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Abstract

Neutrino astronomy is currently a subject of great interest, promising to

expand our observational range of the Universe. Therefore, in this thesis, we

discuss some interesting topics in tau neutrino astronomy. In the first part of

this thesis, we present a semi-analytic calculation of the tau-lepton flux emerging

from the Earth induced by incident high energy neutrinos interacting inside the

Earth for 105 ≤ Eν/GeV ≤ 1010. We obtain results for the energy dependence

of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the

neutrino-nucleon charged-current scattering as well as the resonantν̄ee
− scatter-

ing. We illustrate our results for several anticipated high energy astrophysical

neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and

the Greisen-Zatsepin-Kuzmin neutrino fluxes. In the second part of this thesis,

we point out the opportunity of the tau neutrino astronomy for neutrino ener-

gies of the order 1 to 104 GeV’s. In this energy range, it is demonstrated that

the flavor dependence in the background atmospheric neutrino flux leads to the

drastically different prospects between the observation of astrophysical muon

neutrinos and that of astrophysical tau neutrinos. Taking the galactic-plane

neutrino flux as the targeted astrophysical source, we found that the galactic-

plane tau neutrino flux dominates over the atmospheric tau neutrino flux for

E ≥ 10 GeV. Hence, the galactic-plane can in principle be seen through tau neu-

trinos with energies greater than 10 GeV, but the galactic-plane muon neutrino

flux is overwhelmed by its atmospheric background until E ≥ 106 GeV.
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Chapter 1

Introduction

Neutrino astronomy is currently a subject of great interest, promising to expand

our observational range of the Universe. The high-energy neutrinos (Eν > 103

GeV) may carry information from the sources of the highest energy phenomena

ever observed in cosmic rays, possibly coming from active galactic nuclei (AGN)

or gamma ray bursts (GRB). They may probe the early stages of the Universe

at its farthest distances. In addition, they will contribute to the search of

weakly interacting massive particles (WIMP), supernova explosions, monopoles,

besides the discovery potential for new physics. Therefore, detecting high energy

neutrinos is important to identify the extreme energy sources in the Universe,

and possibly to unveil the puzzle of cosmic rays with energy above the GZK

cutoff [1].

There are two different strategies to detect the footprints of high energy

neutrinos. The first strategy is implemented by installing detectors in a large

volume of ice or water where most of the scatterings between the candidate

neutrinos and nucleons occur essentially inside the detector, whereas the sec-

ond strategy aims at detecting the air showers caused by the charged leptons

produced by the neutrino-nucleon scatterings taking place inside the Earth or

in the air, far away from the instrumented volume of the detector. The latter

strategy thus include the possibility of detection of quasi horizontal incident
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neutrinos which are also referred to as the Earth-skimming neutrinos. These

neutrinos are considered to interact below the horizon of an Earth based surface

detector.

The second strategy has been proposed in 2002 [2]. The Pierre Auger ob-

servatory group has simulated the anticipated detection of the air-showers from

the decays of τ leptons [3]. The tau air-shower event rates resulting from the

Earth-skimming tau neutrinos for different high energy neutrino telescopes are

given in [4]. A Monte-Carlo study of tau air-shower event rate was also reported

[5]. We note that Ref. [4] does not consider the tau-lepton energy distribution

in the ντ -nucleon scattering, and only the incident tau neutrinos with energies

greater than 108 GeV are considered. For Ref. [5], we note that only the sum of

tau air-shower event rates arising from different directions is given. Hence some

of the events may be due to tau-leptons/neutrinos traversing a large distance.

As a result, it is not possible to identify the source of tau-neutrino flux even with

the observation of tau-lepton induced air-shower. In Chap. 2, we will concen-

trate on the high energy Earth-skimming neutrinos for 105 ≤ Eν/GeV ≤ 1010

and shall calculate the energy spectrum of their induced tau-leptons, taking into

account the inelasticity of neutrino-nucleon scatterings and the tau-lepton

energy loss in detail [6]. Our work differs from Ref. [5] by our emphasis on the

Earth-skimming neutrinos. We shall present our results in the form of outgoing

tau-lepton spectra for different distances inside the rock, instead of integrating

the energy spectra. As will be demonstrated, such spectra are insensitive to

the distances traversed by the Earth-skimming ντ and τ . They are essentially

determined by the tau lepton range. Because of this characteristic feature, our

results are useful for setting up simulations with specifically chosen air-shower

content detection strategy, such as detection of the Cherenkov radiation or the

air fluorescence. Our results are also useful for the coherent Cherenkov radio

emission measurement detectors such as the Radio Ice Cherenkov Experiment

(RICE) [7] and the Antarctic Impulsive Transient Array (ANITA) [8].
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Besides studying high energy tau neutrinos, this thesis also point out the

opportunity of tau neutrino astronomy for neutrino energies of the order 10

GeV to 103 GeV [9]. It is understood that the importance of observing ντ

is twofold. First, seeing the ντ confirms the atmospheric νµ → ντ oscillation

scenario which is so far established only by the νµ disappearance measurement

[32]. Second, since the atmospheric ντ flux is generally suppressed as compared

to the atmospheric νµ flux, the prospective observation of the astrophysical ντ

suffers much less background than in the νµ case. In Chap. 3, we shall address

the second point. In the GeV to TeV energy range, the intrinsic tau neutrino

production is suppressed relative to the intrinsic muon neutrino production.

Any sizable tau neutrino flux must arise due to the νµ → ντ neutrino oscilla-

tions only. It is demonstrated that, in the presence of the neutrino oscillations,

consideration of the neutrino flavor dependence in the background atmospheric

neutrino flux leads to the drastically different prospects between the observation

of the astrophysical tau neutrinos and that of the astrophysical muon neutrinos.

Taking the galactic-plane neutrino flux as the targeted astrophysical source, we

have found that the galactic-plane tau neutrino flux dominates over the at-

mospheric tau neutrino flux for E ≥ 10 GeV. Hence, the galactic-plane can in

principle be seen through the tau neutrinos with energies just greater than 10

GeV. In a sharp contrast, the galactic-plane muon neutrino flux is overwhelmed

by its atmospheric background until the energy of 106 GeV.

We present our conclusion in Chap. 4, while some technical details are dis-

cussed in Appendix A.

3



Chapter 2

Earth-Skimming Tau
Neutrinos and the Induced
Tau-Lepton Spectrum

2.1 Tau-Lepton Energy Spectrum

The evolution of various fluxes in the medium is governed by the transport equa-

tions. Taking into account only the neutrino-nucleon scatterings, the transport

equations for tau neutrinos and tau leptons are

∂Fντ
(E,X)

∂X
= −Fντ

(E, X)
λντ

(E)
+ nN

3∑

i=1

∫ yi
max

yi
min

dy

1− y
Fi(Ey, X)

dσi
ν

dy
(y,Ey), (2.1)

and

∂Fτ (E, X)
∂X

= −Fτ (E, X)
λcc

τ (E)
− Fτ (E,X)

ρdτ (E)
+

∂ [(α(E) + β(E)E)Fτ (E, X)]
∂E

+ nN

∫ ymax

ymin

dy

1− y
Fντ (Ey, X)

dσντ N→τY

dy
(y,Ey), (2.2)

where nN the number of target nucleons per unit medium mass, and ρ is the

mass density of the medium. The σ1,2,3
ν are defined as σ(ντ + N → ντ + Y ),

Γ(τ → ντ + Y )/cρnN , and σ(τ + N → ντ + Y ) respectively. The quantity X

represents the slant depth traversed by the particles, i.e., the amount of medium

per unit area traversed by the particle (and thus in units of g/cm2). The λν ,
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dτ , and λCC
τ represent the ντ interaction thickness, the tau-lepton decay length,

and the tau-lepton charged-current interaction thickness respectively, with, say,

λ−1
ν = nNσνN and dτ = cττE/mτ . The Ey is equal to E/(1 − y), where

y is the inelasticity of neutrino-nucleon scatterings, such that the initial and

final-state particle energies in the differential cross sections dσi
ν(y,Ey)/dy and

dσντ N→τY (y, Ey)/dy are E/(1 − y) and E respectively. The limits for y, yi
min

and yi
max depend on the kinematics of each process. Finally, the energy-loss

coefficients α(E) and β(E) are defined by −dE/dX = α(E) + β(E)E with E

the energy being the tau lepton. An equation similar to Eq. (2.2) in the context

of atmospheric muons was found in Ref. [10].

It is important to know the energy-loss coefficients α(E) and β(E). As

mentioned before [11], the coefficient α(E) is due to the energy loss by the

ionization [49], while β(E) is contributed by the bremsstrahlung [13], the e+e−

pair production [14] and the photo-nuclear processes [11, 15]. It is understood

that the contribution by α(E) becomes unimportant for E ≥ 105 GeV. The

coefficient β(E) can be parameterized as β(E) = (1.6 + 6(E/109GeV)0.2) ×
10−7g−1cm2 in the standard rock for 105 ≤ E/GeV ≤ 1012.

Before calculating the tau-lepton flux, we want to check the tau-lepton range

given by our semi-analytic approach. To do this, we rewrite Eq. (2.2) by drop-

ping the neutrino term, i.e.,

∂Fτ (E, X)
∂X

= −Fτ (E, X)
λcc

τ (E)
− Fτ (E, X)

ρdτ (E)
+

∂ [γ(E)Fτ (E,X)]
∂E

, (2.3)

with γ(E) ≡ α(E) + β(E)E. One can easily solve it for Fτ (E,X):

Fτ (E, X) = Fτ (Ē, 0) exp

[∫ X

0

dT

(
γ′(Ē)− 1

ρdτ (Ē)
− 1

λcc
τ (Ē)

)]
, (2.4)

where Ē ≡ Ē(X; E) with dĒ/dX = γ(Ē) and Ē(0; E) = E. To calculate the

tau-lepton range, we substitute Fτ (E, 0) = δ(E −E0). The survival probability

P (E0, X) for a tau-lepton with an initial energy E0 at X = 0 is

P (E0, X) =
γ(Ẽ0)
γ(E0)

exp

[∫ X

0

dT

(
γ′(Ẽ0)− 1

ρdτ (Ẽ0)
− 1

λcc
τ (Ẽ0)

)]
, (2.5)
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where Ẽ0 ≡ Ẽ(X; E0) with dẼ0/dX = −γ(Ẽ0) and Ẽ0(0; E0) = E0. The

tau-lepton range is simply

Rτ (E0) =
∫ ∞

0

dXP (E0, X). (2.6)

For E0 = 109 GeV, we find that Rτ = 10.8 km in the standard rock (Z =

11, A = 22) while Rτ = 5.0 km in the iron. Both values are in good agreement

with those obtained by Monte-Carlo calculations [11]. To compare the tau-

lepton ranges, we have followed the convention in Ref. [11] by requiring the

final tau-lepton energy Ẽ(X;E0) to be greater than 50 GeV.

It is noteworthy that we obtain Rτ by using the continuous tau-lepton

energy-loss approach, rather than stochastic approach adopted in Ref. [11]. In

the muon case, the continuous approach to the muon energy loss is known to

overestimate the muon range [16]. Such an overestimate is not significant in

the tau-lepton case, because of the decay term in Eq. (2.5). In fact, tau lepton

decay term dictates the tau range in the rock until Eτ ≥ 107 GeV. Even for

Eτ > 107 GeV, the tau lepton range is still not entirely determined by the

tau-lepton energy loss. Hence different treatments on the tau-lepton energy loss

do not lead to large differences in the tau-lepton range, in contrast to the case

for the muon range. Our result for the tau-lepton range up to 1012 GeV are

plotted in Fig. 2.1. This is an extension of the result in Ref. [11], where the tau-

lepton range is calculated only up to 109 GeV. Our extension is seen explicitly

in the addition of charged-current scattering term on the R.H.S. of Eq. (2.3).

This term is necessary because 1/λCC
τ becomes comparable to 1/ρdτ in the

rock for E ≥ 1010 GeV; whereas one does not need to include the contribution

by the tau-lepton neutral-current scattering, since such a contribution can not

compete with the last term in Eq. (2.3) until E ≥ 1016 GeV [11]. We remark

that our extended results for Rτ are subject to the uncertainties of neutrino-

nucleon scattering cross section at high energies. We use the CTEQ6 parton

distribution functions [17] in this work, and at the high energy (the small x

region, namely for x < 10−6), we fit these parton distribution functions into the
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Figure 2.1: The tau-lepton range in rock and in water using Eq. [3.1] and the
tau-lepton decay length dτ in km as a function of tau-lepton energy in GeV.

form proportional to x−1.3 as a guide.

Having checked the tau-lepton range, we now turn to the case of tau-lepton

production by the ντ − N charged-current scattering. Once the incoming ντ

flux is given, the tau-lepton flux can be solved from Eqs. (2.1) and (2.2). The

ντ flux can be calculated by the following ansatz [18]:

Fντ
(E, X) = Fντ

(E, 0) exp
(
− X

Λν(E, X)

)
, (2.7)

where Λν(E, X) = λν(E)/ (1− Zν(E,X)), with the factor Zν(E, X) arising

from the regeneration effect of the ντ flux. On the other hand, the tau-lepton

7



flux is given by

Fτ (E, X) =
∫ X

0

dTGν(Ē, T )

× exp

[∫ X

T

dT ′
(

γ′(Ē)− 1
ρdτ (Ē)

− 1
λcc

τ (Ē)

)]
, (2.8)

with Ē ≡ Ē(X − T ; E), γ(E) ≡ α(E) + β(E)E, and

Gν(E,X) = nN

∫ ymax

ymin

dy

1− y
Fν(Ey, X)

dσντ N→τY

dy
(y, Ey). (2.9)

We can see that the factor Zν(E,X) enters into the expression for Fτ (E,X)

through the function Gν(E,X). Similarly, Zν(E, X) also depends on Fτ (E, X).

It is possible to solve for Zν(E, X) and Fτ (E,X) simultaneously by the iteration

method [18]. The details are given in Appendix A.

2.2 W Resonance Contributions

Let us now discuss the case of tau-lepton production by the Glashow resonance

[19, 20], namely, via ν̄ee
− → W → ν̄τ τ−, also. For the Glashow resonance, it is

well known that

σ(ν̄ee
− → W− → ν̄τ τ−) =

G2
F m4

W

3π
· s

(s−m2
W )2 + m2

W Γ2
W

, (2.10)

with s = 2meEν̄e
and 1/σ ·dσ/dz = 3(1−z)2, where z = Eτ/Eν̄e

.The transport

equation for ν̄e and tau leptons are then given by

∂Fν̄e
(E,X)
∂X

= −Fν̄e(E, X)
λν̄e(E)

+ nN

∫ ymax

ymin

dy

1− y
Fν̄e

(Ey, X)
dσν̄eN→ν̄eY

dy
(y,Ey), (2.11)

and

∂Fτ (E, X)
∂X

= −Fτ (E,X)
λcc

τ (E)
− Fτ (E,X)

ρdτ (E)

+ ne

∫ ymax

ymin

dy

1− y
Fν̄e

(Ey, X)
dσν̄ee−→ν̄τ τ−

dy
(y, Ey), (2.12)
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where ne is the number of target electrons per unit medium mass, and y is the

inelasticity of ν̄ee
− resonant scattering.

For solving the above coupled transport equations, we shall focus our at-

tention only on those ν̄e’s for which Eν̄e satisfies the resonance condition, i.e.,

Eν̄e ≈ ER ≡ m2
W /2me. It is clear from Eq. (2.12) that Fτ (E, X) only de-

pends on Fν̄e(ER, X), because of the narrow peak nature of ν̄ee
− scattering

cross section. One also expects that Fτ (E, X) is only significant for E around

the resonance energy ER. In this energy region, one may neglect the first term

on the R.H.S. of Eq. (2.12) in comparison with the second term.

We can simplify the last term in Eq. (2.12) by using

dσν̄ee−→ν̄τ τ−

dz
(z, E/z) =

m4
W G2

F

π

s(1− z)2

(s−m2
W )2 + m2

W Γ2
W

, (2.13)

with z = 1− y, and the narrow-width approximation

1
π

mW ΓW

(s−m2
W )2 + m2

W Γ2
W

≈ δ(s−m2
W ). (2.14)

Then arriving at

∂Fτ (E, X)
∂X

= −Fτ (E, X)
ρdτ (E)

+
1
3

(
1− E

ER

)2 (
πΓW

LRmW

)
Fν̄e

(ER, X), (2.15)

where ER = m2
W /2me is the ν̄e energy such that the W boson is produced on-

shell in the ν̄ee
− scattering. The LR ≡ 1/neσν̄ee−→W− is the interaction thick-

ness for such a scattering. To solve for Fτ (E,X), we need to input Fν̄e(ER, X).

Obviously, the ν̄e flux at the resonant-scattering energy ER is mainly attenuated

by the resonant scattering itself. Hence Fν̄e(ER, X) = exp(−X/LR)Fν̄e(ER, 0).

Substituting this result into Eq. (2.15), we obtain

Fτ (E,X) =
1
3

(
1− E

ER

)2 (
πΓW

LRmW

)
Fν̄e

(ER, 0) exp
(
− X

ρdτ (E)

)

×
∫ X

0

dZ exp
[(

1
ρdτ (E)

− 1
LR

)
Z

]
. (2.16)

The integration over Z can be easily performed. In practice, it is obvious that
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X À ρdτ (E). In this limit, we have

Fτ (E, X) =
π

3

(
1− E

ER

)2 (
ΓW

mW

) (
ρdτ (E)

LR

)
Fν̄e(ER, 0) exp

(
− X

LR

)
.(2.17)

Let us consider standard rock as the medium for ν̄ee
− scattering, we then have

ρ/LR = neρσν̄ee−→W− . Given σν̄ee−→W− = 4.8 · 10−31 cm2 at the W boson

mass peak, and neρ = 2.65× 6.0/2× 1023/cm3 in the standard rock, we obtain

ρ/LR = (26 km)−1. Furthermore, we can write dτ (E) = 49 km × (E/106GeV).

We then obtain the following ratio

Fτ (E, X)
Fν̄e(ER, 0)

= 3.3 · 10−4 ×
(

E

ER

)
×

(
1− E

ER

)2

× exp
(
− X

LR

)
. (2.18)

In water, the prefactor 3.3 · 10−4 becomes 1.4 · 10−4. It is to be noted that

E < ER in the above equation. We will see later that the contribution to

Fτ (E, X) by the W -resonance is negligible compared to that by the ντ − N

scattering.

2.3 The Results

In this section, we will present the tau-lepton energy spectrum induced by three

kinds of diffuse astrophysical neutrino fluxes: the AGN [21], GRB [22] and

GZK [23] neutrino fluxes. These three models show that: The pγ interactions

in cosmos will produce the intrinsic Fνµ
, and then Fντ

= 1/2 · Fνµ
because of

(two) neutrino flavor oscillations during propagation [24]. Our convention for

Fντ
is that Fντ

= dNντ
/d(log10 E) in the unit of cm−2 s−1 sr−1. The same

convention is used for the outgoing tau lepton fluxes. For completeness, let us

remark here that the upper bound on diffuse astrophysical Fνµ
(not Fντ

) from

the Antarctic Muon and Neutrino Detector Array (AMANDA) B10 is of the

order of ∼ 8.4 × 10−7 cm−2 s−1 sr−1 GeV for 6 × 103 ≤ Eν/GeV ≤ 106 [25].

This 90% classical confidence upper bound is mainly for upward going νµ with

E−2 energy spectrum and includes the systematic uncertainties. As far as the

AMANDA B10 upper bound on Fνµ is concerned, all three of our representative

10
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Figure 2.2: The tau-lepton energy spectrum induced by the AGN neutrinos in
rock for three different X/ρ ratio values (see text for more details). The incident
tau-neutrino flux is shown by the thin solid line.

neutrino flux models are clearly compatible with this upper bound within its

energy range.

Incorporating all the formulae above, we show in Fig. 2.2 the outgoing

tau-lepton energy spectra resulting from the propagation of incident AGN neu-

trinos inside the rock (ρ = 2.65 g/cm3) for X/ρ = 10 km, 100 km and 500 km

respectively. The noteworthy point is the fact that the tau-lepton energy spec-

tra remain almost unchanged for the above three different slant depths/matter

density ratio values. We can understand this feature by two simple facts. First,

the neutrino-nucleon charged-current interaction length, which is related to the

interaction thickness by λCC = ρlCC, is given by lCC = 2 · 104 km [(1 g/cm3/ρ)]

[Eν/(106 GeV)]−0.363. Secondly, the tau leptons, which eventually exit the

11



Earth, ought to be produced within a tau-lepton-range distance to the exit

point. For a tau-lepton produced far away from the exit point, it loses en-

ergy and decays before reaching to the exit point. Hence the tau-lepton flux

is primarily determined by the ratio of tau-lepton range to the charged cur-

rent neutrino-nucleon interaction length. The total slant depth X which the

tau-neutrino (tau-lepton) traverses inside the Earth is then unimportant, un-

less X is large enough such that the tau neutrino flux attenuates significantly

before tau-neutrino is converted into the tau-lepton. We note that the typ-

ical energy for the AGN neutrinos, in which this flux peaks, is between 105

and 108 GeV. The corresponding neutrino-nucleon neutral current interaction

length then ranges from 42, 000 km down to 3, 400 km, given lNC = 2.35 · lCC.

Hence, even for X/ρ as large as 500 km, the attenuation of the tau neutrino

flux is negligible. This explains the insensitivity of tau-lepton flux with respect

to our chosen X/ρ values for the AGN case. The situation is rather similar for

the tau-lepton flux resulting from the GRB tau neutrinos (see Fig. 2.3). On

the other hand, a slight suppression is found for the GZK case at Eτ > 109

GeV as one increases X/ρ from 10 km to 500 km (see Fig. 2.4). This is because

the typical GZK tau neutrino flux peaks for energy range between 107 and 1010

GeV, which corresponds to attenuation lengths ranging from 7, 800 km down to

640 km. One notices that 640 km is rather close to the distance 500 km which

we choose for X/ρ. Hence a slight suppression on the tau-lepton flux occurs for

X/ρ = 500 km.

After comparing our AGN-type tau-lepton flux with that obtained by Monte-

Carlo simulations which are adopting stochastic approach for the tau-lepton

energy loss [26], we find that these two tau-lepton fluxes agree within ∼ 10%.

This result is expected since the tau-lepton range obtained by the above two

approaches agree well, as mentioned before. It is easily seen from Figs. 2.2 - 2.4

that the AGN case has a largest tau-lepton flux between 106 and 108 GeV. Be-

cause the resonant ν̄e− e− scattering cross section peaks at Eν = 6.3 · 106 GeV,

12
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Figure 2.3: The tau-lepton energy spectrum induced by the GRB neutrinos in
rock for three different X/ρ ratio values (see text for more details). The incident
tau-neutrino flux is shown by the thin solid line.

it is interesting to compare the integrated tau-lepton flux arising from this scat-

tering to the one resulting from neutrino-nucleon scattering. For the resonant

ν̄e−e− scattering, we integrate the tau-lepton energy spectrum from 106 GeV to

6.3 · 106 GeV, and obtain ΦR
ν = 0.08 km−2sr−1yr−1. For neutrino-nucleon scat-

tering, we find that ΦCC
ν = 2.2 km−2sr−1yr−1 by integrating the corresponding

tau-lepton energy spectrum from 106 GeV to 107 GeV. The detailed results for

ΦCC
ν are summarized in Table 2.1. The entries in the Table entitled full are

obtained using the Fτ obtained in this work, whereas the approximated values

entitled approx are obtained by following the description given in Ref. [4], which

uses a constant β and a constant inelasticity coefficient for ντN scattering. We

remark that the authors in Ref. [4] have taken E to be greater than 108 GeV.
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Figure 2.4: The tau-lepton energy spectrum induced by the GZK neutrinos in
rock for three different X/ρ ratio values (see text for more details). The incident
tau-neutrino flux is shown by the thin solid line.

Hence the integrated fluxes in the column approx with energies less than 108

GeV are taken as extrapolations. Thus, one should compare the two integrated

fluxes only for E > 108 GeV. It is easily seen that the two integrated fluxes

seem to agree for E > 108 GeV. Besides the integrated fluxes for E > 108 GeV,

we also obtain integrated tau-lepton fluxes for 106 ≤ E/GeV ≤ 108. In this en-

ergy range, we can see that the integrated tau-lepton flux from Earth-skimming

AGN neutrinos is relatively significant .

In addition to the Earth, the tau-neutrino skims likely through a part of

the ocean before exiting the interaction region [27]. Hence, it is important

to compare the resulting tau-lepton fluxes as the tau neutrinos skim through

mediums with different densities, while the slant depths of mediums are held

14



Energy Interval AGN GRB
full approx full approx

106 ≤ E/GeV ≤ 107 2.23 2.12 9.63 · 10−3 1.05 · 10−2

107 ≤ E/GeV ≤ 108 4.89 5.12 7.12 · 10−3 6.82 · 10−3

108 ≤ E/GeV ≤ 109 1.95 · 10−1 1.52 · 10−1 5.39 · 10−4 4.63 · 10−4

109 ≤ E/GeV ≤ 1010 1.13 · 10−5 1.24 · 10−5

Energy Interval GZK
full approx

106 ≤ E/GeV ≤ 107 7.38 · 10−5 2.08 · 10−5

107 ≤ E/GeV ≤ 108 1.14 · 10−2 1.90 · 10−2

108 ≤ E/GeV ≤ 109 8.17 · 10−2 8.47 · 10−2

109 ≤ E/GeV ≤ 1010 3.31 · 10−2 3.52 · 10−2

Table 2.1: Comparison of the integrated tau-lepton flux (km−2yr−1sr−1) in
different energy bins for the AGN, the GRB and the GZK neutrinos without
and with approximation (see text for details). The distance traversed is taken
to be 10 km in rock here. For 109 ≤ E/GeV ≤ 1010, the incident AGN neutrino
flux is too small so that its induced tau-lepton flux is not shown.

fixed as an example. As pointed out before, the tau-lepton flux is essentially

determined by the probability of ντN charged-current interaction happening

within a tau-lepton range. Furthermore, from Fig. 2.1, it is clear that the tau-

lepton range equals to the tau-lepton decay length for Eτ less than 107 GeV.

One therefore expects F rock
τ (E, X)/Fwater

τ (E,X) = ρrock/ρwater for Eτ < 107

GeV. This is clearly seen to be the case from Fig. 2.5 and Fig. 2.6, as we

compare F rock
τ with Fwater

τ (E,X) for X = 2.65 · 106 g/cm2 and X = 2.65 · 107

g/cm2 respectively. For Eτ > 107 GeV, the tau-lepton range has additional

dependencies on the mass density and the atomic number of the medium. Hence

the ratio F rock
τ (E,X)/Fwater

τ (E, X) starts deviating from ρrock/ρwater. It is

worthwhile to mention that the tau-lepton flux ratios for AGN and GRB cases

behave rather similarly. On the other hand, the ratio in the GZK case has a

clear peak between 107.5 < E/GeV < 108.5. Such a peak is even more apparent

for the slant depth X = 2.65 ·107 g/cm2. The appearance of this peak has to do

with the relatively flat behavior of the incident GZK neutrino spectrum, while

the position of this peak is related to the energy dependencies of the tau-lepton
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Figure 2.5: The ratio of Fτ in rock and water induced by the AGN, the GRB
and the GZK neutrinos for X = 2.65 · 106 g/cm2.

range and the neutrino-nucleon scattering cross sections. We have confirmed

our observations by computing the flux ratios with simple power-law incident

tau-neutrino fluxes. The above peak in the tau-lepton flux ratio implies the

suppression of tau-lepton events from ocean-skimming neutrinos compared to

those from rock-skimming neutrinos. As stated earlier, the suppression of ocean-

skimming neutrinos is related to the spectral index of the incident neutrino flux.

It is therefore useful to perform a detailed simulation for it. Such a detailed

study is needed because the slant depths traversed by the above two kinds of

neutrinos are generally different.
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Figure 2.6: The ratio of Fτ in rock and water induced by the AGN, the GRB
and the GZK neutrinos for X = 2.65 · 107 g/cm2.

2.4 Prospects of possible observations

Because of the expected small flux of the above tau leptons, the detector need

the acceptance of the order of ∼ km2sr to observe. Concerning the tau-lepton

energy spectrum resulting from the AGN neutrinos, it peaks at around 107 to

108 GeV, which is below the threshold of a fluorescence detector, such as the

High Resolution Fly’s Eye (HiRes) [28]. Also, these tau leptons come near

horizontally. In a short time, it seems very difficult to construct a ground array

in vertical direction. A Cherenkov telescope seems to be a feasible solution. In

this context, NuTel collaboration is developing Cherenkov telescopes to detect

the Earth-skimming high energy neutrinos [27]. Nevertheless, because of the

small opening angle of Cherenkov light cone and only a 10% duty cycle (optical
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observations are limited to moonless and cloudless nights only), such a detector

must cover very large area and field of view. A potential site for NuTel is at

Hawaii Big Island, where two large volcanos, namely Mauna Loa and Mauna

Kea, could be favorable candidates for high energy neutrinos to interact with.

For a detector situated on top of Mount Hualalai and to look at both Mauna

Kea and Mauna Loa, the required angular field of view is 8 × 120. In addition,

this telescope should have an acceptance area larger than 2 km2sr so as to detect

more than one event per year.

Finally, Let us consider the GZK neutrinos. It is noteworthy that the recent

observation of ultra high energy cosmic rays by HiRes seem to be consistent with

the GZK cutoff. Hence a future observation of GZK tau neutrinos shall provide

a firm support to GZK cutoff. In particular, the slight pile up of tau leptons

between 108 GeV to 109 GeV, induced by the Earth-skimming high energy GZK

neutrinos, should be a candidate signature for GZK neutrinos. The integrated

tau-lepton flux in this energy range is approximately 0.08 km−2sr−1yr−1. To

detect one event per year from this flux, the acceptance of a detector must

be larger than 120 km2sr, for a fluorescence detector (assuming a duty cycle

of 10% ). Although HiRes can reach 1000 km2sr at energy > 3 · 109 GeV, it

would be a technical challenge to lower down the threshold to 108 GeV. Using

a system similar to HiRes, the Dual Imaging Cherenkov Experiment (DICE)

was able to detect Cherenkov light from extensive air-showers at energy as low

as 105 GeV [29]. However, the field of view of DICE is also quite small, and

thus several Cherenkov telescopes would be needed. An alternative method is

a hybrid detection of both Cherenkov and fluorescence photons [30]. That is, a

detector similar to HiRes, which looks at both land and sea and detects both

Cherenkov and fluorescence photons, may observe the associated signal of GZK

neutrinos.
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Chapter 3

Tau Neutrino Astronomy in
GeV Energies

One of the main motivations for the extra-terrestrial astronomy is to obtain

first evidence of tau neutrinos from the cosmos around us above the relatively

well known atmospheric neutrino background [31]. The intrinsic fluxes of astro-

physical tau neutrinos are generally suppressed compared to those of νe and νµ.

The reason for this flux-hierarchy is due to the production process for the astro-

physical neutrinos: p(γ) + p → hadrons → ν + X. Since the heavy hadrons that

eventually decay into tau neutrinos are not produced as copiously as the light

hadrons in the above collisions, the tau neutrino flux is therefore suppressed.

However, due to the neutrino mixing suggested by the high-statistics Super-

Kamiokande (SK) data, a non-negligible ντ flux is expected to reach the Earth.

A recent SK analysis of the atmospheric neutrino data implies the following

range of the neutrino mixing parameters [32]

∆m2
31 = (1.9− 3.0) · 10−3 eV2, sin2 2θ23 > 0.9. (3.1)

where ∆m2
31 is the difference in mass squared of the two neutrino mass eigen-

states and θ23 is the mixing angle. This is a 90% C.L. range with the best fit

values given by ∆m2
31 = 2.4 · 10−3 eV2 and sin2 2θ23 = 1 respectively.

It is to be noted that the tau neutrinos resulting from the above νµ → ντ
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oscillations are identified only on the statistical basis (rather than on the event

by event basis) [33]. On the other hand, the total number of observed non-tau

neutrinos from various detectors are already greater than ∼ 104 with energies

ranging from ∼ 10−1 GeV to ∼ 103 GeV [34]. It is essential to develop efficient

techniques for identifying tau neutrinos [24].

There are two important reasons for observing ντ . First, seeing ντ con-

firms the νµ → ντ oscillation interpretation for the atmospheric neutrino data.

Second, since the atmospheric ντ flux is generally suppressed compared to the

atmospheric νµ flux, the observation of astrophysical ντ suffers much less back-

ground than in the νµ case. In this chapter, we address the second point with

galactic-plane tau neutrinos as our illustrating astrophysical source. The idea

for such an investigation has appeared earlier in Ref. [35].

In the context of two neutrino flavors, νµ and ντ , the total tau neutrino flux

arriving at the detector on Earth, after traversing a distance L, is

φtot
ντ

(E) = P (E) · φνµ
(E) + (1− P (E)) · φντ

(E), (3.2)

where P (E) ≡ P (νµ → ντ ) = sin2 2θ23 · sin2(L/Losc) is the νµ → ντ oscillation

probability, assuming a vanishing θ13, with the neutrino oscillation length given

by Losc = 4E/∆m2
31.

For the sake of computing the total ντ flux from a given astrophysical site

(including the Earth atmosphere), we need to first compute the intrinsic νµ as

well as the intrinsic ντ flux from the same site.

3.1 Galactic-Plane Neutrino Flux

To calculate the intrinsic galactic-plane νµ and ντ fluxes, we consider the colli-

sions of incident cosmic-ray protons with the interstellar medium. The following

formula is used for computing the fluxes

φν(E) =
∫ ∞

E

dEp φp(Ep) f(Ep)
1

σpp(Ep)
dσpp→ν+Y (Ep, E)

dE
, (3.3)
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where Ep denotes the energy of the incident cosmic-ray proton, σpp is the total

inelastic cross section for pp scatterings and dσpp→ν+Y /dE is the ν energy spec-

trum in the pp collisions. The function f(Ep) is defined as f(Ep) ≡ R/λpp(Ep),

where λpp(Ep) =
(
np σpp(Ep)

)−1 is the pp interaction length and R is the typ-

ical distance in the galaxy along the galactic plane. The target particles are

taken to be protons with a constant number density np = 1 cm−3 and R is

taken to be ∼ 10 kpc, where 1 pc ' 3 × 1018 cm. The primary cosmic-ray

proton flux, φp(Ep) ≡ dNp/dEp, is given by [36]

φp(Ep) = 1.49 ·
(
Ep + 2.15 · exp(−0.21

√
Ep)

)−2.74

, (3.4)

in units of cm−2s−1sr−1GeV−1. Since the high-energy incoming protons tra-

verse a distance R much shorter than the proton interaction length λpp, the

above flux is under the assumption that the cosmic-ray flux spectrum in the

galaxy is a constant and equal to its locally observed value. The galactic-plane

neutrino flux is sometimes also referred to as the galactic center region neutrino

flux, the galactic disk neutrino flux or the Milky Way neutrino flux. We shall

estimate here the neutrino flux coming from the galactic-plane direction only

as transverse to it, the npdecreases essentially exponentially [37], and so does

the φν(E) according to Eq. (3.3). Finally, the neutrino production process

p + p → ν + Y is mediated by the production and the decays of the π, the K,

and the charmed hadrons.

The galactic muon neutrinos mainly come from the two-body π decays and

the subsequent three-body muon decays. While the decay rates and the decay

distributions of the π and the µ are well understood, the differential cross section

for the process p+p → π+Y is model dependent. We adopt the parameterization

in [38] for such a cross section, which is obtained by using the accelerator data in

the sub-TeV energy range [41]. FNπ(Eπ, EN ) is the normalized inclusive cross
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section for N + air → π± + Y given by [38]:

FNπ(Eπ, EN ) ≡ Eπ

σN

dσ(Eπ, EN )
dEπ

= c+(1− x)p+ + c−(1− x)p− ,
(3.5)

where x = Eπ/EN , c+ = 0.92, c− = 0.81, p+ = 4.1, and p− = 4.8. One note

that c+(1−x)p+ corresponds to the π+ production while c−(1−x)p− corresponds

to the π− production. We remark that our galactic-plane νµ flux compares well

with a previous calculation [37] using the PYTHIA [39]. The galactic-plane ντ

flux arises from the production and the decays of the Ds mesons. It has been

found to be rather suppressed compared to the corresponding νµ flux [40].

Because of the relatively suppressed intrinsic ντ flux, the total galactic-plane

tau neutrino flux, φtot
ντ

(E), is therefore dominated by the νµ → ντ oscillations

indicated by the term P (E) · φνµ
(E) in Eq. (3.2). With the best-fit values

for the neutrino mixing parameters, we have φtot
ντ

(E) ≈ φνµ
(E)/2, neglecting

the contribution of φντ
(E), since Losc ¿ L, where L ∼ 5 kpc is the typical

average distance traveled by the intrinsic νµ after being produced in our galaxy.

Finally, the total galactic-plane tau neutrino flux, φtot
ντ

(E) ≡ dN/d(log10E),

can be parameterized for 1 GeV ≤ E ≤ 103 GeV, as

φtot
ντ

(E) = A

(
E

GeV

)α

, (3.6)

where A = 2 · 10−5 is in units of cm−2s−1sr−1 with α = −1.64.

3.2 The Intrinsic Atmospheric Neutrino Fluxes

3.2.1 Intrinsic Atmospheric Muon Neutrino Flux

A. Two-body π, K decays and charmed hadron decays

First of all, we follow the approach in [38] for computing the flux of intrinsic

atmospheric muon neutrinos which could oscillate into tau neutrinos. This

approach computes the flux of muon neutrinos coming from pion and kaon

decays.
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For the π-decay contribution, the flux formula reads:

d2Nπ
νµ

(E, ξ, X)
dEdX

=
∫ ∞

E

dEN

∫ EN

E

dEπ

Θ(Eπ − E
1−rπ

)
dπEπ(1− rπ)

∫ X

0

dX ′

λN
Pπ(Eπ, X, X ′)

× 1
Eπ

FNπ(Eπ, EN )× exp
(
− X ′

ΛN

)
φN (EN ), (3.7)

where E is the neutrino energy and ξ is the zenith angle in the direction of the

incident cosmic-ray nucleons. The γπ = m2
µ/m2

π and dπ is the pion decay length

in units of g/cm2. The λN is the nucleon interaction length while ΛN is the

corresponding nucleon attenuation length. φN (EN ) is the primary cosmic-ray

spectrum. We only consider the proton component of φN , which is given by

Eq. (3.4).

The function Pπ(Eπ, X,X ′) is the probability that a charged pion produced

at the slant depth X ′ (g/cm2) survives to the depth X (> X ′), FNπ(Eπ, EN ) is

the normalized inclusive cross section for N + air → π± + Y given by Eq. (3.5).

The kaon contribution to the atmospheric νµ flux has the same form as Eq. (3.7)

with an inclusion of the branching ratio B(K → µν) = 0.635 and appropriate

replacements in kinematic factors and the normalized inclusive cross section. In

particular, FNK(EK , EN ) can be parameterized as Eq. (3.5) with c+ = 0.037,

c− = 0.045, p+ = 0.87, and p− = 3.5. Finally the nucleon interaction length,

λN , and the nucleon attenuation length, ΛN , are both model dependent. A

simplified approach based upon the Feynman scaling render both λN and ΛN

energy independent and Zpp ≡ 1− λp/Λp = 0.263 [41, 42], whereas a PYTHIA

[39] calculation give rise to an energy dependent Zpp [44]. Both results on Zpp are

compared in Fig. 3.1 where we have extrapolated the energy dependent Zpp(E)

in Ref. [44] down to E = 1 GeV. The above two approaches for calculating the

hadronic Z moments also give rise to different results for Zππ, ZKK , ZNπ and

ZNK , where the last two Z-moments are related to the productions of pions

and kaons by the nucleon-air collisions. In this paper, we shall only study the

Zpp dependence of the atmospheric νµ flux (and consequently the atmospheric

ντ flux) since the dependencies of this flux on ZNπ and ZNK have been studied
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in [45]. Furthermore, compared to the Zpp case, the values of Zππ and ZKK

obtained by the Feynman scaling do not differ significantly from those obtained

by the PYTHIA calculations, as seen from [44].

Figure 3.1: The comparison of Zpp obtained by assuming the Feynman scaling
[41] and that obtained by PYTHIA [44]. Our extrapolation of the latter result
is also shown.

To proceed for calculating d2Nπ
νµ

(E, ξ, X)/dEdX, we note that Pπ(Eπ, X, X ′)

is given by [42]

Pπ(Eπ, X,X ′) = exp
(
−X −X ′

Λπ

)
· exp

(
−mπc

τπ

∫ X

X′

dT

ρ(T )

)
,

(3.8)

where Λπ = 160 g/cm2 is the pion attenuation constant, τπ is the pion lifetime

at its rest frame, while ρ(T ) is the atmosphere mass density at the slant depth
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T . For ξ ≤ 60◦, the curvature of the Earth can be neglected so that ρ(T ) =

T cos ξ/h0 with h0 = 6.4 km the scale height for an exponential atmosphere. In

this approximation, the above survival probability can be written as [38]

Pπ(Eπ, X,X ′) = exp
(
−X −X ′

Λπ

)
·
(

X ′

X

)επ/Eπ cos ξ

, (3.9)

where επ = mπc2h0/cτπ is the pion decay constant. Depending on the zenith an-

gle, we apply either Eq. (3.8) or Eq. (3.9) to perform the calculations. The kaon

survival probability PK(EK , X, X ′) has the same form as Pπ(Eπ, X, X ′) except

replacing Λπ with ΛK and επ with εK . The two-body π and K decay contribu-

tion to the atmospheric νµ flux is given by the sum of d2Nπ
νµ

(E, ξ, X)/dEdX

and d2NK
νµ

(E, ξ, X)/dEdX.

Let us consider the charm-decay contribution to the atmospheric νµ flux.

For E > 106 GeV, the charm-decay contribution becomes more important than

those of the π and the K decays. We have used the results from the perturbative

QCD to estimate this contribution [54]. The muon neutrino flux due to charm

contribution can be written as

d2N c
νµ

(E, X)
dEdX

=
∑

h

ZphZhνµ

1− Zpp(E)
· exp(−X/Λp)φp(E)

Λp
, (3.10)

where h stands for the D±, the D0, the Ds and the Λc hadrons. The Z moments

on the RHS of the equation are defined by

Zij(Ej) ≡
∫ ∞

Ej

dEi
φi(Ei)
φi(Ej)

λi(Ej)
λi(Ei)

dniA→jY (Ei, Ej)
dEj

, (3.11)

with dniA→jY (Ei, Ej) ≡ dσiA→jY (Ei, Ej)/σiA(Ei). In the decay process, the

scattering length λi is replaced by the decay length di while the dniA→jY (Ei, Ej)

is replaced by the dΓi→jY (Ei, Ej)/Γi(Ei). We note that this part of the at-

mospheric νµ flux is isotropic, unlike the contributions from the π and the

K decays. Such a difference is attributable to the lifetime difference between

the charm and the π(K) mesons. The charm hadrons decay into neutrinos

before interacting in the atmosphere. Hence the depth of the atmosphere, var-

ied according to different directions of charm hadrons, has no effect on the
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Figure 3.2: The fraction of contributions by the π, the K, and the charm decays
to the overall downward going atmospheric νµ flux( neglects the 3-body muon-
decay contribution) as a function of the neutrino energy in GeV.

resulting neutrino spectrum. To determine Zph, it is necessary to calculate

dσpA→hY (Ep, Eh)/dEh . The next-to-leading order (NLO) perturbative QCD

[46, 47] is employed to calculate the differential cross section of pA → cc̄, and

an appropriate probability factor is appended to account for each fragmentation

process c → H [54]. Finally the decay moments Zhνµ are calculated by using

the charmed-hadron decay distributions given in Refs. [48, 42].

It is instructive to see the relative contribution by the π, the K, and the

charm decays to the overall νµ flux which neglects the 3-body muon-decay con-

tribution. In Fig. 3.2, we show the relative contributions by the π, the K, and
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the charm decays to the overall νµ flux( neglects the 3-body muon-decay contri-

bution). This is an extension of the Fig. 3 in Ref. [38], where only the π and the

K contributions are compared. It is easily seen that the π decay contribution

dominates for 1 GeV ≤ E ≤ 10 GeV, while the K decay contribution dominates

between 103 GeV and 105 GeV. The fraction of the charm-decay contribution

rises rapidly at E ≥ 105 GeV and becomes dominant for E > 106 GeV. In this

energy range, both the π and the K lose large fractions of their energies before

decaying into the neutrinos.

B. Three-body µ decays

We recall that Eq. (3.7) and its corresponding form in the kaon decay case

only calculate the flux of muon neutrinos arising from two-body pion and kaon

decays. To calculate the contribution from three-body muon decays, it is useful

to first obtain the muon flux [38]:

dNπ
µ (E, ξ,X)

dE
=

∫ ∞

E′
dEN

∫ EN

E′
dEπ

∫ X

0

dX
′′
Pµ(E, X,X

′′
)

× Θ(Eπ − E′)Θ(E′
rπ
− Eπ)

dπEπ(1− rπ)
×

∫ X
′′

0

dX ′

λN
Pπ(Eπ, X

′′
, X ′)

× 1
Eπ

FNπ(Eπ, EN )× exp
(
− X ′

ΛN

)
φN (EN ), (3.12)

where E′ and E are muon energies at slant depths X
′′

and X respectively, while

Pµ(E,X, X
′′
) is the muon survival probability given by [42]

Pµ(E,X, X
′′
) = exp

[
−mµc

τµ

∫ X

X′′
dT

1
E(T −X ′′ , E′)ρ(T )

]
,

(3.13)

where τµ is the muon lifetime at its rest frame and E(T −X
′′
, E′) is the muon

energy at the slant depth T with E′ the muon energy at its production point

X
′′
. In the Earth’s atmosphere, only the ionization process [49] is important

for the muon energy loss so that

E(T −X
′′
, E′) = E′ − α(T −X

′′
), (3.14)
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with α ≈ 2 MeV/g/cm2 characterizing the muon ionization loss in the medium.

For the zenith angle ξ ≤ 60◦, the above survival probability can be written as

[38]

Pµ(E, X,X
′′
) =

(
X
′′

X

E

E + α(X −X ′′)

)εµ/(E cos ξ+αX cos ξ)

,
(3.15)

with εµ = mµc2h0/cτµ the muon decay constant. Since the muons are polarized,

it is convenient to keep track of the right-handed and left-handed muon fluxes

separately. The probability for a produced µ− to be right-handed or left-handed

is determined by the muon polarization [50, 51]:

Pµ(x) =
1 + rπ

1− rπ
− 2rπ

(1− rπ)x
, (3.16)

with x = Eµ/Eπ and rπ = m2
µ/m2

π. Hence PR,L(x) = 1
2 (1± Pµ(x)) are the

probabilities for the produced muon to be right-handed or left-handed respec-

tively. The polarization for µ+ has an opposite sign to that of µ−. The prob-

abilities PR,L(x) should be inserted into Eq. (3.12) for obtaining four different

components of the muon flux: dNπ
µ+

R

/dE, dNπ
µ−R

/dE, dNπ
µ+

L

/dE, and dNπ
µ−L

/dE.

There are additional four components of the muon flux arising from the kaon

decays. The calculation of these components proceeds in the same way as the

pion decay case. The νµ flux resulting from the muon flux is then given by [42]

d2Nµ±
νµ

(E, ξ, X)
dEdX

=
∑

s=L,R

∫ ∞

E

dEµ

Fµ±s →νµ
(E/Eµ)

dµ(Eµ, X)Eµ
· dNµ±s (Eµ, ξ,X)

dEµ
,
(3.17)

where dµ(Eµ, X) is the muon decay length in units of g/cm2 at the slant depth

X and Fµ±s →νµ
(E/Eµ) is the decay distribution of µ±s → νµ. Precisely, in the

ultra-relativistic limit, one has [42]

Fµ−→νµ
(y) = g0(y) + Pµg1(y), (3.18)

with g0(y) = 5/3 − 3y2 + 4y3/3, g1(y) = 1/3 − 3y2 + 8y3/3. We generally do

not include the charm-hadron decay contribution to the muon neutrino flux. It

is shown in Fig. 3.2 that charm-hadron decays contribute less than 5% to the

overall muon neutrino flux for Eν < 105 GeV.
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3.2.2 Intrinsic Atmospheric Tau Neutrino Flux

After finishing the calculation of the intrinsic atmospheric muon neutrino flux,

we also need to calculate the intrinsic atmospheric tau neutrino flux to com-

pletely determine the total one. Since the flux of intrinsic atmospheric tau

neutrino arises from Ds decays, one calculates its flux by solving the following

cascade equations [41]:

dφp(E, X)
dX

= −φp

λp
+ Zpp

φp

λp

dφDs(E, X)
dX

= −φDs

λDs

− φDs

dDs

+ ZpDs

φp

λp
+ ZDsDs

φDs

λDs

dφντ (E, X)
dX

= ZDsντ

φDs

dDs

, (3.19)

where the particle flux dφi(E,X)/dX denotes d2Ni(E, X)/dEdX, di and λi

denote particle’s decay and interaction length in g/cm2 respectively, and the Z

moments Zij are defined in Eq. (3.11). In our concerned energy range, the chain

of equations in (3.19) can be solved easily by simplifying the second equation,

namely by neglecting terms φDs
/λDs

and ZDsDs
φDs

/λDs
. One obtains

d2Nντ (E,X)
dEdX

=
ZpDs

ZDsντ

1− Zpp(E)
· exp(−X/Λp)φp(E)

Λp
, (3.20)

We use two different values for Zpp ≡ 1 − λp/Λp as shown in Fig. 3.1. To

determine ZpDs
, it is necessary to calculate dσpA→DsY (Ep, EDs

)/dEDs
. Since

Ds meson is heavy enough, the above differential cross section is calculable

using perturbative QCD [53]. In this work, the next-to-leading order (NLO)

perturbative QCD [46, 47] with CTEQ6 parton distribution functions [17] are

employed to calculate the differential cross section of pA → cc̄. To obtain

dσpA→DsY (Ep, EDs
)/dEDs

, we multiply the charm quark differential cross sec-

tion by the probability factor 13% to account for the fragmentation process

c → Ds [53]. In Fig. 3.3, we compare our ZpDs to a previous result obtained

by the CTEQ3 parton distribution functions [54]. In the latter work, the NLO
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Figure 3.3: The Z moment ZpDs
obtained by perturbative QCD with CTEQ3

and CTEQ6 parton distribution functions respectively.

pertubative QCD effects are taken into account by the K factor defined by

K(E, xE) =
dσNLO/dxE

dσLO/dxE
, (3.21)

where dσLO/dxE and dσNLO/dxE are leading order and next-to-leading order

differential cross sections for pA → cc̄ respectively, with xE = Ec/Ep. For QCD

renormalization scale µ = mc and the factorization scale M = 2mc, the K factor

is fitted to be [54]

K(E, xE) = 1.36 + 0.42 ln (ln(E/GeV))

+
(
3.40 + 18.7(E/GeV)−0.43 − 0.079 ln(E/GeV)

)
x1.5

E .(3.22)
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We apply this K factor to our calculation with CTEQ6 parton distribution

functions. Comparing this result with that obtained by applying CTEQ3 parton

distribution functions, one acquires an idea on the uncertainty of perturbative

QCD approach to the charm hadron production cross section. It is seen from

Fig. 3.3 that both Z moments agree well for energies below TeV. For E = 104

GeV, they differ by about 30%.

In addition to perturbative QCD approach, there are non-perturbative ap-

proach for computing the charm hadron production cross section. In fact, such

non-perturbative approaches [55, 56] are motivated to accommodate accelerator

data on strange particle productions, which are underestimated by the perturba-

tive QCD approach. It is desirable to apply these approaches to charm hadron

productions. The quark-gluon-string-model (QGSM) [55] is a non-perturbative

approach based upon the string fragmentation, where the model parameters are

tuned to the strange particle productions. The recombination-quark-parton-

model (RQPM) [56] is also a phenomenological approach which takes into ac-

count the contribution of the intrinsic charm in the nucleon to the charm hadron

production cross section. Detailed comparisons of these two models with pertur-

bative QCD approach on the charm hadron productions are given in [57]. It is

shown that perturbative QCD approach gives the smallest charm production Z

moments. It is clear that the model dependencies on the charm hadron produc-

tions affect both the prompt atmospheric muon neutrino flux and the intrinsic

atmospheric tau neutrino flux. A detailed study on the model dependencies of

the intrinsic atmospheric tau neutrino flux is given in [58]. We shall further

discuss these model dependencies after the discussion on the Z moment ZDsντ
.

It is noted that ZDsντ is related to the energy distributions of the Ds decays

into tau neutrinos. One arises from the decay Ds → ντ τ , and the other follows

from the subsequent tau-lepton decay, τ → ντ + X. The latter contribution is

calculated using the decay distributions of the decay modes τ → ντρ, τ → ντπ,

τ → ντa1 [59, 53], and τ → ντ lνl [41, 42].
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Figure 3.4: The comparison of intrinsic atmospheric ντ fluxes calculated by
perturbative QCD with CTEQ3 and CTEQ6 parton distribution functions re-
spectively.

It is negligible for the uncertainty of intrinsic atmospheric ντ flux due to dif-

ferent approaches for Zpp. The main uncertainty of this flux is due to the model

dependence of the Z-moment ZpDs . Within the perturbative QCD approach,

the dependence of this flux on the parton distribution functions is shown in Fig.

3.4. It is easily seen that the intrinsic atmospheric ντ flux is not sensitive to

parton distribution functions for E < 103 GeV. However, at E = 104 GeV, both

fluxes differ by almost 50%. Incorporating the non-perturbative approaches for

charm hadron productions [55, 56], the uncertainties of intrinsic atmospheric

ντ flux is depicted in Fig. 3.5. It is seen that the minimal ντ flux in Ref. [58]

is consistent with our ντ flux calculated by perturbative QCD with CTEQ6
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Figure 3.5: The model dependencies of intrinsic atmospheric ντ flux. The min-
imal fluxes from Ref. [58] is given by perturbative QCD. The maximum flux
from the same reference is given by RQPM model for E ≤ 300 GeV, and by
QGSM model for E > 300 GeV

parton distribution functions. On the other hand, the maximal flux shown in

Fig. 3.5 is almost one order of magnitude larger than the minimal one. This

maximal flux is given by the RQPM model below 300 GeV while it is given by

the QGSM model beyond this energy [60]. We remark that the original mini-

mal and maximal ντ fluxes in Ref. [58] correspond to different sets of primary

cosmic ray flux, which is considered as one of the uncertainties for the ντ flux.

However, we have re-scaled these fluxes to a common cosmic ray flux, Eq. (3.4),

used in this paper. We also note that the uncertainty of intrinsic atmospheric

ντ flux provided by Ref. [58] starts at E = 100 GeV, while our calculation of
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this flux starts at E = 10 GeV.

We are interested in seeing how much the uncertainty of the intrinsic ντ flux

could affect the determination of the ντ flux taking into account the oscillation

effect. In the next section, we shall study this issue with respect to the upward

atmospheric ντ flux where the oscillation effect is the largest.

3.3 The Atmospheric Tau Neutrino Flux With
Oscillations In The Two-Flavor Mixing Scheme

3.3.1 The Downward and Horizontal Atmospheric Tau Neu-
trino Fluxes

The following formula is used for calculating the atmospheric tau neutrino flux

dN̄ντ
(E, ξ)

dE
=

∫ Xmax(ξ)

0

dX

[
d2Nνµ

(E, ξ, X)
dEdX

· Pνµ→ντ
(E,L(X, ξ))

+
d2Nντ

(E, ξ,X)
dEdX

· (1− Pνµ→ντ
(E, L(X, ξ))

)]
, (3.23)

where Pνµ→ντ
(E,L(X, ξ)) ≡ sin2 2θ23 sin2(1.27∆m2

31L/E) is the νµ → ντ oscil-

lation probability, assuming a vanishing θ13, and L is the linear distance from the

neutrino production point to the detector on the Earth. For ξ ≤ 60◦, the curva-

ture of the Earth can be neglected so that L(X, ξ) = −h0 ln(X cos ξ/X0)/ cos ξ

with X0 = 1030 g/cm2 and h0 = 6.4 km. We have used the notation dN̄ντ (E,ξ)

dE

to denote the atmospheric ντ flux taking into account the oscillation effect. The

unit of ∆m2
31 is eV2 while L and E are in units of km and GeV respectively.

The range of ∆m2
31 and sin2 2θ23 have been given in Eq. (3.1) with the best fit

values given by ∆m2
31 = 2.4 · 10−3 eV2 and sin2 2θ23 = 1 respectively.

A. Meson decay contributions

Using the best fit values of neutrino oscillation parameters, we obtain atmospheric

tau neutrino fluxes for cos ξ = 0.2, 0.4, · · · , 1 as depicted in Fig. 3.6. This set of

result is obtained by using an energy-independent Z moment, Zpp ≡ 1−λp/Λp =

34



Figure 3.6: The atmospheric ντ flux for cos ξ = 0, 0.2, 0.4, 0.6, 0.8 and 1 (from
top to bottom) with sin2 2θ23 = 1, ∆m2

31 = 2.4 · 10−3 eV2, and Zpp = 0.263.

0.263 mentioned earlier. For the νµ flux on the R.H.S. of Eq. (3.23), we only

include the two-body pion and kaon decay contributions. The muon-decay con-

tribution to this flux will be presented later. The intrinsic ντ flux in the same

equation is taken to be that calculated by perturbative QCD with CTEQ6 par-

ton distribution functions [17]. We note that the atmospheric ντ flux increases

as ξ increases from 0◦ to 90◦. There are two crucial factors dictating the angular

dependence of such a flux. First, the atmosphere depth traversed by the cosmic

ray particles increases as the zenith angle ξ increases. Second, the atmospheric

muon neutrinos are on-average produced more far away from the ground detec-

tor for a larger zenith angle, implying a larger νµ → ντ oscillation probability.
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In fact, the neutrino path-length dependencies on the zenith angle ξ and the

neutrino energy Eν have been studied carefully by the Monte-Carlo simulation

[61]. Our semi-analytic approach reproduces these dependencies very well. In

Figure 3.7: The linear distance between the earth detector and the position for
maximum νµ production in the atmosphere as a function of incident neutrino
zenith angle.

Fig. 3.7, we show that Lmax( the linear distance between the earth detector and

the position for maximum νµ production in the atmosphere) increases with the

incident neutrino zenith angle ξ. Since the Lmax nearly equals to the average

neutrino path-length from the νµ production point to the ground detector, it

is found that, for Eν = 10 GeV and cos ξ = 1 (ξ = 0◦), the average neutrino

path-length is ∼ 14 km from Fig. 3.7. The average neutrino path-length in-
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creases to 36 km and 650 km for ξ = 60◦ and ξ = 90◦ (not included in Fig. 3.7)

respectively. The huge path-length of horizontal neutrinos makes the ντ flux

in this direction two orders of magnitude larger than the downward ντ flux.

It is also interesting to note that the horizontal ντ flux for Eν approaching 1

GeV begins to show oscillatory behavior. This is because, for Eν = 1 GeV and

∆m2
31 = 2.4 · 10−3 eV2, Losc ≡ 4Eν/∆m2

31 ≈ 330 km which is already shorter

than the average neutrino path-length at this zenith angle.

It is necessary to emphasize that our calculation procedures for cos ξ > 0.5

and cos ξ < 0.5 are different. In the former case, the curvature of the Earth

can be neglected and the pion or kaon survival probability in the atmosphere is

approximated by Eq. (3.9). This is the approach we adopted in Ref. [52]. For

cos ξ < 0.5, i.e., ξ > 60◦, we use Eq. (3.8) for the meson survival probability.

In this case the calculation is much more involved as the meson survival prob-

ability in Eq. (3.8) contains an additional integration. It has been pointed out

in Ref. [61] that one may apply Eq. (3.9) for calculating the path-length distri-

bution of neutrinos for ξ > 60◦ so long as one replaces cos ξ by coseff ξ, where

the latter is a fitted function of the former. Precisely speaking, by fitting the

analytic calculation based upon Eq. (3.9) [42] to the Monte-Carlo calculation,

the relations between cos ξ and coseff ξ can be found, which are tabulated in [61].

Extrapolating such a relation, we find that coseff ξ = 0.05 for cos ξ = 0. Using

this coseff ξ with Eq. (3.9), we also calculate the atmospheric ντ flux. The result

is compared with that obtained by the full calculation (applying Eq. (3.8)) as

shown in Fig. 3.8. Both results agree very well. Such an agreement makes our

calculation compelling and also validates the above extrapolation on coseff ξ.

It is noteworthy that we have so far computed the atmospheric neutrino

flux with an energy independent Z moment, Zpp ≡ 1 − λp/Λp = 0.263. It is

important to check the sensitivity of atmospheric ντ flux on the values of Zpp.

We recall that different results for Zpp are shown in Fig. 3.1. At energies between

102 GeV and 103 GeV, the values of Zpp generated by PYTHIA [39] slightly
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Figure 3.8: The comparison of atmospheric ντ flux obtained by using coseff ξ
and that obtained by the full calculation for ξ = 90◦.

depend on the energy and roughly twice larger than the value we have so far

used for calculations. We check the effect of Zpp by calculating the atmospheric

ντ flux with the PYTHIA-generated Zpp. The comparison of this result with

the earlier one obtained by setting Zpp = 0.263 is shown in Fig. 3.9 for ξ = 0◦

and Fig. 3.10 for ξ = 90◦. For the ξ = 0◦ case, two set of results do not

exhibit noticeable difference until Eν ≥ 10 GeV. At Eν = 100 GeV, they differ

by 45%. At Eν = 1 GeV, two results differ by 46% while they differ by 29% at

Eν = 100 GeV. Obviously, the behavior of Zpp is one of the major uncertainties

for determining the atmospheric ντ flux.
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Figure 3.9: The comparison of atmospheric ντ fluxes calculated from a constant
Zpp [41, 42] and an energy-dependent Zpp [44] for ξ = 0◦.

B. Muon-Decay contributions

As mentioned earlier, the muon-decay contributions to νµ is non-negligible for

neutrino energies less than 10 GeV. Such νµ’s can oscillate into ντ ’s during

their propagations in the atmosphere. The calculation of such a flux according

to Eqs. (3.12) and (3.17) is rather involved. However, a simple approximation

as presented below gives a rather accurate result for this flux.

To calculate νµ spectrum due to muon decays, we require the knowledge

of muon polarizations. The muon polarization however depends on the ratio

of muon momentum to the momentum of parent pion or kaon as indicated by
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Figure 3.10: The comparison of atmospheric ντ fluxes calculated from a constant
Zpp [41, 42] and an energy-dependent Zpp [44] for ξ = 90◦.

Eq. (3.16). It is straightforward to calculate the average muon polarization at

any slant depth X provided the energy spectrum of the parent pion or kaon

is known at that point. For the downward case (ξ = 0◦), it is known from

the previous section that the muons are most likely produced at around 14

km from the ground detector. At that point, the pion and kaon fluxes can

be approximately parameterized as φπ(Eπ) = 10−3.15 · E−2.02
π and φK(EK) =

10−5.11 · E−1.74
K in units of cm−2s−1sr−1GeV−1 for meson energies between 1

and few tens of GeV. We do not distinguish π−(K−) from π+(K+) in the above

fittings. Although the spectra are charge dependent, the resulting absolute

values of µ+ polarization and µ− polarization differ by only 10% for Eµ up to
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few tens of GeV [42]. From Eq. (3.16), and the above pion and kaon spectra, we

obtain 〈Pπ
µ−〉 = 0.35, 〈PK

µ−〉 = 0.95. Therefore µ− coming from the π− decays

are 67% right-handed polarized and 33% left-handed polarized. On the other

hand, µ− coming from K− decays are 98% right-handed polarized and only

2% left-handed polarized. The muons produced by meson decays lose energies

before they decay into neutrinos. The decay distribution for µ− → νµ is given

by Eq. (3.18). The average momentum fraction 〈y〉 of muon neutrinos are 0.3

and 0.4 from decays of right-handed and left-handed µ−. Following a similar

procedure, one can determine the polarization and decay distributions of µ+.

Finally, to calculate the spectrum of muon neutrinos arising from muon decays,

we use the approximation of replacing Fµ±s →νµ
(E/Eµ) with δ(E/Eµ − 〈y〉) in

Eq. (3.17).

For checking the validity of the above approximation, we compare our result

on the fraction of muon decay contribution to the overall νµ flux with that

given by Ref. [42] for cos ξ = 0.4, i.e., ξ = 66◦. At this zenith angle, most of

the muons are produced roughly 45 km from the detector. The pion and kaon

fluxes at this point are fitted to be φπ(Eπ) = 10−3.65 · E−1.88
π and φK(EK) =

10−5.57 ·E−1.69
K in units of cm−2s−1sr−1GeV−1. This gives rise to 〈Pπ

µ−〉 = 0.34,

〈PK
µ−〉 = 0.94. Following the procedure in the downward case, we obtain the

muon neutrino flux from the muon decays. At Eν = 1 GeV, the fraction of muon-

decay contributions to the overall νµ flux is 44% while the fraction decreases

to 17% at Eν = 10 GeV. In Ref. [42], the corresponding fractions are 47% and

18% respectively. Both set of fractions agree rather well.

After confirming that our approximation works well for calculating the muon-

decay contributions to the atmospheric νµ flux, we can proceed to calculate the

resulting atmospheric ντ flux with Eq. (3.23). Specifically we only need to in-

clude the first term on the R.H.S. of Eq. (3.23) because the second term has

already been included in the two-body decay contribution. In Fig. 3.11, those

atmospheric ντ fluxes resulting from oscillations of νµ’s out of both two- and

41



Figure 3.11: The comparisons of atmospheric ντ fluxes resulting from the os-
cillations of νµ’s generated from two-body and three-body decays with those
resulting from the oscillations of νµ’s generated from two-body decays alone.
The comparisons are made for three zenith angles, cos ξ = 0, 0.4, and 1 (from
top to bottom).

three-body decays (muon decays) are compared with those resulting from the

oscillations of νµ’s originated from two-body decays alone. As expected, the

three-body decay contribution is non-negligible for Eν ≤ 10 GeV. Quantita-

tively, for ξ = 0◦ and Eν = 1 GeV, 24% of the total atmospheric ντ flux is from

the oscillations of νµ’s originated from the muon decays. At Eν = 10 GeV, only

2.9% of the total atmospheric ντ flux comes from the same source. For ξ = 66◦,

the three-body decay contribution gives rise to 36% and 8.9% of the total at-

mospheric ντ flux at Eν = 1 GeV and Eν = 10 GeV respectively. Finally, for
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ξ = 90◦, the three-body decay contribution to the total atmospheric ντ flux is

most significant. It contributes to 53%, 46%, and 39% of the total atmospheric

ντ flux at Eν = 1 GeV, 10 GeV and 20 GeV respectively. To calculate the

three-body decay contribution to νµ flux at ξ = 90◦, we have used Eq. (3.9) for

the meson survival probability with coseff ξ = 0.05 and a overall factor C ≈ 1.40

to fix the normalization of the flux [61].

3.3.2 The Upward Atmospheric Tau Neutrino Flux

The upward atmospheric ντ flux is enhanced compared to the downward case

since the average neutrino path length increases. Therefore the observation of

astrophysical tau neutrinos is subject to a more serious background problem

in such a case. However, the observation of atmospheric tau neutrinos is also

interesting in its own right. The atmospheric tau neutrino flux for cos ξ = −0.2

is given in Fig. 3.12. The effect of νµ → ντ oscillation is evident for below TeV

energies. This is seen from the slope change of the atmospheric ντ flux. The

atmospheric ντ flux shows oscillatory behavior for E ≤ 10 GeV. For cos ξ <

−0.2, such an oscillatory behavior is even more significant. In such a case, it

is more practical to study the averaged flux. We average the atmospheric ντ

flux for the zenith angle range −1 ≤ cos ξ ≤ −0.4, as shown in Fig. 3.13. Due

to uncertainties of the intrinsic atmospheric ντ flux, the atmospheric ντ flux

taking into account the oscillation effect also contains uncertainties beginning

at a few hundred GeV’s. In the same figure, we also plot the corresponding

atmospheric νµ flux. The νµ and ντ fluxes are comparable for E < 30 GeV.

In such a case, the footprint of ντ might be identified by studying the energy

spectra of shower events induced by neutrino interactions [62]. At E = 104

GeV, the νµ flux is approximately 30 times larger than the maximal ντ flux.

We note that the maximal and minimal ντ fluxes begin to differ at E = 500

GeV. At E = 1 TeV, the maximal flux is 3 times larger than the minimal one.

The ratio of maximal flux to the minimal one increases to 14 at E = 10 TeV. We
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Figure 3.12: The atmospheric ντ flux for cos ξ = −0.2 with sin2 2θ23 = 1,
∆m2

31 = 2.4 · 10−3 eV2, and Zpp = 0.263.

remark that the upward atmospheric ντ flux is also calculated in Ref. [62] with

∆m2
31 = 10−2, 10−2.5, 10−3 eV2 respectively. Here we have done the calculation

with the best fit value of ∆m2
31 taken from [32]. Furthermore we include the

contribution of intrinsic atmospheric ντ flux and its associated uncertainties.

3.3.3 Comparison and Discussion

The comparison of the galactic-plane and the downward going atmospheric ντ

flux is given in Fig. 3.14. The former flux clearly dominates the latter for

E ≥ 10 GeV, whereas the two fluxes cross at E = 2.3 GeV for ∆m2
31 =

2.4 · 10−3 eV2 and sin2 2θ23 = 1. This comparison is however subject to the
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Figure 3.13: The atmospheric ντ flux averaged for −1 ≤ cos ξ ≤ −0.4. The
uncertainty of this flux due to the uncertainty of intrinsic atmospheric ντ flux
is also shown. We take the maximum and minimum intrinsic atmospheric ντ

fluxes given in [58] to calculate the total atmospheric ντ fluxes on the Earth.

uncertainty of galactic-plane ντ flux by the choices of the density np and the

distance R mentioned before. One can see that the atmospheric ντ flux is sen-

sitive to the value of ∆m2
31 for E ≤ 20 GeV. Furthermore, a change of slope

occurs for the atmospheric ντ flux at E ≈ 20 GeV. Beyond this energy, the

slope of the atmospheric ντ flux is identical to that of the galactic-plane ντ

flux. For E > 20 GeV, the atmospheric ντ flux is intrinsic, i.e., com-

ing from the Ds decays, whereas the galactic-plane ντ flux arises from the os-

cillation of the νµ, which is produced mainly by the π decays. In both cases,
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Figure 3.14: The comparison of the galactic-plane and the downward going
atmospheric ντ fluxes in the presence of neutrino oscillations with maximal
mixing as a function of the neutrino energy in GeV. We have included downward
going atmospheric ντ fluxes for ∆m2

31 = 1.9 · 10−3 eV2, 2.4 · 10−3 eV2 and
3 · 10−3 eV2 (from bottom to top).

the hadrons decay before interacting with the medium. Such a feature dic-

tates the slope of the outgoing neutrino flux. Below 20 GeV, however, the at-

mospheric ντ flux predominantly comes from the νµ oscillations, i.e., φtot
ντ

(E) ≈
φνµ(E)·sin2 2θ23·sin2(L/Losc) following Eq. (3.2). Since Losc ≡ 4E/∆m2

31 ≈ 330

km for E = 1 GeV with ∆m2
31 = 2.4 · 10−3 eV2, we approximate sin2(L/Losc)

with (L/Losc)2 so that φtot
ντ

(E) ∼ φνµ
(E)E−2. Because the neutrino oscillation

effect steepens the φντ spectrum for E ≤ 20 GeV, the slope change of φντ at

E ≈ 20 GeV is significant. Furthermore, for E ≤ 20 GeV, the galactic-plane
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tau neutrino flux has a rather different slope from that of the atmospheric ντ

flux. This is an important criterion for distinguishing the two fluxes, particu-

Figure 3.15: The comparison of atmospheric ντ fluxes with the galactic-plane
tau neutrino flux [52] and the tau neutrino flux due to the neutralino dark
matter annihilations [63]. We have included downward (cos ξ = 1), horizontal
(cos ξ = 0) and upward (−1 ≤ cos ξ ≤ −0.4) atmospheric ντ fluxes for the
comparison. Among them, the downward flux is the smallest while the upward
flux has a dip near E = 2.5 GeV.

larly given that the normalization of the galactic-plane tau neutrino flux is still

uncertain.

Since we have obtained a complete result of the atmospheric ντ flux for

the entire zenith angle range, we compare this flux with the galactic-plane tau

neutrino flux just mentioned and the cosmological ντ flux due to neutralino
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dark matter annihilations [63]. The comparison is depicted in Fig. 3.15. One

can see that the galactic-plane ντ flux dominates over the downward (ξ = 0◦)

atmospheric ντ flux for Eν greater than a few GeV. Hence, in this direction, it

is possible to observe the flux of galactic-plane tau neutrinos in the GeV energy

range. For near horizontal directions, the atmospheric ντ flux grows rapidly with

zenith angles. Therefore, for ξ = 90◦, the energy threshold for galactic-plane

tau neutrino flux to dominate over its atmospheric counterpart is pushed up to

Eν > 100 GeV. We further see that the galactic-plane ντ flux does not dominate

the upward atmospheric ντ background (−1 ≤ cos ξ ≤ −0.4) until E = 500 GeV.

On the other hand, the comparison of the upward atmospheric ντ flux with the

horizontal one is also interesting. Two fluxes are in fact comparable for E < 10

GeV. This shows that the νµ → ντ oscillation is already quite significant in

the horizontal direction for such an energy range. Nevertheless, the upward

atmospheric ντ flux takes over from Eν ≥ 10 GeV until E ≈ 2 TeV where two

fluxes merge again. From Fig. 3.15, it is also clear that the atmospheric ντ

flux is a non-negligible background to the cosmological tau neutrino flux due to

neutralino dark matter annihilations [63]. In fact, two fluxes are comparable in

the downward direction while the atmospheric ντ flux is significantly larger in

horizontal and upward directions.

The results presented in Figs. 3.14 and 3.15 indicate the opportunities for

the tau neutrino astronomy in the GeV energies for the incident zenith angles

0◦ ≤ ξ ≤ 180◦ in the two neutrino flavor mixing approximation. We point out

that the dominance of the galactic-plane tau neutrino flux over its atmospheric

background in GeV energies is unique among all the considered neutrino flavors.

This is depicted in Fig. 3.16. Because of the νµ → ντ neutrino oscillations, the

total galactic ντ flux is identical to that of the galactic νµ flux. However,

the atmospheric νµ flux is much larger than the atmospheric ντ flux. As a

result, in the presence of neutrino oscillations, the crossing energy value for

the galactic-plane and the atmospheric νµ fluxes is pushed up to 5 · 105 GeV,
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Figure 3.16: An illustrative comparison of the downward going atmospheric
νµ and ντ fluxes and the corresponding galactic-plane neutrino fluxes in the
presence of neutrino oscillations as a function of the neutrino energy in GeV.
The galactic-plane and the atmospheric νµ fluxes cross at E = 5 · 105 GeV.

which is drastically different from the tau neutrino case.

3.4 The Atmospheric Tau Neutrino Flux With
Oscillations In The Three-Flavor Mixing Scheme

In this section, we study the atmospheric tau neutrino flux with oscillations in

the three-flavor mixing scheme. We first calculate the intrinsic atmospheric νe

flux. Since the atmospheric νe results from the three-body muon decays, the νe
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flux is given by [42]

d2Nµ±
νe

(E, ξ, X)
dEdX

=
∑

s=L,R

∫ ∞

E

dEµ

Fµ±s →νe
(E/Eµ)

dµ(Eµ, X)Eµ
· dNµ±s (Eµ, ξ,X)

dEµ
,
(3.24)

where dµ(Eµ, X) is the muon decay length in units of g/cm2 at the slant depth

X and Fµ±s →νe
(E/Eµ) is the decay distribution of µ±s → νe. Precisely, in the

ultra-relativistic limit, one has [42]

Fµ−→νe
(y) = g0(y) + Pµg1(y), (3.25)

with g0(y) = 2 − 6y2 + 4y3 and g1(y) = −2 + 12y − 18y2 + 8y3. The average

momentum fraction 〈y〉 of electron neutrinos are 0.4 and 0.2 from decays of right-

handed and left-handed µ− respectively. We use the approximation of replacing

Fµ±s →νe
(E/Eµ) with δ(E/Eµ − 〈y〉) in Eq. (3.24) to calculate the spectrum of

electron neutrinos arising from muon decays.

Having obtained the intrinsic atmospheric νe flux, the atmospheric tau neu-

trino flux with oscillations in the three-flavor mixing scheme can be calculated

using

dN̄ντ
(E, ξ)

dE
=

∫ Xmax(ξ)

0

dX

[
d2Nνµ

(E, ξ, X)
dEdX

· Pνµ→ντ
(E,L(X, ξ))

+
d2Nνe

(E, ξ,X)
dEdX

· Pνe→ντ
(E, L(X, ξ))

+
d2Nντ

(E, ξ,X)
dEdX

· (1− Pνµ→ντ
− Pνe→ντ

)]
, (3.26)

where Pνµ→ντ (E,L(X, ξ)) and Pνe→ντ (E,L(X, ξ)) are the νµ → ντ and νe →
ντ oscillation probability in the three-flavor mixing scheme (see Appendix B) [43],

assuming a non-vanishing θ13. We note that the matter effect has been taken

into account in deriving Pνµ→ντ and Pνe→ντ
. We use the Stacey model [64] for

the Earth density profile. In the Stacey model, the mean matter densities in

the Earth core and in the Earth mantle are: ρc
∼= 12 g/cm3 and ρm

∼= 5 g/cm3

respectively. We calculate the upward (averaged for −1 ≤ cos ξ ≤ −0.4) at-

mospheric ντ fluxes with sin2 2θ13 = 0.1 and 0.05 respectively while maintaining
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Figure 3.17: The comparison of atmospheric ντ flux in the three-flavor mixing
scheme with that in the two-flavor mixing scheme. In the former case, we include
atmospheric ντ fluxes for sin2 2θ13 = 0.1 and 0.05 respectively.

sin2 2θ23 = 1 and ∆m2
31 = 2.4 · 10−3 eV2. We compare these two fluxes with

the upward atmospheric ντ flux obtained by the two-flavor mixing scheme. The

comparison is depicted in Fig. 3.17. For 1 ≤ Eν/GeV ≤ 10 , one can see that

these three curves behave similarly. At the vicinity of Eν = 2.5 GeV, all three

fluxes reach their local minima and the ratio of them is 1 : 4.7 : 1.7 . On the

other hand, at the vicinity of Eν = 3 GeV, three fluxes reach their local maxima

and the ratio of them is 1 : 1.13 : 1.1 . For Eν ≥ 10 GeV, three fluxes merge.

Following the same approach, we can also calculate the upward atmospheric

νµ and νe fluxes in the three-flavor mixing scheme. The comparison of at-
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mospheric νµ flux in the three-flavor mixing scheme with that in the two-flavor

mixing scheme is depicted in Fig. 3.18. At the vicinity of Eν = 2.5 GeV, all

three fluxes reach their local maxima and the ratio of them is 1.12 : 1 : 1.07 .

on the other hand, at the vicinity of Eν = 3 GeV, all three fluxes reach their

local minima and the ratio of them is 1.86 : 1 : 1.02 . Finally, the comparison of

Figure 3.18: The comparison of atmospheric νµ flux in the three-flavor mixing
scheme with that in the two-flavor mixing scheme. In the former case, we include
atmospheric ντ fluxes for sin2 2θ13 = 0.1 and 0.05 respectively.

atmospheric νe flux in the three-flavor mixing scheme with that in the two-flavor

mixing scheme is depicted in Fig. 3.19. We note that these three fluxes differ

significantly around Eν = 7 GeV and the ratio of them at Eν = 7 GeV is 1 :

2.28 : 1.88 . They merge for Eν ≥ 20 GeV.
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Figure 3.19: The comparison of atmospheric νe flux in the three-flavor mixing
scheme with that in the two-flavor mixing scheme. In the former case, we include
atmospheric ντ fluxes for sin2 2θ13 = 0.1 and 0.05 respectively.
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Chapter 4

Conclusions

To summarize the work in this thesis, first, in Chap. 2, we have given a semi-

analytic treatment on the problem of simultaneous propagation of high energy

tau neutrinos and tau leptons inside the Earth. Our treatment explicitly takes

into account the inelasticity of neutrino-nucleon scatterings as well as the

tau-lepton energy loss. We specifically considered the Earth-skimming sit-

uation and provided detailed results for the energy dependencies of emerging

tau-lepton fluxes resulting from a few anticipated astrophysical neutrino fluxes.

The effect of matter density on the tau-lepton flux is also studied. Such an ef-

fect is found to be related to the spectrum index of incident neutrino flux. Our

treatment thus provides a basis for a more complete and realistic assessment

of high-energy-neutrino flux measurements in the under-construction/planning

large neutrino telescopes.

Secondly, in Chap. 3, we have performed a detailed calculation of atmospheric

ντ flux for zenith angles 0 ≤ ξ ≤ 180◦ in Chap. 3. In this chapter, a comparison

of the galactic-plane ντ flux with the atmospheric ντ flux is made for illustrating

the possibility of the tau neutrino astronomy. We also compare the atmospheric

ντ flux with the cosmological ντ flux due to neutralino dark matter annihila-

tions [63]. From Fig. 3.15, we note that the galactic-plane ντ flux dominates

over the downward (ξ = 0◦) atmospheric ντ flux for Eν greater than a few GeV
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and therefore it is possible to observe the flux of galactic-plane tau neutrinos

in the GeV energy range along the downward direction. For near horizontal

directions, the atmospheric ντ flux grows rapidly with zenith angles. Hence, for

ξ = 90◦, the energy threshold for galactic-plane tau neutrino flux to dominate

over its atmospheric counterpart is pushed up to Eν > 100 GeV. Furthermore,

one can see that the galactic-plane ντ flux does not dominate the upward at-

mospheric ντ background (−1 ≤ cos ξ ≤ −0.4) until E = 500 GeV. However,

it is noteworthy that, in the muon neutrino case, galactic-plane neutrino flux is

overwhelmed by the atmospheric background until Eν > 106 GeV [65]. Such a

difference between νµ and ντ shows the promise of the tau neutrino astronomy

in the GeV energy range [35, 52]. On the other hand, we can also see from Fig.

3.15 that the atmospheric ντ flux is a non-negligible background to the cosmo-

logical tau neutrino flux due to neutralino dark matter annihilations [63]. In the

last section of this chapter, we take into account the matter effects to neutrino

oscillations and calculate the atmospheric tau neutrino flux with oscillations in

the three-flavor mixing scheme. To sum up the work in Chap. 3, we have pre-

sented a semi-analytical calculation on the atmospheric ντ flux due to νµ → ντ

oscillations for downward, upward, and horizontal directions. The atmospheric

ντ flux at ξ = 90◦ is two orders of magnitude larger than the corresponding

flux at ξ = 0◦ for 1 ≤ Eν/GeV ≤ 10 while fluxes with zenith angles between

0 and 90 degrees merge for Eν ≥ 700 GeV. The upward atmospheric ντ fluxes

show oscillatory behaviors. For the averaged flux with −1 ≤ cos ξ ≤ −0.4, the

atmospheric ντ flux is found to be comparable to the atmospheric νµ flux for

E < 30 GeV. Concerning the uncertainties in our calculations, we have studied

the dependencies of atmospheric ντ flux on the Z moment Zpp for representative

zenith angles ξ = 0◦ and ξ = 90◦. We have also discussed in detail the uncer-

tainty of intrinsic atmospheric ντ flux due to different models for charm hadron

productions. The consequence of such a uncertainty on the determination of

oscillated ντ flux is studied as well. Concerning the technique for calculating
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the atmospheric ντ flux from large zenith angles, we have verified the validity

of using coseff ξ in Eq. (3.9) to calculate the atmospheric ντ flux for ξ > 60◦. In

particular, we have extrapolated the results in Ref. [61] to ξ = 90◦ and demon-

strate that the choice coseff(ξ = 90◦) = 0.05 reproduces well the atmospheric ντ

flux obtained by a full calculation using Eq. (3.8).

Finally, we note that there are possible backgrounds induced by the electron

neutrino events and the neutral current events to the prospective observation

of tau neutrino events . For E < 103 GeV, the tau lepton decay length is less

than a mm. This tau lepton is produced in the detector in the galactic-plane

tau neutrino induced interactions. There are certain specific signatures of the

tau neutrino induced tau leptons such as the appearance of the kink at the tau

lepton decay (absent for the electrons) [66], as well as the relative characteristic

fractional energy sharing from the incident neutrino [62]. Thus we will require

a large scale finely grained detector with a resolution of a few µm to disentangle

the galactic-plane tau neutrino induced events from the events induced by the

electron neutrinos and the neutral current events on the event-by-event basis.
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Appendix A

The iteration method for
obtaining the Zν(E, X) and
the Fτ (E, X)

The evolution for Fντ
is given by Eq. (2.1). With the ansatz

Fντ
(E, X) = Fντ

(E, 0) exp
(
− X

Λν(E, X)

)
, (A.1)

we obtain the following equation for Zν(E,X):

XZν(E, X) =
∫ X

0

dX ′
∫ 1

0

dy

1− y

{
F

(0)
ντ (Ey)

F
(0)
ντ (E)

exp [−X ′Dν(E, Ey, X ′)] ΦNC
ντ

(y, E)

+
Fτ (Ey, X ′)

F
(0)
ντ (E)

(
λν(E)
ρdτ (E)

)
exp

(
X ′

Λν(E, X ′)

)
Φd

τ (y, E)

+
Fτ (Ey, X ′)

F
(0)
ντ (E)

(
λν(E)
λτ (E)

)
exp

(
X ′

Λν(E,X ′)

)
ΦCC

τ (y, E)

}
, (A.2)

where F
(0)
ντ (E) ≡ Fντ

(E, 0), while ΦNC
ντ

, ΦCC
τ and Φd

τ are respectively given by

ΦNC
ντ

(y, E) =

∑
T nT

dσντ T→ντ Y

dy
(y,Ey)

∑
T nT σtot

ντ T (E)
, (A.3)

ΦCC
τ (y, E) =

∑
T nT

dστT→ντ Y

dy
(y,Ey)

∑
T nT σtot

τT (E)
, (A.4)
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Φd
τ (y, E) =

1
Γτ (E)

dΓτ→ντ Y

dy
(y, Ey), (A.5)

with nT the number of targets per unit mass of the medium, and

Dν(E, Ey, X) =
1

Λν(Ey, X)
− 1

Λν(E,X)
. (A.6)

For the simplicity in notations, we take the lower and upper limits for the y

integration to be 0 and 1 respectively. In reality, the limits depend on the

actual kinematics of each process. One may impose these limits in the functions

ΦNC
ντ

, ΦCC
τ and Φd

τ .

To perform the iteration, we begin by setting Zν(0) = 0. In this approxima-

tion, we have

Fντ (0)(E, X) = Fντ
(E, 0) exp

(
− X

λν(E, X)

)
. (A.7)

Substituting Fντ (0)(E,X) into Eq. (2.8), we obtain the lowest order ντ flux,

Fτ(0)(E, X). The first iteration for Zν , denoted by Zν(1) is calculable from

Eq. (A.2) by substituting Fντ (0)(E, X), Fτ(0)(E, X), and Zν(0) into the R.H.S. of

this equation. From Zν(1), we can then calculate Fντ (1)(E,X) and Fτ(1)(E, X),

which corresponds to the results presented in this paper. We have checked the

convergence of iteration procedure and have found negligible differences between

Zν(2) and Zν(1) and their associated ντ and τ fluxes.

The value of Zν depends on the spectrum index of the neutrino flux, since

it effectively gives the regeneration effect in the neutrino-nucleon scattering. In

general, a flatter neutrino spectrum implies a larger Zν . The Zν is however not

sensitive to the slant depth X. In the case of GRB neutrinos, where the flux

decreases as E−2
ν for Eν < 107 GeV, and decreases as E−3

ν for energies greater

than that, we obtain ZGRB
ν ≈ 0.2. For the AGN neutrino, ZAGN

ν changes from

0.96 to 0.35 as Eν runs from 105 GeV to 106 GeV. In this energy range, the

neutrino flux decreases slower than E−0.5
ν . For Eν greater than 108 GeV, ZAGN

ν

drops below 0.2 as the neutrino flux spectrum begins a steep fall. The values

for ZGZK
ν also follow the similar pattern.
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Appendix B

The neutrino oscillation
probabilities in the
three-flavor mixing scheme

In this appendix, we list the oscillation probabilities for neutrino traversing the

earth in the three-flavor mixing scheme. In the Stacey model, the incident neu-

trinos with the zenith angle 147◦ ≤ ξ ≤ 180◦ both traverse the Earth mantle and

the Earth core. On the other hand, the incident neutrinos with the zenith angle

90◦ ≤ ξ ≤ 147◦ only traverse the Earth mantle. The oscillation probabilities for

these two cases are as follows [43]:

1. For 90◦ ≤ ξ ≤ 147◦

Pνµ→νe
= sin2 2θm

13 sin2 θ23 sin2(1.27∆m
31L/E),

Pνe→ντ
= sin2 2θm

13 cos2 θ23 sin2(1.27∆m
31L/E),

Pνµ→ντ = − sin2 2θm
13 sin2 θ23 cos θ23 sin2(1.27∆m

31L/E)

+ sin2 θm
13 sin2 2θ23 sin2(1.27(mm

31)
2L/E)

+ cos2 θm
13 sin2 2θ23 sin2(1.27(Mm

31)
2L/E). (B.1)
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where L is in km, E is in GeV and

∆m
31 =

√
(∆m2

31 sin 2θ13)2 + (Am
e −∆m2

31 cos 2θ13)2,

(mm
31)

2 =
∆m2

31 + Am
e −∆m

31

2
,

(Mm
31)

2 =
∆m2

31 + Am
e + ∆m

31

2
,

sin 2θm
13 =

∆m2
31 sin 2θ13

∆m
31

. (B.2)

with ∆m2
31 the mass squared difference of the two neutrino mass eigenstates, θ23

and θ13 the mixing angles. Here, Ae = 1.52 × 10−4 eV2 Yeρ(g/cm3)E(GeV) is

the amplitude for νee forward scattering in matter with Ye denoting the electron

fraction and ρ the matter density. Note that, since we set the CP violation phase

δ to zero, we have

Pνi→νj
= Pνj→νi

. (B.3)

where i, j = e, µ, τ .

For 90◦ ≤ ξ ≤ 147◦, the neutrinos only traverse the Earth mantle where

ρ ≡ ρm = 5 g/cm3 with Ye ≡ Y m
e = 0.49.

2. For 147◦ ≤ ξ ≤ 180◦

Pνµ→νe
= sin2 θ23(1− α2 − β2),

Pνe→ντ = cos2 θ23(1− α2 − β2),

Pνµ→ντ = sin2 θ23 cos2 θ23[α2 + β2 + 1− 2(α cos δ + β sin δ)], (B.4)

where

α = cos(2ϕm) cos(ϕc)− cos(2θc
13 − 2θm

13) sin(2ϕm) sin(ϕc),

β = − cos(2θm
13)[sin(ϕc) cos(2ϕm) cos(2θc

13 − 2θm
13) + cos(ϕc) sin(2ϕm)]

+ sin(2θm
13) sin(ϕc) sin(2θc

13 − 2θm
13),

δ =
(Mm

13)
2 + (mm

13)
2

4E
× Lm +

(M c
13)

2 + (mc
13)

2

4E
× Lc, (B.5)
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with

ϕm(c) = 1.27
∆m(c)

31

2E
Lm(c). (B.6)

Here Lm(c) is in km and E is in GeV. We note that the upper index “m” denotes

the parameter of the Earth mantle and “c” denotes the parameter of the Earth

core. Hence Lm is the neutrino path-length traversing the Earth mantle and Lc

is the neutrino path-length traversing the Earth core. In addition, the Earth

core has the constant density ρ ≡ ρc = 12 g/cm3 with Ye ≡ Y c
e = 0.467.
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