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1. INTRODUCTION 

In this paper we will construct the solution of a single conservation law 

u, + f(u), = 0, t > 0, --co<x<co, 

u(x, 0) = u&)9 
(1) 

--oo<x<co. 

We assume that f(.) is smooth and f”(.) vanishes at isolated points only. 
The initial data u,,(-) are bounded and piecewise monotone. 

It is well known that, in general, (1) does not have global smooth 
solutions even if the initial data uO(s) are smooth. Hence we consider a weak 
solution for (1): a weak solution of (1) is a bounded and measurable 
function u such that for any C” function g: R X R + R with compact 
support 

J kg, + f(u) g,> dx dt + j”, uo(x) g(x, 0) dx = 0, (21 
RXR+ 

where Rt = {tER:t>O}. 
In general, (1) does not have a unique weak solution. In order to single 

out a unique solution of (1), one requires that U: R x R ’ -+ R satisfy an 
additional entropy condition. Across a discontinuity line x=x(t), the 
solution 24 satisfies [5] 

~(U-,U+)<~(U-,U) for all u between U_ and u + , (E) 

where u * = ~(x(t) f 0, t) and a(~,, u2) is the shock speed defined as 

For other formulation of the entropy condition and the existence and 
uniqueness theorems, we refer to Krushkov [6] and Vol’pert [ 71. 

* This work is supported by the National Science Council of the Republic of China. 
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In the case f(.) is strictly convex (or concave), Lax [3] discovered an 
explicit solution for (1). Using an explicit representation of solutions similar 
to Lax’s, Oleinik [4] studies the structure of solutions of (1) and shows that 
solutions are continuous except on the union of an at most countable set of 
Lipschitz continuous curves (shocks). Dafermos [2J, using a different 
approach, can also establish the above results. In the casef(.) is uniformly 
strictly convex (f”(e) > E > 0), Lax [3] establishes that u(., t) is in the class 
of functions of locally bounded variation in the sense of Tonelli and Cesari 
(space BV) for bounded and measurable initial data u,,( .). (See also 
Dafermos [ 21.) 

When we remove the convexity condition onf(.), we know little about the 
structure of solutions for (1). There is no known explicit formula of solutions 
similar to Lax’s in the strictly convex case. Ballou [ 1 ] can construct the 
solutions for piecewise constant initial data and “admissible” initial data (for 
the definition, see Ballou [ 1 I). From these constructions we know the 
qualitative behavior of the solutions and the structure of the shock curves. It 
is the purpose of this paper to provide a different method to construct the 
solutions for a bounded and piecewise monotone initial data. Our method 
employs Lax’s explicit formula very naturally and effectively. It seems very 
likely that our method can be modified and generalized to include more 
general initial data. 

2. THE KNOWN RESULTS 

We collect the well-known results of Lax [3], Oleinik [4,5 ] and Dafermos 
]2] into the following theorem. We omit the proof. 

THEOREM 2.1. Let f(a) be strictly convex (concave) in [a, b] (a can be 
-CO and b can be a) and uO(.) be measurable and bounded by a and 6. 
Define 

F(x, t; u) = t(uf’(u) - f(u)) + js- (“)r uo( y) dy. 

Then G(x, t) = minaGuGb (max) F(x, t; u) exists and 

(i) G(. , .) is continuous on R x R + ; 
(ii) ~G(x, t)/ax z u(x, t) exists on R x R + except on r, which is the 

union of an at most countable set of Lipschitz continuous curves; 
(iii) aG(x, t)/at = -f(u(x, t))fir all (x, t) E R x R ’ - fi 
(iv) the u(e) .) in (ii) is the unique weak solution of (l), that is, 

u(e, a) satisfies the entropy condition (E); 

505149/3-2 
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(v) u(x f 0, t) exists for all t > 0; 

(vi) for a fixed point (x,, to), I, > 0, u(xO - f’(u(x, f 0, to)) 
(to - t), t) = u(x, f 0, to) for all 0 < t < t, ; 

(vii) u(. , .) is locally Lipschitz continuous on R x R ’ - F; 

(viii) I$ u,(a) is p iecewise monotone, then u(. , t) is also piecewise 
monotone. 

3. THE CASE~"(.)VANISHES AT ONLY ONE POINT 
AND CHANGES SIGN THERE 

Before we start our construction of solutions, we state and prove a 
theorem which will be used repeatedly. 

THEOREM 3.1. Suppose that G(x, t) is continuous in R x R ‘, 
aG(x, t)/ax and aG(x, t)/at exist for all R x R’ -T and aG(x, t)/& = 
-f@G(x, Wax>, h w ere T is the union of an at most countable set of 
Lipschitz continuous curves. Then aG(x, t)/ax is a weak solution of(l), that 
is, aG(x, t)/ax satisfies (2). 

Proof. Let g: R x R --t R be a C” function with compact support. Then 

= j. (G, g, - G, g,) dx dt - jm g, G(x, 0) dx 
-m 

RXR+ 

. . 

= 
J! 

(-Gg,, + Gg,,) dx dt + .m ! G(x, 0) g,(x, 0) dx 
-cc 

RXR+ 

1 

.cx 
- G(x, 0) g,(x, 0) dx = 0. 

--co 

This completes the proof of this theorem. 
Without loss of generality, we assume that f “(u) > 0 for u > 0, f”(0) = 0, 

f”(u) < 0 for u < 0 and f(0) = 0. We define some notations. Let q < 0 be 
given. We define q* > 0 to be the unique number which satisfies 

f ‘@I*) = [f(rt”) - f(v)ll(s* - ?I)* 

Let q > 0 be given. We define ‘I* < 0 to be the unique number which satisfies 

f ‘(rl*) = If@*) - f(rl)ll(?* - ?I). 
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Here q* = 03 and q* = -co are possible. For details of these definitions, see 
Ballou [ 11. 

We start our theorems from the simplest initial data. The method of 
construction will indicate how to understand why our method works. The 
results are also needed later. 

THEOREM 3.2. Let the initial data uO(.) be U&Y) = u, for x ( 0 and 
u&z) = u, for x > 0, u, and u, are two constants. Define 

u;(x) = min(max)( u,(x), 0) for i= l(2), 

and 

Fi(x, t; u) = t(uf’(u) - f(u)) + i,‘-“‘“” u;(y) dy, i = 1, 2. 

Then G,(x, t) = max,,, F,(x, t; u) and G,(x, t) = min,,, F,(x, t; u) exists 
and aG(x, t)/ax is the unique weak solution of (1) for this initial data, where 

G(x, t) = max{G,(x, 0, G&G t)} if u/ < 0 < u,, 

G(x, t) = min{G,(x, t), G,(x, t)} if u, > 0 > u,. 

Proof We consider only the case u, < 0 < u,. The other case u, > 0 > II, 
can be similarly treated. We prove this theorem by direct constructions of 
G,(x, t) and G2(x, t). It is easy to see that u:(x) = u, for x < 0 and u:(x) = 0 
for x > 0. Hence if x < f ‘(O)t, we have Z,(x, t; u)/& = tf”(u)(u - UJ for 
all u < 0. Thus S’,(x, t; u)/& > 0 for u < uI and S,(x, t; u)/au < 0 for 0 > 
u > uI. We conclude that G,(x, t) = F,(x, t; u,) = -tf(u,) + xu, in this case. 
Iff ‘(0)t < x < f ‘(Qt, then there exists u,, uI < u, < 0, such that x = f ‘(u,)t. 
In this region of (x, t), we have S’,(x, t; u)/& = tf”(u)(u - 0) for u, < u < 0 
and M,(x, t; u)/au = tf”(u)(u - u,) for u < u,. Hence u = 0 and u = u, are 
the local maximum points. We obtain G,(x, t) = max(F,(x, t; 0), 
F,(x. t; u,)} = max{O, [-tf(u,) +xu,]}. If f’(uJt < x, we have u, < u, 
(x= f’(u,)t) and u=O is the only maximum point. Hence G,(x, t) = 
F,(x, t; 0) = 0. Combining these results we have 

G,(x, t) = max{O, -tf(u,) + xu,}. 

Now we calculate G,(x, t). It is easy to see that u:(x) = 0 for x < 0 and 
u:(x) = u, for x > 0. If x < f ‘(O)t, we have S,(x, t; u)/& = g”(u)(u - 0) 
which is >0 for all u > 0. Hence G,(x, t) = F,(x, t; 0) = 0. If f ‘(0)t < x < 
f ‘(u,)t, then there exists u2, 0 < u2 < u,, such that x = f’(u,)t or u2 = 
h,(x/t), where h, is the inverse function off’ restricted in the region u > 0. 
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In this region of (x, t), we have Z,(x, t; a)/& = tf”(u)(u - u,) for 0 < u ( u2 
and =tf”(u)(u - 0) for u, < U. Hence u = u2 is the unique minimum point. 
We have G2(x, t) = F,(x, t; UJ = +(&(x/t)) + x&(x/t) in this region. If 
f’(u,)t < x, we have a2 = &(x/t) > U, and u = U, is the minimum point. 
Hence G2(x, t) = F2(x, t; u,) = -@(a,.) + XU,. Combining these results we 
have 

G,(x, t) = 0 for x < f’(O)t, 

= -lf@*(x/0) + xh*W for f’(O)t < x < f’(u,)t. 

= -tf(u,) + xu, for f’(u,)t < x. 

It is easy to see that G,(. , t) is monotone decreasing and G,(. , t) is 
monotone increasing. Hence we can find a line x = y(t) such that 
G,(y(t), t) = G,(y(t), t) for all t > 0. Thus we can see that G(x, t) = G,(x, t) 
for x < y(t) and G(x, 1) = G,(x, t) for x > y(t). It is easy to check that 
aG,(x, t)/at = -f(aG,(x, t)/ax) for i = 1, 2. From Theorem 3.1, aG(x, t)/ax E 
u(x, t) is a weak solution for (1). The only thing we have to check is that 
x = r(t) satisfies the entropy condition (E). If u, < UT, we havef’(h,(x/t)) = 
x/t < [f(Mxlf)) - f(~JllM~/~) - ur> for f’(W < x < f’ W. Hence 
--tf(u,) + xuI > -tf(h,(x/t)) + xh*(x/t). Hence we have --tf(u,) + y(t) U, = 
-rf(u,) + y(t) U, or x = y(t) = [f(u,) - f(~,)]t/(u~ - u,). This means that 
dy(t)/dt = u(u(, u,) < (T(u,, u) for all uI < u < u,.. (E) is satisfied. If u, > ~7, 
then we have --tf(u,) + y(t) uI = -tf(h&~(t)/t)) + y(t) h,(y(t)/r), or, v(t)/t = 
f’@MWN = [fM~Wl4) - f(~,)1/(h2(~(W~) - 4). This means that 
h*(YW) = ur*, or y(t)/t = f’(u:). Obviously, (E) is satisfied. This 
completes the proof of this Theorem. 

Now we consider a more general initial data. 

LEMMA 3.3. Let u,,(-) be piecewise monotone and u&x) < 0 for x < 0 
and u,(x) > 0 for x > 0. Define u’(x), Fi(x, I; u) and Gi(x, t), i = 1,2, as in 
Theorem 3.2. Then aG(x, t)/ax = u(x, t) is a weak solution of (1) which 
satisfies (E) except possibly on the curve y, where G(x, t) = 
max{G,(x, t), G2(x, t)} and G,@(t), I) = G,(y(t), r)for all t > 0. 

Proof. From Theorem 2.1, we know that aGi(x, t)/at = -f(aG,(x. t)/ax), 
i = 1, 2. Hence aG(x, t)/& = -f(aG(x, [)/ax). Thus from Theorem 3.1, we 
know that aG(x, t)/ax = u(x, t) is a weak solution for (1). Now G(x, t) = 
G,(x, t) for x< y(t) and G(x, t) = G2(x, t) for x > y(t), since G,(. , t) is 
monotone decreasing and G2(. , t) is monotone increasing. But the shocks in 
8Gi(x, t)/ax, i = 1, 2, all satisfy (E). Hence the Lemma is proved. 

LEMMA 3.4. Consider the curve y in Lemma 3.3. If y does not satisfy the 
entropy condition, then there exist t, and t,, 0 < t, < t,, such that y satisfies 
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the entropy condition for t < t, and does not satisfy the entropy condition for 
t,<t<t,. Furthermore, if we let u:(t) = u(y(t) + 0, t) and u;(t) = 
u(y(t) - 0, t), we have 

(i) u:(tl + 0) = [u;(tl + 0)] *, 
(ii) u;(t) is Lipschitz continuous and satisfies d(u;(t))/dt > 0 for t E 

(t, 3 t*>- 

ProoJ It t, = 0, then in the vicinity of the origin, the initial data look 
like Riemann data (recall the piecewise monotone assumption of u,(.)). 
From Theorem 3.2, we know that (i) holds. If t, > 0 and ui(t, + 0) > 
bq(t1 + WI *, then there exist E > 0 and 6 > 0, such that u;(t) > 
u;(t, + 0) - 6 and u:(t) > u:(t, + 0) - 6 for all t E [t, -E, t,] with 
uT(t, + 0) - 6 > [u;(tl + 0) - 6]*. This means that y does not satisfy the 
entropy condition for t E [tl - E, t,]. This is a contradiction. If, on the other 
hand, uT(t, + 0) < [u;(tl + O)]*, then there exist E > 0 and 6 > 0 such that 
u;(t) < u;(t, + 0) + 6 and u:(t) < uT(t, + 0) + 6 for all t E [t,, C, + E] 
with ut(t, + 0) + 6 < [u;(t, + 0) + S] *. This means that y satisfies the 
entropy condition for t E [t,, t, + E]. This also leads to a contradiction. 
Hence (i) is proved. 

Now, since y(t) - f’(u;(t))t < 0 < y(t) - f ‘(uT(t))t for all t > t,, we have 
f ‘(u;(t)) > f ‘(u:(t)) for all t > t,. Hence, the only possibility for y to 
violate the entropy condition is f ‘(u;(t)) > f ‘(u:(t)) > dy(t)/dt for all t E 
(tl, tJ. From the piecewise monotone assumption of u,,(.) and 
Theorem 2.l(viii), we can choose (t2 - t,) so small that u;(t) is monotone 
for t E (tl, t2). Assume d(u;(t))/dt < 0 for t E (t,, tJ and (I: d(u;(t))/dt < 0, 
t E (t,, t, + 6)) has positive measure for all 6 > 0. Let A = (y(t,), t,) and B = 
(y(t,) + f ‘(u:(t, + O))(t - tl), t). For (t - t,) sufficiently small, we have 

G,(B)=G,(A)+ j- (zdx+$$dt) 
‘48 

= G,(A) + j’ [u;(t, + 0)f ‘(u;(t, + 0)) - f(u;(t, + O))] dt’ 

=G,(A)+(:I-t,)[u;(t,+O)f’(u;(t,+O))-f(u;(t,+O))], 

G,(B)=G,(A)+ jz (%dx+%dt) 

= G,(A) + j’ {u;(t’) f ‘(u;(t, + 0)) - f(u;(t’))) dt’, 
fl 

where 

=, 

u;(f)= ax - (y(t,) + f ‘(zqt, + O))(t’ - t,) - 0, t’). 
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Hence 

G,(B) - G,tW = If { [u;W - u,(t, + 011 f’t+, + 0)) 
11 
- [f(u;(t’)) - f@,tt, + O)>l I df’ 

+ I ,; {[qt, +o>-q4 +o>lf’(q4 +O)) 

- [f(u;(t, + 0) - f(u;(t, + O>>] 1 dt’ > 0, 

since the second term is zero and the first term is positive due to u; (t’) - 
~;(t, + 0) < 0 or all sufftciently small (t’ -t,) > 0. But G,(y(t), t) = 
G2(y(f), 4, thus we have y(f) > y(ti) + f’(uT(t, + O))(t - tl) for all 
sufftciently small (t - t,) > 0. This fact contradicts the inequalityS’(u: (t)) > 
dy(t)/df for all f E (f, , tz) because this inequality means that y(f + E) < y(f) + 
f’($(f))e for sufftciently small E > 0 and hence y(t) < y(t,) + 
f’(u,‘(ti t O))(t - tl) for sufficiently small (t - t,) > 0. This completes the 
proof of this lemma. 

THEOREM 3.5. Take the same assumption as in Lemma 3.3. Then we 
can construct two curves y, and y2 with y,(t) < y2(t) for all t > 0 and one 
function G,(x, t) which is defined in y,(f) < x < yz(t), such that aG(x, t)/ax 3 
u(x, t) is the unique weak solution of (l), where G(x, t) = G,(x, t) for 
x < y,(t), G(x, t) = G,(x, t) for y,(t) <x ,< y*(t) and G(x, f) = G,(x, t) for 
Y2W < x* 

Proof. From Lemmas 3.3 and 3.4, if y satisfies the entropy condition, 
then we can choose y, = y = y2. We are done. So assume that y does not 
satisfy the entropy condition. Take t, as the t, in Lemma 3.3 and choose 
yl(t) = yz(t) = y(f) for 0 < t < t, . For t > f,, we take y2 to be the generalized 
characteristic of z+(x, t) E BG,(x, t)/ax passing through the point (y(t,). t,) 
(see Dafermos [2] for the definition of generalized characteristic). From 
Lemma 3.4 and Theorem 2.1 (viii), we can find a maximum interval 
(YO*> - 4Tl,X~ Y(4)) such that ~,(a , t,) is monotone decreasing in this 
interval. Let the generalized characteristics of u,(x, t) passing through the 
points (y(t,) -a,,,,,, t,) and (y(tl), t,) be r and r’, respectively. From 
Therem 2.1 we know that u,(x, t) is Lipschitz continuous in the region 
between r and r’. Hence the vector field (f ‘(u:(x. t), 1)) is also Lipschitz 
continuous in this region. Thus there exists a unique integral curve of this 
vector field passing the point (y(t,), t,). This integral curve will intersect r at 
t = t,. We let yl(t) be this integral curve in the range t, < f < f,. It is easy to 
see that dy,(t)/dt = f ‘(uF(y,(t), t)) is Lipschitz continuous and 
d’y,(t)/df* < 0 for 1, < t < f,. Now at every point (y,(t), t), f, ,< t < t,, we 
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can draw a line with slope dx/dt =f’(u:(y,(t), t)) in the increasing time 
direction. These lines will cover a fan-like region H without intersection with 
each other. Along these lines we assign a function H&X, t), such that 
H,(x, 0 = G,(Y~VL 0 + (t - ~[ul*(rl(t~t?f’(ul*(yl(~, 0) -f(u:(~~(O, Q)l if 
(x, t) is on the line passing through the point (yl(g, 9 with slope ak/dt = 
f’(u:(rr(Q g), or if x = y,(g + (t - 9 Xf’(u:(y,(i), 0). We can calculate 
aH,(x, t)/ax and aH,(x, t)/at as follows. 

But from x = yl(Q + (t - qf’(u:(y,(Q, g), we have 

Hence we obtain aH,(x, t)/ax = uT(yr (0, r). Similarly we can obtain 
aH,(x, t)/at = - f(u:(y,(Q q). Thus H,(. , t) is an increasing function in H. 

Along y2, we can find a time t, > c, , such that y*(t) is a genuine charac- 
teristic of U&X, t) (see Dafermos [2]) for t, < t < t, and y*(t) is a shock 
curve for t > f3. At every point (y2(t’), t), t, < t’, we draw a half line C(t’; t) 
with slope dx/dt = f’(u&(t’) + 0, t’)) in the positive time direction. (It is 
easy to see that yZ(t) meets the shock at t, from the left side of the shock.) 
Along C(t’; t), we let 

G;(C(t’; 0, f> = G&(f), t’) + (t - t’)[u&(t’) + 0, t’) 

x f’@ZMf’) + 07 f>> - fo&(t’) + 07 O>l* 

These lines C(t’; t) cover a region H’ c H and generally intersect with each 
other. Let (x, t) E H’ be fixed. Define 7(x, t) = {t’: x = C(t’; f)}. Let 

GF(x, t) = ,,$I 1) G;(C(t’; t), t) 

= G;(C(f"; t), t). 

Performing a calculation similar to the calculation of i?H,(x, t)/ax and 
aH,(x, f)/at, we can obtain 

ac;(x, t)/ax = 2d2(Y2(ty + 0, t(r), 
ac:(x, tyaf = -f(2dZ(YZ(f’y f 0, t/y). 
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It is easy to see that the boundary of region H is 

u{(X,t):X=Yl(t),t,~t~t*} 
u i(Xl f): x = Yl(h) + f’(@(y,(t* - 01, t, - O))(t - t2), t > t, I. 

For (x, t) E H, we define 

c;(x, t) = H& t) if (x, t) E H - H’, 

= min(Hi,(x, t), G;(x, t)} if (x, t) E H’. 

It is easy to see that C?;(x, t) is continuous and G;(. , t) is monotone 
increasing. 

For t > t,, G,(x, t) = @(x, t) determines a curve y;(t) with y{(t,) = y,(t*). 
We define 

G’(x, t) = G,(x, t) for x < y,(f), 

= G,(x, 0 for yl(t) < x, 
o<t<t,. 

G’(x, t) = G,(x, t) for x < y,(t), 

= G;(x, t) for y](r) ,< x < yJf>, f, < t < t2, 

= G&G f> for y2(t) < x, 

G/(x, t) = G,(x, t) for x < y;(t), 

= G;(x, t) for y;(t) < x < y2(t), t, < t, 

= G,(x, 0 for y*(t) < x. 

From the construction of G’(x, t) and Theorem 3.1, we know that 
aG’(x, t)/ax = u’(x, t) is a weak solution of (1) satisfying the entropy 
condition except possibly on r;(t) for t > t,. But from the construction of 
r,(t), t, < t < t,, we know that u,(. , t2) is monotone increasing in some 
interval (y,(t,) - 6, y,(f2)). Hence there exists t, > tz such that y;(t), t, < 
t < t,, satisfies the entropy condition. Now we can repeat our processes to 
remove the portion of y{(t) which does not satisfy the entropy condition. It is 
precisely in this way that we construct the curve yi. Note that from the 
piecewise monotone assumption of u,(a), we need only repeat this process a 
finite time. This complete the proof of this theorem. 

Now we are in a position to construct solutions for more general initial 
data. Assume that u,,(a) is bounded and piecewise monotone. Then there exist 
Y, < Y, < **. < Y,, such that z+,(x) E (-co, 0] for x E (y,, yi+ ,) if i is even 
and U,,(X) E [O, co) for x E (y,, yi+ i) if i is odd. We already set y0 = -co 
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and y,, r = co for convenience in the above expression. Of course it is 
equally possible that u,,(x) E [0, co) for x E (y,, yi+ i) if i is even. But we 
consider only the first caie. The later case can be similarly treated. 

The first step is to use Theorem 3.5 to construct the unique weak solution 
uIz(x, t) s aG,,(x, t)/ax for the initial data u:*(x), where u:‘(x) = u,(x) for 
x < y2 and d’(x) = otherwise 0 for y2 < x. Now we let u:(x) = z+,(x) for y, < x < y3 
and u;(x) = 0 Define Fj(X, t; u) = t(uf’(u) - f(u)) + 
Kf ‘(“‘f KXY) due Then G3(x, t) = m-q,, F3(x, t; u) exists from 
Theorem 2.1. Now set G,,(x, t) - I;; u&) dy = G,(x, t) to determine a 
Lipschitz continuous curve x = y*(t) with y,(O) = y,. It is easy to see that 
this curve y2 exists and is unique. Choose Gi,,(x, t) = G,,(x. t) - l:; u,(T) & 
for x ( y*(t) and Gi2&, t) = G,(x, t) for y*(t) < x. Then from the 
construction we know that aG;,,(x, t)/at = -f(aG;,,(x, t)/ax) and hence 
aGi23(x, t)/ax is a weak solution of (1) with initial data u:~~(.), where 
2$“(x) = ( ) f u0 x or x < y, and u:“(x) = 0 for y3 < x. aG;Zj(x, t)/ax satisfies 
(E) except possibly on y2. ‘Using the same processes as in the proofs of 
Lemmas 3.3, 3.4 and Theorem 3.5, we can construct a G,,,(x, t) with 
Glz3(y2, 0) = 0 such that aG,23(x, t)/ax z u,,,(x, t) is the unique weak 
solution of (1) with initial data ,i*’ (.). Repeating this process, we finally can 
construct G(x, t) = G,,, . . (,,,+ I ,(x, t) such that aG(x, t)/h = u(x. t) is the 
unique weak solution of (1) with the correct initial data. 

4. THE CASE f"(u) VANISHES AT FINITE POINTS 
AND CHANGES SIGN THERE 

Without loss of generality, we assume that f”(u) vanishes at a, < 
a, < .a. < aM and f”(u) < 0 for u E (ai, ai+ J if i is even, and f”(u) > 0 for 
u E (ai, a,+r) if i is odd, where for convenience we set a, = -co and 
aM+, = co. 

We consider the simplest initial data uO(.) first. 

THEOREM 4.1. Let u,(x) = uI for x < 0 and uO(x) = u, for x > 0, where 
u[ E (a,, a,] and u, E [a,,,, aM+ 1) are two constants. Dejke 

U~(X)=min(a,+,, maX{U,,u&)}}, i = 0, 1 ,..., M, 

F~(x, t; u) = t@-‘(u) - f(u)) + jR-f”u’f u;(t) &-, i = 0, I,..., M, 

Gi(x, t) = max (min) Fi(X, t; U) 
Ualai*a,+,l 

if i is even (odd). 
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Let G(x, t) = max{G,(x, t), G,(x, t) ,..., G,(x, t)}. Then iYG(x, t)/ax s u(x, t) is 
the unique weak solution of (1) for this Riemann initial data uO(.). 

Proof Let ti, = ul, 8, = a, for i= 1,2,...,M and &,,+i = a,. Then we 
have 

G~(x, t) = max { (-(f(di) + X&i), (-tf(gi + 1) + Xdi+ 1) ] if i is even, 

and 

Gi(x, t) = -tf(rii) + xcfi 

= -tf(hi(X/t)) + xhi(x/t) 

=-tf(ai+l) +XfTi+* 

for x < f’@,)t, 

for f’(di)t < X Q f’(a,+ I)t, 

for f’(ni+ I)t < X, 

if i is odd, where hi(.) is the inverse function off’(e) restricted in [a,, ai+ ,]. 
From the construction, we can easily verify that ~G(x, t)/i?t = 

-f(aG(x, t)/cYx). H ence aG(x, t)/ax is a weak solution of (1). Furthermore, 
G(x, 0) = XU, for x < 0 and G(x, 0) = XU, for x > 0. Hence aG(x, O)/C?X = 
u,,(x). It remains to show that the shocks of u(x, t) satisfy (E). Let y, ,..., yk be 
the shocks of u(x, t) with yl(t) < y*(t) < ass < yk(t) for t > 0. It is easy to see 
that G(x, t) = G,(x, t) for x < y,(t) and G(x, t) = G&x, t) for x > yk(t). Of 
course k = 1 is possible. Furthermore, since Gi(x, t)/t depends only on (x/t) 
for every i, yj(t)/t must be independent of t for every j = 1, 2,..., k and 
u(yj(t) f 0, t) are also independent oft. It is also easy to see that dyj(t)/dt = 
Yjtt)lt = Lf(“(Yj(t> + O3 t)> - f(“(Yj(t) - O, t))ll[“(Yj(t> + O, tI - 
u(Yj(t> - O, t)l* Let u(y,(t) + 0, t) = u;“. We shall show that 
(1) [f(u) - f(u,)ll(u - u,> 2 dy,Wldt for all u E 1~ u,l and (2) f’M> = 
dy,(t)/dt if u: # u,. Suppose that there is a u E [uI, u,.] such that 
[f(u) - f(u,)]/(u - uJ < dy,(t)/dt. Then from mean value theorem we can 
find a U E [u,, u,] such that [f(u) - f(u,)]/(z? - u,) < dy,(t)/dt, f’(C) = 
dy,(t)/dt and f”(C) > 0. But then on x = y,(t) we have (assume ti E 
(ai aitl)> 

Gi(Y,(t)v t> - G,(Y,(t), t> = [-f(Q) + Y,(t)uI - [--tf(U,) + Y,(tN,I 

= -t(ti - u,) 
[ 

fW - ml) Y,(t) -- 
u-u1 t I 

> 0. 

This contradicts to G,(y,(t), t) = max(G,(y(t), t), i = O,..., M}. Hence (1) is 
proved and y1 satisfies (E). If ~7 # u,, then UT = u(yl(t) + 0, t) = h,(y,(t)/t) 
for some odd m. Hence y,(t)/t = f’(uF). This proves (2). Similar arguments 
can be applied to prove that yzr.:., Yk satisfy (E),f’(u(yj(t) f 0, t)) = dYj(t)/dt 
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for j = 2, 3,..., (k - 1) and f’(u(yJt) - 0, t)) = dy,(t)/dt if u(y,Jt) - 0, t) # u, 
or k # 1. This completes the proof of the theorem. 

Now we consider a slightly more general initial data. 

THEOREM 4.2. Let uO(x) E (a,, a,] for x < 0 and u,,(x) E [a,,, aM+ I)for 
x > 0. Define u;(x), Fi(x, t; u), G,(x, t) and G(x, t) us in Theorem 4.1. Then 
BG(x, t)/ax 3 u(x, t) is a weak solution of (1) which satisfies the entropy 
condition (E) except possibly on two curves y, and yz, where y,(t) < yz(t) are 
defined by G(x, t) = G,(x, t)f or x < yI(t), G(x, t) = G,(x, t)for x > y?(t) and 
G(x, t) f G&G t), G(x, t) f G,(x, t)for y,(t) < x < Ml. 

ProoJ The proof is similar to that of Lemma 3.3. The only thing we 
have to add is that the shocks between yr and yz satisfy (E). But this is an 
easy consequence of Theorem 4.1. We omit the detail. 

THEOREM 4.3. Consider the two curves y, and yz in Theorem 4.2. There 
exist four curves r;, T:, P; and T: and two functions H,(x, t) and H2(x, t) 
such that if we redefine the G(x, t) in Theorem 4.2 as 

GN(x, t) = H,(x, t) for ~;w~w-w, 

= Hz&, t) for r; 0) G x G r: 01, 

= G(x, t) otherwise, 

then 8GN(x, t)/ax is the unique weak solution of (1) for this initial data. 

ProojI We assume first that M is an even integer. Let q < u, be given. 
Define v* > a, to be 

yI* = sup{u: o(q, v) > o(q, u) for all v E (q, a,,)}. 

Let q > aM be given. Define q* < uM to be 

v* = inf(u: o(q, v) < a(~, u) for all v E (a,, v)}. 

Although q*(q) (q*(q)) is not a continuous function of q in general, 
f ‘(v*(q)) is a continuous function of r. 

Now if y,(l) satisfies (E) for 0 < t < t, and violates (E) for t, < t < t,, 
then following the same arguments as in the proof of Lemma 3.4 we can 
prove that u(y,(t,) + 0, t) = [u(yl(t,) - 0, tl)]* if t, > 0 (if t, = 0, then we 
take t, --f 0+ along y,(t)) and du(y,(t) - 0, t)/dt > 0 for t E (t,, f2). We can 
follow the same procedure as in Theorem 3.5 to construct r;(t), c:(t) and 
H,(x, t). (These curves and function correspond to yl, y2 and G,(x, t) in 
Theorem 3.5.) The only difference is that aH,(x, t)/ax may have discon- 
tinuity in the fan-like region. These correspond to the fact that v*(v) is not a 
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continuous function of q in general. But these discontinuities satisfy (E) 
(double side contact discontinuity). There is one thing we have to mention. 
r: is a genuine characteristic except the portion which coincides with r;. 
Similar method (use I]*(V)) can be used to construct r; and r: and 
H,(x, t). We omit the detail. This completes the proof of the theorem for M 
as an even integer. 

Now we assume that M is an odd integer. Let q < a, be given. Define 
t,~* = q*(q) to be 

q* = sup{u: a(rj, V) > o(q, u) for all ve(rj, co)}. 

Note that q* = co is possible. The constructions of r;, r: and H, (x, t) are 
the same as in the case of even M. But the constructions of r;, r: and 
H2(x, t) are a little bit different. First of all, if yZ satisfies (E) for 0 < t < f, 
and violates (E) for t, < t < t,, then u(yz(tl) - 0, tJ = [&(tl) + 0, f,)]* 
and d(u(y2(f) + 0, f))/df < 0. These facts can be proved as in Lemma 3.4. We 
now find the maximum interval (y*(t,), y2(tl) + S,,,) such that 
d(u(x, t,))/dx < 0 for all x E &(fJ, y2(f,) + a,,,,,). Let C, and C, be the 
generalized characteristics of aG,(x, f)/ax passing through points (yz(t,), f,) 
and ((yz(tl) + a,,,), tl), respectively. Between C, and C,, we form the vector 
field (f’([u(x, t>]*), 1). W e can find a continuous curve r: such that 
dT: (f)/dt = f’([u(r: (t), f)]*). It should be noted that dr: (f)/dt may be 
discontinuous. But #t(t)/& is monotone increasing. r: will meet C, and 
terminate there. Now at every point of r:, say, (r:(f’), f’), if dr:(f)/df is 
continuous at (r:(P), t’), we draw a line with speed dr:(t’)/dt’ and assign 
a function H,(x, t) on this line such that 

H,(x, t) = G,+#y(t’), f’) + (f - f’>[u:(f’)f’(u:(t’)) - f(u:(f’)>]. 

where u:(t) = u(T: (t) + 0, t) and x = r$ (t’) + (f - t’) dr: (t’)/dt’. On the 
other hand, if dr:(t)/df is discontinuous at (r:(P), t’), then we draw a line 
with every speed between dr:(f’ - O)/dt and dr:(f’ + O)/dt and assign a 
function H,(x, t) similarly. Then H2(x, f) = GJx, t) will determine a curve 
which starts from the intersection point of r: and C,. An initial portion of 
this curve satisfies condition (E). Continuing this process, we can construct 
r;, r: and H,(x, t). They are almost the same as in Lemma 3.3, 3.4 and 
Theorem 3.5. We omit the detail. This completes the proof. 

Now we are in a position to describe how to construct solutions for more 
general initial data. Assume that u,(s) is bounded and piecewise monotone. 
Then there exist y, < y, < e-e < yN, such that {u,(x): x E (yi, y,,,)} E 
Iaj(i) ) aj(i) + I 7 ] where j(i) is a function of i and we take y, = -co, y,, i = 00 
for convenience. 

The first step is to use Theorems 4.2 and 4.3 to construct the unique weak 
solution u,,(x, f) = aG,,,(x, t)/& for the initial data U:‘(X), where u:‘(x) = 
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u&) for x < y2 and Z&X) =ujcl, if j(2) <j(l), u~‘(x> =a,(,,+, if 
j(l) ( j(2) for x > y,. Now we let u:(x) = u,(x) for y2 < x < y,, u:(x) = 

ifj(2) < j(1) and u:(x) = ujcz, ifj(1) < j(2) for x < y,, u:(x) = ajcz, if 
j”{?)) ‘; j(2) and u:(x) = a j(2)+, if j(2) < j(3) for y, < x. Define 

F,(x, t; u) = t(uf’(u) -f(u)) + Jy”” u;(y) dy. 

Then ifj(2) is even, we have 

G&, t> = max 
~~l~,l2,.Q,,2,+11 

F2(x, c u), 

and if j(2) is odd, we have 

G,(x, t> = min 
~~1~,,2,.~,,2,+ll 

F,(x, t; u). 

Now define u:(x)= u,O’(y, + 0) for x ( y, and u:(x) = ui(y, - 0) for 
x > y2. Using Theorem 4.1 to construct the unique weak solution for this 
initial data u:(.), we obtain G:(x, t). Now let G,,(x, t) - J”F: u,(y) dy = 
Gc(x, t) to determine a curve which starts at (y, , 0). Using the same method 
of Theorem 4.3 to remove the portions of this curve which violate (E), we 
can obtain Gz,(x, t) such that aG!,(x, t)/ax is the unique weak solution of 
(1) for the initial data which are u,,(x) for x < y, and u:(x) for x > y, . Now 
let Gt,(x, t) = G,(x, t) to determine another curve with end point at (yz, 0). 
Again we can use the method of Theorem 4.3 to remove the portions of this 
curve which violates (E). Finally we obtain G,,,(x, t) such that aG,,,(x, t)ax 
is the unique weak solution of (1) for the initial data u:“(x), where us” = 
u,(x) for x < y, and us” = ui(y, + 0) for y, < x. Continuing this process 
we can construct the unique weak solution for bounded and piecewise 
monotone initial data u,(.). 
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