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Introduction 
 

There are rich varieties of oscillating systems with more or less external driving 

forces in all disciplines[1,2]. Although the physical objects even the physical 

interactions may appear to be unrelated for different systems possessing similar 

oscillation characteristics, the behavioral similarity from a dynamical point of view 

can provide invaluable insight for investigators modeling these systems. 

By examining the general dynamics with discrete time algorithm, we review 

first the nonlinear phase locking behavior of a macroscopic superconductive driven 

oscillation[3]. With the similar phase locking dynamics another collective quantum 

electromagnetic phenomenon in macroscopic scale, the quantized Hall effects, can be 

realized. The phase slip picture of vortex has been used to model the macroscopic 

dynamics of the Josephson oscillation. If a coordinate transformation from the 

flowing vortex to the fixed flux is considered, an analogy between the driven 

Josephson oscillation and the quantized Hall effects can be made.  

Another oscillating system investigated can be categorized to classical kinetics 

of a macroscopic material system. Reflection High Energy Electron Diffraction 

(RHEED) has been widely used in monitoring and controlling Epitaxy film 

growth[4,5]. Since the electron beam travels in the traverse direction of the depositing 

materials, RHEED provided exclusive convenience for in-situ detecting the surface 

morphological condition during the film growth. The low glancing angle and high 

energy of the electron beam made possible in-situ monitoring the few topmost layers 

of the deposited film. 

One of the most valuable applications of the RHEED in-situ monitoring is to 

reveal the layer by layer growth of Epitaxy film growth. Although the detailed 

diffraction mechanism is still remained to be concluded, the evident correlation 
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between the period of the RHEED intensity oscillation and the layer counts of film 

growth has proven to be one of the most precise tools for preparing good quality 

films[6-9]. The oscillation of the RHEED intensity can be regarded as a competition 

between the deposition of source material and the diffusion of the adatoms. In order to 

gain a clearer vision for the oscillating characteristics, we conducted a series of 

RHEED intensity analysis on the annealing behaviors of the laser-deposited Strontium 

Titanate films. From quantitative analysis of the temporal and temperature annealing 

data, a direct relation between the RHEED intensity and the kinetic law of activated 

diffusion was found. The results not only suggested a convenient tool for 

characterizing the kinetics of material, but also revealed more about the kinetics itself. 
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Chapter 1   Phenomenology of Macroscopic Quantum Phase Locking 

 

1-1  rf-biased ac Josephson Effect and Quantized Hall effects 

When the applied current is larger than the critical current for a 

superconductive Josephson junction, there will be a voltage drop V between the two 

electrodes of the junction along with a macroscopic quantum oscillation with the 

frequency 
h

eV
J

2
=ω . The superconductivity reveals its condensed quantum nature 

by the paired charges as well as the Planckés constant. If the junction is further 

exposed to a microwave irradiation with frequency rfω , the voltage drop can be 

found [1,2] as quantized Shapiro steps of  

rfem
nV ω

2
h

= ,                                                     (1) 

where n/m represents a simple rational number. Fig. 1-2. shows the first observation 

of the fractional Shapiro steps. As the applied current increases to the critical current, 

the voltage drop displays a quantized ” devilés staircase„  fractal structure. 

         

Fig. 1-1. Fractional Shapiro steps of a rf-irradiated Josephson point junction[2]. 
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Another macroscopic quantum system showing the intriguing devilés staircase  

structure is the quantum Hall effects[3,4]. The same time as the longitudinal Hall 

current becomes perfectly conducting, the transverse Hall resistance HR  in the  

Quantum Hall effect can be quantized in units of 2e
h : 

2

1
e
hRH ν

= ,                                                      (2)  

the filling factor ν  is an integer for the integer quantum Hall effect (IQHE) or a  

fractional number for the fractional quantum Hall effect (FQHE). In Fig. 1-3., an  

example of the FQHE demonstrate the devilés staircase structure as the magnetic  

flux density was varied[5]. 

         
 Fig. 1-2. Fractional Quantized Hall effect showing the devilés staircase structure 

of the Hall resistance versus varied field and the perfect conductivity of 

longitudinal current[5]. 

 

Interestingly, we see from a simple dimensional check that the quantized Hall  
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resistance can be expressed as 2e
h  multiplied by the frequency ratio of a  

Josephson-type oscillation to an electron wave.  
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1-2  Phase Locking and Devilés Staircase 

 

For those nonlinear oscillation systems difficult to be solved analytically, one 

finds computer simulation particularly useful. In the appendix, the well known 

Duffing oscillator has been used to demonstrate basic methodology of nonlinear 

dynamics. To understand the nonlinear resonance in a more general context, one also 

finds that the phase-locking can be modeled by a discrete time map. 

For the ac Josephson oscillation, Jensen and Bak[6,7] illustrated that by 

physically taking the period of external driving as the ” stroboscopic„  time period of 

the Poincare section, the circle map 

)(01 nn g Θ+Ω+Θ=Θ +                                              (3) 

may well display all the key features of the dissipated phase locking behavior 

observed in the numerical treatment of the ODE system of a driven oscillation. In the 

map (3), n is the number of times of Poincare sectioning, g( nΘ ) is a function 

representing the nonlinear interaction and Ω  is the rotation parameter related to the 

coefficients of the pendulum equation. In the parameter regions where phase locking 

behavior appears, function g( nΘ ) was found topologically equivalent to a sine 

function and can be chosen for convenience to be )2sin()2/( nK Θ⋅− ππ , where K 

represents the coupling strength. 

To illustrate the phase locking dynamical behavior of the circle map, one defines 

the winding number 

n
W n

n

0lim
Θ−Θ

=
∞→

.                                                 (4) 

Since each iterate in the map corresponds to one period of the external drive, the 

winding number measures the frequency ratio between the system and the external 

force as the steady state is achieved. 
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At the weak nonlinear perturbation limit K~0, from (1) and (2) we have W~ Ω . 

The winding number thus traces up the diagonal on the (Ω ,W) parameter diagram, 

and Ω trivially represents the frequency ratio at the weak perturbation limit. When K 

> 0, the smooth diagonal line changes into a staircase structure. At the Ω  regions 

corresponding to the plateaus, phases are locked and the frequency ratios are found to 

be rational numbers. Whereas at those Ω  regions between plateaus, the system is in 

unlocked quasiperiodic states, and the frequency ratios are irrational numbers. When 

K = 1, the Ω-W staircase develops a complete structure in which the total projection 

length of the quasiperiodic regions on the Ω axis turns out to be zero. In other words, 

the full range of Ω is occupied by phase locked regions. Such a peculiar structure is 

designated as the devilés staircase, see Fig. 1-3. When K> 1, the deterministic chaos 

appears due to the interaction of the neighboring steps. 

 

Fig. 1-3. The Devilés staircase of a circle map. Winding number W vs. rotation 

parameter Ω  for the circle map at K=1. The inset shows the self-similar 

fractal nature of the staircase. (Jensen, Bak and Bohr, Ref. [7].) 
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Chapter 2   Driven ac Josephson effect and Quantum Hall Effects- 

A Macroscopic Quantum Phase-Locking Analogy 

 

The Josephson Resistively and Capacitively Shunted Junction (RCSJ) system is 

one of the most investigated nonlinear dynamical system capable of showing a 

unique macroscopic phase-locking behavior. Instead of considering RCSJ equation 

as merely a phenomenological circuit model, we investigate the quantum aspects 

embedded in it. Following de Broglie's relativistic derivation, we consider a 

covariant analogy between the Josephson relation and de Broglie relation. 

Fundamental properties including Lorentz invariance are pointed out. Based on the 

assumption of two-frequency locking macroscopic quantization, a possible 

connection between the Quantized Hall effects and the driven ac Josephson effect is 

proposed. 
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2-1  ac Josephson Effects and RCSJ Circuit Model  

 

In the r.f-driven ac Josephson effect, the energy difference between the two 

sides of the junction barrier can be rationally quantized to Shapiro steps [1,2]: 

,rfm
nqVE ωh==∆                                               (1) 

where q = 2e is the electric charge of the superconducting Cooper pairs, V is the 

voltage drop across the junction, h denotes Planckés constant π2/h , rfω  represents 

the frequency of the driving field and n/m implies a simple rational number including 

an integer or a fractional number. This energy quantization has been successfully 

simulated by the following resistively and capacitively shunted junction (RCSJ) 

model[3, 4]. 

The Josephson relations[5] includes the energy-frequency relation: 

,
dt
dqV ϕ

h=                                                    (2) 

where ϕ  represents the macroscopic quantum phase difference across the junction, 

and the nonlinear current-phase relation typically expressed by a sine function: 

ϕsincJ II =                                                     (3) 

where JI  is the Josephson current and cI  the critical current. Resistively and 

Capacitively Shunted Junction (RCSJ) model treats the junction as composed of a 

capacitor, a resistor and the Josephson junction in parallel. The current conservation 

(KCL) law across the junction can be expressed as a differential equation: 

)cos(sin1
2

2

tIII
dt
d

qRdt
d

q
C rfrfdcc ωϕ

ϕϕ
+=++

hh                        (4) 

where the capacitance C and the resistance R are effective parameters, dcI  represents 

the applied dc current and )cos( tI rfrf ω  represents the periodic driving current from 
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rf field. This non-autonomous second order equation can also be written as a 

3-dimensional state flow: 

h

E
dt
d ∆

=
ϕ ,                                                      (5) 

)sincos()(
ϕθ crfdc I

qR
EII

C
q

dt
Ed

−
∆

−+=
∆ ,                           (6) 

and 

rfdt
d

ω
θ

= ,                                                       (7) 

where trfωθ =  denotes the phase of the driving field. The RCSJ flow has been 

intensively studied as a model system demonstrating various typical nonlinear 

dynamical behaviors including chaotic, quasi-periodic and periodic states of a forced 

dissipative oscillation. The quantized energy difference (1) can be modeled as the 

result of the frequency-locked state 

m
nt

rf

=
>∆∆<

ω
ϕ /

,                                                (8)  

where the rational number n/m represents the locked frequency ratio of the Josephson 

oscillation to the driving field. 

This dynamical system was generally regarded as a classical phenomenological 

recipe to describe Shapiro steps as well as other I-V characteristics of the Josephson 

junction under microwave irradiation. The intrinsic quantum nature revealed by the 

Planckés constant may have been attributed to the derivation proving the Josephson 

relations (2) and (3) and the phase difference ϕ . 

Physicists havenét shown serious concerns for the quantum nature in the 

phase-locking mechanism even though it apparently provided a Planckés 

constant-involved quantization procedure of energy. Actually from experiments[6] the 

precision of this macroscopic quantization can be higher than the energy quantization 

in those microscopic quantum systems modeled by the QED framework. 
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In the following work we intend to make discussions on the possibility that the 

time evolution of the Josephson phase difference such as the phase-locking behavior 

of the 3-dimensional dynamical system can be seen from an alternative macroscopic 

quantum dynamics point of view. The Josephson frequency relation with the Planckés 

constant is to be considered as a postulate, playing somewhat a similar conceptual role 

of the Einstein-de Broglie energy-frequency relation in microscopic quantum rules. In 

other words, the Josephson phase difference is postulated to be a dynamical variable, 

although emerged from a condensed many-particle system. To imagine the RCSJ state 

flow of Kirchhoffés current law as a theoretical system of quantum nature, one faces 

at least two practical issues. One is the capability of this deterministic system to 

demonstrate the unpredictable nature of a quantum event, the other is the way it 

discretizes physical quantities. Qualitatively, for a nonlinear dissipative system as the 

RCSJ flow, ordered chaos may be found with various parameter combinations. 

Whether the outcome distribution of the evolution can be linked to quantum 

probabilistic distributions is still an unasked question. However, it has not been 

presented as a proved result that the deterministic chaotic events can not provide any 

statistical distribution of quantum mechanical. 

Another significant feature of a quantum dynamical rule is the discretization of 

physical quantities. If we consider the electrical potential quantization revealed by the 

Shapiro steps as a quantum-dynamical quantization, we are actually suggesting that 

the two frequency-locking mechanism is able to provide a quantization theoretical 

framework in which the index of quantum levels are given by the locked frequency 

ratio. 
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2-2  Macroscopic Quantization 

 

In the historical development of quantum theory, an intimate correlation between 

the quantum phase and the Action, or the time integral of Lagrangian, has always 

been playing an important role in the quantization procedure. If we take a look at the 

early development of the quantum mechanics, the Bohr-Sommerfeld-Wilson (BSW) 

quantization condition 

∫ =
π2

nhdS                                                       (9) 

states that for a quantum particle, the action integration ∫ dS  such as ∫ pdq  over 

one period of the cyclic coordinate is equal to an integral multiple of the Planckés 

constant h. Although this rule can hardly be proved as a general principle of all 

quantum systems, it did provide an elegant tactics bridging the gap between the 

quantum and classical regimes, at least for a bounded single particle. 

Now, if we define a "phase-ratio action" for the RCSJ flow:  

θ
ϕ

θϕ d
dhS =/                                                     (10) 

it turns out that the rational frequency-locking 

m
nt

rf

=
>∆∆<

ω
ϕ /

                                                 (11) 

results in a locked action just like the BSW quantization condition: 

h
m
nS =θϕ / .                                                     (12) 

Furthermore, if we postulate an equivalency between the ” phase-ratio„  action and the 

action integral of BSW condition (9), and designate an "action variable" as 

πθϕ 2//SJ = ,                                                   (13) 

we are allowed to rewrite the frequency-locked energy evolution equation (6) of RCSJ 

flow for a conserved energy difference as 
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0)(
=

∆
=

dt
Ed

dt
dJ

dω
.                                                (14) 

We see that the set of equations (14) and (7) bears an intriguing resemblance of the 

classical action-angle variable formalism for a single periodic motion. 

To imagine the Kirchhoffés current law as a dynamic law of quantum nature, we 

consider a direct analogy between the Josephson oscillation and a quantized oscillator. 

In fact, a correspondence between the Josephson oscillation and the quantized 

electromagnetic field can be seen in the comparison between the Josephson relations 

with the Maxwell equations. The Josephson voltage-frequency relation can be 

mapped to the Faradayés law once the Josephson phase difference is assumed to 

measure the number of passing magnetic flux quanta at a fixed position. The 

Josephson nonlinear current-phase relation provides a temporal version of the 

Ampereés law, which is a spatial-temporal relation of flux and circular current. 

For a specific Josephson junction, parameters in the RCSJ flow such as R and C, 

or even forms of functions such as sinϕ  for JI  and cosθ  for rfI  may all be 

subject to change due to different experimental situations. However we consider that 

some topological properties of our major concern, which qualitatively differentiate all 

RSJ flow like system from the Hamiltonian system, would be universal. Firstly, the 

stationary action, i.e., the state space area conservation of periodic RSJ flows, comes 

from a state space-contracting evolution of a dissipative three-dimensional system, in 

which the dimensionality ” three„  would be the minimum state space dimensions 

needed for a flow to be able to evolve chaotically. While for the 2-dimensional 

Hamiltonian system the action remains constant just because it is assumed to be 

conserved in the first place. In addition, the dimension-reducing dissipation also 

provides a physical explanation for the adiabatic invariant nature of quantized 

quantities. In other words, for a dissipative dynamical system an ensemble of different 
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initial states tends to evolve into a same attractor, either phase-locked or chaotic, 

provided that the ensemble of initial points can be covered by the same basin of 

attraction. Another noteworthy difference is the nonlinearity of RSJ like flows. Since 

the structured randomness of quantum events is expected to be simulated by the 

deterministic chaotic state evolution, the linearity of probabilistic quantum mechanics 

in the superposition principle of the wave function is no longer present as a central 

notion. Instead, the nonlinearity of the functions of phases ϕ  and θ , symbolizing 

the periodicity of phases, would always be necessary for demonstrating chaotic 

behavior and stands for the nonlinear reality of the physical model. 

To explore the discretization of physical quantities, we recall a connection 

between quantum systems and classical ones, the canonical conjugation relations. Not 

only an action product of two conjugated variables, such as energy and time, appears 

to be the basic unit for quantization, but also the corresponding variables of two 

conjugated pairs, such as energy and momentum or time and space, make up a 

building block 4-vector in the relativity theory. Taking into consideration these two 

facts, we expect to find some fundamental guideline for a quantization program by 

exploring the conjugated properties embedded in the RSJ state flow. For instance if 

we manage to obtain, within the universal phase-locking scheme of the RSJ flow, a 

connection between energy quantization and momentum quantization, we would be in 

a good position to find some correspondence rule showing the classical relation of 

energy and momentum. As a matter of fact, such a connection has been initiated by 

Louis de Broglie in his Lorentz invariant derivation of momentum-wave number 

relation[7]. 

In de Broglie's work, he argued that if one observes a propagating quantum wave 

from its own frame Oé, he would obtain a pure temporal state evolution with the 

Einstein energy-frequency relation: 
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''''' dtEdtd
h

== ωϕ                                                (15) 

where 'ϕ  is the quantum phase and 'ω  denotes the frequency. On the other hand, 

the state evolution of the traveling wave observed from a "rest" reference frame O 

would contain a space-dependent part  

kdxdtd −= ωϕ ,                                                 (16) 

where all variables are subjected to the rest frame and k represents the quantum wave 

vector. Since it is straightforward to postulate that the phase changes observed 

from these two frames are identical, we can equalize ϕd  obtained from (16) with 

'ϕd  obtained from (15): 

dx
c
vdtdt 2'' ωωω −=                                              (17) 

and find that the wave vector k equals 2/ cvω . Taking into account the equality of the 

relativistic energy and the quantum energy, we have the momentum P for the 

matter wave quantized as kh  since 

k
c
v

c
v

vc

c
v
vmP hh

h
==

−
=

−
= 2

2

2

2 )(1

)/'(

)(1

'
ω

ω .                             (18) 

We see that the original energy-frequency relation on the particle frame results in a 

combination of energy-frequency and momentum-wave number relations. 

From the 4-vector version of the special relativity, the Lorentz transformation 

invariant relations in those conjugated components of (P, E), (x, t) or (k,ω ) can be 

expressed as the covariance of the self-product scalars of 4-vectors (P,iE/c),(x,ict) and 

(k,iω /c) respectively. For de Broglie's approach however, the energy-frequency and 

momentum-wave number relations can be regarded respectively as one component of 

ϕµµ ddxP h=⋅ ,                                                  (19) 

where µP  represents the 4-momentum (P,iE/c), µx  the 4-spacetime (x,ict). The 
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quantum phase ϕ , being a scalar product of the 4-momentum and the 4-spacetime, 

is therefore invariant under Lorentz transformation. In addition, based on the Lorentz 

coordinate transformation, de Broglie's argument designated the location of the 

traveling quantum particle as a fixed position and considered solely the 

energy-frequency relation as resulted from the phase change depending on a "proper 

time". First of all, we see that de Broglie pointed out a Lorentz invariant principle of 

quantum phase to project the 4-momentum from the 4-spacetime onto a proper time 

component with the energy-frequency relation. Secondly, we conceive that the 

number of periods of phase change observed from the position of de Broglie's 

quantum particle in fact corresponds to the number of periods of quantum 

wave passing through a certain position of observation.  

This process reminds us that although the pure temporal RSJ flow was devised to 

describe a point Josephson junction, we may as well consider it a projected 

component of a spatial-temporal system, on condition that the driven Josephson 

oscillation resulted from a point measurement of two coupled waves propagating with 

the same velocity. In other words, both of the phases not only undergo temporal 

evolution at a fixed position, but also develop spatial variation at any instant. 

As we know in the Josephson effect, this condition may be fulfilled by a line 

junction exposed to a magnetic field. If we assume the voltage drop across the 

Josephson junction plays exactly the role of the electric potential of a relativistic 

4-potential, the Josephson energy-frequency relation can be traced back to an inner 

product of 4-vectors: 

h

µµϕ
dxqA

d
⋅

=                                                   (20) 

where µA  implies the electromagnetic 4-potential. From this assumption, we soon 

arrive at a conclusion that the Josephson oscillation can be regarded as a temporal 
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projection of a traveling Josephson wave which stands for the propagation of 

Josephson vortices, or magnetic fluxes, in which case the phase difference of the 

Josephson wave can be directly expressed as 

)( Vdtdqd −⋅= xA
h

ϕ                                              (21) 

where A represents the vector potential, x represents the space vector and V is the 

voltage drop across the Josephson line junction. It is interesting to notice that this 

spatial-temporal expression of the Josephson phase difference looks just like the 

Gauge Invariant phase difference, both play the role of a covariant variable in the 

spatial-temporal system. As we are considering the projection of 4-vectors, it is 

also of help to examine the orthogonal component, namely the space and momentum 

component. According to the two-phase coupling mechanism, we believe that a 

spatial-temporal quantization of the 4-momentum generalized from a temporal 

quantization of energy should find its quantized momentum component as we 

transform the 4-spacetime to its pure spatial component. For a propagating wave, a 

pure space-dependent state evolution at a frozen time can only be obtained from a 

snapshot covering the course of propagation. Thus as a same period of state evolution 

is concerned, the transformation from a time-dependent state evolution to a purely 

space-dependent pattern implies two fundamentally different recognizing processes of 

phase measurement. The process of the former implies a temporal counting at a 

specific position in linear space while the latter process implies an extended spatial 

recording at a fixed time. In addition, compared to the Lorentz transformation 

according to different observation points, we conclude for this temporal-to-spatial 

transformation that it is the absolute value of the phase, instead of its function forms 

of spatial-temporal dependence, are invariant. 

For the driven Josephson system, we may as well apply the 4-vector scheme to 
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the driving field, on condition that it also bears a wave nature. Thus, we imagine 

ϕd  in Josephson-RSJ flow as the phase change due to propagation of Josephson 

vortices and dθ  represents the phase change due to propagation of applied EM wave, 

both are covariant. The phase relation (7) can thus be written as an inner product of 

the 4-wave vector and the 4-spacetime: 

µµθ dxkd d ⋅= ,                                                   (22) 

where dkµ  represents the 4-wave vector of the driving field. This phase-locking 

quantization approach also finds an inspiration from the fact that the frequency ratio 

of RSJ flow can actually be reduced to a simple phase ratio which is eventually 

independent either on time or on space. This implies that if there is a covariant 

relation describing the evolution of the phase ratio, we are free to transform the 

spatial-temporal description into a temporal phase-locking behavior that provides a 

simple dynamical mechanism for the rational quantization of energy and/or 

momentum. 

From the ratio of (20) and (22), we may have 

)( µµ

µµ

θ
ϕ

dxk
dxqA

d
d

d ⋅

⋅
=

h
,                                               (23) 

which apparently is a Lorentz invariant scalar.  
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2-3  Quantum Hall Effects and Quantum Phase-Locking Analogy 

  

From the spatial-temporal to temporal projection conjecture described in section 2-2, 

we find this dynamical system a possible application to the Quantized Hall 

effects[8,9]. Since once we imagine the transverse Hall voltage HV  of a 1D 

composite flux channel as the voltage drop across a Josephson-like junction, and 

express the longitudinal Hall current as: 

dt
dqI H

θ
π2

= ,                                                   (24) 

where θ  denotes the phase of the traveling electron wave, we can express the Hall 

resistance as 

θ
ϕ

θ
π

ϕ

d
d

e
h

dt
dq
dt
d

q
I
VR

H

H
H 2

2

===

h

.                                       (25) 

This relation applies not only to the small current single junction picture but also to 

the large current situation in which an array of parallel line Josephson-like channels is 

developed. The most noteworthy consequence of this argument would be that based 

on the rational phase locking mechanism, both quantized Hall effects, IQHE and 

FQHE, can be understood as resulted from a same dynamical mechanism. 

An intuitive description for the macroscopic quantum vortex can be found in P.W. 

Andersonés consideration on the superfluid[10].The Josephson oscillation was 

represented by a simple dynamical picture of phase slip. Fig. 2-1 (a) represents an 

isolated vortex. Any path circling around the vortex would experience a phase 

difference of 2π . When a vortex travels from the left to the right as shown in Fig. 2-1 

(b), there will be a phase difference of 2π  developed across the barrier between the 

side 1 and side2.  
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        (a)                               (b)  

Fig. 2-1. (a) An isolated vortex. (b) Phase difference of 2π  would be introduced to 

the two sides, side 1 and side 2, across the barrier when a Josephson vortex was 

traveling from the left to the right of a fixed observing position. 

 

If we simply transform the observing position from the fixed coordinate to the 

vortex, we get the picture shown in Fig. 2-2. As the Hall current flows from the right 

of the flux to the left of the flux, a phase difference of 2π  can also be measured 

between the side 1 and side 2 at a point reference point fixed with the flux. 

Combining with the phase change of the electronic wave this simple phase locking 

picture results in the quantized Hall effects, integer or fractional. 
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Fig. 2-2. Taking the observing coordinate of the flux, the Josephson oscillation of Fig. 

2-1. can be transformed into quantum Hall system as the Hall electronic 

wave from right to the left results in the phase difference across the current 

strip between side 1 and side 2. 
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2-4  Josephson Coupling Phenomena in Quantum Hall Systems 

 

Although the Integer Quantum Hall effect and the Fractional Quantum Hall effect 

are usually considered as two different physics pictures, the former as a one particle 

system and the latter as a many particle interaction system, we still find some 

evidences suggesting a possible common Josephson coupling mechanism for quantum 

Hall effects. 

The first kind of experiments implying the possible existence of dissipationless 

current channels with Josephson coupling can be found in the current induced 

breakdown of QHE[11]. The critical Hall current density was found to be proportional 

to the sample width as shown in Fig. 2-1. The bulk distribution of the Hall current 

from this sample width dependence supports the existence of parallel channels, which 

are essential for the inter-channel coupling with a voltage difference of 

qV HH /ωh= . 

 
Fig. 2-3 Critical current versus sample width w for a wafer with a mobility of 

2.1*10^5 cm2/Vs. The slope of the full line corresponds to a critical current 
density of 1.6A/m[12]. 
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Actually it has been proposed that the current in the bulk flows in a manner of 

alternating sequence of compressible and incompressible strips[13]. It is reasonable to 

consider the incompressible Hall current strips play the role of condensed state with 

coherent quantum phase. And the compressible strips play the role of barrier across 

which a Josephson like voltage is developed. 

  Besides the possible Josephson coupling proposed here for the transverse voltage or 

the Hall voltage there are two other intriguing behaviors apparently related to the 

Josephson coupling. One is the longitudinal voltage behaviors during the 

current-induced breakdown, the other is the coherent coupling in bilayer quantum hall 

systems. The former system has been reported exhibiting typical nonlinear dynamical 

behaviors including hysteretic and chaotic time evolutions[14]. Among other models 

for the QHE breakdown, the work of D.J. Thouless et. al.[15], may shed some light on 

the coupling picture by assuming an abrupt formation of a metallic conduction path 

from one edge of the sample to the other. It is possible that fluxes are forced to move 

along this path and result in quantized longitudinal voltage. The latter bilayer 

quantum Hall system has been intensively investigated as a Josephson coupling 

system of two condensed n-p exciton layers[16]. As the distance between the two 

layers is comparable to that of two electrons within a layer, the Josephson like 

coherent tunneling appears between the two quantum Hall layers. It seems to the 

author that the boundary between the Josephson effect and the quantum Hall effect is 

becoming more and more difficult to define. 
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Summary 

 

In this chapter we consider the Josephson voltage frequency relation as a de 

Broglie energy frequency relation and follow the relativistic derivation of 

momentum-wave number relation to find a spatial-temporal wave generalization for 

the driven Josephson oscillation. Focusing on the dissipative phase locking 

mechanism, a low dimensional nonlinear dynamical system was shown to be capable 

of connecting the driven Josephson ac effect and Quantized Hall effects. A 

macroscopic phase-locking quantization scenario is thus suggested to provide a 

simple common understanding for IQHE and FQHE. 
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Chapter 3   RHEED Intensity Oscillation in Laser Ablation Epitaxy Growth 

 

Another oscillation in two dimensional system to be investigated is the 

Reflection High Energy Electron Diffraction (RHEED) intensity oscillation in a laser 

ablation epitaxy[1-6]. During a properly controlled Epitaxial thin films growth, the 

periodic RHEED intensity oscillations have been proved to be as a direct mapping of 

layer-by-layer growth[7-10]. A period of RHEED oscillation corresponds to a cycle 

from (a) to (e) of monolayer Epitaxial growth as schematically shown in Fig. 3-1[6]. 

      

                (a)                                   (b) 

 

Fig. 3-1. (a) An idealized monolayer growth corresponding to a period of RHEED 

oscillation. (b) The RHEED intensity oscillation corresponding to a cycle of 

monolayer growth. 

 

(a) 

(c) 

(b) (d) 

(e) 
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3-1 RHEED-Reflection High Energy Electron Diffraction 

 

Although RHEED intensity monitoring has long been used to monitor Epitaxy 

growth[1-6], Fig. 3-2., a quantitative modeling of the recorded intensities remains 

open due to the multiple (dynamical) scattering caused by strong interaction of 

electrons with the surface. 

 

Fig. 3-2. Schematics of the RHEED monitored thin film growth. 

 

Dynamical calculations of RHEED intensities require long computation times even 

when oversimplified assumptions about incomplete layers are made[11]. The surface 

morphology, for example, island shapes, is not treated dynamically. On the other hand, 

the single-scattering picture of kinematical approximation directly relates surface 

structure and scattered intensity[12,13]. To be noted that the relation of the 

kinematically calculated intensities to real RHEED data often appears questionable. 

Geometric theory appears to be the simplest theory to describe RHEED. 

Diffraction of a plane wave with wave vector k by a single crystal is assumed and no 

interaction mechanism is involved. Diffraction happens when the Laue condition is 

satisfied: 

Gkk =− 0' ,                                                                                                       (1)  
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where kä and k0 are the wave vectors for the diffracted and the incident beams 

respectively and G is the reciprocal-lattice vector. In the case of elastic scattering, 

0' kk = . Infinite numbers of kä  vectors pointing in all directions form the so-called 

Ewald sphere. Ewald sphere is a sphere that has its origin as the origin of the k0 and a 

radius 0k . The Laue condition is ” diffraction occurs for all 0k  connecting the 

origin of the sphere and a reciprocal-lattice point". The magnitude of the wave vector 

is given by the relativistic expression 

2
00 )(212

c
qVqVmk +==

hλ
π                                       (2)  

where m0 is the electron rest mass, q is its charge and V is the accelerating potential. 

Expression (2) can also be written as 

)1095.11(
3.12

)(2
6

2
0

VV
c

qVqVm

h
−×+

≈
+

=λ ,                                (3)  

where λ  is measured in A  and V in volts. 

The kinematic theory is straightforward for understanding of RHEED, however no 

description of the diffraction mechanisms is provided. A more advanced theory 

treated quantum-mechanically the interaction between the incident wave and the 

scatterer by solving the Schrodinger equation for the wave function of the scattered 

wave, y(r), given an effective potential U(r); 

0)())(( 2
0

2 =Ψ++∇ rkrU .                                                                                  (4)  

By introducing Green's method, equation (4) could be reformed into 
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∫ −
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The first term represents the incident plane wave, the second term represents the 

scattered wave. From the point of view of experiments, one is more concerned with 

y(r) with large distances compared to the dimension of the scatterers rrr ~'− . In 

this situation, equation (5) is further refined as 

∫ ⋅−⋅ −= ')'()'(
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)( ''
'
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eer rki
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rki ψ
π

ψ .                              (6)  

The part of the second term 

∫ ⋅−−= ')'()'(
4
1)( '' rdrrUe

r
kf rki ψ

π
                                                           (7)  

is the scattering amplitude. 

The current scattered into a solid angle Ωd  per unit current density in the incident 

wave is given by 

Ω=Ω dfdI ),(),( φθφθ .                                                                              (8)  

    Kinematic theory evolves as the Born approximation is adopted. The wave 

function in the crystal is assumed to be the same as the incident wave or '0)'( riker =ψ . 

In this case, equation (7) is rewritten as 

∫ ⋅−−= ')'(
4
1)( ' rdrUeKf rKi

π
,                                                                     (9) 

where K = k' °  k0. The scattering amplitude is defined as the Fourier transformation of 

the scattering potential. Calculations have been made for the scattering amplitude by 
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functional forms for U(r) with the periodicity of the crystal lattice. Compared to 

dynamic approach, the kinematical treatment oversimplifies the diffraction by 

assuming that the wave function at the scatterer equals that of the incident plane wave. 

This assumption overlooks the mutual interaction between the crystal and the incident 

electron beam. 

       The dynamical theory is introduced to deal with the diffraction problem without 

the oversimplification of the kinematical theory. For electron scattering in a crystal, 

the wave within the crystal may be represented by a sum of plane waves 

'

0
)'()'( rik

N

l
l

lerr ⋅

=
∑= ψψ .                                                                                 (10)  

Substituting (10) into (7) and using the Laue condition, lkk l π20 =− , the scattering 

amplitude can be written as 

∑ ∫∑
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4
1)()( 0 πψ
π

.                           (11)  

To find the scattering amplitude, the integrals in equation (11) have to be solved. And 

the difficulty embedded in the integration often increases the complexity of the 

dynamical theory analyzing RHEED data.  

Starting from the Schrodinger equation:  

0)())(( 22 =++∇ rkr 0 ψU , 

where 0k  is the incident wave vector and the scaled lattice potential )(rU  equals 

)(2
2 rVme

h
, we consider only the elastic scattering for k'k0 = , where k'  is the 

scattered wave vector. The RHEED diffraction can be demonstrated as Fig. 3-3. For 

RHEED the Ewald sphere is large. For 20 keV the incident vector is 785 /nm, about 
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70 times of the reciprocal lattice unit of GaAs. The large radius of the Ewald sphere 

with the grazing angle justify the small angle approximation. 

 

 

 

Fig. 3-3. Ewald sphere construction and diffraction geometry of RHEED. 

Intensity maxima correspond to intersections of the Ewald sphere and the reciprocal 

lattice. 

 

To get an estimated scattering cross-section, one considers the potential of a 

single atom with Thomas-Fermi screening: 

)exp(
4

)(
0

2

a
r

r
ZerV −=
πε

,                                          (12) 

where the screening length a is defined as 
32

2
04

Zme
hπε

 with Z, the atomic number of 

the atom and 0ε , the vacuum permittivity. For the Born approximation the total 

cross-section will be 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 34 

14)4(
16

22

42

2
0

4

42

+
=

ak
aZem

πε
π

σ
h

.                                         (13) 

From estimation of real cases, the cross section area is too small for the kinematic 

theories to fully account for the diffraction. Multiple scattering is highly possible in 

all cases. On the other hand, due to the simplicity of the kinematical treatments, single 

scattering is still the main consideration in modeling RHEED diffraction. 

A typical diffraction pattern consists of Bragg reflection spots, streaks, Kikuchi 

lines as well as shadow edges. The Bragg reflection spots can be constructed by 

intersecting Ewald sphere with the radius of incident wave vector and the reciprocal 

lattice rods. These spots lie on an arc known as the Laue zone. Streaks are formed by 

the momentum distribution of electrons, instrumental reasons and surface morphology. 

For disordered surfaces the lateral disorder is associated with a broadening of the 

reciprocal lattice rods. Kikuchi lines resulted from the diffraction of electrons which 

have been scattered during entering the solid. In the k space, the reciprocal lattices of 

a 3D crystal form a group of dots. Due to the nature of a perfect 2D plane, the 

reciprocal lattices become rods as shown in Fig. 3-4. 

 

 

Fig. 3-4. RHEED diffraction on surfaces with different flatness. 
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3-2  Laser Ablation Epitaxy Layer Growth and RHEED Oscillation 

 

Our laser depositing system consists of a KrF excimer laser with a pulse duration 

of 30 ns operating mainly at the repetition rate range of 1-5 Hz. The target was a 

single crystalline disk of SrTiO3. The typical energy density was 2 Joule/cm2. 

STO(100) substrates were attached to a plate stage with resistive heating coil. The 

films were deposited at various temperatures by adjusting the current applied to the 

resistive heating block under the oxygen partial pressure of 4105 −×  Torr. The 

system schematics is as shown in Fig. 3-5. 

 

 

 

Fig. 3-5. RHEED in-situ monitored pause laser deposition system. 

 

During the deposition or anneal processes, the intensity of the RHEED specular 

beam was monitored by RHEED. A 20 keV electron beam was ejected along the 

surface of STO substrate with a grazing angle of 0.7 degree. With a de Broglie 

wavelength of about 0.86 A , the grazing electron beam is slightly off-Bragg condition 
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and the RHEED intensity is expected to be most sensitive to the step edges on the 

surface[6]. 

Fig. 3-6 shows a group of oscillations of the RHEED specular reflections as a 

function of temperature for the homoepitaxial STO films grown on stepped 

substrates[14].  

 

 

 
Fig. 3-6. RHEED oscillation for STO deposition on stepped substrates. 

 

One notices in Fig. 3-6 the amplitude and periodicity of the oscillations change 

with the deposition temperature. Since, in all cases the repetition rate (1 Hz) and 

energy density (2 J/cm2) of the laser were kept unchanged, the amount of material 

contained in the plume of every laser pulse should be approximately the same. As a 

result, a fixed oscillation periodicity is expected for a strict layer-by-layer growth. 
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Alternatively, the undamped RHEED oscillations can occur as a result of changing 

step density distribution, while damping results from increasing contribution of third 

level[15,16]. 

In this scenario, the lack of oscillation at low temperatures can be understood as a 

consequence of low diffusivity. It not only hinders the coalescence between 

nuclei but also distributes steps over multiple layers. At higher temperatures, the 

enhanced diffusivity helps the redistribution of the surface steps, leading to the 

oscillatory behavior of RHEED intensity. This explains the temperature dependence 

of the emergence as well as the amplitude and periodicity of the RHEED intensity 

oscillations observed. 
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3-3  RHEED Intensity Oscillation and Step Edge Evolution of Epitaxy Deposition 

and Diffusion Competition 

 

The RHEED intensity oscillation can be deemed as resulted from a competition 

between the source material adsorption and surface diffusion. For a substrate with 

step structure, this competition scenario has been reported to provide a method to 

extract valuable kinetic information from the RHEED intensity[17]. 

 
Fig. 3-7. Competition between deposition and diffusion in RHEED intensity 

oscillation of the Epitaxy growth of a stepped film[17]. 

 

When the deposition adsorption is faster than the diffusion of adatoms, the diffusion 

length λ  will be less than the step distance l and there will be oscillation in the 

RHEED intensity, as shown in the lower part of Fig. 3-7. On the other hand, if the 

diffusion rate is increased as in the higher temperature condition, the adatoms have 
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enough time to move to step edges and the growth appears as a step flow mode with 

the RHEED intensity kept unchanged as shown in the upper figure. 

This temperature dependence of the competition has been used to determine the 

diffusion length as 590竡C shown in Fig. 3-8. 

 

 
Fig. 3-8. RHEED intensity oscillation appears when the epitaxy growth changes from 

the step flow mode to layer-by-layer mode as the temperature decrease. A threshold 

temperature can be obtained to determine the diffusion length for the stepped 

substrate. 

 

Further from the dependence of the threshold temperature on the deposition rate, 

Neave et. al. obtained the diffusion coefficient and the activation energy of the 

)( l=λ
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Epitaxial growth. 

To investigate the competing deposition and diffusion of the layer by layer growth 

as well as the RHEED oscillation, a series of RHEED intensity monitored deposition 

and annealing have been conducted separately on STO films. Before introducing the 

results of the diffusion kinetics, we review first an important result of the laser 

deposition of STO films monitored by RHEED. 

Although the application of RHEED in Epitaxy growth has been shown successful, 

the detailed diffraction mechanism has yet to be concluded. In principle the higher 

intensity represents a smoother plane and the low intensity represents a rougher 

surface, there are still two theories under debate. According to a two layer interference 

picture, the topmost surface coverage can be equalized to the RHEED intensity[18]. 

Another diffraction mechanism related reciprocally the RHEED intensity to the step 

edge density[19]. From the evidences currently available, neither theory can claim to 

be a complete solution for all the material conditions. For example, the step edge 

density theory encountered challenge in the high density regime in which the RHEED 

intensity even evolves proportional to the edge density[20,21]. 

   During the study of RHEED oscillation, a series of the RHEED monitored 

interrupted laser deposition for the SrTiO3 film growth was conducted[22,23]. An 

evident result differentiating these two pictures was observed in a series of deposition 

and annealing experiments. 

 The as-polished STO sample was deposited by laser ablation with various 

repetition rate but same account of pulses during which the RHEED intensity 

oscillates to show layer growth. The RHEED intensity experienced a sudden drop 

each time the laser was turned on again after the same amount of deposition was 

interrupted and the sample was annealed for a same period of time. As shown in Fig. 

3-9. 
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Fig. 3-9. A series of deposition-annealing RHEED monitoring was conducted for the 
laser repetition rates from 1 Hz to 5 Hz. The deposited amounts of STO were 
estimated the same for each sudden drop at all the laser turn-on points with 14~17 
pulses respectively. 
 

Since the laser account was measured to be 14 to 17 for the RHEED intensity 

drops for all repetition rates from 1Hz to 5 Hz, the amount of materials deposited or 

the coverage of the surface should be approximately the same. However from the 

RHEED intensity drop data as shown in Fig. 3-10, the drop depth was proportional to 

the repetition rate.  
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Fig. 3-10. The RHEED intensity drops in Fig. 3-9. were found to increase with the 
increased laser repetition rate, suggesting step edge density accounts for the RHEED 
diffraction instead of topmost layer coverage which was kept unchanged for all 5 
repetition rate by the same total pulses. 
 
This proportionality implies that as the step edge density was increased by increasing 

the deposition rate as well as the number of islands formed under the assumption of 

monolayer deposition [24,25], the RHEED intensity dropped more. Therefore the 

density of one dimensional step edges, namely the edge dislocations or the screw 

dislocations, can be regarded as the key variable revealed by the RHEED intensity. 
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Chapter 4   RHEED Intensity Recovery and Activated Step Edge Diffusion 

     

RHEED has been proved to be one of the most valuable tools to monitor and 

control the Epitaxy thin film growth[1-3]. During the layer by layer growth, RHEED 

intensity was found to oscillate with a period synchronized to the number of growing 

layers[2]. 

In the previous chapter we introduced the deposition and diffusion competition 

picture for layer by layer growth with the oscillating RHEED intensity. We also 

reviewed the dislocation density interpretation of RHEED intensity obtained from the 

results of RHEED monitored laser deposition, which results in the decreasing 

intensity of a RHEED oscillation. In this chapter we report the analyses on the 

RHEED intensity evolutions in annealing experiments for the diffusion characteristics 

which contributes to the surface smoothening and the increasing intensity in the 

RHEED intensity. 
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4-1  Thermally activated kinetics--Arrhenius plot and Kissinger plot 

    

During the analysis of the diffusion characteristics in annealing experiments, we 

obtained two activation energies from the RHEED data by utilizing two kinetic 

methods. One is the Arrhenius method of isothermal annealing, the other is the 

Kissinger method of constant heating rate annealing. Both approaches can provide the 

activation energy through a logarithmic plot with respect to temperature. We review 

these two kinetic methods first. 

   The Arrhenius law states that at temperature T the molecules have energies 

according to a Boltzmann distribution, one expects the proportion of collisions with 

energy greater than bE  to vary with )exp(
Tk

E

B

b− . In terms of chemical reaction, the 

Arrhenius equation can be expressed as  

Tk
E

B

b

ek
−

=ν ,                                                       (1) 

where k  is defined as the rate constant, ν  is a pre-factor sometimes called the 

escape frequency. This relation can be derived from a transition state theory as 

follows[4]. 

The transition state theory can be regarded as a near-equilibrium theory of 

non-equilibrium behavior. The first assumption of the theory is the low temperature 

criterion: TkE Bb >> . For example, at the temperature region of 1000K, the 

activation barrier should be much larger than 0.1 eV. This criterion keeps the escaped 

particles as a small portion of the system such that the distribution function of the 

system differs little from the equilibrium Maxwell Boltzmann distribution. The 

second assumption is that the thermodynamic equilibrium is applicable to both the 

reactants and the activated species. The third assumption is the so-called 
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Non-recrossing assumption. Barrier crossing is assumed as an irreversible one way 

process. 

For a N particle system, the partition function of a single particle can be expressed 

as 

∫ ∫
∞

∞−

∞

∞−
−−= dpdxxmp

h
Z )]()2/(exp[1 2 βφβ                             (2) 

where m is the mass, )(xφ  is the potential. The classical distribution function is 

given by 

)]()2/(exp[),( 2 xmp
hZ
Nxpf βφβ −−=                                (3)   

and ),( xpf  satisfies the normalization condition 

∫ ∫
∞

∞−

∞

∞−
= Ndpdxxpf ),( .                                           (4)  

The particle flux crossing the barrier is given by 

∫
∞

=
0

)0,()( dppf
m
pj .                                             (5) 

No-recrossing has been assumed by restricting the momentum integral to positive, the 

top of the barrier locates at x=0 and the distribution function at x=0 is 

)]2/(exp[)/()0,( 2 mpEhZNpf b ββ −−= .                             (6) 

The flux integral turns out to be  

)exp( bE
hZ

Nj β
β

−= .                                              (7) 

Finally we have the rate constant of the transition state theory: 

)exp(
Tk

Ek
B

b
N
j

TST −== ν ,                                           (8) 

where the ” escape frequency„  
β

ν
hZ

1
=  and β=

TkB

1 . 

Transition state theory is somehow based on contradictory assumptions. The 

equilibrium should not be valid everywhere owing to the velocity symmetry of the 

Maxwell-Boltzmann distribution. Therefore no net flux should be found anywhere. 
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TST is better thought of a limiting case of some more logical theories such as 

Kramers theory[5], which can be derived from a Fokker-Planck type theory of 

Brownian motion. Starting from the distribution function evolution of Klein-Kramers 

equation: 

2

2

')()('
p

fTkm
p
f

xx
f

pp
pf

x
f

m
p

t
f

B ∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂

∂
+

∂
∂

−=
∂
∂

γ
φφ

γ              (9) 

where m/' γγ ≡  and γ  represents the friction coefficient related to the diffusion 

coefficient D  by the Einstein relation 

γ/TkD B= ,                                                     (10) 

the Kramers theory at high damping limit arrived at an Arrhenius type rate constant of  

)exp(
Tk

Ek
B

b
Kh −=ν ,                                               (11) 

where the escape frequency is given by a combination of system parameters 

π
ωω

γ
ν

2'
1 0 b= .  

     

Another logarithmic plot of reciprocal temperature to obtain the activation 

energy is the Kissinger method[6]. The Kissinger equation can be expressed as 

)exp(2
pB

b

p Tk
E

T
aA −= ,                                             (12) 

where a  is the heating rate, pT  is the peak temperatures of differential enthalpy 

curves of different heating rates, bE  is the activation energy and A  is a constant. 

By linearly fitting )ln( 2
pT
a  versus 1/ pT  points for all differential enthalpy curves of 

different heating rates, the activation energy can be obtained from the slop of the 

logarithmic line. It was shown by Kissinger that for a reaction of the order n, the 

reaction rate being given by 

)exp()1(
Tk

ExA
dt
dx

B

bn −−= ,                                         (13) 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 49 

the reaction rate comes to a maximum during the constant rising of the temperature. 

Taking the time derivative of reaction rate equation (13) to be zero, one obtains the 

Kissinger equation (12). This equation has be generalized to solid state nucleation and 

growth reaction as well as the grain growth reaction[7], like the Arrhenius method. 

For a pure grain growth problem, the rate constant can be shown as 

)exp(
Tk

E
T

k
B

b−=
ν                                                  (14) 

or sometimes expressed as a simple Arrhenius type form with negligible incorrectness 

)exp(
Tk

Ek
B

b−=ν .                                                 (15) 

For the case in (14), it was shown that the Kissinger equation (12) should be rewritten 

as 

)exp(
pB

b

p Tk
E

T
aA −= .                                               (16) 

From calculation of experiment data however, the activation energies obtained from 

(12) or (16) differs not much. 
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4-2 Thermally Activated Step Edge Diffusion 

 

    The dislocation density picture of RHEED intensity provides not only a 

geometric measure of the surface morphology but also kinetic information such as 

diffusion characteristics. In our investigation on the in-situ RHEED monitoring the 

interrupted deposition recovery, we found that the deposition-interrupted 

time-annealing curves possess temperature dependent features. As shown in Fig. 4-1, 

for the interrupted RHEED oscillation, the annealing data in insets showed clear 

temperature dependence as enlarged in Fig. 4-2. 

 

 
 

Fig. 4-1. Time evolution of RHEED intensity from 500⣵Cto 740C. Layer by layer 

growth can be confirmed from the oscillation for all curves. The insets show recovery 

from near peak positions of oscillations. 
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The most intriguing fact is the monotonic temperature dependence of the curvatures. 

Double-logarithmic plot were checked for these curves as shown in Fig. 4-3. 
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Fig. 4-2. Enlarged time curves of RHEED intensity during the annealing after the 
interrupted depositions in Fig. 4-1. The curvatures show a monotonic increasing 
dependence on temperature. 
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From the apparent linearity observed in these curves, one finds certain power law 

embedded in the time annealing RHEED intensity. Although in earlier papers[8] the 

temporal behavior of the annealing recovery curves were analyzed by exponential 

functions with corresponding time constants, it turns out that power law especially 

quadratic power time dependence as fitted in Fig. 4-4 may provide even 

straightforward kinetic information for the interpretation of RHEED intensity. 
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Fig. 4-3. Double logarithmic plot of RHEED Intensity vs. anneal time for various 
temperatures. Except the first few seconds, all curves display clear linearity with 
a slope of 2 +/- 0.2 during most of annealing time. 
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In a RHEED intensity analysis of GaAs Epitaxy growth, Neave et. al.[9] 

developed a method for deciding the diffusion properties from the Einstein relation: 

Dtx 42 >=<                                                     (17) 

where >< 2x  represents the mean square displacement of adatom diffusion with the 

hopping time t and the diffusion coefficient D. The displacement was determined by 

the step separation of the substrate at temperature threshold between the step flow 

growth and the layer by layer growth. Diffusion time was calculated from the 

deposition rate. The activation energy was obtained from the Arrhenius plot by taking 

the temperature thresholds for various deposition rate. In such a kinetic study, the 
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700C: y = 423.95x + 762.16
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0

20000

40000

0 20 40 60

Anneal Time (Second)

 (A
rb

it
ra

ry
. 
U

n
it
)

740C 

700C 

660C 

620C 

580C 

2I

Fig. 4-4. RHEED Intensity Squared vs. annealing time for various temperatures. 
The inset shows perfect linear fittings of the curves. A monotonic dependence can 
be clearly seen. 
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RHEED intensity provided an indirect criterion to determine transition temperature of 

two different growth modes. 

    In our film annealing research, the time evolution of RHEED intensity was found 

to show quantitative dependence relation on temperature. If the complete 

condensation assumption is made, RHEED intensity would be directly proportional to 

the step migration velocity. And we tried to draw the Arrhenius plot for the RHEED 

intensity. The result was obtained with activation energy of 1.0 eV, as shown in Fig. 

4-5[10]. 

 
 

   Due to the undefined proportion factor between the step edge density and the 

RHEED intensity, the diffusion coefficients of corresponding temperatures would not 

be explicitly obtained. However the activation energy of the order of atomistic 

barriers suggests that under well-controlled diffraction condition and proper film 

environment, the RHEED intensity may directly provide useful information on kinetic 

analysis. 

y = -1.2095x + 18.614
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Fig. 4-5. Diffusion Arrhenius plot of )/ln( 2 tI ∆∆  vs. 1/T. Activation energy 
of 1.0 eV can be obtained. Combined with the step migration assumption, this 
energy level strongly suggests that certain atomistic barrier-crossing 
mechanism can be revealed directly from RHEED monitoring. 
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   In summary, following the step edge model we conducted a series of in-situ 

RHEED intensity investigations on the interrupted deposition of STO epitaxial films. 

Recovery of the RHEED intensity at various temperatures provided kinetic 

information for the grain boundary dislocation diffusion, for which activation energy 

of 1.0 eV was obtained from the diffusion Arrhenius plot with the diffusion length 

assumed to be proportional to the RHEED intensity. 
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4-3  Temperature Dependence of RHEED Intensity and Langevin-like Model 

 

In the previous section we have obtained the activated diffusion characteristics 

from the study of constant temperature annealing on relatively flat STO epitaxial 

films. For investigating the high defect density limit, a series of in situ RHEED 

monitored rising temperature annealing experiments have been conducted on room 

temperature deposited films[11]. 

The STO thin films were grown on four different substrates at room temperature. 

The same amount material of STO by 500 laser pulses was deposited on each 

substrate, and then the different constant heating rates are used to anneal the films. All 

four curves of RHEED intensity immediately drop deeply and maintain the constant 

minimum value without oscillation till the time of the laser-off, as in Fig. 4-6. 

 
Fig. 4-6. RHEED intensity of annealed STO film with different heating rates. (1) for 

35䀍C/min, (2) for 25䀍C/min and (3)for 20䀍C/min. (4) experienced 25䀍C/min 

to 400䀍C, held for 60 seconds and then heated to 760䀍C with the rate 

15䀍C/min. 
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 The diffraction spots disappear very quickly when laser was turned on at room 

temperature revealing that the coverage of the growing surface is at a minimum value 

and/or small islands were distributed on the electron-diffracting plane. After the laser 

was turned off, the substrate heater is turned on and the substrate temperature was 

monotonically increased toward 760䀍C with different constant rising rates. 

    All RHEED intensities of the annealed films showed a sudden rise at a narrow 

temperature range starting from 660䀍C, as can be identified from the temperature 

curves of Fig. 4-7. 

 

 
 

Fig. 4-7. The temperature dependence of RHEED intensity rescaled from Fig. 4-6. 

 

This temperature annealing result revealed two significant features. First to be 

noticed is the temperature threshold for the sudden appearance of the RHEED. The 

other is the following decay of the rising rate of RHEED. For more information on the 
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rising intensity, the first order temperature derivative curves can be drawn as shown in 

Fig. 4-8. 

 

 

Fig. 4-8. Temperature dependence curves of the derivative RHEED intensity of 

different heating rates. Peak temperatures can be obtained as 693䀍C, 691䀍C, 682䀍C 

and 681䀍C for heating rates of 35, 25, 20 and 15䀍C/min respectively. 

 

We noticed a differential thermal analysis method for calculating activation 

energy from the peak shift of different heating rate was originally developed by 

Kissinger[6]. By designating the heating rate as a , the peak temperature of the 

differential intensity as pT , an activation energy can be obtained from the product of 

the gas constant and the slop of the Kissinger plot of )/ln( 2
pTa  versus pT/1  if we 

take the temperature annealing RHEED intensity as the reaction variable considered 

in Kissingerés DTA method. From the Kissinger plot of peak temperature shift, the 

activation energy of 4 eV is obtained.  

This activation energy is apparently higher than the activation energy of the 
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diffusion barrier of the smooth films with dilute defects. We may consider another 

mechanism for this abrupt smoothening phenomenon. The larger activation energy 

suggests that there are two different energy barriers during the interrupted deposition. 

The first one with higher activation energy of 4 eV may be attributed to certain 

smoothening transition of high dislocation density. The second mechanism with 

energy barrier of 1 eV can be considered as the evolution of isolated dislocation at 

low defect density. 

 
Fig. 4-9. Kissinger plot from the differential RHEED intensity of heating rates of 35, 

25, 20 and 15䀍C/min respectively. From multiplying the slop with the gas constant, 

approximately 4eV is obtained as the activation energy. 

 

 

To explain this RHEED-temperature annealing behavior, we can have two 

representations. First is from the surface morphology point of view. Considering the 

roughness of the room-temperature deposited film and the deep drops of the RHEED 

intensity when laser was on, the sudden recovery above 660䀍C apparently indicates a  

more efficient surface smoothening process. Ités likely this process is resulted from 

near interaction of dislocations in high defect density condition. While the lower 

activation energy result implies a gentle grain growth mechanism in a dilute defect 
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sample. The isolated islands coalescence through atomistic diffusion may be 

responsible for this stage of RHEED recovery. 

    Besides the geometrical interpretation of the temperature annealing behavior 

shown in Fig. 4-9 to Fig. 4-8, an averaged dynamic model of Langevin equation like 

formulism has also been considered[11]. 

    We chose to start from an averaged equation of motion of Langevin type for 

Brownian motion [See Appendix 2] 

)()()(
2

2

tF
dt

tdx
dt

txdm +−= ζ .                                

The force balance equation for the averaged displacement of the step edges can be 

assumed to be directly proportional to the RHEED intensity in the previous section: 

dFtxkv
dt

xdm −+−−= γβ2

2

                                         (18) 

or alternatively in the form of a 2D state flow: 

dt
xdv = ,                                                         (19) 

dFtxkv
dt
vdm −+−−= γβ  

where x  is defined as the averaged step edge displacement and the RHEED intensity, 

v  is the velocity, k represents a spring constant, β  represents the damping constant, 

dF  is defined as a dynamical friction force and tγ is postulated to measure the 

temperature dependent ” depinning„  force which obeys the linear temperature 

proportionality as a flux line in the 2D creep model of Anderson and Kim[12]. 

The model can schematically presented as Fig. 4-10. 
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Fig. 4-10. Schematics of the Langevin-like averaged equation of motion governing 

the step edge motion. 

 

    Qualitatively, below the temperature threshold or the initial stage of the time, one 

considers the step edges are pinned by a static friction force or the pinning force Fp, 

as shown in the upper part of the figure. Only above the critical temperature of about 

660䀍C when the thermally activated depinning force F(T)= tγ  becomes larger than the 

pinning force Fp, the model (19) or (20) can be simulated to show the averaged 

motion of the step edges. 

    One of the results displaying good agreement between the simulated and 

measured RHEED intensity derivatives is shown in Fig. 4-11. 
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Fig. 4-11. A simulated and measured RHEED intensity derivative vs. temperature for 

room temperature deposited films annealing. 
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     In summary, from a series of RHEED monitored constant temperature 

annealing for the STO laser ablated Epitaxial films, we obtained an effective 

activation energy of 1eV from the Arrhenius plot of RHEED intensity squared with 

respect to annealing time. For another series of annealing with rising temperature for 

room temperature deposited films, an effective energy of 4 eV can be obtained from 

the Kissinger plot of peak temperature of differential RHEED intensity with respect to 

heating rate. Within the experimental error, the former barrier can be attributed to the 

kink site removing barrier of Strontium oxide or Titanium oxide in poorly crystallized 

STO films. And the latter may be caused by diffusion of atomistic species on relative 

flat surface of Epitaxial STO films. Both activated kinetic characteristics shed light on 

the pinning potential of the diffusion of surface defect. A Langevin-like force balance 

model for the RHEED phase is discussed. Preliminary numerical simulated result can 

be fitted into observed data. Hopefully more detailed verification both theoretical and 

experimental can be made to develop a better model to quantitatively interpret the 

RHEED intensity and its oscillation during Epitaxy deposition. 
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Chapter 5   Concluding Remarks 
 

After reviewing the dissipated and driven nonlinear oscillation, a collective 

macroscopic quantum phase locking picture was suggested for the unifying 

framework of the devilés staircase fractal structure of driven Josephson oscillation and 

the quantized Hall effects. 

A direct proportionality between the interrupted RHEED intensity oscillation and 

the averaged defect length has been proposed to describe the kinetic characteristics of 

the thermally activated diffusion of laser ablated Epitaxial film growth. 

In the first part of the dissertation, the macroscopic Josephson voltage frequency 

relation has been considered as a de Broglie energy frequency relation. Focusing on 

the dissipative phase locking mechanism, the discrete time nonlinear dynamical 

system formulated by the Resistively and Capacitively Shunted Junction model was 

pointed out as a candidate capable of connecting the driven Josephson ac effect and 

the Quantized Hall effects. The macroscopic phase-locking quantization scenario is 

suggested to provide a common dynamic framework with a fractal Hall curve for 

IQHE and FQHE. 

    In the second part of the dissertation, while examining the oscillating RHEED 

intensity we find the first time that the thermally activated diffusion kinetics can be 

characterized directly by the RHEED intensity.  

The Arrhenius plot from the interrupted deposition RHEED intensity recovery 

for the epitaxial films provided the activation energy of 1 eV of isolated line defect 

evolution and atomistic diffusion for the flat film corresponding the oscillation peaks 

of RHEED intensity. The Kissinger plot of RHEED intensity of annealing with 

different constant heating rate was drawn for room temperature deposited films. The 

activation energy of 4 eV obtained from the Kissinger plot suggested an abrupt 
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smoothening behavior in poorly crystallized STO films, which may be related to the 

island coalescence corresponding to the bottoms of a RHEED oscillation.  

From the diffusion point of view, a Langevin-like averaged force equation is 

reviewed for modeling the depinning-like behavior of the annealing experiments. One 

of the inspiring concepts capable of bridging the gap between the macroscopic 

oscillatory behavior, quantum or classical, and microscopic particles may be found in 

the ” order parameter„ . In the collective quantum oscillation displayed by the RCSJ 

equation, the condensed phase can be considered as a thermodynamic 

Ginzberg-Landau order parameter as well as a quantum dynamical variable. In the 

thermally activated dislocation evolution problem, the defect length or the diffusion 

displacement may be regarded as playing a similar role in the Langevin force 

balanced equation. 
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Appendix:   

 

1. Nonlinear Oscillation and Phase Space Evolution 

 

A nonlinear oscillator is described typically in the form of a second order 

ordinary differential equation such as 

)(,sin32
0 dt

dtfxxxx =⋅=+++ ωβωα &&&                                (1) 

which is the well-known Duffing oscillator[1] with β  defining the strength of the 

nonlinearity. In the undamped )0( =α  and unforced )0( =f  situation, the equation 

can be solved analytically with the Jacobian elliptic functions. For instance, when 

0,02
0 >> βω  the solution can be exactly expressed as: 

,)( ),(cn)( 22
0 AtAtx βωϖϖ +==                                   (2) 

where cn represents the Jacobian elliptic function. The periodic variation of x with 

respect to time can be seen from Fig. A-1. 

 

 

Fig. A-1. Analytical time evolution of the Duffing equation without damping and 

driven force.                           
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One can alternatively present the solution in the form of phase portrait, as Fig. A-2. 

 

 

                       
Fig. A-2. The phase portrait representation of the solution (2) of Duffing equation. 

 

 

In the parameter region of 0>α , the damped oscillation can be illustrated by a 

inwardly spiraling trajectory in the phase portrait as shown in Fig. A-3. 

With the nonlinearity from the cubic term 3xβ  in equation (1), the Duffing 

oscillator displays qualitatively different features compared to the linear case with 

0=β . For example, Fig. A-4. shows a typical resonance curve of small nonlinearity. 
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Fig. A-3. The phase portrait of the damped Duffing oscillation. 

 

 

 

Fig. A-4. Resonance curve of the Duffing oscillator with small nonlinearity. 
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The key feature different from the linear case can be seen from the bell-shaped 

curve with asymmetry. This asymmetry directly results in the discontinuous jump and 

hysteresis. Starting from the point Qé, the oscillation amplitude increases gradually 

with the increasing frequency of the driving force just like in a linear system. When it 

arrives at the peak P however, the amplitude suddenly drops to Pé under a small 

increase in the driving frequency. The similar situation happens during the frequency 

decreasing from the point Q to Qé.  

    This example analytically demonstrates only a part of basic nonlinear dynamical 

behaviors. In general this equation is not exactly solvable. Numerical integration 

armed with high speed computing is capable of exploring a much richer variety of 

nonlinear phenomena. These phenomena can be analyzed through the following non 

analytical tools: 

1. Trajectory plot: the plot of x(t). 

2. Phase portrait: the 2D projection of the trajectories in the ),( xx &  phase plane. 

Periodicity can be directly identified from this representation. 

3. Poincare map: for driven non-autonomous system, the map is the stroboscopic or 

the snap-shot portrait of the phase space trajectories at every period of the driving 

force. Periodic solution will be revealed by finite number of points in this 

sectioning map, while complex or chaotic behavior can appear as a fractal 

attractor. 

4. Bifurcation diagram: the sectioned state point value versus a control parameter. 

Can be used to reveal the period doubling or other bifurcation routes from 

periodic to chaotic region. 

5. Lyapunov exponent: the exponential measure of attraction or separation with 

respect to time of two adjacent trajectories in phase space. 
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A non-autonomous driven second order equation of motion as (1) can be rewritten as 

a set of three first order equations: 

.
sin

,
32

0

ω
βωα

=
+−−−=

=

z
zfxxyy

yx

&

&

&

                                    (3) 

This phase evolution expression of the three dimensional dynamical system can be 

regarded as the ” cleanest form„  of the periodically driven oscillation, linear or 

nonlinear. A stroboscopic Poincare section can reveal all kinds of the permanent or 

asymptotic behaviors in this system. 

The steady states appear in the sectioned 2D phase space consists of: 

(a) Fixed point: represents the fixed state remains unchanged as time evolves. 

(b) Period response including subharmonic and superharmonic response: solutions 

resonating with the driving force by an integer or fractional frequency ratio. 

(c) Quasiperiodic: solutions made up with periodic components of incommensurable 

fundamental frequencies, i.e., irrational frequency ratio. 

(d) Chaotic response: phase points evolve more and more distant from each other 

exponentially with respect to time, final condition is always sensitively 

dependent on initial condition. 

Typical examples of these situations can be found in Fig. A-5. 
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Fig. A-5. Stroboscopically sectioned phase portraits of the dynamical state evolution: 

(a) fixed state, (b) periodic state, (c) quasiperiodic state and (d) chaotic state. 
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2. Surface Diffusion and Brownian Motion Modeled by Langevin Equation 

    

Diffusion on the solid surface has been attracting attention since the early 

development of molecular beam epitaxy technology[2]. The diffusion coefficient SD  

of an atom on a solid surface may be defined as  

>−=< 2)0()(2 rrmDs ττ ,                                 (1) 

where m is the space dimensionality of the migration, τ  the time period of 

observations and r the position vector of the adatom. The average is taken from 

repeated observations of the same time period τ . 

The average number of jumps in a time period is traditionally written as the 

Arrhenius equation: 

)/exp(0 kTEN d−= τν ,                                   (2) 

0ν  is the effective frequency factor of the atomic jumps and dE  is the activation 

energy of surface diffusion or the barrier height of the atomic jumps. Assuming the 

adatoms move according to the nearest neighbor random walks, the mean square 

displacement can be proved to follow the famous relation: 

22)( Nlx >=∆< ,                                           (3) 

where l is the nearest-neighbor distance. From equations (1), (2) and (3) we have 

)/exp(
2

)(
0

2

kTED
m
rD ds −=

>∆<
=

τ
,                           (4) 

where mlD 2/2
00 ν= . It is therefore clear that one can obtain the diffusion 

coefficient and the activation energy by equation (4) as long as the mean square 

displacement and the hopping time were measured. This formulism is a typical 

method to get the activation energy of atomistic diffusion barriers. 
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There are several approaches to get the result of equation (1), which correlates the 

macroscopic transport quantity, i.e., diffusion coefficient, with the averaged 

microscopic dynamic quantity hopping time and length. The Langevin Equation 

provided an intuitive picture to model the random walk of atoms[3]. 

    The force equation of a Brownian particle can be written as 

)()()(
2

2

tF
dt

tdx
dt

txdm +−= ζ ,                                 (5)  

where ζ  represents the dissipation or the viscous interaction in a fluid and the F(t) 

defines the random force of the environment. Langevin transformed the stochastic 

equation into an analytically solvable problem by starting with multiplying (5) with x: 

xtFxxxxm )(+−= &&& ζ .                                       (6) 

Considering 

),(
2
1 2x

dt
dxx =&                                             (7) 

and 

2
2

))((
2
1 x

dt
xd

dt
dxx &&& −= ,                                     (8) 

he obtained 

xtF
dt

dxxm
dt

dx
dt
dm )(
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2
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& .                          (9) 

This equation describes a single Brownian particle. Taking an ensemble average for 

the equation of motion, we have 

xtF
dt
xdxm

dt
xd

dt
dm )(

2
)(

2

2
2

2

+−=−
ζ

& .                        (10) 

Besides the mean square displacement 2x , the averaged multiplication of the random 

force and the displacement xtF )(  is assumed to vanish since the irregular motion is 

uncorrelated to the displacement. If the maxwellian distribution is assumed to be 
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applied, the second averaged kinetic energy term of (10) can be replaced by 

equipartition relation  

kTxm
2
1

2
1 2 =&                                           (10a) 

and the averaged equation of motion can be rewritten as 

kT
dt
xd

dt
xd

dt
dm

=+
22

2
)(

2
ζ .                                (11) 

If a new variable u is defined as 

u
dt
xd

=
2

,                                              (12) 

the equation is reformed as 

 kTu
dt
dum

=+
22
ζ .                                       (13) 

The analytical solution can be expressed as 

tmCekTu )/(2 ζ

ζ
−+= .                                      (14) 

When the time scale is large compared to the ratio ζ/m , or the inertia of the 

Brownian particle can be ignored, the solution can be further reduced to 

ζ
kT

dt
xdu 22

== .                                         (15)  

Or represented in an integrated form as 

tkTxx
ζ

22
0

2 =−                                          (16) 

or 

tkTx
ζ

2)( 2 =∆ .                                           (17) 

One can easily obtain the space-time relation for random walk (1) simply defines 

mDkT
=

ζ
                                               (18) 

where m represents the space dimensionality of the diffusion and D the diffusion 

coefficient. 
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