds to entry d in the
address space.
The contents in HIT can be defined by the following Pidgin

Algol program.
Procedure 1 [Procedure to Construct First-Level HIT]:
begin

KEYSET :={K1 K2 Kn};
clear all entires of HIT;
for j := 1 step 1 until s do
begin

for all elements in KEYSET do
HIT(d) :=j if HIT(d) = 0 and hj(Kr) = d

for one and only one Kr in KEYSET;
KEYSET KEYSET - {Kr IKr satisfies the above

conditions},
end

end

The first-level composite hash function h can be defined as
follows:

h(K)=hi(K)=d if HIT(hr(K)) $rforr<i
and HIT(h1(K)) = i,

= undefined otherwise. (3)

(1) It can be seen that if q hash functions are selected for com-
posing h, a table HIT of width [log2 (q + 1)1 bits is required.
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Fig. 2. First-level rehash model.
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TABLE I
HASH FUNCTIONs h1, h2, h3 FOR EXAMPLE 1

Key
hash KI K2 K K4 K5 K6 K7 K
functio~n 2 3 4

h1 | 4 ( 4 6 2 6 2

h2 |5 a 9 () 4 4 9 2

h3 6 5 5 2 9 8

KlI .
.

00 1
I 10 2

00 3
HIT 11 4
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Fig. 3. HIT constructed by Procedure 1 of Example 1.

To find h (K) for a key K in the key space, we apply the hash
functions hI, h2,* * *,h. on K in turn until HIT(hi(K))=i.
If the search fails, h(K) is undefined.
Example 1: Assume that the key set is {K1, K2,.* * , K8 },

and that the address space is from 1 to 9. The hash functions
selected are hl, 1h2, h3, as defined by Table I. The circles in
each row-h in the table indicate where the hi contributes
singletons.-
The HIT constructed by Procedure 1 is given in Fig. 3. We

can see that K2 and K8 find their right places by h, . K4 by
h2, K1 and K6 by h3. Note that h2(Q) = 5 is a singleton in
the second row of h2, however, since 5 has been already occu-

pied by K2 through the mapping of h,, K1 does not find its
right position by h22. The mapping of the composed function
h is undefined on the remaining keys K3, Ks, and K7.

Let us see how h(K6) can be calculated. When h,, h2, h3
are-applied on K6 in turn, we have HIT(h1(K6)) = HIT(6) =

(00)2 = 0 1, HIT(h2(K6)) =HIT(4) = ( )2 = 3 = 2, HIT
(h3(K6)) - HIT(4) =(11)2 3 = 3. Therefore, h(K6) = 4.
Suppose that k' keys have been hashed successfully into the

address space after s hash functions of hj1's are applied in the
way described above. Given any one key K of these k keys,
we can apply the h,, h2,* , h. successively, consulting the
HIT table, to find h(K). We define NE1- (n, m, s, k) as the

Qk (n,m)

s=7

s=3

s=1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. Distribution diagram of Q9(n, m) with n = 14, m = 17, and
s = 1, 3, 7.

expected number of times it is required to apply hi's for cal-
culating h (K) with K among these k keys.
Let Q'(n, m) be the probability of getting k singletons by

applying hI, h2 ,hs in the way described previously,
where each hi maps from the n given keys to the address space
of size m. Formulas for calculating NE1 and Qs are given in
the Appendix.
Example 2: The Qs(n, m) values for n = 14, m = 17, s =

1, 3, 7, are calculated and plotted in Fig. 4.
It can be seen that Qj (n, m) is exactly the probability dis-

tribution of the number of singletons of a random hash func-
tion and is equal to the distribution function Pk (n, m) in (1).
By comparing the values of Q (14, 17) with those of Q' (1 4,

17), one can observe that he may find more singletons in a
first-level composite hash function than in a random hash
function. The expectation of k for Q) (14, 17) is 6.673471
while that for Qk (14, 17) is 13.280872.
When n singletons have been obtained by the above con-

struction, we get a perfect hash function. The expectation of
the number of times of applying hi's in calculating h(K) is
NEl(14, 17, s, 14). They are 1, 1.579916, 2.163818 with
s = 1, 3, 7, respectively.
The probability of being perfect pbp for the first-level hash

function composed from seven random hash function is
Q14(14, 17). It is much larger than Q14(14, 17), the pbp of
a random hash function.
When more and more random hash functions are selected to

compose a first-level composite hash function, the probability
of being perfect of the composite function will be certainly
increased, but it will be increased very slowly. The reason
is that the more singletons we already have, the fewer chances
are there for the remaining keys to be hashed on unused entries
in the address space. It has been found that dividing the
address space into segments can be a more effective means
to increase the pbp than using indefinitely many random hash
functions, as will be described in the' next section.

IV. SECOND LEVEL REHASH

Fig. 5 shows the second-level rehash scheme.
The address space is divided into q segments. Corresponding

to segment Ai, which is of size mi, we have a first-level com-
posite hash function hi which maps 1K1, K2, * ,K,} into
{ 1, , mi}. HITi is the hash indicator table of h' for indicat-
ing which h is applied to get the value of h'. HIT1,,. ,HITq
compose the hash indicator table HIT of the second-level com-
posite hash function H.
The second-level composite hash function H is defined as
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Fig. 5. Second-level rehash.

follows:

H(K) =hj(K) + mt if i, j can be found such that
t=O HITi(hM(K)) and

HITi(h' (K)) :/r for r < j, and
HITa (ha (K)) / b for a < i,
1 <b.s,
where it is assumed that mo = 0,

= undefined otherwise.
That is, if a key K can not find its right position in the first
segment by h, it will try the second segment by h2, and so

forth.
The following program is an implementation of the hash

function H.
Procedure 2 [Procedure for Computing H(K)J:
begin

t :=0;
for i := 1 step 1 until q do

begin
forj 1 step 1 until s do

begin
z h(K);
if HITi(z) j then return H(K) t + z

end;
t :=t+m

end;
return H(K) = undefined

end

We use R* (n, m, q) to denote the probability distribution of
getting k singletons by the second-level composite hash func-
tion H. The vector mi is the partition on the address space. It
can also be represented as (mln, m2,...*, mq). We shall also
represent (mi , m2,... in,.) as rm. qjm = mi by our convention.
Formulas for calculating R' (n, mi, q) are also given in the

Appendix.
Example 3: To make things comparable to the results shown

in Fig. 4, we let n = 14,m = 17,m =(13, 4),s= 1, 3, 7,and
get three second-level composite hash functions which map 14
keys into two segments of size 13 and 4 each. TheR'(n,m,q)
values are calculated and plotted on Fig. 6.
Let us examine the Rk (14, (13, 4), 2) case. The probability

1. 0

0.9

0.8

0.7

0.6

0.5

0.4

O. 3

0. 2

0.]

0. 0

,Prob.

s=l

1

27f 4 5 7 89 101 1 13singletons

2 3 4 5 6 7 8 9 10 I11 12 13 14

Fig. 6. Distribution diagram of Rs(n, rm, q) with n = 14, m = (13, 4),
s = 1, 3, 7.

for the second-level hash function H to be perfect is R 4 (14,
(13, 4), 2), which is greater than 97.8 percent!
Like in the first-level analysis, suppose that k keys have been

hashed successfully into the address space after the construc-
tion of the second-level hash function. Given any one key K
of these k keys, we can apply the h,h *, h'5 h h
h2* successively, consulting the second-level HIT table, to
find H(K). Similarly, we define NE2(n, m, q, s, k) as the
expected number of times it is required to apply ht 's for cal-
culating H(K) with K among these k keys. Formulas for
calculating NE2 are given in the Appendix.
Example 3 (Continued): NE2(n, mr, q, s, n) is the expected

number of times to apply the hj's functions to calculate H(K)
for any key K, if the second-level composite hash function is
perfect. Using (A9) in the Appendix to calculate NE2 (14,
(13, 4), 2, s, 14), we get 1.275607, 2.286545, 3.273526 for
s= 1,3,7.

V. CONSTRUCTION OF THE HASH INDICATOR TABLE

According to the way the hash indicator table is defined in
Section III, a multipass procedure can be designed for the con-
struction of the HIT. Let thet set of keys be {K1, K2, * ,

Kn}. Assume that the partition of the address space (Al,
A2,-*,Aq) of size (M1, M2, ,mq) and the hash func-
tions h * *, hlI h * ,h , h,** h are all given.
The following is a HIT construction procedure.
Procedure 3 (Static Procedure to Construct HIT's):

begin
KEYSET ={K1, K2, Kn};
clear all entries of HITS;
for i := 1 step 1 until q do

for! 1 step 1 until s do
begin

for all elements in KEYSET do
HITi (d):=j if HIT1 (d) = 0 and h3(Kr) = d

for one and only one Kr
in KEYSET;

KEYSET := KEYSET - {Kr lKr satisfies the above
conditions};

end;
if KEYSET = empty then HIT of a perfect hash function
has been assigned else it fails to find a perfect hash
function

end
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TABLE II
HASH FUNCTIONS FOR EXAMPLE 4

Key

fUncta K1 K2 K3 K4 K5 K6 K7 K8 K9
h 1 4 4 6 2 6 2 J 8

5 8 9 4 422 _D
h 1 6 1 5 2 9 8 5

h2 1 3 2 4 2 3 2 5 3

2h2 4 5 2 5 5 1 3

h2 5 2 (hC3 4D1D3 2

HIT' 01 1 K9 1
t2102 K4 2
00 3 3
11 4, K 4
01 5 K2 5

006' 6
1 2 K177I
008, H

9 9 ~~~~~~~~~8 9

11 1 3 14
001 2 l2 1

I-,_ _

HIT lO 3 I-K 1
2 00 4 1

11 5' 1

Fig. 7. HIT constructed by Procedure 3 of Example 4.

Example 4: Assume that nine keys K1, K2, , Kg are to
be hashed perfectly to an address space of size 14. The ad-
dress space is partitioned into (Al, A2) of size (9, 5). The
hash functions used are {hL hh, h}, {h2, h2, h2} as defined
by Table II. Again, as in Example 1, the circles in each row M
in the table indicate where the h contributes singletons.

Fig. 7 shows the HIT constructed by Procedure 3.
Procedure 3 works on an address space with the segments

preset to (ml,* * , mq). In contrast to this, the size of the
address space and the segments can be set in a dynamic man-
ner, as the following procedure suggests.
Procedure 4 [Dynamic Procedure to Construct HIT (or H)]:
assume that the size limitation of the address space is m.

begin
KEYSET ={KK1,*, ;
for i = 1 step 1 until a large number M do

begin
let mi be the size of KEYSET;
m :=m -mi;
ifm < 0, then it fails to find a perfect hash
function, return;
reserve a table HIT1 of length mi and clear it;
generate s hash functions hi, , h' that map from
KEYSET into {1, 2,* ri};
forj 1 step 1 until s do

begin
for all elements in KEYSET do

HITi (d) :=j if HITi (d) = 0 and hf(Kr) = d
for one and only one Kr in
KEYSET;

KEYSET := KEYSET {Kr Kr which satisfies
the above conditions};
if KEYSET = empty then HIT's of a perfect hash
function' has been assigned, return

end
end

end

The expectation of the length of the HIT (or the length of
the address space) and the expectation of the number of times
it is required to apply h( 's to find H(K) for K = any key K1,
with the HIT constructed by Procedure 4, are defined as
L (n, s) and NED(n, s) respectively. They can be calculated
by formulas in the Appendix.
Example 5: Let 's = 1, n = 3. The probabilities of all possi-

ble cases constructed by Procedure 4 are depicted by the
following probability tree:

W(3, 3)*

Q'(3,3)~ Q(l,~)
Q1(1, 1)*,Q2(3,3)=X~~~Q (11 1)*

Q1~~~~~~~Q(1, 1)

Q'(2, 2)*A

Q' (3, 3) Ql (2, 2)-__

- Qo(2, 2)---

Ql(3, 3)*

/,-Jjl-t-v\-
(3, 3)---

Root

309



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

The path from the root to each terminal node (indicated by
an asterisk) represents a possible configuration (11., q4,),
with 11 + 12 + +4,= 3. For example, the path from the
root to *A in the figure represents the configuration (1, 2).
The probability to get 11 = 1, 12 = 2 is QI(3, 3) X Q (2, 2)-
the product of the Qh on the path from the root to the -termi-
nal node.
There are 33 = 27 distinct functions which map three keys

into {1, 2, 3}. Six of these contain 3 singletons, 18 of these
contain 1 singletons, and 3 of these contain 0 singletons.
Therefore, Ql(3, 3) = 6/27 = 2/9, Q (3, 3) = 0, Ql(3, 3) =
18/27 = 2/3, Q%(3, 3) = 3/27 = 1/9. Similarly, Ql (2, 2) = 1/2,
Q1(2, 2) = 0, Q (2, 2) = 1/2. The probability tree can be sim-
plifled to the following tree by noting that Ql (3, 3) =0 and
Ql (2, 2) 0:

2*
9

/ ~~~~~1*
6

2

2*
V

Root 1 6
9 9

9

By (A6) we have

L(3, 1)= 2 X 3 + X -X (3+2)

+ 2 X (3 +2+2)+ *

+ 4 X 2X(3+3)+ 4 X X X(3 +3 +2)+*.
+ I X g X2g X (3 +3 +3) + **

9 9 9

6 38
Similarly, by (A8), we have

NED(3,1) =9 X + 69XIX [ X (1+ 2 X 2)] +

+ - X 2 X [ + 3]9 93

+ 4 X 6 X X [ + X (1 + 2 X 2)]
+ 4 X X 2 X [I +1 + 3] +

= 2418-

VI. EXPERIMENTAL RESULTS

The formulas derived in the previous sections can be used to
find important measures to characterize the construction of
second-level perfect hash functions. However, they can be

applied only when the problem sizes are small. This is due to
the fact that the formulas get involved with the enumeration
of all possible partitions of a number of integers. The com-
plexity of such enumeration is exponential. Computing by
recursive formulas eases the problem to a certain extent. When
the integers (parameters) becomes larger, it will be still ex-
tremely time-consuming to do the calculations. For instance,
it takes 36.237 s for a program implemented on a Cyber
170/720 system to calculate NE2(14, (14, 3), 2, 7, 14) =
3.273526. Therefore, extensive experiments have been de-
signed to test the approach of constructing perfect hash func-
tions introduced in this paper.
Quite a number of strategies can be adopted for the parti-

tioning of a given address into segments in the experiments.
Here we introduce a strategy called geometric partition strategy.

9

Assume that the size of the address space is m, and that it is
to be partitioned into segment (mI1 ,M2, * In the geometric
partition strategy all m I-/mi are kept close to a constant,
called the reduction ratio. If the reduction ratio is 'y, 0 'y c 1,
the following formula can be applied.

ml llzm 21

MEn=ALxm,1 + I- if >L i.m
j=1

i - I
=m- L mi

1=1
otherwise. (4)

For example, if m = 125, y = 0.3, m will be partitioned into
5 segments according to the geometric partition strategy as
(mi , M2 ,M3 ,iM4 , in5)= (88, 26, 8, 2, 1).

In all the experiments, 36-bit random numbers are generated
for the key values. The hash functions hi's are also generated
randomly.
Some more comments on the commonly used terminology,

loading factor, are needed here. In an experiment, if the
number of keys is n, the loading factor is given as r, then the
size of the address space is calculated as [n/r + 1/2J.
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Diagram of the pbp values of Experiment 1.

Experiment 1 -Explanation:
1) Geometric partition strategy is tested.
2) Reduction ratio y varies from 0.1 to 0.8 in steps of 0.1.
3) Loading factor r varies from 0.5 to 0.9 in steps of 0.1.
4) Number of random hash functions for each h' is 7.
5) 100 independent sets with 100 nonequal keys in each are

tested for each combination of y and r.
6) For each combination of y and r, we calculate the proba-

bility of being perfect pbp as the number of succeeded trials
divided by the number of total trials (which is 100).
The results of this experiment are plotted in Fig. 8.
From Fig. 8 we may observe immediately that we may have

better chance to find a perfect hash function when the loading
factor is smaller, which is quite natural. Also, all the curves
corresponding to different T values appear concave downward.
It appears that there exists one and only one peak in each of
these curves.
Experiment 2-Explanation:
1) Dynamic procedure (Procedure 4) for the construction of

a perfect hash function is tested.
2) Number of keys n varies from 40 to 50, in steps of 1,

then from 50 to 500 in steps of 50.
3) For each n, 100 independent sets with n nonequal keys

are tested.
4) The number of hash functions for constructing each hi is

1,3,7,i.e.,s 1,3, 7.
The results of Experiment 2 are depicted in Figs. 9 and 10.

Fig. 9 shows the average size of the address space assigned for
each (n, s) in the experiment. Note that there are 100 trials
for each combination of n and s. Fig. 10 shows the average
number of times to apply ha's for calculating H(K) for each
combination of n and s. For n < 40, these two figures, L (n, s)
and NED(n, s), are calculated through applying (A7) and (A9),
respectively.
Example 6: Suppose that Procedure 4 will be used to con-

struct a perfect hash function to map 300 nonequal keys into
an address space. From Figs. 9 and 10, if 7 hash functions are
used in constructing each hi, the length of the address space
will be about equal to 348. The total size of the HIT table

L (n, s)

s=7

500

10 20 30 40

Fig. 9. The average size of the address space assigned for each pair
(n, s) in Experiment 2.

created will be about 348 X 3 bits. Which is about 131 bytes.
The expected number of times it is required to apply hM's for
calculating H(K) will be about equal to 3.48.

VII. DISCUSSION

This paper essentially proposed two procedures for construct-
ing perfect hash functions. In the first procedure, the segmen-
tation of the address space is preset. From Experiment 1 we
can see that the way the address space is partitioned has great
effect on the probability that a perfect hash function can be
obtained. An interesting but unsolved problem is to show how
to partition the address space so that we may maximize the
probability of obtaining a perfect hash function by the con-
struction procedure.

In the second procedure, the segmentation of the address
space is obtained dynamically. If the address space is unlimited,
the procedure can certainly construct a perfect hash function
eventually. From Experiment 2, we observe that the ratio of
the size of the address space constructed to the number of
keys will approach a constant for each s value, as the number
of keys goes large. For example, when s = 7, L (n, s) - 7/6n.
This provides us a very simple guide rule in applying Proce-
dure 4.
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with Q4(n, m) = Pk (n, m).
Theorem A3:

NEI (n, m, s + 1, k)
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1s+1=0
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Fig. 10. Average number of times to apply h's for H(K) for eac
(n, s) in Experiment 2.

APPENDIX

This Appendix lists formulas for calculating Qk, R4, A
NE2, L(n, s), and NED(n, s) described in the context. .
NE2, and NED can be referred as the expected numb
internal probes for finding the hash value of a key.
Suppose that i singletons have been obtained by the su

sive application of r random hash functions in the wa,
scribed before. We define APk (n, m, i) as the probabili
getting k more singletons by applying the (r + I)th rar
hash function.
Theorem Al: The probability

APk(n,m, i) X ek( / ) e (
j=k

where the function ek was defined in Theorem 1.
Theorem A2: The probability distribution Qk (n, m) Cz

calculated by
k

Qk+ (n,m) = f, Qs -j(n, m),APj(n,m,k- j)
j=0
k

= Z Q'(n, m) APk..r(n, m, r)
r=o

(A3)

Assuming that all hj's are independent random hash func-
tions, we have the following.
Theorem A4:

k kl+k2+"--+kq l=k-kq
Rs(n,qm,q)= Z

kq=o

* 1Qsin kt, m,
z=1 ~t=O

k

Z Rs- kq (n, (q - I)m, q - 1)
kq=O

Qs (n - (k - kq), mq) (A4)

withR(n,lm, 1) s Q(n, mi1).
Theorem AS:
NE2(n,qm,q,s,k)

k k-( k NE2(n, (q - 1)m, q - 1 , s, k - I )
q =o.

+ k[(q 1) s + NE 1 (n - (k - 14), mq, s, 1qB)]}

Rs-lq(n,(ql7JTm, q - 1) Qsq(n- (k - lq), mq)
R (n,rm,q)

(AS)

with NE2(n,I lm, 1, s, k) =NE1(n Ml, s, k) for allO< k 6 n.
Theorem A6:

00 Il) +.+lXq=n and Iq* 1Oqzq)}
L(n,s)= f< I QlsI (ni, ni) in),F

(A6)
when

ni =n - Z t,lo =0.
t=o

Theorem A 7:

(Al) L(n, s)= QS( n)[n (E L(ks)Qn-k(knln)]

an be withL(0,s) =O,L(1, s) = 1.
Theorem A8:

00 rl+. +lq=n andlq*O
NED(n,s)= I

q =1

(A2)~~~~~f QsQ(ni, ni) NE2(n, m-, q, s, n)}

(A7)

(A8)
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where

f-i
ni= n- It,lo=0, and M=(nl,fn2,**,fnq).

t=o

Theorem A9:

NED(n, s) =
I

I Qo(n, n)

*s *Qos(n, n) +NEI1(n, n, s, n) Qns(n, n)

+ nL [( )NE1 (n, n, s, k)

+ (n - k) (s +NED(n - k, s))] *Qk(n n)

(A9)
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