# 第二章 文獻回顧

#### 2.1 剪力波速之應用

近年來剪力波速於工程的應用已經越來越廣泛。以地層調查之工程為 著眼點,非破壞性並且省時的方法已經越來越被重視,其中便以地球物理 探勘為代表。地球物理探勘早期是屬於地球科學所探討的範圍,由於發展 已日趨成熟,因此被應用於大地工程中,然而因為精度要求不同,是故試 驗方式也一直不斷在改良。波傳理論中,實體波分為 Vp 與 Vs 兩種,其中 Vs 與土壤動態性質也就是剪力模數(G)有絕對的關係,Vs 在某種程度上也 可以解讀為土壤的強度,除了直接反應動態性質,近年來 Vs 也廣泛的被 應用於推估其他大地工程參數,如液化潛能、SPT 的 N 值等。

# 2.1.1 土壤動態性質

剪力波速與土壤動態性質的關係。可根據彈性力學所推導出的公式:

 $G_{max} = \rho V s^2$ (2.1)

式中 O 為土壤的密度, Vs 為剪力波速。

在介紹 Gmax 之前必須先就其做定義,如圖 2.1 所示,土壤經由反覆載 重產生之剪應力剪應變行為。圖中得知單一試驗下,土壤剪應力與剪應變 關係乃呈現阻滯圈(Hysteresis Loop)的形式。而不同反覆試驗(改變因子如 振幅)所得到阻滯圈端點軌跡線,稱之為骨幹曲線(Backbone Curve),如圖 2.2 所示。從圖 2.2 中,我們可以就 Gmax 做一簡單定義,即是當應變量非 常小(接近零)時土壤的 G 值(正割模數)。Gmax 是骨幹曲線中任一點之最大 的切線斜率,因此任何 G/Gmax 均會小於 1。

Gmax 是非常重要的工程參數之一,也有許多經驗公式是由 Gmax 為出發點。一般形容土壤,我們習慣以 G 值大小來作為土壤的強度的參考,但

是土壤的G值隨著土壤應變越來越大有不斷改變的趨勢。Lancellotta(1993) 與Calavera(1999)曾經蒐集許多案例進行室內試驗,如圖 2.3 所示。我們可 以了解G值隨應變增加而有越來越小的遞減趨勢。另外,根據Woods(1977) 與Richart(1977)曾提出G值遞減變化的特性,如圖 2.4 所示,以G/Gmax 作為縱軸可以有助於實驗數據合理性的比對。Seed(1986)等人曾提出以下之 關係式:

$$\frac{G}{G_{\text{max}}} = F' \tag{2.2}$$

如圖 2.5 所示, Seed 等人以圖表呈現 F<sup>'</sup>與γ的關係。在 Gmax 已知的情 況下,便可輕易的歸納出 G 隨著γ變化的函數關係。值得注意的是 F<sup>'</sup>最大 值為 1,亦符合 G 值遞減的趨勢。

#### 2.1.2 液化潛能評估



Youd 及 Wieczorek(1984)及 Holzer(1988)等學者針對 1979 年 Imperail valley 及 1981 年 Westmorland 兩次地震紀錄,比對其剪力波 速與現地液化情形,發現當現地產生液化現象時,其土壤剪力波速均 小於 140m/s。

Tokimatsu 於 1990 年起利用大量重模試體於實驗室內進行不排水 動力三軸試驗,於小應變時量測土壤試體之剪力波速,再利用往覆作 用之剪應力使試體達到液化破壞現象,藉以分析土壤剪力波速對土壤

液化的影響。Tokimatsu及Uchida(1990)提出一剪力波速評估土壤液化經驗法則。

Andrus 與 Stokoe(2000)利用大量現地資料提出一套較為完整之剪 力波速液化評估方法(圖 2.6), Vs 與液化阻抗 CRR 的關係式如下:

$$CRR = a\left(\frac{V_{s1}}{100}\right)^2 + b\left(\frac{1}{V_{s1}^* - V_{s1}} - \frac{1}{V_{s1}^*}\right)$$
(2.3)

式中, $V_{s1} = V_s \left(\frac{P_a}{\sigma_0}\right)^{0.25}$ ,  $V_{s1}^*$ 為發生液化時 $V_{s1}$ 的上限值, a和b是回

歸參數。Vs1根據不同細料含量而有不同:

$$V_{s1}^{*} = 215(m/s) \qquad for \ sands \ with \ FC \le 5\%$$

$$V_{s1}^{*} = 215 - 0.5(FC - 5) \qquad for \ sands \ with \ 5\% < FC < 35\%$$

$$V_{s1}^{*} = 200(m/s) \qquad for \ sands \ and \ silts \ with \ FC \ge 35\%$$
(2.4)

並考慮土層膠結程度及齡期等因素的影響,會造成剪力波速之增加, 但其效應對大應變時之液化行為影響有限,故提出一 Kc 修正因子予以 修正:

$$CRR = a\left(\frac{K_c V_{s1}}{100}\right)^2 + b\left(\frac{1}{V_{s1}^* - K_c V_{s1}} - \frac{1}{V_{s1}^*}\right)$$
(2.5)

式中 Kc 值大約介於 0.6~0.8 間。

## 2.1.3 剪力波速於其他方面之應用

SPT-N 值直接反應土壤的強度,多位學者試圖建立 Vs 與 N 值的關 係式。Kamil Kayabali(1996)試圖尋找出剪力波速與 SPT-N60 及 CPT-qc 之關聯性,發現剪力波速與 SPT-N60 及剪力波速與 CPT-qc 之關聯性有 很大之相似性。於研究中迴歸出一剪力波速與 SPT-N60 的關係式:

$$V_s = 175 + 3.75 \times N_{60} \tag{2.6}$$

另外, Imai 等人(1982), 建立 Vs 與 N 值幂次方之關係式:

$$V_s = 7.54 \times (N_{67})^{0.357} \tag{2.7}$$

式中,N67為修正能量比例為67%。簡連貴與林敏清(1998)曾蒐集案例 並進行三種回歸方式,提出適用於台灣西部沿岸之關係式:

$$V_{s} = 22.864 \times (N)^{0.757}$$

$$V_{s} = 18.23 \times (N+1)^{0.817}$$
(2.8)

式中,N為標準灌入試驗之N值。

本研究室亦曾利用剪力波速檢核土壤改良之成效,如圖 2.7 所示, 軟弱土層經過高壓灌漿改良後,當地剪力波速有明顯的提升。

## 2.2 剪力波速量测方法回顧

震測法基本上大致可分為破壞性(Invasive)與非破壞性(Non-invasive)試 驗兩大類型,並且依照土層探測用途及野外試驗方法之不同,而決定採用 實體波或表面波來探測地下土層之構造,現就將各種類型之地球物理探測 法,一一簡介如下。

#### 2.2.1 試驗室量測方法

1.剪力波元件試驗(Bender Element Test)

土壤中剪力波速的傳送與接收室內試驗早期由美國德州大學 (University of Texas at Austin)所發明,乃利用剪力片(Shear Plate) (Shirley, 1978)進行試驗,以石英或壓電水晶為主要元件,然而,拜現 代科技之賜,目前以壓電陶瓷材料所組成之剪力波元件(Bender Element) 逐漸取代剪力片,所以目前關於剪力波速室內量測方法多採用一組剪力 波元件(Bender Element)進行剪力波速的量測;壓電陶瓷可分為串聯與 並聯兩種連接方式,不同的連接方式會有不同的壓電特性,串聯時機械 能轉換為電能之功率是並聯的兩倍;反之,並聯時電能轉換為機械能的 功率是串聯的兩倍,故利用壓電陶瓷剪力波元件量測剪力波速時,一端 以函數產生器激發剪力波,另一端接收剪力波並由示波器上判斷剪力波 初達時間,便可推算剪力波速,詳細試驗方法將於第四章中說明。剪力 波元件試驗最大的剪應變約等於於或小於 10<sup>-3</sup>% (Dyvik and Madshus, 1985),因此試驗在微應變下便可決定初始剪力模數G<sub>max</sub>。

剪力波試驗結果如圖 2.8 所示,由剪力波元件試驗資料判斷初達時間並計算剪力波速後,便可依下式計算初始剪力模數G<sub>max</sub>。

$$G_{\text{max}} = \rho V_s^2 = \frac{\rho}{\left(L/t\right)^2}$$
(2.9)

 $\rho = 試體質量密度。$ 

L = 有效長度,為試體長度扣除剪力波元件凸出上下頂蓋的長度。
 T = 為波傳時間。

2. 超音波試驗(Ultrasonic pulse test)

超音波試驗為量測土體中波速傳遞的室內試驗(Whitman and Lawrence, 1963),可量測土壤之動態楊氏模數,試驗儀器包含三個單元:脈衝產生/接收裝置、探頭及示波器,其探頭的材料亦為具壓電效應的陶瓷片,能使脈動波轉換為電動勢能,再將電動勢能轉換為機械

能之脈動波。試驗方式為將超音波試驗探頭置於試體上下兩端,經由 一端發出脈動波另一端接收經示波器可讀取 P 波及 S 波之波速,進而 求得動態彈性模數,儀器裝置如圖 2.9。

#### 2.2.2 現地孔內震測

1.跨孔式探测法:

跨孔式探測法,如圖 2.10 左側所示,至少需要兩個垂直地表面 的鑽孔,通常以三個鑽孔為最佳,相鄰兩鑽孔之間距約為 2~3 公尺, 其中在某個鑽孔中設置震源,而在與震源同一深度處,則分別在另 外兩個鑽孔中設置垂直向速度受波器,以接收震源所發出之壓力波 及垂直向剪力波訊號,同時依據相鄰兩鑽孔之間距及波傳之時間, 計算兩鑽孔間土層之平均波傳速度;另外由於震源與受波器可以同 時在鑽孔內自由上下移動,通常每隔 0.5 或1 公尺移動一次,因此 可以求取整個鑽孔深度範圍內土層之波速度剖面圖;但缺點是若兩 鑽孔間之距離太大時,則在層狀之地下土層構造中,便會因折射現 象造成波傳將以最短路徑通過高速度地層,因此便無法探測到兩高 速度地層間之低速度夾層,即解析能力不高。

2.下孔式探测法:

下孔式探測法,如圖 2.10 右側所示,只需要一個垂直地表面 的鑽孔,其中在地表面設置震源,而在鑽孔內設置水平向速度受 波器,以接收震源所發出之壓力波及水平向剪力波訊號,同時依 據震源離受波器之距離及波傳之時間,計算量測範圍內土層之平 均波傳速度;此外受波器每隔 0.5 或1公尺往下移動一次,直至整 個鑽孔深度施行完畢為止,以求取整個量測範圍內土層之波速度 剖面圖;但缺點是震波之訊號品質會隨著探測深度之增加而減 少,且不能使用於雜訊較大之區域,使得適用範圍縮小,此外量 測結果亦受鑽孔套管之影響。

3.上孔式探测法:

上孔式探測法與下孔式探測法類似,但較不常用,主要的差別 在於震源與受波器之位置正好相反,即震源設置於鑽孔中,而受波 器則設置於地表面,以接收震源所發出之壓力波訊號,同時依據震 源離受波器之距離及波傳之時間,計算量測範圍內土層之平均波傳 速度;此外震源每隔 0.5 或1 公尺往上移動一次,直至整個鑽孔深 度施行完畢為止,以求取整個量測範圍內土層之波速度剖面圖;但 缺點是現場探測易造成坍孔現象,且量測到之訊號資料無法藉由震 波訊號之對稱性,判定壓力波之初達時間。

4. 懸垂式 P-S 波探測法 🏹

懸垂式 P-S 波探測法,如圖 2.11 所示,只需要一個垂直地表 面的鑽孔,主要裝置是一含有兩組受波器及一個震源之電磁式探 測管,兩組受波器之間距為 1 公尺,而震源位於受波器下方,施 作時將電磁式探測管伸入含有地下水或鑽孔液之鑽孔中,而由震 源依次產生水平向剪力波、相反極性水平向剪力波及壓力波三種 訊號,由兩組受波器分別接收震波訊號,同時依據兩受波器之間 距及波傳之時間,計算鑽孔深度範圍內土層之壓力波速度及剪力 波速度;此外電磁式探探管每隔 0.5 或 1 公尺往上移動一次,直至 地下水位或鑽孔液深度為止,以求取整個鑽孔量測周圍土層之波 速度剖面圖;但缺點是鑽孔中必須充滿地下水或鑽孔液,以提供 波傳所需之介質,同時兩組受波器之間距僅 1 公尺,使得波傳之 路徑太短,導致初達時間之誤差較大,造成判定上之人為誤差。

#### 2.2.3 表面波震测法

表面波震測(Seismic Surface Wave)法,主要是採用表面波中之雷力 波(Rayleigh wave)或洛夫波(love wave)來探測地下土層,又因為雷力波 為地表面量測法中最容易產生且振幅亦最大之震波,故通常都是採用 雷力波來探測地下土層之構造,而表面波之波傳影響範圍大約侷限於 一個波長之深度內,因此表面波之影響深度會隨著頻率之不同而有所 差異,當土層之剪力模數隨著深度而變化時,造成波傳速度亦隨著頻 率(或波長)之不同而變化,稱之為表面波之頻散現象,波速度與頻率(或 波長)之關係稱之為頻散曲線,由於雷利波速度與剪力波速度相近,利 用頻散曲線與地層波速變化之關係,可反算得到土層之剪力波速度剖 面,如圖 2.12。

### 2.2.4 剪力波速量测方法之比較

數種剪力波之量測方法比較如表 2.1, 從表中我們可以得知表面波 之方法優勢在於非破壞性,取樣空間大,以及無須鑽孔等。然所量測 得到頻散曲線尚須經過反算,相較於其他量測方式可直接得到剪力波 速而言,分析方面較為複雜。綜觀而言,以表面波方法量測剪力波速 雖尚有疑點存在,但其便利性以及經濟性使其在大地工程的應用上有 非常大的發展潛力。

#### 2.3 表面波震测法

上節所探討表面波量測之取樣體積遠大於孔內或貫入式試驗,故 可適用於大範圍工址之探測,同時又具有無須開孔破壞地表土層之非 破壞性檢測之基本特性,再加上其施測容易、施作快速及成本低廉之 優點,故現已倍受工程界之重視及採用,並成功的應用在大地工程、 路面工程及結構層狀系統之剪力波速度剖面之評估上。然現有數種不

同之表面波試驗之施測方式,於此節中僅介紹主要的表面波譜分析法 (SASW)以及多頻道式表面波量測法(MASW)之方法

#### 2.3.1 表面波基本波傳原理

在半無限域空間之彈性體中,由於其邊界之存在,故經由震源或 其他擾亂源產生之波動,除了實體波之產生外,為了滿足力學之平衡 條件,還會產生在邊界傳遞之表面波(Surface Wave),又稱為雷力波 (Rayleigh Wave),其質點運動方向在水平及垂直向均有分量,即質點 運動方向為橢圓形平面軌跡運動之波動。至於在非均質之土層中,亦 可能產生另一種在層狀界面中傳遞之表面波,稱之為洛夫波(Love Wave), 此種波發生在表面層為低速層之介質內, 質點運動為沿著水平 面與波傳行進方向垂直。表面波之波傳影響範圍大約侷限於一個波長 之深度內,因此表面波之影響深度會隨著頻率之不同而有所差異,當 土層之彈性模數隨著深度而變化時,造成波傳速度亦隨著頻率(或波長) 之不同而變化,稱之為表面波之頻散現象,波速度與頻率(或波長)之關 係稱之為頻散曲線。表面波震測即是採用表面波中之雷利波或洛夫波 來探測地下土層,又因雷利波為地表面量測法中最容易產生且振幅亦 最大之震波,故通常都採用雷利波來探測地下土層之構造,由於雷利 波速度與剪力波速度相近,利用頻散曲線與地層波速變化之關係,可 反算得到土層之剪力波速度剖面。

假設地層為均質、均向之線彈性體,若於地表面上某一方向 x,量 測地表隨時間 t 之垂直運動 u(x,t),則就某一角頻率ω (= 2πf)而言,雷 利波運動之通解可表示為:

$$u(x,t) = U_0(\omega)A(x)e^{-jkx}e^{j\omega t}$$

$$= U_0(\omega)A(x)e^{j\omega[t - \frac{x}{\omega/k}]}$$
(2.10)

其中 U<sub>0</sub>為初始振幅之大小,與震源之型式有關,A為振幅隨空間 改變之因子,與幾何阻尼有關,k為空間頻率之大小(又稱為波數, Wavenumber),其倒數λ(=2π/k)即為波長大小。公式(2.10)可顯示波傳 之主要行為,包括波傳之衰減與波動之速度,其中波傳速度(v)與材料 之彈性模數有直接之關連性,且可定義為時間頻率與空間頻率之比 值,如下所示:

$$v = \frac{\omega}{k} = \frac{2\pi f}{k} \tag{2.11}$$

上式亦可表示為頻率(f)與波長(λ)之乘積:

$$f^{\lambda} = f^{\lambda}$$
 (2.12)

在均質線彈性體中,上式之乘積為一定值,頻率較低之波長較長, 而頻率較高之波長較短,亦即波傳之速度為一常數,不隨頻率之改變 而改變。在均質線彈性體中,僅有單一模態之波傳,然而,一般層狀 地層沿深度方向為非均質,亦即其材料之彈性模數隨深度而變化。若 考慮地層之非均質性及材料阻尼,就某一角頻率ω(= 2πf)而言, 雷利 波之通解可由振態疊加求得,

$$u(x,t) = \sum_{m} S_{m}(\omega, x) e^{-j(wt - k_{m}x)}$$
(2.13)

其中 m 為振態數, S 為振幅因子,包含震源、受波器、幾何阻尼及材 料阻尼之綜合影響,由於表面波之波傳影響範圍大約侷限於一個波長 之深度內,而不同頻率震波具有不同之波長,當地層之速度隨深度而 變化時,各振態之相位速度變為頻率之函數,此速度隨頻率之變化稱 為頻散現象。(2.13)式可改寫為(2.10)式之形式:

$$u(x,t) = U_0(\omega) A(\alpha, x, \omega) e^{-j(wt - \phi(x, \omega))}$$
(2.14)

其中 A 亦受到材料阻尼(α)之影響,且為頻率之函數, φ為一複合相位 函數,描述相位隨著空間變化所產生之波傳現象。任一頻率簡諧波之 特徵點(例如波峰或波谷)可以下式表示:

$$\omega t - \phi(x, \omega) = const \tag{2.15}$$

因此,將上式對時間微分可以得到有效相位速度之定義:

$$\hat{v} = \frac{\omega}{\frac{\partial \phi(x,\omega)}{\partial x}}$$
(2.16)

由上式可得知,多重模態波傳之有效相位速度為區域性之物理量,亦 即不同位置具有不同之波傳速度。若地層為常態之速度剖面(亦即, 剪力模數隨深度增加而增加),則通常波傳由基態所控制,而有效相位 速度趨近於基態之速度(林志平等,2002)。

#### 2.3.2 SASW

表面波震測法係利用表面波之頻散特性反求其地層剪力波速,主要可分為兩項步驟:(一)先藉由現地量測求得相位速度頻散曲線(v(f)),(二)再利用彈性波傳理論反算地層剪力波速(v(z))。目前常用之頻散曲線量測法為表面波譜法(圖 2.13),表面波譜法(Spectral Analysis of Surface Wave)之施測方式主要由一衝擊式震源及兩個受波器所組成(Nazarian et al., 1983; Stokoe et al., 1994),兩受波器各頻率之相位差 $(\Delta \phi = \phi_2 - \phi_1)$ 即為其互能頻譜 $CSD(u_1(t), u_2(t))$ 之相位角:

$$\Delta\phi(\omega) = \phi_2(\omega) - \phi_1(\omega) = Angle[CSD(u_1(t), u_2(t))]$$
(2.17)

由(2.17)式及(2.16)式可求得各頻率之有效相位速度:

$$v(\omega) = \frac{\omega}{\frac{\Delta\phi(\omega)}{\Delta x}}$$
(2.18)

其中 $\Delta x$ 為兩受波器之間距。兩受波器之相位差,一般隨頻率之增加而 增加,但由於頻譜分析所得之相位角差僅侷限於 -π ~ π之間,因此 在計算(2.18)式之前必須先將相位角差 $\Delta\phi(\omega)$ 摺開(unfold),以求得各頻 率真正之相位差。為求得高頻之相位差,必須先求得可靠之低頻相位 差,以避免摺開時產生錯誤,然而,由於震源訊號有一定之頻率範圍 (band-limited),因此非常低頻與非常高頻之訊號雜訊比不佳,因此在 低頻處之相位角摺開容易出現錯誤,尤其當受波器間距較大時,相位 角差隨頻率之變化較大,此一步驟使得表面波譜法之自動化不易且容 易產生錯誤。因此,通常表面波譜法需要極低頻之震源及受波器以收 錄較可靠之低頻訊號。由於近場與遠場效應,每一施測幾何(如震源及 兩受波器之相對位置)僅能得到某一頻率範圍內之資料(Heisey et al., 1982),因此必須改變不同的受波器間距重複施測,此外,為增加頻譜 分析之準確性並評估訊號雜訊比 (或相關函數),每一施測幾何必須重 複施測以得到多筆訊號資料,施測方法繁瑣費時。此外,當地層之變 化複雜時,所量測到之頻散曲線為基態與高次模組疊加而成之有效頻 散曲線,如(2.16)式所示,有效相位速度為區域性之物理量,不同受波 器間距所量測到之頻散曲線不同,如何將不同施測幾何所得到之資料 整合起來以得到單一整合頻散曲線,常需要繁瑣的人為判斷以維持資 料之合理性。表面波譜法對於表面波應用於地質調查之推廣扮演舉足 輕重之角色,但其施測方式與分析方法並非最佳,表面波譜法亦可採 用可控式簡諧震源(Satoh et al., 1991),可提高各頻率之訊號品質,但 無法解決上述之問題,本研究之主要目的在於探討多頻道表面波震測 以改進表面波譜法之不足。

#### 2.3.3 MASW

多頻道式表面波量測法(Multi-channel Analysis of Surface Wave Method,簡稱 MASW 法),由地球物理領域之學者提出(McMechan and Yedlin, 1981; Gabriels et al.,1978; Park et al., 1999),並可避免上述表面波譜法之限制,其野外試驗之施測方式,一般採用 1~2 公尺之受波器間距,並設置 12 個以上之受波器於同一直線上,以接收震源所發出之震波訊號,其中以收錄表面波之訊號為主;以 24 個受波器為例,在第一個受波器之線外設置 1 個炸點,並反覆在同一炸點處施作疊加震測以消除雜訊之影響,直至收錄到清晰之表面波訊號為止,再利用先進之二維訊號識別技術以分析多頻道 震測資料,以求得訊號品質優良之頻散關係曲線,最後經過反算分析便可得到淺層地層之剪力波速度剖面。多頻道式表面波量測法之分析方法有數種,於此僅介 紹較常使用的波譜分析法(MSASW)以及波場轉換法(MWTSW)。



#### 2.3.3.1 MSASW

表面波譜法僅利用空間上兩點之資料求得 $\phi$ -x 之斜率(即 $\Delta \phi / \Delta x$ ),再 利用(2.16)式求得有效相位速度,多頻道表面波波譜法則採用數個受波 器,在空間上增加其取樣數目以提高相位速度估計之準確度,其分析原理 與表面波譜法雷同,首先將各受波器之時間空-間域訊(t-x doamin)號經由富 利葉轉(FFT)換至頻率-空間域(f-x domain)(Prokis and Manolakis, 1992):

$$U(f_i, x_n) = \frac{1}{M} \sum_{m=0}^{M-1} u(t_m, x_n) \exp(-j2\pi f_i t_m)$$
(2.19)

式中,  $j = \sqrt{-1}$ 

 $t_m = m\Delta t \quad x_n = n\Delta x$ 

 $f_i = i\Delta f = i/[(M-1)\Delta t]$ 

m及n分別代表時間與空間中第m及第n個取樣點,M為時間軸之取樣總點數, $\Delta t$ 與 $\Delta x$ 分別為時間與空間之取樣間隔

在頻率域中,得到各頻率在各受波器位置之相位角( $\phi(x)$ ),頻譜分析 所得到之相位角僅侷限於  $-\pi \sim \pi$ 之間,因為具有多點之資料,可以在空 間域直接將 $\phi(x)$ 摺開,並利用線性回歸得到 $\phi-x$ 之斜率,最後再利用(2.16) 式求得有效相位速度。多頻道表面波譜法亦可採用可控式簡諧震源 (Matthews et al., 1996),又稱為連續表面波試驗法 (Continuous Surface Wave Method),則不同頻率之 $\phi-x$ 關係可由不同頻率之震源得到。測線配置 與分析流程如圖 2.14 所示。

#### 2.3.3.2 MWTSW

多頻道波場轉換法常見於地球物理領域之濾波處理,包括頻率波數轉 換法(Frequency-Wavenumber Transform, *f-k* Transform)及慢度頻率轉換法 (Slowness- Frequency Transform, *p-w* Transform),用以區隔表面波與實體 波亦可用來求取表面波之頻散曲線(McMechan and Yedlin, 1981;Gabriels et al., 1978; Park et al., 1998)。這些方法在數學上是相關連的,本研究主要 是利用波場轉換法中頻率波數轉換法進行資料的分析(Lin and Chang, 2004)。如圖 2.15 所示,其主要是將震測資料由時間-空間域(*t-x* domain)) 經快速傅立葉轉換(FFT)轉換至頻率-空間域(*f-x* domain),再經離散空間域 傅立葉轉換(discrete-space Fourier Transform)將頻率-空間域轉換至頻率-波 數域(f-k domain)(Prokis and Manolakis, 1992)。由於受波器數目有限, 故空間之取樣點總數(N)遠不如時間之取樣點總數(M)。在進行空間軸與波 數軸轉換時,利用 DSFT 使得 k(f)仍為連續函數,如此不因空間取樣點總數 少而限制波數軸之解析度。轉換步驟如下:

$$U(f_i, x_n) = \frac{1}{M} \sum_{m=0}^{M-1} u(t_m, x_n) \exp(-j2\pi f_i t_m) \Leftarrow FFT$$
$$Y(f_i, k) = \sum_{n=0}^{N-1} U(f_i, x_n) \exp(-jkx_n) \Leftarrow DSFT$$
(2.20)

式中,  $j = \sqrt{-1}$ 

 $t_m = m\Delta t \quad x_n = n\Delta x$  $f_i = i\Delta f = i/[(M-1)\Delta t]$ 

m及n分別代表時間與空間中第m及第n個取樣點,M及N分別為時間軸與

空間軸之取樣總點數, $\Delta t 與 \Delta x 分別為時間與空間之取樣間隔。$ 

配合(2.11)式之變數變換,可將(2.20)式於 f-k domain 之能量頻譜  $Y(f_i,k)$ 轉變為 f-v domain 之能量頻譜  $Y(f_i,v)$ (Lin, 2004):

$$Y(f_i, v) = \sum_{n=0}^{N-1} U(f_i, x_n) \exp\left(-j \frac{2\pi f_i}{v} x_n\right)$$
(2.21)

上式中,配合其他之變數變換如  $k=2*\pi fp$ ,  $k=2*\pi f/\lambda$ ,即可將  $Y(f_i,k)$ 轉換至 f-p domain 之能量頻譜  $Y(f_i,p)$  以及 f- $\lambda$  domain 之能量頻譜  $Y(f_i,\lambda)$ 。

於 f-v domain 單一頻率之頻譜波峰值即為其所對應之雷力波波速,在 經過各頻率之頻譜波峰值挑選後產生頻散曲線 v(f),如圖 2.15 所示。測線配 置與各計算域之呈現如圖 2.16 所示。

# 2.3.3.3 MASW Tomography

多頻道之測線可製作包含空間以及深度的剪力波速二維影像,如圖2.17 所示。由於佈置一條多頻道之測線其量測所得之剪力波速可代表測線中點 處之剪力波速,因此若於地表以上固定之空間範圍佈置多條測線,即可得 到多點之剪力波速資料來製作剪力波速二維之影像剖面。

#### 2.3.4 SASW vs MASW

現行表面波速方法中,SASW 以及 MASW 為兩種主要的施測方式,然相較於 SASW, MASW 同時具有許多優勢:

- 1.SASW 由於施測時之近場(Near-field)與遠場(Far-field)效應影響,每一個施 測配置幾何只能得到某頻率範圍內之資料。為了得到不同頻率的資料 必須不斷改變施測幾何。然而 MASW 一次佈設多個受波器便可以得 到各頻率的資料。
- 2.SASW中,兩受波器之相位差一般隨頻率之增加而增加。但由於頻譜分析 所得之相位角差僅侷限於 -π ~ π之間,因此在計算之前必須先將相位

角差 $\Delta \phi(\omega)$ 摺開以求得各頻率真正之相位差。為求得高頻之相位差,必須 先求得可靠之低頻相位差以避免摺開時產生錯誤。然而,由於震源訊號 有一定之頻率範圍(band-limited)導致非常低頻與非常高頻之訊號雜訊 比不佳,因此在低頻處之相位角摺開容易出現錯誤。尤其當受波器間距 較大時,相位角差隨頻率之變化較大。此一步驟使得 SASW 容易產生錯 誤。因此,SASW 通常需要極低頻之震源及受波器以收錄較可靠之低頻 訊號。MSASW 多個受波器之配置,增加了資料豐富性,選取 x- $\phi$  domain 來進行資料處理。因此對於每個頻率(f)都可以多點回歸分析來計算斜率 ( $\Delta \phi / \Delta x$ )。

- 3.於資料分析方面,SASW 需要將不同施測配置幾何所得到之資料整合起來 以得到單一表面波頻散曲線。常因人為判斷上之誤差造成資料的不準確 性及分析自動化的困難。MSASW 由於多點回歸分析或 MWTSW 的 影像處理都將使得資料處理容易自動化。
- 4.MWTSW 之影像分析處理計算快速且由於有效頻散曲線為能量頻譜 對應之尖峰值(影像顏色最黑處)。當蒐集資料與雜訊比過低或震波高 次組態影響而造成頻散曲線之挑選不盡理想,則可運用影像處理提 供較具有彈性之判斷。此外,不同於 SASW 及 MSASW 必須將相位 角摺開以利計算斜率(Δφ/Δx),MWTSW 可完全避免摺開時所產生的 誤差。
- 5.由於 SASW 只採用兩個受波器,故對於基態模組(Fundamental Mode)與高 階模組(Higher Mode)之雷力波頻散曲線無法辨識。當地層構造之變化複 雜,所量測到之頻散曲線為基態模組與高模模組疊加而成有效頻散曲 線。反算分析時若未考慮高次模組之貢獻,則地層動態性質之估計將可 能出現錯誤。然而 MASW 若是測線展距(L)足夠長,則不論以 MSASW 或是 MWTSW 分析,皆有能力分辨高階模組之雷力波頻散曲線。

6.如同 2.3.3.3 所提到利用 MASW 進行空間二維影像製作。SASW 受到 試驗本身配置繁瑣以及計算費時之限制進行二維影像製作非常耗時 且效率甚低。

#### 2.3.5 存在於 MASW 施测方法中之問題

雖相較於 SASW, MASW 同時具有許多優勢, 然現行 MASW 的 施测方式依舊有著以下的問題存在:

1.資料映頻干擾(Aliasing)

在頻譜分析的過程中,離散化(discretization)的步驟會產生資料映頻 干擾(Aliasing)(Prokis and Manolakis,1992)。如圖 2.18 所示,在進 行 MSASW 分析資料時,受波器間距( $\Delta x$ )不夠小導致空間軸離散化 的過程取點產生錯誤。因而導致 x- $\phi$  domain 進行摺開(unwrap)的動作後 產生斜率( $\Delta \phi / \Delta x$ )計算的誤差。若以 MWTSW 進行分析,映頻干擾 (Aliasing)會在 f-v domain 產生錯誤的能量頻譜分佈,進而導致挑選 尖峰值的錯誤。雖然限制波速範圍挑選尖峰值可以避免挑選的錯 誤,但若映頻干擾嚴重即  $\Delta x$  選取不適當,資料映頻與高階模組的震 波所導致能量頻譜錯誤分布,對於頻散曲線的正確性造成一定的影響。

2.資料遺漏(Leakage)及多重模態效應

由於震測資料之空間長度並不能無限之延伸(亦即 L=NΔx),所以進 行資料擷取時須先經截斷(truncation)的動作。在截斷的過程中則會 產生遺漏(leakage)的現象(Prokis and Manolakis, 1992)。如圖 2.19 左 側所示,以 MWTSW 分析時,資料遺漏會造成 f-k domain 空間頻率 (k)分佈的失真,於變數變換後之 f-v domain 頻譜影像造成波峰擴散 的現象,如圖 2.19 右側所示。而多重模態震波效應也因資料遺漏造 成錯誤的空間頻率分佈,並且於 f-v domain 分辨不同模組之震波產 生困難,如圖 2.19 右側所示。資料遺漏嚴重,亦導致挑選波峰值的 錯誤。具有足夠長的測線展距為此問題之解決方法。

3. 侧向解析度

現行 MASW 測線佈設方式所得頻散曲線,其代表性為測線展距(L) 底下土壤之平均值,如圖 2.20 所示。因此單一測線配置所得側向解析 度會與測線展距成反比,意即測線展距越長則側向解析度越差。於要 求高解析度的工址調查,勢必以縮短側線展距所得頻散曲線代表其所 量測之空間範圍方可滿足側向高解析度

4.近場效應與遠場效應(Near and Far field effect)

當 MASW 試驗進行測線佈置需決定近站支距(X<sub>0</sub>),但近站支距的決 定會受到近場效應與遠場效應的牽制(圖 2.21)(Park et al., 1999)。雖然 MASW 可利用一組測線的配置獲得各個頻率的資料,然近場效應會 使得低頻波的資料品質受影響,遠場效應會使得高頻波的資料品質 受影響。近站支距決定後,近場效應通常發生在測線較前方之受波 器。震源敲擊後,低頻波(波長較長)在測線前幾個受波器處尚未成 形,且受到未衰減的實體波干擾,因此前幾個受波器所收到低頻波 的品質相對較差。遠場效應通常發生在測線後方受波器,主要因為 高頻波(波長較短)的衰減嚴重,導致測線後幾個收波器收到高頻波的 品質相對較差。為避免近場效應,則須拉大近站支距,如此卻無法 避免甚至更加重遠場效應的影響,反之亦然。

綜合以上三點, MASW 之測線幾何配置主要有兩個矛盾處: 1.避免 leakage 的影響,需要將測線展距拉長。然而考慮 aliasing 之產

生使用過小的受波器間距及側向解析度,則測線展距受到限制。

 近站支距過短,近場效應造成低頻資料品質不好。近站支距過長, 遠場效應造成高頻資料品質不好。

本研究試圖解決以上兩個互相違背的現象,並且將野外 MASW 試驗之側線佈置標準化,不因施測人員不同,而在幾何配置參數採用方面有相當程度的差異。





圖 2.2 骨幹曲線(資料來源:Luna, 2000)



圖 2.4 G 值遞減變化(資料來源: Woods, 1977)



圖 2.6 Vs 與液化阻抗 CRR 的關係圖(資料來源: Andrus, 2000)



圖 2.8 剪力波元件試驗 (Bender Element Test) (資料來源: Shirley, 1978)



圖 2.10 跨孔以及下孔震測(資料來源: Foti, 2000)



圖 2.11 懸垂式 P-S 波探測法(資料來源: Nigbor, 1994)



表 2.1 剪力波量测方法比較

|        | 室內試驗         | 孔內波速試驗         | 表面波試驗  |
|--------|--------------|----------------|--------|
| 試體擾動   | 破壞性          | 非破壞性,但尚有<br>擾動 | 非破壞性   |
| 試體取樣範圍 | 小            | 中              | 大      |
| 經濟便利性  | 試驗須鑽孔<br>並取樣 | 試驗須鑽孔          | 現地直接施作 |
| 分析方式   | 無須反算         | 無須反算           | 須反算    |



圖 2.14 MSASW



圖 2.16 MWTSW

☆ \$  $\nabla \quad \nabla \cdots \nabla$  $\nabla \cdots \nabla$ V ☆ V  $\nabla \cdots \nabla \nabla \cdots \nabla$ Δ ☆ ⊽ ----- ⊽ V ⊽ … ☆  $\nabla \quad \nabla \cdots \cdots \nabla \quad \nabla \quad \cdots \cdots \quad \nabla$ Δ ☆  $\nabla \quad \nabla \cdots \nabla$ ∇ … ∇ <u>\_</u>  $\nabla \nabla \cdot \cdot \cdot \nabla$ \$ ∇ …… ∇ V <u> ∇ ····· ∇ ····· ∇</u> 4 V  $\nabla \quad \nabla \dots \nabla$  $\nabla \cdots \nabla$ <u></u> ☆  $\nabla \cdots \nabla$ Δ ∇ …… ∇ Δ ∇ ····· 7  $\nabla$  $\Delta \dots \Delta$ <u>\_</u> ALLIN, ▽ … ▽ ▽ … ▽ Δ \_<u></u> Depth

Data Acauisition

圖 2.17 MASW Tomography



圖 2.19 f-v 域中資料遺漏(leakage)



圖 2.21 近場與遠場效應