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Abstract 

This paper is a study of the hamiltonicity of proper interval graphs with applications to the 
guard problem in spiral polygons. We prove that proper interval graphs with ~> 2 vertices have 
hamiltonian paths, those with ~>3 vertices have hamiltonian cycles, and those with />4 vertices 
are hamiltonian-connected if and only if they are, respectively, 1-, 2-, or 3-connected. We also 
study the guard problem in spiral polygons by connecting the class of nontrivial connected proper 
interval graphs with the class of stick-intersection graphs of spiral polygons. 

Keywords." Proper interval graph; Hamiltonian path (cycle); Hamiltonian-connected; Guard; 
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I. Introduction 

The main purpose o f  this paper is to study the hamiltonicity o f  proper interval graphs 

with applications to the guard problem in spiral polygons. Our terminology and graph 

notation are standard, see [2], except as indicated. 

The intersection graph of  a family ~ of  nonempty sets is derived by representing 

each set in ~ with a vertex and connecting two vertices with an edge if and only 

if their corresponding sets intersect. An interval graph is the intersection graph G of  

a family J o f  intervals on a real line. J is usually called the interval model for G. 

A proper interval graph is an interval graph with an interval model ~¢ such that no 

interval in J properly contains another. Proper interval graphs are also referred to in 
the literature as unit interval graphs, indifference graphs, and time graphs. 

Bertossi [1] proved that a proper interval graph has a hamiltonian path if and only if 

it is connected. He also gave a condition under which a proper interval graph will have 
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a hamiltonian cycle. Using this, he proposed an algorithm for finding the hamiltonian 
cycle of a proper interval graph. 

In Section 2, we derive alternative conditions under which a proper interval graph 
will have a hamiltonian path, have a hamiltonian cycle, and be hamiltonian-connected. 
Algorithmic results follow easily from these conditions. Recall that a graph is 
hamiltonian-connected if  there is a hamiltonian path between any two distinct 
vertices. 

A polygon P is simple if no pair of nonconsecutive edges share a point. All polygons 
discussed in this paper are assumed to be simple. A vertex v of P is convex (concave) 
if its interior angle is less than (greater than) 180 °. A convex (concave) chain of P is 
a sequence of consecutive convex (concave) vertices. P is a spiral polygon if it has 
exactly one concave subchain, see Fig. 1 for an example. 

A point p in a polygon P is said to see or cover another point q if the line segment 
p~ does not intersect the exterior of P. For example, in Fig. 1, wl, ul, and p can 
see each other, but wl cannot see w4. A set of points (vertices) that cover the interior 
and the boundary of P are called point (vertex) guards. Vertex guards are also point 
guards, but the converse is not true. Note that two point guards {p,q} are sufficient 
to cover the polygon P in Fig. 1 but three vertex guards are necessary to cover P. For 
surveys of the guard problem, refer to [12, 14]. 

The visibility graph G of a polygon P is the graph whose vertices correspond to 
the vertices of P, and two vertices of G are adjacent if and only if their corresponding 
vertices in P can see each other. In general, the recognition problem for visibility graphs 
is unresloved. Everett and Corneil [7] gave a linear-time algorithm for recognizing 
visibility graphs of spiral polygons, which are interval graphs under certain conditions. 
Consequently, a minimum set of vertex guards for a spiral polygon can be determined 
by solving the domination problem of an interval graph. Nilsson and Wood, on the 
other hand, proposed a linear-time algorithm for finding a minimum set of point guards 

for a spiral polygon [10, 11]. 
In Section 3, we consider the problem of finding a minimum set of point guards for 

a spiral polygon. We first prove that the class of stick-intersection graphs associated 
with spiral polygons equals the class of nontrival, connected, proper interval graphs. 
We then give alternative verification of the validity of Nilsson and Wood's algorithm. 

w4 w s 

a 3 . . . . . .  - _ s3  

u 2 u w3 ~ w6 

-,ir~--.Wl 
w2 w 7 

Fig.  1. A spiral  p o l y g o n  in s t andard  fo rm,  c o n c a v e  e d g e  ~ ,  and  s t ick  s3 = a3b3. 
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2. Hamiltonicity in proper interval graphs 

The hamiltonicity of  proper interval graphs is addressed in this section. 
The closed neighborhood N[v] of  a vertex v is the set of  vertices adjacent to v along 

with v itself. An ordering [v~, v2 . . . . .  vn] of  the vertices of  G is a consecutive ordering 
if for every i, N[vi] is consecutive; i.e., N[vi]= {vt:il <~t<<.i2} for some il ~<i2. Note 
that, for i < j ,  we have il <~jl and i2 ~<j2. Consequently, [vl, v2, . . . ,  v~] is a consecutive 
ordering of  G = (V,E)  if  and only if 

i < j < k  and vivkEE imply vivjEE and vjvkEE. 

Also, if [Vl,V 2 . . . . .  Vn] is a consecutive ordering, then so is [Vn,V,,-t . . . . .  Vl]. 

Roberts [13] proved that G is a proper interval graph if  and only if its augmented 
adjacency matrix, which is the adjacency matrix plus the identity matrix, satisfies the 

consecutive l ' s  property for columns; see also [6]. This fact can be restated as 

Theorem 1. A graph G = ( V , E )  is a proper interval graph if  and only i f  G has 
a consecutive ordering. 

Booth and Leuker 's  [3] consecutive 1 's testing algorithm provides a way to determine 
whether a graph is a proper interval graph, and gives a consecutive ordering if the 

answer is positive. Corneil et al. [4] and de Figueiredo et al. [5] proposed simpler 
methods for accomplishing these by using a breadth-first search and a lexicographic 
breadth-first search, respectively. 

We are now ready to study the hamiltonicity of  proper interval graphs. 

Theorem 2. For any positive integer k and any proper &terval graph G = (V,E)  o f  
n>~k + 1 vertices with a consecutive ordering [vl,v2 . . . . .  v,], G is k-connected i f  and 
only i f  viv j E E whenever 1 <~ li - Jl <- k. 

Proof. ( 3 )  Suppose G is k-connected and 1 ~< ]i - . J l  ~<k. Without loss of  generality, 
we may assume that i < j ~< i + k. Since G is k-connected and S = {vt : i < t < j}  has at 
most k -  1 vertices, G - S  is connected. There is a shortest vi-vj path P = (vi,, vi2 . . . . .  vi,) 
in G -  S, where vi, =vi and vi, = v]. Let ip (iq) be the minimum (maximum) index 

in {il,i2 . . . . .  it}. Since [Vl,Ve,...,vn] is a consecutive ordering of  G, if 1 <  p <  r 
(1 < q < r),  then vi,,_, vi,,+, E E (vi,,_, vi,+, E E). This contradicts the assumption that P is 
a shortest path in G - S .  Therefore, {ip, iq} =-{il,ir} = {i , j} .  Since P is a path in G - S ,  
P contains no vertex vt such that i <  t <  j .  Consequently, r = 2  and vivjEE. 

(¢=) On the other hand, suppose vivj E E whenever 1 ~ < l i -  Jl ~<k. For any subset 
S C V of  size ISI < k, remove all vertices of  S from [vl, v2 . . . . .  v,] to get a subsequence 
[vi,,vi. . . . . .  vi,.]. For each p with l<~p<~rn- 1, since ]Sl<k,  l i p -  ip+ll<~k and so 
vi,,vi,,,, EE. Therefore, G - S is connected and so, G is k-connected. [] 
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Theorem 3 (Bertossi [ 1 ]). For any proper in terval 9raph G = ( V, E )  o f  n >~ 2 vertices, 

G has a harniltonian path i f  and only i f  G is 1-connected. 

Proof. ( 3 )  If G has a hamiltonian path, then G is certainly 1-connected. 
(¢=) Suppose G is 1-connected. By Theorem 2, for any consecutive ordering [Vl, 

V 2 . . . . .  Vn] o f  G, viv j E E whenever l i  - J l  = 1. Thus, (Vl, v2 . . . . .  Vn) is a hamiltonian 
path of G. [] 

Theorem 4. For any proper interval graph G = (V ,E)  o f  n >>. 3 vertices, G has a hamil- 

tonian cycle i f  and only i f  G is 2-connected. 

Proof. ( 0 )  Suppose G has a hamiltonian cycle. For any IS[ ~< 1, G - S has a hamil- 
tonian path and hence is connected. This proves that G is 2-connected. 

(¢=) Suppose G is 2-connected. By Theorem 2, for any consecutive ordering [vl, 

V 2 . . . . .  Vn] of G, viv j E E  whenever 1~<[i-j]~<2. Thus, (VbU3,  V5, U 7 . . . . .  Vn_2,Vn, Vn_l, 

vn-3, vn-5 . . . . .  v4, v2, vl) is a hamiltonian cycle of G if n is odd, and (Vl,V3,V5,V7 . . . . .  

Vn-l,Vn,V~-2,v,-4 . . . . .  Va, V2,Vl) is a hamiltonian cycle of G if n is even. [] 

Theorem 5. For any proper interval graph G = (V ,E)  o f  n >>-4 vertices, G is 

hamiltonian-connected i f  and only i f  G is 3-connected. 

Proof. (=~) Suppose G is hamiltonian-connected. For any IS] ~<2, choose two distinct 
vertices u and v such that SC_{u,v}. Since there is a hamiltonian path from u to v 
in G, G -  S has a hamiltonian path and hence is connected. This proves that G is 

3-connected. 
( ~ )  Suppose G is 3-connected. By Theorem 2, for any consecutive ordering [vl, 

v2 . . . . .  vn] of G, VivjCE whenever 1 ~<li-j l~<3. Suppose vf and Vm, f <  m, are two 
arbitrary distinct vertices of G. A hamiltonian path from v/ to vm can be constructed 

as follows. First let P1 =(1)f, Vf-2,Vf-a, Vf-6,'",Vl,V2, V4, V6 . . . . .  V f _ l )  when f is odd 
and let Pl = (re, re_2, re-4, re-6 . . . . .  v2, vl, v3, vs, v7 . . . . .  r e - l )  when f is even. P1 is then 
a re-re, path with f -  1 ~< f'~< f and passing through every vertex in {vl, v2,..., re} ex- 
actly once. Similarly, there is a vm,-V,n path P2 with m ~< mP~< m + 1 and passing through 

every vertex in {Vm,Vm+ 1 . . . . .  Vn} exactly once. Thus, (Pl,Ve+l,V¢+2 . . . . .  Vm-l,P2) is 
a hamiltonian path from v.e to Vm. Therefore G is hamiltonian-connected. Note that for 
the case in which El= f -  1 and f = m -  1 and r # =  m + 1, we do use the condition 

that v iv jCE whenever [ i - j l  = 3. [] 

3. Guard problem in spiral polygons 

In this section, we consider the problem of finding a minimum set of point guards 
for a spiral polygon. We first prove that the class of stick-intersection graphs associated 
with spiral polygons equals the class of nontrivial, connected, proper interval graphs. 
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We then give alternative verification of the validity of Nilsson and Wood's algorithm 

[10, 11] for resolving the point guard problem with respect to spiral polygons. 
We assume that a spiral polygon P is given in standard form: the vertices of P 

are listed as a concave chain [uj,u2 . . . . .  urn] in clockwise order (m>~ 1), and a convex 

chain [wl, w2 . . . . .  Wn] in clockwise order such that ul and wl are adjacent and Um and 
wn are adjacent; see Fig. 1. An edge e of P is called concave if it contains at least one 

concave vertex. A stick s of P is a longest line segment containing a concave edge and 

lying inside P. Denote sl = albl, s2 = a2b2 . . . . .  Sm+l = am+lbm+l as the sticks containing 
concave edges WlUl,UlU2 . . . . .  UmWn, respectively; see Fig. 1 and Fig. 2(a). For each i, 

R i denotes the region bounded by stick si and the convex chain of P and aib i denotes 
the boundary of R i extending from ai to bi in clockwise order; see Fig. 2(b). It is easy 

to see that si intersects sj if and only if Ri intersects Rj if and only if aibi intersects 

ajbj. 

Lemma 6. The intersection graph Gp(S) of  S =  {S1,S 2 . . . . .  Sm+l} equals the intersec- 
tion graph Gp(R) of  R={RI ,R2  . . . . .  Rm+I} and also equals the intersection graph 

r 

Gp(B) o r b  = {albl,a2b2 . . . . .  am+lbm+l ). 

The intersection graphs Gp(S),Gp(R),Gp(B), which are equal by Lemma 6, are 

called respectively, the stick, region, and boundary intersection graphs associated 
with P. Note that the intersection graph of the sticks in Fig. 2(a) equals the proper 

interval graph in Fig. 2(c), in which vertex vi corresponds to stick si. This is not an 
accident, since we have the following theorem. 

Theorem 7. The class of  stick-intersection graphs associated with spiral polygons 

equals the class of  nontrivial, connected, proper interval graphs. Moreover, for a 
spiral polygon P, [R1,Rz,...,Rm+I] is a consecutive ordering of  Ge(R). 

Proof. (=~) Suppose P is a spiral polygon with m concave vertices. Since m>~l and 

Ge(S) has m + 1 vertices, Gp(S) is nontrivial. Since sticks si and sj intersect whenever 

w4 w 5 Vl v2 

w2 w 7 v5 v4 

(a) Sticks. (b) Region R 3 (shaded) and boundary a3"~3 (bold). (c) A proper interval 
graph. 

Fig. 2. 



228 C Chen et al. / Discrete Mathematics 170 (1997) 223-230 

l i -  Jl = 1, Gp(S)  is connected. By Lemma 6, G p ( S ) =  G p ( R ) =  Ge(B). Consider the 

convex chain of  P as ' embedded '  in a real line, and {albl ,a2b2 . . . . .  am+Ibm+l} as 
a set of  intervals on a real line. Since bi lies to the left o f  bj whenever a i lies to 
the left o f  aj, no interval properly contains another. Hence Gp(R) has the consecutive 

ordering [Rx,R2,.. . ,Rm+I], and so, is a proper interval graph. 
(¢=) Suppose G = ( V , E )  is a nontrivial, connected, proper interval graph of  n 

vertices. By Theorems 1 and 2, G has a consecutive ordering [vl,v2 . . . . .  v,] such 
that vivj E E  whenever l i -  Jl = 1. We shall construct a spiral polygon whose stick- 
intersection graph is G by means of  a unit circle. 

For any two points a and b on the unit circle C, denote ab as the arc from a to 

b in clockwise order and denote l abl as the length of  ab. We shall construct a set 

o f  chords {albl,a2b2 . . . . .  a,bn } on C such that aibi corresponds to vi as follows; see 
Fig. 3(a) for an illustration of  constructing a spiral polygon from Fig. 2(c). 

(1) Choose a chord albl on C such that lalb---~l < ½(2re). 
(2) Since vl EN[v2], choose a chord azb2 on C such that azb2 intersects albl at el 

and Iblb2] < (1)2(27c).  

To choose a3b3 . . . . .  anbn on C, we use the following lemma, which is clearly valid, 
repeatedly. 

A 

Lemma 8. Suppose a' E ab and c E ab. For any e > 0, there is a point b' on the unit 
_ _  A 

circle such that a ,a ' ,b ,b  I are in clockwise order, a'b ~ intersects cb at c' and Ibb'l < 5. 

(See Fig. 3(b).)  

Assume that a l b l , a 2 b  2 . . . . .  a i _ l b i _  1 have already been chosen. We choose aibi as 
follows, where 3<~i<~n. Assume that N [ v i ] = { v t ' i l  <~t<~i2}. Note that il < i. List 

a l , b l  . . . . .  a i - l , b i - a  starting from al and ending at bi-1  in clockwise order, say, al . . . . .  
x, bi, . . . . .  bi-~, where x is the point immediately preceding bi,. Choose a point ai from 

the open arc xbi , .  By Lemma 8, we can choose bi on C such that a . . . . .  x, ai, bi, . . . . .  bi-1, 

j f  r j  ~ 
/ / /  ~ s 

at i 

3 " ~ ~  b 

a4 / / 

(a) Constructing a spiral polygon, (b) Lemma 9 illustrated. 

Fig. 3. 
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A 

bi are  in clockwise order, chords aibi and ¢i -2b i -1  intersect at ci- l ,  and ]bi-lbi] < 
( ½ ) i ( 2 x )  • 

It is not difficult to verify that if  N[vi]  = {vt : i l  ~< t ~< i2}, then aibi intersects ai, bi, . . . . .  

a i - !  bi- 1, ai+l b,+l  . . . . .  ai, bi:. Therefore the intersection graph for { a l b l, azb2  . . . . .  anbn } 
equals G. 

Consider a spiral polygon P whose concave chain is [ct,c2 . . . . .  cn-1] and whose 
convex chain contains all ai's and hi's  in clockwise order on C; see Fig. 3(a). Then 

aibi 's  are  precisely the sticks of  P. Therefore G equals the stick-intersection graph of  

the spiral polygon P. [] 

Recall that Nilsson and Wood 's  algorithm [10, 11] for finding a minimum set of  

point guards can be stated as follows. Let P be a spiral polygon with m concave vertices 

in standard form. First find the m + 1 sticks sl =a lb t ,  s2 :a2b2  . . . . .  Sm+l :am+lbm+l 

of  P. Then find a maximal sequence of  points bi,, bi2 . . . . .  bi, in the following manner: 

bi, : b l ;  bi/ is the first point in [bl,b2 . . . . .  bm+l], and follows b!/_ , such that stick sij 
does not intersect stick si, ,. A minimum set o f  point guards for P is {bi,, bi2 . . . . .  bi, }. 
We give an alternative proof  for the correctness of  the algorithm by means of  an 

argument for the maximum independent set problem in chordal graphs. 
A graph is chordal if  every cycle of  length greater than 3 possesses a chord, which 

is an edge joining two nonconsecutive vertices of  the cycle. It was proved in [8] that 
G is chordal if  and only if G has a perfect elimination scheme, which is an ordering 
[vl,v2 . . . . .  vn] of  vertices such that 

i < j < k ,  v iv jEE and vivkEE imply vjvkEE. 

Since a consecutive ordering is a perfect elimination scheme, a proper interval graph 
is chordal. 

A clique cover of  a graph G = (V ,E)  is a partition of  the vertex set V = A I + A 2 + - . . +  
At such that each A i induces a clique of  G. A minimum clique cover of  G is a clique 
cover of  minimum cardinality. Gavril [9] proposed an algorithm for finding a maximum 

independent set and a minimum clique cover of  a chordal graph. By Theorem 7, Gp(R) 

is a proper interval graph in which [RI,R2 . . . . .  Rm+l] is a consecutive ordering and 
also a perfect elimination scheme. Therefore Nilsson and Wood 's  algorithm is in fact 

a slight modification of  Gavri l 's  algorithm for finding a maximum independent set and 

a minimum clique cover of  Gp(R) in terms of  the ordering [R1,R2 . . . . .  Rm+l]: Induc- 
tively define a maximal sequence of  regions Ri, ,Ri ,  . . . . .  Ri, such that Ri, : R 1  and Ri/ 
is the first region in the sequence [R1,R2 . . . . .  Rm+l] and follows Ri:_, but is not in 

N+[R 6 ,], where N+[Ri] : {Rj : j>~i and Rj NRi • ~}. Since the ordering [R1,R2 . . . . .  
Rm+l] is consecutive, Ri/CN+[R!:_~] implies that Ri/CN+[Ri,]UN+[Ri2]U...UN+[Ri/_,]. 
Hence, N+[Ri, ] UN+[Ri2] U . . .  UN+[Ri,] = {R1 ,R2 . . . . .  Rm+l }. By the arguments in [9], 
we have: 

Lemma 9. The set {Ri,,Ri2 . . . . .  Ri,} is a maximum independent set o f  Gp(R) and 
{N+[Ri,],N+[Ri2] . . . . .  N+[Ri,]} is a minimum clique cover o f  Gp(R). 
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Lemma 10. P requires at least t point 9uards. 

Proof. For each i, denote p~ as the middle of  the concave edge containing stick s i. 
Since only points in Rij c a n  cover Pij and {Ri~,Ri2 . . . . .  Ri, } is an independent set, no 

single point of  P can cover two distinct points in {Pi , ,P6  . . . . .  Pi,}. This proves the 
lemma. [] 

Theorem 11. {biL, bi: . . . . .  bit } is a minimum set of  point 9uards for P. 

Proof.  Since P is spiral, bi covers Rj for all Rj EN+[Ri]. By Lemma 9, N+[Ri,] U 
N+[Ri2] U .. • UN+[Rit] = {RI,R2 . . . . .  Rm+l}. Therefore, {bi,,bg 2 . . . . .  be,} covers P. This, 
together with Lemma 10, proves the theorem. [] 
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