第四章 研究方法

4.1 雷射雕刻技術

本研究使用雷晟科技股份有限公司所組裝之機台『ILS-III 智慧 型雷射切割、雕刻系統』,該系統具有高加速與高速度的特性,可以 在更短的加工時間內,完成相同的工作,並配備新型氣冷式二氧化碳 雷射,體積小穩定性高。

由於雷射光點的寬度為 0.07mm,故其最小可雕刻寬度為 0.07mm。至於在深度方面,本研究同時對此機台做雕刻深度上的檢測,如圖 4.1,減量線依功率與速度的不同,大致呈現一關係變化, 且在相同功率、速度情形下,每一次雕刻的深度均相差 0.01mm 之內。 4.2 試驗裝置

本試驗裝置架構共有微模型、試驗液體、壓力控制系統、CCD、 XY 平台等,以下分別敘述:

1896

4.2.1 微模型

本研究的微模型主要以塑膠為應用材質,在此先簡介塑膠的基本 特性,俾使能更瞭解為何本研究選用塑膠類為主要應用材料。

聚合物(polymer),又稱為高分子或巨分子(Macromolecules),也 是一般所俗稱的『塑膠』(Plastics)或樹脂(Resin)。所謂塑膠,其實它 是『合成樹脂』中的一種,形狀跟天然樹脂中的『松樹脂』相似,但 因又經過化學的力量來合成,而被稱之為塑膠。

根據美國材料試驗協會所下的定義, 塑膠乃是一種以高分子量有 機物質為主要成分的材料, 它在加工完成時呈現固態形狀, 在製造以 及加工過程中, 可以藉『流動』(Flow)來造型.因此經由此說明我們可 以得到以下幾項了解:

1. 它是高分子有機化合物

- 2. 它可以多種型態存在例如液體固體膠體溶液等
- 3. 它可以成形(Moldable)
- 4. 種類繁多因為不同的單體組成所以造成不同之塑膠
- 5. 用途廣泛產品呈現多樣化
- 6. 具有不同的性質
- 7. 可以用不同的加工方法(Processing method)

聚合物是由許多較小而結構簡單的小分子(Monomer),藉共價鍵 來組合而成的。聚合物的種類繁多,一般若是以對熱之變化來分類, 它可以分為兩大類:

- 熱固性塑膠(Thermoset plastics):指的是加熱後,會使分子構造結合成網狀型態。一但結合成網狀聚合體,即使再加熱也不會軟化, 顯示出所謂的[非可逆變化],是分子構造發生變化(化學變化)所 致。
- 2. 熱塑性塑膠(Thermo plastics):指加熱後會熔化,可流動至模具冷卻 後成型,再加熱後又會熔化的塑膠;即可運用加熱及冷卻,使其 產生[可逆變化](液態←→固態),是所謂的物理變化。

本研究應用雷射加工技術將微模型雕刻在壓克力板(聚甲基丙烯 酸甲酯,PMMA)上。壓克力塑膠其化學結構式如圖 4.2 所示,特性為 非晶體聚合物,92%光線穿透率,熱變性溫度介於 74 ~102 間,而 其應用優點在於 1.高光學透明性 2.耐候性佳 3.剛性佳 4.易染色,但其 缺點在於 1.耐化性差 2.長期使用溫度最高 93 3.應力集中處,較易 碎化,主要用途在燈罩、窗玻璃、標示牌、光學透鏡、硬式隱形眼鏡、 汽車零件等。

而選擇壓克力為主要應用的材質,其主要原因在於第一,壓克力

塑膠為熱塑型塑膠,加工容易,透光性好,容易成型,符合本研究可透視微模型的要求,第二,壓克力塑膠也為雷射雕刻機應用良好的材質。但是在觀察接觸角時卻發現,水的接觸角約110度,而柴油則是約80度,兩者均介於中性流體,這是與前人研究的玻璃及現場的土壤最大不同處。因此,本實驗在壓克力表面加以處理,改變水及NAPL 在壓克力表面的接觸角,以順利進行實驗。處理情形,將於4.3節詳細介紹。

本研究所使用之微模型如圖 4.3(a)~4.3(d)所示,圖 4.3(a)為接觸 角實驗所使用之微模型,圖 4.3(b)~4.3(d)為基本機制實驗所使用之 微模型 ,其中較大的正方形即為孔隙(Pore),而較小的長方形為通道 (Throat), 孔隙與孔隙中心點相距 2.2mm。微模型的通道寬度列於表 4.1(a), 4.1(b), 4.1(c), 4.1(d)。基本機制實驗中的單一寬度的孔與5 種寬度頸管網絡模型的實驗與五種寬度的孔與 5 種寬度頸管網絡模 型的實驗所使用之微模型,其每一個孔隙及通道寬度的決定均由 AUTOCAD 的 Visual Basic for Application (VBA)所均匀隨機產生,同 時可計算各種寬度的孔隙與通道的個數,及所佔的比率等,如表 4.2(c)~4.2(d)。最後並可計算其涵蓋的總面積為 1.02 cm²,其中孔隙所 佔的面積分別為:單一寬度的孔與5種寬度頸管的實驗:約0.57 cm², 孔隙率約 0.56; 五種寬度的孔與 5 種寬度頸管的實驗:約 0.44 cm², 孔 隙率約 0.43。單一寬度通道網絡模型實驗的圖形乃由 CorelDraw 所繪 成,寬度皆為 0.4mm 之通路:總面積為 1.08 cm²,孔隙所佔面積約 0.38 cm², 孔隙率約 0.35。深度方面孔隙與通道相同, 其深度約為 0.8mm •

通道 (Throat)
1.28
0.88
0.46
0.34
0.2

表 4.1(a)接觸角實驗通道寬度表 1 (單位:mm)

表 4.1(b) 單一寬度通道網絡模型之孔隙與通道寬度表 2 (單位:mm)

孔隙 (Pore)	通道 (Throat)	柵欄(Barrier)
0.4	0.4	0.1

表 4.1(c) 單一寬度的孔與 5 種寬度頸管網絡模型之孔隙與通道寬度表 3 (單位:

mm)						
孔隙 (Pore)	通道 (Throat)	柵欄(Barrier)				
1.28	0.34	01				
	0.38					
	0.42					
	0.46					
	0.5					

表 4.1(d) 五種寬度的孔與 5 種寬度頸管網絡模型之孔隙與通道寬度表 4 (單位:

mm)					
孔隙(Pore)	通道 (Throat)	柵欄(Barrier)			
0.6	0.34	0.1			
0.72	0.38				
0.88	0.42				
1.14	0.46				
1.28	0.5				

mm)

	寬度	個數
	1.28	10
通道	0.88	10
	0.46	10
	0.34	10
	0.2	10

表 4.2(a) 接觸角實驗各種寬度之孔隙、通道的個數

表 4.2(b) 單一通道網絡模型各種寬度之孔隙、通道的個數及面積

	寬度	個數	面積	所佔比例
孔隙	0.40	25.00	0.04	0.037
通道	0.40	50.00	0.34	0.310
合計		75.00	0.38	0.347

表 4.2(c) 單一寬度的孔與 5 種寬度頸管網絡模型之各種寬度之孔隙、通道的個

A ALLING					
	寬度	個數	面積	所佔比例	
孔隙	1.28	25.00	40.96	0.403	
	0.34	10.00	2.50	0.025	
	0.38	7.00	2.45	0.024	
通道	0.42	8.00	2.70	0.027	
	0.46	6.00	2.96	0.029	
	0.50	9.00	5.06	0.050	
合計		65.00	56.64	0.557	

數及面積

秋八 四小	數	及	面	積
-------	---	---	---	---

	寬度	個數	面積	所佔比例
	0.60	3.00	1.08	0.011
	0.72	6.00	3.47	0.034
孔隙	0.88	6.00	4.65	0.046
	1.14	4.00	5.20	0.051
	1.28	6.00	9.83	0.097
	0.34	10.00	2.39	0.023
	0.38	4.00	2.29	0.022
通道	0.42	7.00	6.64	0.065
	0.46	12.00	3.51	0.035
	0.50	7.00	5.07	0.050
合計		65.00	44.12	0.434

同時本研究也在微模型兩側加刻一深度較孔隙深的槽,以便讓液 體在進入微模型前,能先均勻充滿儲存槽後,再均勻的流入微模型 中,不同的流體擁有其個別之儲存槽,如圖 4.3(a)~4.3(d)所示。此外, 此儲存槽的寬度及深度亦大到足以忽略毛細效應,這裡所提到的毛細 效應指的是毛細壓力對微模型的影響。

介於微模型與儲存槽之間的是柵欄(Barriers),柵欄主要目的在防 止非濕潤相液體進入濕潤相液體的儲存槽內,混淆其他液體的顏色。 而柵欄寬度的設計則是由進入壓大小來控制,由於進入壓與孔隙寬度 成反比,越窄的柵欄其進入壓越大,抵擋非濕潤相液體的能力越好。 因此,窄的柵欄設計在濕潤相的儲存槽旁,以抵擋非濕潤相液體的進 入,而非濕潤相儲存槽則以較寬的通道連接至微模型孔隙。柵欄寬度 值同樣列於表 4.1(b)~4.1(d)。

微模型刻在一塊2公分厚,大小約5公分見方的壓克力塊上,且

微模型組合方式如圖 4.5 所示,為一刻有微模型的壓克力塊,與一壓 克力平板,外面再以兩壓克力厚塊以螺絲均勻鎖緊,不過由於壓克力 材料的關係,市面上壓克力均有厚薄不均的缺點,最厚的地方與最薄 的地方可差距到 0.5mm 之多,這對於微模型的密合,有著很大的影 響。且若是以磨床加以磨平,使其厚薄差距至 0.1mm,但在實際組合 微模型並進行實驗時可發現水仍可由未刻的部分流動。

因此本研究在本來未刻的部分,多雕刻一凹槽如圖 4.6 所示,黑 色部分為雕刻部分,白色部分為未雕刻部分。凹槽的意義有二:第一, 未雕刻部分 (寬度約 0.25mm) 可區隔凹槽與孔隙通道,並使得凹槽 可儲存空氣。第二,凹槽相對於未雕刻部分與薄板所形成之細縫而言 空間較大,因此雖然細縫中仍有濕潤相 (水或柴油,端看實驗而定) 存在,但凹槽的非濕潤相空氣較難取代細縫中之濕潤相,因此便形成 空氣被侷限在凹槽內,同時濕潤相也不能進入凹槽,故濕潤相僅能循 設計之孔隙與通道流動。經實驗證明,此方法效果不錯,如圖 5.4.6-2 所示。

4.2.2 試驗液體

在接觸角實驗中,選取之試驗液體,有機液體方面本研究選用 屬於 LNAPL 的柴油。柴油與汽油均為機動車輛的燃料油,代表加油 站地下儲存槽主要的儲存液體,是土壤與地下水污染的主要來源。且 柴油的揮發性較低,壓力較易控制。本實驗將去離子水及有機物溶劑 分別以藍色及紅色染劑加以染色,控制其濃度為 0.05%。此濃度以影 響試驗液體之物理特性最小,又可清楚分辨出兩種度同的液體為原 則。因此實驗中所觀察的藍色液體為水,紅色液體為有機溶液。考 慮到所加染料對試驗液體表面張力的影響,特別將染色後的試驗液

體,送至工研院化工所分析(圖 4.7),試驗液體之性質列於表 4.3 中, 並列出一些其他液體的性質以提供比較。在基本機制實驗中,所選 擇的流體對為水與空氣,水亦是以藍色染劑加以染色,濃度亦控制 在 0.05%。

試驗液體	化學式	密度(^g / _{cm³}) (24 下)	表面張力(與空 氣介面張力) (dynes/cm)	與水介面張力 (dynes/cm)
水(染色後)	H_2O	0.997	71.5	
汽油		0.770	21.0	51.7
柴油		0.820	22.8	48.7
三氯乙烯	C ₂ HCl ₃	1.441	29.3	43.4
四氯乙烯	C_2Cl_4	1.6313	32.86	44.4
四氯乙烷	$C_2H_2Cl_4$	1.600	32.75	38.75

表 4.3 試驗液體之重要性質

4.2.3 壓力控制系統

本研究在接觸角實驗與理論機制實驗之配置示意圖如圖 4.8,共 分兩部分,一是微模型,另一部份則是壓力控制部分,而壓力控制部 分主要可以分為兩種,一種是水與有機液體的壓力控制,如圖 4.9。 壓力控制部分主要在於不希望因為進入微模型的液體多寡而影響液 面高程,導致壓力改變,故本研究選用大口徑的玻璃罐,讓其進入孔 隙的液體所導致玻璃罐內液面高度下降,所影響的壓力變化減至最 小。第二種是空氣的壓力控制,由於本實驗所需的壓力水頭為 20~25 公分之間,且每個階段壓力水頭差距為2釐米,因此本研究採用連通 管原理用水壓迫空氣進入微模型中,而空氣的進入壓可藉由水壓控 制。採用此方法的主要原因在於可精確地控制空氣壓力,而且差壓的 控制可以經由液壓的上升或下降充分獲得控制,如圖 4.10。

連接壓力控制系統與微模型之間的是 TYGON 管,內徑 4mm, 外徑 6mm, TYGON 管的優點在於外觀透明,且在數天內不會因為非 水相液體(NAPL)而變質變形。管子經由一不鏽鋼接頭連接至微模 型板,確保其液體、氣體能順利流至微模型,並且不外漏。

4.2.4 CCD 攝影機

本研究採用泰洛科技(Nowa Co., Ltd.)所代理的數位CCD影像系統,內部包含一CCD照相機,及一數位影像擷取卡。此系統的優點在由CCD到影像擷取卡都是以數位訊號傳遞,而非像以前的影像處理方式,以前的影像處理是CCD照相機以類比訊號傳至影像擷取卡後,擷取卡再將類比訊號轉成數位影像,而在轉置過程中會導致訊號能量的損失,造成照片失真等情形。

而本研究所採用的數位CCD影像系統則是在CCD照相機時即以 數位訊號取得影像,並將它分別以紅色、綠色、藍色及同步訊號等四 個訊號分別傳輸,未經由任何的影像訊號的處理與轉置,更未造成訊 號能量的損耗,這一點對於影像分析處理上至為重要。

該數位 CCD 影像系統最快能以每秒 25 張的速度連拍,對於觀察 微模型內的變化顯已足夠。該系統另配備顯微鏡頭及廣角鏡頭,顯微 鏡頭的觀察範圍為 0.8mm ×0.8mm,可充分觀察到微模型單一孔隙內 的變化,廣角鏡頭的觀察範圍則是 4cm ×4cm~32 cm ×32 cm,主要

在觀察微模型整體的變化情形。

4.2.5 XY 平台

而本研究將上述的 CCD 影像系統置於一 XY 平台上,該平台能使 CCD 照相機能在平面上任意移動,並附有減速馬達,能以不同速度移動。平台也附有 Z 軸方向移動功能,可供 CCD 照相機調整焦距之用。

4.3 矽酸鈉特性及使用前後之比較

本研究選用壓克力為實驗的材料,其優點已在前面章節敘述。然 而,在實驗的過程中,我們卻發現的一個嚴重的缺失。在壓克力的表 面,NAPL 對壓克力的附著力遠大於水對壓克力的附著力,也就是說 NAPL 在壓克力表面是濕潤相,水反而是非濕潤相。

於是我們尋求一種黏著劑,可以很薄、而且均匀的塗在壓克力表面,改變水在壓克力表面的附著力,以順利進行實驗。矽酸鈉(水玻璃)是我們後來找到一個簡單好用的材料。

4.3.1 矽酸鈉的特性

矽酸鈉(SiO₂•nNa₂O•xH₂O,n=2~4)是一種可溶性矽酸鹽類,俗 稱水玻璃,一般用途是做為黏著劑。通常為透明黏稠狀的液體物質。 當它脫水而成為玻璃態時,原本是可溶性的物質卻可以抗水的侵蝕, 但若長期浸泡於水中也會崩壞。一般矽酸鈉的作法,是由純化過的矽 砂與蘇打灰或硫酸鈉一同熔融(黏著劑全書)。

本實驗在刻好的壓克力表面,以稀釋過的矽酸鈉溶液均勻塗抹, 然後置入約 70 烤箱中烘乾一天,盡量將表面的矽酸鈉含水量減至 最低。經過實驗證明,此時壓克力表面的矽酸鈉可浸水五日而不崩

壞。而本研究實驗過程中,所需時間最長也不超過四日,所以矽酸鈉抗水侵蝕的程度可以符合本實驗的需求。

4.3.2 矽酸鈉使用前後之比較

另外,為證明矽酸鈉確實可以改變水在壓克力表面的濕潤度,我 們做了A、B兩組測試的實驗,並利用 CCD 放大鏡頭拍攝其接觸角 情況。A 組表面不塗任何黏著劑,B 組則在表面均勻塗抹一層矽酸鈉, 同樣在水先飽和的情況下,讓有機液體從另一邊入侵。

從圖 4.11~4.12 中可發現,在未塗矽酸鈉之前,藍色部分的水呈 現非濕潤的現象,紅色部分的有機液體則呈現濕潤的現象,附著於壓 克力的表面。圖 4.13 為矽酸鈉使用後的情形,紅色有機液體從右方 入侵,從有機液體與壓克力的接觸角可以定性地判斷其為非濕潤相, 而藍色的水則為濕潤相。圖 4.14 則為油珠被包圍在孔隙中的情形。

由A、B兩組測試的實驗中,我們可以確定矽酸鈉確實發揮了作用,改變了水與有機液體在壓克力表面的濕潤性,使本研究可以順利進行下去。

4.4 實驗程序

進行本實驗,分成三個階段進行,分別為

- 1. 事前準備
- 2. 實驗過程
- 3. 影像分析

4.4.1 接觸角實驗程序

1. 事前準備

(1)準備好一組微模型板及壓克力薄片,均勻塗抹矽酸鈉並烘乾,確定其矽酸鈉已有足夠的耐水性,此步驟約需兩至三日時間。

(2)先開啟燈箱,等待約一小時,使光源穩定,以確保在實驗過 程中,所拍攝到的影像是在同一亮度情況下所取得。

(3)開啟燈箱抽風設備及空調系統,確保試驗中環境維持約24的恆溫狀態。

(4)將試驗之液體加以染色,水為藍色,柴油為紅色,濃度約為0.05%。

(5)校正燈箱上的透明壓克力版,使實驗維持在水平的狀態下進行。

2. 實驗過程

本實驗分別有水-空氣,空氣-水,水-柴油,柴油-水,空氣-柴油, 柴油-空氣,在'-'號之前者為先進入微模型之流體,其中,水皆為濕 潤相,空氣皆為非濕潤相,柴油則視其配對之流體而決定。以下先以 水為濕潤相的情況下為例,詳述實驗步驟:

(1)將微模型組合(包含微模型板及壓克力薄片)並均勻壓緊, 並以 TYGON 管連接各壓力控制系統與微模型。

(2)將二氧化碳灌入微模型板中,趕走內部空氣,再將水灌入微模型板中,放置1小時,以溶解二氧化碳達到飽和。等到氣泡 完全消失後,再讓水繼續流動約10分鐘,以取代為模型中溶 有二氧化碳的水體。

(3)在排退(Drainage)部分,因為每一組流體對介面張力不同, 可調整的壓力範圍也不同,所以每次下降 0.1~0.4cm 壓力水

頭,等待平衡後,再次下降。本研究採用降低水相的壓力水頭 以吸引非濕潤相的流體進入微模型板中,同時 CCD 以每 300 秒一張的速度記錄微模型內變化的情形,若 30 分鐘內,所拍 下的照片均不變,則視為平衡,此時再將廣角鏡頭換成單眼鏡 頭,並針對每一頸管拍照紀錄。最後,當非潤濕相突破 0.2mm 的頸管時,排退階段結束。

(4)而汲取(Imbibition)部分,每次上升 0.1~0.4cm 壓力水頭,等 待平衡後,再次上升。直到水進入非濕潤相的儲存槽為止。同 理本研究採用逐漸升高水相的壓力水頭以排退非濕潤相。CCD 取像情形及平衡判斷同排退步驟所述。

氣相與油相的試驗與上述略有不同,其主要原因在於油的飽和並 不能像水一樣,可以溶解二氧化碳來飽和。在這裡,本研究先以已醇 取代空氣,由於已醇的表面張力與水類似,可以把大部分的空氣趕 走,填滿整個孔隙後,再利用醇類與油類有著高互溶的特性,一方面 趕走已醇,另一方面溶解趕不走而殘留的已醇,持續沖洗10分鐘後, 內部孔隙已完全充滿油類,實驗證明,其成效顯著。

3 影像分析

其實數位影像可以把它想像成一個影像 f(x, y), 在空間座標上及 亮度上予以數位化。也就是說,我們可以把一張數位影像轉換成一個 矩陣,行與列代表那一點在影像中的位置,而相對應的矩陣中的值就 代表那點的明亮度。如此數位矩陣中的元素稱為像素 (Image element, pixels) 或像元 (Picture elements)。

所以我們可以將數位影像這樣表示,數位影像是指一個二維的明 暗度(light intensity)函數 *f*(*x*, *y*),這裡的 X,Y 表示空間上的座標,*f*()

在任何一點(*x*, *y*)上的值正比於影像上那點的明亮度(Brightness or gray level)。

而本研究利用數位影像取像的目的在於可以從實驗中取得大量 且具有相同高品質的影像,而數位影像分析(Digital image analysis,DIA)則是可以由大量的影像資料中,經由數位化作業能夠 充分的獲得掌握及分辨不同之處。另外數位影像分析也可以獲得其他 方式所沒辦法得到的逼真資料。所以,本研究利用數位影像分析去計 算飽和度,去找出每一實驗階段的液體分佈情形。

本研究使用泰洛科技所提供的 CCD 攝影機,它可以在每一張影像上 提供 640 ×480 像素 (Pixels) 的解析度。而擁有越多像素的攝影系統, 當然對相同的面積而言有更高的解析度。對被拍攝的物件而言,用越 多像素去表現它,它的邊緣將更銳利 (Sharp),線條更柔和,色彩更 豔麗。舉例來說,對微模型而言,若是以 128 ×128 像素拍攝,則每 一個孔隙最多僅能分配約 10 個像素,而若是以 640 ×480 像素取像, 則較大的孔隙可分到約 225 個像素,較小的 PORE 也約有 64 個像素, 而擁有越多像素來表示微模型孔隙內液體的分佈情形,自然也能夠表 現的越清楚。

3.影像分析

將所拍得的各頸管圖片以 Autocad 進行接觸角的量測,步驟如下:

(1)將圖片以原圖大小複製至 Autocad 上,並訂出流體與管壁 之邊界,如圖 4.15 所示。

(2)判斷兩種流體與管壁交會的點,並以該點為原點,利用 Autocad 三點可決定一個弧之功能,沿其流體交界面作出一

弧,並決定該弧的圓心,由於接觸角是與壁面相關,且接近 壁面所繪得的弧不會與整個流體介面的曲率一致,所以此弧 的求法是越接近壁面越好,如圖 4.16 所示。

(3)將該弧圓心與原點連線畫出半徑,並作一與半徑垂直之直線,再將此直線平移至原點,此時該直線會與邊界相交, 其夾角即為接觸角,如圖 4.17-1~4.17-2 所示。

(4)六組流體對的接觸角實驗中,與空氣相關的流體對會在壁面 產生一明顯的交界,因為空氣為最不潤濕相,所以管壁會有 一層明顯的薄膜覆蓋著,此時本研究的做法乃將邊界移至該 薄膜上,並繼續進行步驟2與3,求出接觸角,如圖

4.18-1~4.18 2 所示。

4.4.2 兩相間取代機制實驗程序

1、事前準備

(1)準備好一組微模型板及壓克力薄片,均勻塗抹矽酸鈉並烘乾,確定其矽酸鈉已有足夠的耐水性,此步驟約需兩至三日時間。

(2)先開啟燈箱,等待約一小時,使光源穩定,以確保在實驗過 程中,所拍攝到的影像是在同一亮度情況下所取得。

(3)開啟燈箱抽風設備及空調系統,確保試驗中環境維持約24的恆溫狀態。

(4)將試驗之液體加以染色,水為藍色,濃度約為0.05%。

(5)校正燈箱上的透明壓克力版,使實驗維持在水平的狀態下進 行。

2、實驗過程

本實驗所採用流體對為水-空氣,其中,水皆為濕潤相,空氣皆為非濕潤相。以下詳述實驗步驟:

(1)將微模型組合(包含微模型板及壓克力薄片)並均勻壓緊, 並以 TYGON 管連接各壓力控制系統與微模型。

(2)將二氧化碳灌入微模型板中,趕走內部空氣,再將水灌入微模型板中,放置1小時,以溶解二氧化碳達到飽和。等到氣泡 完全消失後,再讓水繼續流動約10分鐘,以取代為模型中溶 有二氧化碳的水體。

(3)在排退(Drainage)部分,每次下降 0.2cm 壓力水頭,等待平 衡後,再次下降。本研究採用降低水相的壓力水頭以吸引非濕 潤相的流體進入微模型板中,同時實驗初始階段 CCD 以每 5 秒一張的速度記錄微模型內變化的情形,待 10 分鐘後,CCD 以每 1 分鐘一張的速度記錄,若 30 分鐘內,所拍下的照片均 不變,則視為平衡。最後,當非潤濕相壓力接近柵欄的進入壓 且微模型內的水很少時,排退階段結束。

(4)在排退階段結束後,非潤濕相幾乎佔領了微模型內的通路,此時在不影響飽和度的前提下,輕輕彈連接壓力控制系統與微模型之間的 TYGON 管,使得適量非潤濕相進入潤濕相儲存槽,如此便可在進行汲取階段時,使潤濕相以角隅流的方式進入微模型中。

(5)汲取(Imbibition)部分,每次上升 0.2cm 壓力水頭,等待平衡後,再次上升,直到水進入非濕潤相的儲存槽為止。同理本研究採用逐漸升高水相的壓力水頭以排退非濕潤相。CCD 取像情形及平衡判斷同排退步驟所述。

3、影像分析

在電腦上螢幕所統一制定的顯色方式之一就是RGB模式,所有顏 色都可以從紅藍綠三色中組合產生,而每種顏色份量都被定為 0-255 之間,所組成的顏色就有 256x256x256=16⁶之多。此外利用 PHOTOSHOP可針對每一個像素取得它的RGB值,故本研究利用 PHOTOSHOP對基本機制實驗影像作影像分析。

以下分别敘述影像分析的步驟:

(1)當實驗剛開始,微模型內充滿濕潤相液體時,先拍攝一張 當作基準。

(2)利用 PHOTOSHOP 尋找濕潤相的液體在影像上所呈現的 RGB 值範圍,並儲存其顏色範圍,當作以後選取顏色的標準。
(3)記錄上一個步驟所選取的範圍,並加以儲存,以當作之後 選取的範圍。避免每次選取範圍的不同,造成誤差,此時所 選取範圍的總像素數(Total Pixels),亦為計算飽和度時位於分 母項的總體積。

(4)接下來每一階段的實驗影像,皆在第三步驟的所記錄的範 圍內,利用第二步驟所記錄的顏色標準來進行選取,並記錄 其選取的總像素數,除以第三步驟的總像素,即為此階段的 飽和度。

(5)最後,利用每一階段的飽和度與壓力,即可繪出保持曲線。

圖 4.1 雷射雕刻機深度檢量

圖 4.2 壓克力化學結構式

圖 4.3(a) 接觸角實驗微模型示意圖

圖4.3(b)單一寬度通道網絡模型實驗微模型示意圖

圖 4.3(c)單一寬度的孔與 5 種寬度頸管網絡模型實驗微模型示意圖

圖 4.3(d) 5 種寬度的孔與 5 種寬度的頸管實驗微模型示意圖

圖 4.5 組裝完成之微模型示意圖

Address:321 Kuang Fu Road, Section 2,Hsinchu, Taiwan, Technical Marketing Dept. Tel: 886-03-5732037-9 Fax: 886-03-5732352

\wedge	Analysis/I	est Report	
Applicant : Civil eng	ineering department in N	N.C.T.U Applicatio	on No. : D9113108
Co-Applicant : Sampler : Name of Article : dy Date Applied : 2002	ed water 03/20 Date Executed : 20	Letter No. Total Page 002/03/21 Date Issue	es:_1_This Page:_1_ ed:2002/04/10
Notes : 1. This report rel references, bu 2. To reproduce 3. Confirmation	ates only to the items tested, it not for advertising publicit , copy and/or counterfeit fl t of this report is welcome,	and the content of this rep y or other commercial pur his report shall be prohib	port is for pose. iited.
Item(s)	Method(s)	Result(s)	Remark(s)
Surface Tension (Platinum ring) Underneath blank	KRÜSS Tensiometer Underneath blank	71.5mN/m Underneath blank	Temp. : 24°C Underneath blank
<u>Union Chemical Laborato</u> Industrial Technology Res	ries earch Institute 建成型 能	学时间 Officer:	- Chang 2002. 4. 17

圖 4.7 工研院分析表面張力資料

圖 4.9 壓力控制系統示意圖

圖 4.13 矽酸鈉使用後(1)

圖 4.14 矽酸鈉使用後(2)

圖 4.15 訂出流體與管壁交界

圖 4.16 決定流體界面與管壁交會點並繪出交會點延流體界面之弧及其圓心

圖 4.17-2 將垂直半徑之直線平移至邊界並會出接觸角

圖 4.18-1 水-空氣流體對之接觸角

圖 4.18-2 油-空氣流體對之接觸角