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ABSTRACT: Methods are proposed for identifying the NL, LN and LNL models. The 
nonlinearity is assumed to be independent offrequency. For each model, the linear part isjrst 
identified based on extracting the amplitude andJor phase responses due to linear systems from 
the overall response. After the linear system has been identified, the nonlinearity is identijied 
graphically. An advantage of the proposed methods is that multiple-valued nonlinearity can also 
be considered. An application of identifying a unity feedback nonlinear system is also discussed. 

I. Introduction 

Several methods exist for identifying a nonlinear system. These methods are 
developed in either the time domain (l-4), or the frequency domain (5-9) based on 
the Volterra expansion. However, the Volterra series is not suited for representing a 
system containing a multiple-valued nonlinearity (10). To identify a system 
containing the multiple-valued nonlinearity, a dither signal is added to the system to 
smooth the jump phenomena in the nonlinearity so that methods for single-valued 
nonlinearities can be applied. However, it is still not an effective method (10). 

In this paper, three nonlinear models, as shown in Fig. 1, are considered : (1) the 
NL model which consists of a nonlinearity cascaded in front of a linear system; (2) 
the LN model of a nonlinearity cascaded after a linear system; and (3) the LNL 
model of a nonlinearity sandwiched between two linear systems. The nonlinearity 
may be single-valued or multiple-valued. In all cases, the only assumption imposed 
on a nonlinearity is that its input-output characteristic be independent of frequency. 
The problem is to identify the transfer function(s) of the linear systems and the 
nonlinearity from the open-loop frequency response data. A simple application for 
identifying a unity feedback system is also discussed. However, the closed-loop 
application is restricted to the situation where the high-order harmonics generated 
by the nonlinearity are severely attenuated by the linear system so that the overall 
feedback system behaves like a quasi-linear system. 
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FIG. 1. Nonlinear models. 

ZZ. Identification of the NL Model 

Consider the NL model as shown in Fig. 1. Since it is clear that the nonlinearity 
and the linear system can only be identified to within a constant gain factor, we 
arbitrarily normalize the dc gain, the gain at zero frequency, of the linear system to 
unity and ascribe it to the nonlinearity. Thus, without loss of generality, we let the 
linear system L be described by 

K(l+b,s)...(l+b,s) 

L(s)=(l+a,s)(l+a,s)...(l+a,s) 
(1) 

where the orders n and m are known a priori. To a sinusoidal input 

u(r) = A cos oit, 

the corresponding signals (steady state) x(t) and y(t) are, respectively, 

x(t) = N,(A)+ N,(A) COS [Wit+ $,(A)] + N,(A) COS [Twit+ +2(A)] + ... 

and 

(2) 

(3) 

y(t) = N,(A). IL(jo)l + N,(A) ’ IL(jOi)l’ COS [Wit + 4,(A) + L L(jOi)] 

+ N,(A) a Iyj20i)le COS [L?OJit + 42(A) + L L(j20i)] + . . . (4) 

where N,(A) and &(A) are the amplitude and phase shift, respectively, of the Ith 
harmonic component generated by the nonlinearity N and are functions of the input 
amplitude A. Practically, we can approximate y(t) by a finite Fourier series (11) as 

9(t) = $ + i c$ cos (lo,t+ (3,) (5) 
I=1 

where 

0,: &(A) + L L(jl0,). 

The procedure for identifying an NL model consists of two steps. The first is to 
identify the linear part L from the frequency response. Then based on the identified 
L, the signal x(t) is computed so that the non-linearity N can be identified from its 
input-output response. Two methods which can be used to identify the linear part 
L(s) are as follows : 
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Method 1. Based on amplitude frequency response alone 
With the assumption that N, and 4, are independent of the frequency oi, it is clear 

that the fundamental amplitude of the signal x(t), i.e. N,(A) in (3), remains constant 
for all sinusoidal inputs of arbitrary frequencies as long as their amplitudes remain 
constant. However, the fundamental amplitude of the output signal y(t) is modified 
by a factor N,(A) - lL(jo,)(. Consider a set of k fundamental amplitude responses of 
the NL model at frequencies oi, i = 1,2,. . . , k : 

N,(A)- IU._bl)l N,(A) - IL(jo2)l 
A ’ A 

,...> (6) 

It is clear that the data set given by (6) corresponds to the amplitude response of an 
artificial system L’ which is obtained from L by a constant amplification factor 
N,(A). Therefore, if L, hence L’, is of minimum phase, the system L’ can be identified 
from the data set (6) by Jong and Shanmugam’s method (12). By normalizing the dc 
gain to unity, we identify the linear system L(s) as 

(l+&s)...(l+&$s) 

L(S)=(l+d,s)(l+ci,s)...(l+h,s)~ 
(7) 

Method II. Based on both amplitude and phase responses 
If L(s) is not minimum phase, the NL model can be identified as follows. For 

convenience, let the fundamental response of the NL model at frequency oi, i.e., 

N 1(A) L c41(A)3 Lf’jo.) be described by 
A I 1 

where 

Nl(A)‘C~l(A)I L(jw.) E R.+jl. 

A 
I I I (8) 

R, = N1(A) I 7’ ILciwi)l ‘~0s C@,(A)+ LL(.idl, 

1, = Nl(A) 1 7’ ILciwi)l * sin [4,(A)+ LL(joJ]. (10) 

With an input of the same amplitude A but different frequency o: = rwi, where 
r # 1, the response of this NL model is 

Dividing (8) by (1 l), we obtain 

Ltiwi) Ri+jZi 
-= 

L(jw:) 
- z RF + jir. 

R: + jr: 

(11) 

(12) 

Now Ry + jI:l corresponds to the frequency response of the following fictitious linear 
system : 

C(s)=(l+b,s)...(l+b,s)(l+rals)...(l+ra,s) 1 

(l+a,s)...(l+a,s)(l+rb,s)...(l+rb,s) = L(s)*L(rs) (13) 
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at frequency wP If the frequency responses Ri + jZi of the NL model are obtained at 
input frequencies oi, i = 1,. . . , k, and the frequency responses R: + jZ: are obtained at 
input frequencies 0; = roi, i = 1,. . . , k, the frequency responses R; + jr; of the 
fictitious transfer function L’(s) can be computed. Thus p(s) can be identified by 
means of the complex curve fitting method of Sanathanan and Koerner (13). 

If there is no pole-zero cancellation in L’(s), then the presence of the factor 
(1 + rx’s)/( 1 + xs) in E(s) when x’ x x will indicate the presence of the factor 1 +xs 
in the denominator of z(s), and the factor (1 +ys)/(l +ry’s) in p(s) when y’ x y 
will indicate the factor (1 + ys) in the numerator of &s). Thus, z(s) can be found 
completely. An ambiguity may occur, however, if r happens to be the number such 
that rai = aj, so that one or more factors (1 +rais) and (1 +ajs) are cancelled 
identically. In this case, the order of L’ (equal in denominator and numerator) must 
be determined so that erroneous pairs are not included. As in the most procedures, 
order determination can be accomplished by a residual test. Assume the fictitious 
system L’ is of order J and has been identified as follows : 

E;(s) = 
Ao+A,s+...+L4$J 
l+B,s+-+B,s” . (14) 

Define the associated cost function by 

e, = 5 1pJ(joi)-(R;+jZ;)12. 
i=l 

(15) 

Then, starting with J = m + n, the order of L’ can be estimated using the following 
procedure : 

Step 1. Compute e, and e,_ I from (15). 
Step 2. If the increase of e, _ I from eJ is insignificant and if J > 1, decrease J by 1 

and go to Step 1. Otherwise, the order of L’(s) is estimated as J. 

If the estimated order of L’ is J, then m + n - J pole-zero pairs are cancelled in (13). 
We should therefore multiply both the denominator and the numerator by identical 
productfactors(1+z,s)(l+z2s)...(l+z,+,_, s) to restore the required form of L’(s) 
as given in (13). Then 21s) can be found directly by observation. Note that the above 
procedure ceases at the test for J = 1 since it is the smallest possible order of L’ to 
result from the assumption I # 1. 

The two methods described above are used to determine the linear system L(s). 
Identification of the nonlinearity N remains to be described. Since the output y(t) 
can be approximated by a finite Fourier series as (5), the signal x(t) can be estimated 
from the superposition property of the linear system L(s) as 

w = $ + lil ,icl”;o,, cos [lw,t+e,- ,&lWi)]. 
I 

(16) 

Then, by comparing u(t) and a(t), the nonlinearity N can be identified graphically. 
Recall that the identified nonlinearity 8 absorbs the dc gain of the entire cascaded 
system. 
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111. Identification of the LN Model 

Consider the LN model as shown in Fig. 1. The linear system L(s) is as described by 
(1). To a sinusoidal input u(t) = A cos co&, the corresponding steady state signals x(t) 
and y(t) are, respectively, 

and 

x(t) = A ’ I~ciWi)l’ COS [oit + L Lo’oi)] (17) 

y(t) = N,(A’) + N,(A’) COS [oit + L LCjWJ + ~,(A’)] 

+ N,(A’) COS [2wit + L L(j’ZWJ + 4,(x4’)] + ... (18) 

where A’ = A * IL(joJl. y(t) can be approximated by a finite Fourier series as (5). Two 
methods for identifying L(s) in the LN model are as follows : 

Method I. Based on amplitude frequency response alone 
If input frequency oi is fixed, then the gain lL(joi)l is a constant for arbitrary input 

amplitude A, and the amplitude of fundamental output is N,(A’), where 
A’ = A(L(jo,)l. This corresponds to modifying the nonlinearity N by a constant fac- 
tor lQjoi)l. Hence, the amplitude relationship between the input signal u(t) and the 
fundamental output of the nonlinearity can be obtained by varying the values of A. 
Now modify the original LN model to an L’N’ model with L’(s) = [l/IL(jWJl]L(s) 
and N’ = Iyjoi)lN. If the nonlinearity is independent of frequency, E(s) can be 
identified from the following procedure : 

Step 1. Fix oi = wO, apply different amplitudes of input signal as in the 

S,4 = {&&...A}, and measure the corresponding amplitude of fundamental 
output as the set S, = {N,(A, * IL(jo,)l), N1(A, * lj,,l), . . . , N,(A, * IL(joO)l)). These 
two sets of data reveal the property of modified nonlinearity. 

Step 2. Change the input frequency to Oi, i = 1,2,. . . . Properly adjust the input 
amplitude A so that the amplitude of the fundamental output a1 falls in the interval 
of the data set S,. Then the input amplitude of the modified nonlinearity can be 
estimated by the interpolation method based on two data sets S, and S,. Once the 
input amplitude of the modified nonlinearity is found, the amplitude ratio of 
modified L(s) can be obtained easily. Then, the modified transfer function qs) can be 
obtained easily by Jong and Shanmugam’s method (12). Finally E(s) can be found by 
normalizing the dc gain of identified transfer function L’(s) to unity. 

Method II. Based on both amplitude and phase frequency responses 
The method for identifying an LN model is similar to that for the NL model as 

described in Section II. The only difference for identifying the LN model is that we 
need to adjust the input signal u(t) = A cos (wit + 0,) to generate the same output 
wave form, 

for different frequencies wi, i = 1,2,. . . , k. Then the fundamental frequency response 
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data of the LN model can be obtained and the normalized linear system L(s) can be 
identified easily from method II as discussed in Section II. 

Once the normalized linear system L(s) is identified, the modified nonlinearity can 
be determined by comparing i;.(t) and y(t) graphically, where 

a(t) = Ai ’ @(jo,) 1 ’ COS [Win! + 8~ + L ZciOi)]. 

IV. Identification of LNL Model 

In this section, a model consisting of a nonlinearity sandwiched in between two 
linear systems is considered (Fig. 1). The nonlinearity N is restricted to being 
memoryless. L,(s) and L,(s) are normalized as follows : 

(1+b,s)(l+bzs)...(l+b,s) 

L1(s)= (l+a,s)(l+a,s)...(l+a,s) 

L (S)=(l+dls)(I+dzs)...(l+d~s) 
2 

(1+c,s)(l+c,s)...(1+cp) 

(19) 

(20) 

where m, n, rii and ri are known a priori. Due to the presence of the nonlinearity, there 
is a phase shift k,n between x(t) and fundamental component z(t) (see Appendix). 
Then, the phase between u(t) and fundamental component of y(t) is determined by 
the phase characteristic of L,(s) - L,(s) and modified by k,n only. If the input of the 
LNL model is u(t) = A cos(oit), the steady-state response of y(t) can be ap- 
proximated by a finite Fourier series as (5). After collecting k phase data between u(t) 
and the fundamental component of approximated y(t) of (5) at different input 
frequencies 0 = or, 02,. . . , ok, the product of L,(s) - L,(s) can be found by Jong’s 

method (14) as 

% (S)‘e2(s)=‘1+~1”“1+~2s)...(l+~,+,s) 
1 

(l+A,s)(l+A,s)...(l+A,+.s) 
(21) 

if there is no pole-zero cancellation in L,(s) * L,(s). (The order test which is similar to 
that discussed in Section II can be used to indicate this.) Note that k17c contributes 
nothing when Jong’s method is used to find (21). The next step is to separate E,(s) 
and t2(s) from t,(s) * I,. From the characteristic of the memoryless nonlinearity 
(see Appendix) and the LNL model, it is easily seen that 

arg CLWJI +a% CL2Li41 + kin = 81, (22) 
1 arg [Lr(joi)] + arg [L2(jloi)] + kp = 8,. (23) 

Subtracting (23) from 1 times (22), we obtain 

arg [L,(jEw,)] - 1 arg [Lz(joi)] + RTC = 61t - 10, (24) 

where R = k, - lk,. Consider the following equation : 

Wl+IC .+?T 

,,Z, tax (1 +&,W>Ci, -t 5, (ax (1 +kW4))~~, 

z 

m+rG #I+#7 

- C (1 arg(l +jBr,oi)}Cr, + C {Earg(l +jAr,wi)}Dr,+Rn = 0r-ler. (25) 
1,=1 12 = 1 
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It is clear that the above equation is formed by (24) and (21) if the rules of selecting 
Cl,, D,, are as follows : 

C,, = 0 if (1 + B,,s) is not in the numerator of E,(s) ; 

C,, = 1 if (1 +B,,s) is in the numerator of z,(s); 

D,, = 0 if (1 + A,,s) is not in the denominator of E,(s); 

and 

D,, = 1 if (1 + A,,s) is in the denominator of L,(s). 

Foroi = 01,02,..., ok, k linear equations can be obtained from (25). Then, CI1, D,, 
and K can be solved in the sense of least squares error if k 3 m+ri+n+fi+ 1. Of 
course, the obtained values of C,, and D,, are only approximations of either 1 or 0. 
Thus z,(s) is obtained, and so is t,(s). 

If the order test indicates that the order of L,(s) * L2(s) is not n + ii, the pole-zero 
cancellation exists in L,(s)-_&(s). The identification method can be achieved by 
considering (24) which meanstthat 

LL”(S) = -Rrc+e,-le, (26) 

where 

(27) 

If there is no pole-zero cancellation in (27), L”(s) can be identified from Jong’s 
method. Let the identified model be denoted by p(s). If there is a factor (1 +xs)/ 
[(l+xls)(l+xZs)...(l+x~s)] in c(s) for x1 %xX2 E ... %x,~x/l, then -l/x is a 
zero of E,(s); if there is a factor [(l + y,s)(l + y,s). . . (1 + yls)]/(l + ys) in 2”(s) for 

!.I 
Z ... Z yI E y/Z, then -l/y is a pole of z,(s). From this rule, all poles and zeros of 

L,(s) can be obtained. If there is pole-zero cancellation in p(s), the order test of L”(s) 
is needed. The procedure is similar to that discussed in Section II, Method II. Once 
z,(s) is found, the phase information of L,(s) can be obtained from (22) as 

arg [L1(jwi)] = 8, -arg &(joi)] - kln (28) 

then L,(s) can be identified from Jong’s method. It is clear that the choice of 1 in (24) is 
that the Zth harmonic is present in the approximated steady-state output response 
(5). If the nonlinearity is symmetric, the even-order harmonics are absent. 

Once the linear systems L,(s) and L2(s) are found, x(t) and z(t) can be estimated as 

i(t) = A It,(jwJl COS [oit + LL1CjWJ] (29) 

and 

Then, the nonlinearity N can be found by comparing i(t) and i(t) graphically. 

Vol. 316, No. 3, pp. 225-239, September 1983 
Printed in Great Britain 231 



Y C. Wu, P. L. Lin and S. C. Lee 

V. Applications 

1. Describing function evaluation 
The describing function is a quasi-linear representation of a nonlinear element 

when the input of the nonlinearity is a sinusoidal function. Since the negative 
reciprocal of the describing function is widely used for the stability analysis of a 
complex control system (15), it is interesting to identify the value of describing 
function instead of finding the actual form of the nonlinearity. From the discussions 
in the previous sections, the waveforms of the input to the nonlinearity and the 
fundamental output of the nonlinearity can be easily determined. Then, the value of 
the describing function can be obtained by comparing the amplitude and phase of 
both the input and the output of the nonlinearity. Varying the input, a different value 
of describing function at different input amplitudes can also be determined. 

2. Identijcation of nonlinear feedback system 
Consider the basic nonlinear feedback control system as shown in Fig. 6. Assume 

that the higher order harmonics generated by the nonlinearity can be significantly 
attenuated by the linear system. If R(t) = A cos qt, and the corresponding output 
C(t) is approximated to ftth harmonic by the followit@ finite Fourier series : 

C(t) = $&IO + 5 (C$ COS Ioit + ~~ sin Iwit). (31) 
I=1 

Then, by dropping the higher order harmonic terms, we have 

e(t) E A cos qt--+xO-aI cos oit--fll sin qt 

1 
= --clo+[(A-~,)2+/I:]1i2 cos 

2 ( 

81 
w,t+tan-‘- 

A-U, > 
. (32) 

Since the fundamental component of the output C(t) is (a: + pf)r/’ cos (wit + O,), 
where 8, = tan-‘( -/Ii/a,), the phase response of G(s) at frequency Oi is 

arg [G(joi)] = 8, -tanP 
A-C?, 

+ klz (33) 

By varying the frequency wi, we obtain a set of phase response data. For the same 
reason discussed in the previous section, we normalize the dc gain K of the linear 
system to unity as follows : 

G’(s) = s%s) = 
l+b,s+...+b,s” 
l+a 

1 
s+...+a sn. 

n 
(34) 

Then, from (33), the phase of G’(jo,) can be determined from the following equation : 

arg [C’ciWi)] = arg [G(jwi)] + iz/2. (35) 

Thus, a set of the phase data of G’(s) can be generated, hence ai and bi can be 
estimated from the Jong’s method (14) if G’(s) is of minimum phase. Let G(s) be the 
identified model of G(s), then the signal edt) can be computed approximately from 
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the same method discussed in the previous section as g(t). Then, the nonlinearity N 
can be identified graphically by comparing e(t) and iN(t) or determined according to 
Section V. 1. 

VI. Numerical Examples 

Example 1 
Consider the NL model as shown in Fig. 1, where the linear model is L(s) = 

(s - l)/[(s + 1) (s + 2)], and the nonlinearity is shown in Fig. 2. If a sinusoidal input of 
amplitude A = 1 is applied, the amplitude and phase of the fundamental component 
at the output of the nonlinearity is 0.6086~ -6.0039”. This means that N,(A) 
= 0.6086 and &(A) = -6.0039”. Hence, the noise corrupted fundamental 
frequency response at w = 0.1,0.2,. . . , 4.0 can be generated from (8) by rounding the 
amplitude ratio (db) and phase angle (degree) to one decimal place. For r = 2, the 
fundamental frequency responses at w = 0.2, 0.4,. . . ,8.0 are also generated from (8) 
in the same way. Then the frequency response of L’(s) defined by (13) can be obtained 
from (12). In order to test the pole-zero cancellation of L’(s), e, defined in (15) is 
computed as 

e3 = 0.00181, 

e, = 0.00183, 

e, = 3.2453. 

Thus, the order of L’(s) is two and p(s) is 

1.0051(1+ 1.9909s)(l- 1.0042s) 

‘(‘) = (1+0.4988s)(l-2.0134s) ’ 

Thus (1 + zrs) can be chosen as (1 + 0.9965s) to retain the form of (13). Finally, we find 

output 

FIG. 2. Nonlinearity of NL model in Example 1. 
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that 

(1- 1.0042s) 

L(s) = (1 + 0.9965s) (1 + 0.4988s)’ 

Since the steady-state response of this system to the input u(t) = sin t is ap- 
proximated by (5) from 60 data points (each data is rounded to three decimal places) 
of a complete cycle as 

y(t) = 0.22937 cos t -0.02309 cos 3t-0.0047 cos 5t+0.00138 cos 7t 

+0.00116 cos 9t+0.14662 sin t+0.03023 sin 3t+0.00157 sin 5t 

+ 0.00054 sin 7t + 0.00085 sin 9t 

and i(t) is obtained from (16), the nonlinearity N can be found graphically as shown 
in Fig. 3. If the nonlinearity R is in cascade with a gain factor - 2.0, it is close to the 
nonlinearity shown in Fig. 2. 

Example 2 
Consider the LNL model shown in Fig. 1, where Ll(s) = l/(s + l), L,(s) = l/(s + 2) 

and the nonlinearity is shown in Fig. 4. The noise corrupted phase information are 
shown in Table I by retaining the three significant digits of the actual values. 

FIG. 3. Determination of the nonlinearity i? in Example 1. 
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output 

Input 

t -0.5 

FIG. 4. Dead-space nonlinearity. 

From the method discussed in Section IV, we obtain 

A A 1 

L1(s)‘Lz(s) = (1+0.9971s)(1+0.5026s)’ 

From (25), we obtain the following equations for A, = 0.9971, A, = 0.5026 and 
1=3: 

- 30.890, - 16.780, + 33.830, + 17.220, + 180R = 0.4, 

-50.110,-31.10D,+65.23D,+34.10D,+180~ = 2.9, 

-60.870, -42.140, +92.670, +50.340, + 18OR = 8.1, 

-67.320, - 50.340, + 115.70, +65.710, + 180R = 15.5, 

- 71.520, - 56.450, + 134.80, + 80.050, + 180K = 23.8. 

The least squares solution of above linear equations are D, = -0.00067, 

D, = 1.0036 and K = 0.000018. So, from what we discussed, it is easily seen that 

1 

IJAs) = (1+0.9971s)’ 

1 

&(‘) = (1 + 0.5026s)’ 

Since the steady-state response of this system to the input u(t) = cos t is ap- 
proximated by (5) from 60 data points (each data is rounded to three decimal places) 

TABLE I 

The phase information in Example 2 

0.2 - 17.0” - 50.6” 
0.4 -33.1” - 96.4” 
0.6 - 47.7” - 135” 
0.8 - 60.5” - 166” 
1.0 -71.6” - 191” 
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of a complete cycle as 

j(t) = 0.0644 cos t-0.0204 cos 3t-0.0026 cos 5t +0.0019 cos 7t 

+ 0.1934 sin t - 0.0040 sin 3t + 0.0060 sin 5t + 0.0011 sin 7t 

the signal k(t) and <(t) can be found from (29) and (30). Then the nonlinearity fi can 
be determined by comparing Z(t) and i(t) as shown in Fig. 5. The determined 
nonlinearity is nearly the same as the nonlinearity shown in Fig. 4 except the gain 
factor 2. 

Example 3 
Consider the ideal relay control system as shown in Fig. 6 where G(s) = l/( 1 + s)s, 

and 

which has the jump characteristic. If R,(t) = cos t and R,(t) = cos 2t, the steady- 
state responses of C,(t) and C,(t), respectively, can be approximated as 

C,(t) = -0.0667 cos t-0.8978 sin t-0.0346 cos 3t-0.0284 sin 3t+ ..., 

c,(t) = -0.2364 cos 2t+0.1587 sin 2t+0.0099 cos 6t-0.0061 sin 6t+... 

from 60 data points (each data is rounded to three decimal places for the noise 
corrupted measurement) of a complete cycle. Then, the corresponding error signals 

FIG. 5. Determination of the nonlinearity 8 in Example 2. 
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N 
G(s) 

e$t) K(l+b,s+.---+b,,,sm) C(t) 

(l+a,s+....+ansn)s’ 

FIG. 6. Nonlinear feedback control system. 

eI(t) z 1.3942 cos (t + 0.6996), 

ez(t) x 1.2465 cos (2t +0.1277). 

From what we discussed in Section V.2, G(s) can be identified as 

1 

G(s) = (1 + 0.9886~)s * 

Then, the values of the describing function of fc) can be estimated as 0.9079 for the 
input amplitude 1.3942 (the actual value is 0.9132) and 1.0121 for the input 
amplitude 1.2465 (the actual value is 1.0215). 

VZZ. Conclusion 

The identification of a complex system is easily accomplished by using the input 
and output data. Special forms of the nonlinear systems (LNL, NL and LN model) 
are used to identify the coupling system from the steady-state response. In contrast 
to previous work which has assumed that the nonlinearity in the system is single- 
valued, the methods described in this paper for the identification of a nonlinear 
system are applicable to multiple-valued nonlinearities. The methods developed for 
LN and NL models are applicable for systems with memory-type nonlinearity, and a 
method developed for the LNL model is applicable with a memoryless nonlinearity, 
but may exhibit jump phenomena. It is well known that the values of a describing 
function can be used to estimate the limit-cycle of a complex feedback system. If the 
components of this system are of the LNL, LN, or NL form, the methods discussed in 
this paper can be used to estimate the values of a describing function of modified 
nonlinearity by identifying the components individually without the need to find the 
nonlinearity itself. The development of this paper is essentially based on the 
deterministic data. Little attention is given to the noise corrupted measurements and 
their minimization. 
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Appendix 

If the input of a memoryless nonlinearity is 

I(t) = A, + A, cos (ot + 0) 

and the memoryless nonlinearityf(*) can be expressed by 

fCr(t)l = f vii’(t), 
i=O 

the output of the nonlinearity is 

0(r) = fCW)l 

= j-CAD + A, cos (wt + e)] 

=i~oVi[A,+A, COS(Ut+@]’ 

= iEo Vi[A,+ A, COS (CM)]’ 

(AlI 

642) 

(A3) 
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where z = t + I~/UI. It is clear that O(a) is an even periodic function in z with a period 2rt/w. 
Hence it can be expressed in terms of Fourier series as 

O(t) = 5 vf cos(iw7). (A4) 
i=O 

Substitution of ‘r = t f 9/w into (A4) yields 

O(t) = f vi cos (iwt + 8). 
i=O 

(A5) 

Thus, the fundamental component of O(t), vi cos (at+ 0), differs in phase from I(t) by k,n, 
k, = 0, + 1. And a phase i0+ kin in the ith order harmonics, ki = 0, f 1. 
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