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三閘極金氧半場效電晶體利用基極偏壓調變臨界電壓 

之分析與模型建立 

 

研究生:江俊賢                           指導教授:蘇 彬 博士 

 

國立交通大學 電子工程學系 

電 子 研 究 所 碩 士 班 

摘 要 

本論文探討三閘極金氧半場效電晶體藉由基極偏壓調變臨界電壓的可行

性。我們利用三維原子等級模擬探討隨機參雜濃度變動 (Random Dopant 

Fluctuation)對於 BULK 三閘極元件中 Punch-Through-Stopper (PTS)區域的影響。

我們的研究發現藉由高濃度摻雜的 PTS 區域雖能有效的幫助基極偏壓調變元件

的臨界電壓，但同時也造成額外 Bulk 三閘極電晶體的元件變異。因此，在比較

BULK以及 SOI三閘極元件的變異度時，上述效應的影響應該要納入考量。 

由於 bulk 三閘極元件中 PTS 區域會引起額外的元件變異，因此利用基極電

壓來調變 SOI三閘極元件結構的臨界電壓似乎是個較佳的選項。為了有利於 SOI

三閘極元件多重臨界電壓的設計，我們準確地推導了具有高度深埋氧化層(BOX)

厚度微縮性的次臨界解析模型。利用此模型，我們可以有效率且廣泛地探討 SOI

三閘極元件參數對於多重臨界電壓調變的影響。基於相同次臨界斜率

(Subthreshold Slope)的比較基準之下，我們的研究指出低高寬比及薄深埋氧化

層(BOX)的三閘極 SOI 元件結構設計可較有效率地利用基極偏壓來調變臨界電

壓。 
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Investigation and Modeling of Threshold-Voltage 

Modulation through Substrate Bias for Tri-gate MOSFETs 

 

Student : Chun-Hsien Chiang                      Advisor : Pin Su 

 

Department of Electronics Engineering 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

This thesis investigates the feasibility of threshold voltage (Vth) modulation 

through substrate bias for tri-gate MOSFETs. Through 3-D atomistic simulation, the 

random dopant fluctuations in the Punch-Through-Stopper (PTS) region of Bulk 

tri-gate devices are examined. Our study indicates that to achieve an efficient 

threshold-voltage modulation through substrate bias, the high-doping PTS region may 

introduce excess variation in Bulk tri-gate devices. This effect has to be considered 

when one-to-one comparisons between Bulk tri-gate and SOI tri-gate regarding device 

variability are made. 

Because of the PTS-induced variability in Bulk tri-gate, SOI tri-gate with 

substrate bias seems to be a better device structure to achieve multiple Vth. In order to 

facilitate multi-Vth device design in tri-gate SOI MOSFETs, we have derived an 

analytical subthreshold model with an accurate BOX-thickness scalability. Using this 

model, we can efficiently investigate multi-Vth device design in tri-gate SOI 

MOSFETs with wide range of design space. Under constant subthreshold swing 

criterion, our study indicates that tri-gate SOI device with low aspect ratio (AR) and 

thin BOX is a promising structure to enable efficient Vth modulation by substrate bias. 
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Chapter 1 
Introduction 

Because multiple gates can provide superior electrostatic control, tri-gate 

MOSFETs [1]-[4] have better immunity to short-channel effects (SCE), and can be 

used to extend the Moore’s Law in transistor scaling. In addition, random variation 

such as random dopant fluctuation [5]-[9], line edge roughness [10]-[11] has become 

a curial problem for nanoscale CMOS. Undoped or lightly-doped tri-gate MOSFETs 

can mitigate the channel random-dopant-fluctuation (RDF) problem for planer bulk 

MOSFETs [12]. 

In addition to random variability, subthreshold leakage current is another crucial 

problem for transistor scaling. To effectively control subthreshold leakage current, 

multi-threshold voltage technique [13]-[14] has been proposed to reduce power 

dissipation and maintain high performance. This low-power design technique uses 

high-Vth devices to suppress leakage currents and low-Vth devices to achieve high 

performance. In other words, multi-Vth is also important for tri-gate devices. 

Depending on the substrate, either SOI tri-gate or Bulk tri-gate can be used. To enable 

more efficient Vth modulation through substrate bias, SOI tri-gate can use ultra-thin 

buried oxide (BOX) [15]-[16] while Bulk tri-gate has to employ a 

punch-through-stopper (PTS) with high enough impurity concentration [17]-[20] right 
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beneath the lightly-doped channel. In this work, we use 3-D atomistic simulation to 

investigate the body-effect induced variability in Bulk tri-gate MOSFETs [21]. 

Due to the PTS-induced variability in Bulk tri-gate, SOI tri-gate with thin BOX 

seems to be a better device structure to enable threshold-voltage modulation. In order 

to physically assess the electrostatic integrity and facilitate device design for SOI 

tri-gate, we have derived a subthreshold model for SOI tri-gate considering the 

fringing field induced by the drain and source electrodes through the BOX. Although 

reference [22] has provided a subthreshold model for multi-gate SOI MOSFETs, the 

BOX-thickness scalability of the model is not accurate. In this work, we provide a 

more accurate subthreshold model for SOI tri-gate by improving the BOX-thickness 

scalability of the model in [22]. 

To enable power/performance optimization, the tri-gate SOI MOSFETs with thin 

BOX [15]-[16] has been recognized a promising device structure to achieve multiple 

threshold voltage (Vth). Whether different tri-gate device designs will impact the 

efficiency in Vth modulation is an important question. In this work, we investigate the 

multi-Vth device design of tri-gate SOI MOSFETs by using the derived analytical 

model. Based on the contour of equal subthreshold swing (SS), the impacts of device 

design on the threshold voltage modulation through substrate bias and channel doping 

are investigated. 
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This thesis is organized as follows. In chapter 2, we investigate the PTS-induced 

variability in Bulk tri-gate MOSFETs. In chapter 3, an analytical subthreshold model 

for SOI tri-gate devices with thin BOX is derived and verified with TCAD numerical 

simulation. In chapter 4, the impact of device design on multi-Vth modulation for SOI 

tri-gate is investigated by using the model derived in chapter 3. The conclusions are 

drawn in chapter 5. 
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Chapter 2 
Body Effect Induced Variability in 

Bulk Tri-gate MOSFETs 
 

2.1 Introduction 
 

Undoped/lightly-doped tri-gate MOSFET has been recognized as an important 

device structure to mitigate the channel random-dopant-fluctuation (RDF) problem 

for planer bulk MOSFET. Depending on the substrate, either SOI tri-gate or Bulk 

tri-gate can be used. Comparing with the SOI tri-gate, bulk tri-gate possesses lower 

wafer cost and higher process compatibility. References [17]-[18] have reported a 

successful 20 nm-FinFET fabrication on bulk silicon wafer. Both [17] and [18] 

employed the deep well implant to isolate the body from the substrate. This extra 

implantation process intended to suppress the leakage current beneath the channel 

region and was called as punch-through-stopper (PTS) layer. Several simulation 

works [18]-[20] have been made to investigate the device design optimization 

considering the PTS doping profile. However, these works have not considered the 

device variation introduced by the PTS. In addition, whether there is any difference 

regarding random variability between Bulk tri-gate and SOI tri-gate has rarely been 

known and merits investigation. 
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Although tri-gate MOSFETs have an improved immunity to short-channel effects 

(SCE), body effect in such device structure is usually weaker than planer MOSFETs 

[15]. To enable more efficient threshold-voltage (Vth) modulation and 

power/performance optimization through substrate bias, SOI tri-gate can use 

ultra-thin BOX [15]-[16] while Bulk tri-gate may employ the PTS with high enough 

doping concentration [20] right beneath the lightly-doped channel (Fig. 2.1). In this 

chapter, using 3-D atomistic simulation [23], we investigate the body-effect induced 

variability in Bulk tri-gate MOSFETs [21]. 

 

2.2 Device Design and Simulation Methodology 

Bulk tri-gate and SOI tri-gate structures investigated in this chapter are based on 

the device design used in [24]-[25]. Schematics of Bulk tri-gate and SOI tri-gate 

structures are shown in Fig. 2.1 and Fig. 2.2, respectively. Channel length (Lg=25nm), 

channel doping (Nch=1x1017cm-3), gate oxide thickness (tox=1.3nm) and fin thickness 

(Hfin=Wfin=10nm) are designed identically for Bulk tri-gate and SOI tri-gate to ensure 

similar front gate controllability. As indicated in the Fig. 2.5, in order to achieve 

comparable body effect with SOI tri-gate, the PTS of Bulk tri-gate is designed with 

1x1019 cm-3 in doping, 30 nm in depth (TPTS), 10 nm in width, and 25 nm in length, 

while the BOX of SOI tri-gate is designed with 10 nm in depth (Tbox), 20 nm in width 

and 65 nm in length (2*LSD+Lg). As indicated in the Fig. 2.1(b), the PTS doping 
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profile does not extend to the substrate below source/drain because the abrupt p-n 

junction between source/drain and PTS will induce significant band-to-band 

tunneling current. Other pertinent device parameters are listed in Table 2.1. 

Discrete impurity atoms are randomly distributed in the PTS of Bulk tri-gate and 

the substrate of SOI tri-gate, respectively, in our 3-D atomistic simulation [23]. It is 

noted that the total number of impurity atoms in the PTS/substrate region follows the 

Poisson Random Distribution (Fig. 2.3) and the impurity atoms space distribution is 

shown in the Fig. 2.4. The detailed simulation procedure follows the methodology 

described in [38]. Since the continuous channel and source/drain doping profiles are 

identical for both the Bulk tri-gate and SOI tri-gate devices, the random variability 

assessed in this study stems from the PTS/substrate region. The value of gate work 

function used in our simulation is 4.5eV for both SOI tri-gate and bulk tri-gate. 

 

2.3 Results and Discussion 
 

2.3.1 Threshold Voltage Variability 
 

Fig. 2.6 shows the dispersion of subthreshold characteristics for Bulk tri-gate and 

SOI tri-gate devices with 150 random samples. It is noted that the dispersion among 

the SOI tri-gate samples is negligible because the substrate doping variation is 

shielded by the thin BOX. Fig. 2.7 compares the spread of the threshold voltage for 
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Bulk tri-gate and SOI tri-gate devices. The nominal Vth of bulk tri-gate is larger than 

the SOI tri-gate because bulk tri-gate can deplete excess PTS ion charges in addition 

to the lightly doped channel. It can be seen that the Vth variation of Bulk tri-gate is 

significantly larger than that of SOI tri-gate. This is because the doping profile of 

PTS dramatically affects the total depletion charge (Qdep) enclosed by front gates and 

PTS. For example, near the interface of PTS and channel, one Bulk tri-gate sample 

with small number of discrete dopant atoms has larger Qdep than that of the other 

Bulk tri-gate sample with large number of discrete dopant atoms. For the SOI tri-gate, 

on the contrary, the heavily doped substrate beneath the BOX has negligible impact 

on Vth variation even an ultrathin (10 nm) BOX is used [39]. 

Fig. 2.8 shows the threshold voltage and its standard deviation (σVth) at different 

substrate biases (Vbs). The similarity of substrate sensitivity in two devices shows that 

the comparable body-effect has been design through tuning SOI thickness and PTS 

doping. It is also noted that the σVth dependence on Vbs is only about 1mV/V due to 

the heavily doped PTS. Fig. 2.9 (a) and (b) compare the spread of body-effect 

coefficient γ for Bulk tri-gate and SOI tri-gate devices under high and low drain bias, 

respectively. Bulk tri-gate shows slightly larger γ than that of SOI tri-gate because of 

the high enough PTS doping. The body-effect coefficient can be determined by [15] 

and [26]: 
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( )
21

1 2 3
si L
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si L box ox

C C
C C C C

  +
ϒ = × + + 

            (2.1) 
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3
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C C
C
+

ϒ =                              (2.2) 

However, to model the depletion layer formed in the substrate ( _dep subW ), the 

buried oxide capacitance ( boxC ) in (2.1) should be replaced by 

_

_

ox box si dep sub
box

ox box si dep sub

t W
C

t W
ε ε
ε ε

×
=

+
           (2.3) 

In addition, the channel depletion capacitance ( '
siC ) in (2.2) should consider the 

depletion region in PTS ( _dep chW ) as 

'

_

si
si

fin dep ch

C
H W

ε
=

+
            (2.4) 

Other capacitances are defined as 

si si finC Hε=              (2.5) 

ox ox oxC tε=              (2.6) 

( / ) ln( / )L si finC C W rπ= ×           (2.7) 

' '( / ) ln( / )L si finC C W rπ= ×           (2.8) 

It can be seen from (2.2) that the RDF in PTS will result in significant variation 

in the numerator of BULKϒ because _dep chQ  as well as _dep chW  shows strong 

dependence on the PTS profile. For SOI tri-gate, on the contrary, the impact of the 

variation in _dep subW  is suppressed by the smaller and dominant buried oxide 

capacitance ( buried ox boxC tε= ). 
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Fig. 2.10 (a) and (b) show the impact of the PTS doping level on the γ  of Bulk 

tri-gate devices under high and low drain bias, respectively. It is noted that the 

nominal γ shows a discrepancy between continuous and atomistic simulations. It has 

been reported in [27] that PTS profile locating slightly away from the channel can 

enhance γ effectively because the carrier conduction path moves downward and the 

capacitance between the current path and substrate increases. This mechanism is also 

observed in our simulation result as indicated in the Fig. 2.11. Note that the 

horizontal axis dPTS is defined as the position of the PTS. It is plausible that this 

mechanism manifests itself through the position fluctuation of discrete dopant atoms 

near the interface of PTS and channel. 

 

2.3.2 Subthreshold Swing Variability 
 

Fig. 2.12 shows the substrate-bias dependence of subthreshold swing (SS) and its 

standard derivation (σSS) for Bulk tri-gate and SOI tri-gate devices. The similarity in 

subthreshold swing and its back-gate bias dependence in the two devices show that 

the device electrostatic integrity is similar by employing proper PTS doping/BOX 

thickness design. It is noted that the subthreshold swing variation is negligible 

because the channel is well controlled by the gate. Despite of the minor variation in 

SS, its correlation with Vth variation is also important for the circuit design 

considering mismatch [40]. Fig. 2.13 shows the correlation of threshold voltage and 
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subthreshold swing for Bulk tri-gate devices with a varying PTS doping. It can be 

seen from the inset that the correlation coefficient decreases with decreasing channel 

length. That means the subthreshold current mismatch characteristics may be different 

between the long and short channel devices. When the fin width and fin height are 

much smaller than the channel length, threshold voltage and subthreshold swing 

increase with the PTS doping concentration due to the enhancement of body effect. 

However, for the short channel devices, serious drain to source electric field coupling 

makes threshold voltage decrease and subthreshold swing increase. In other words, 

SCEs counterbalance the impact of PTS doping concentration on threshold voltage 

and subthreshold swing. 

 

2.4 Summary 

In this chapter, we investigate and report the body-effect induced variability in 

Bulk tri-gate MOSFETs. Through 3-D atomistic simulation, the random dopant 

fluctuations in the Punch-Through-Stopper (PTS) region of Bulk tri-gate devices are 

examined. Our study indicates that to achieve an efficient threshold-voltage 

modulation through substrate bias, the high-doping PTS region may introduce excess 

variation in Bulk tri-gate devices. This effect has to be considered when one-to-one 

comparisons between Bulk tri-gate and SOI tri-gate regarding device variability are 

made. 
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(a) 

 

 
(b) 

 
 

 
(c) 

Fig. 2.1 Schematics of (a) 3-D Bulk tri-gate structure and the corresponding 
cross-sectional view along (b) the channel and (c) the fin-width direction. It is noted 
that the PTS doping profile does not extend to the substrate below source/drain. 
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(a) 

 
(b) 

 

(c) 
Fig. 2.2 Schematics of (a) 3-D SOI tri-gate structure and the corresponding 
cross-sectional view along (b) the channel and (c) the fin-width direction. 
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Table 2.1 Device parameters of the simulated Bulk and SOI devices. 
 

 Bulk tri-gate SOI tri-gate 

L 25nm 25nm 

LSD  20nm 20nm 

Wfin 10nm 10nm 

Hfin 10nm 10nm 

tox  1.3nm 1.3nm 

 TPTS=30nm Tbox=10nm 

 TFOX=10nm Tsub=20nm 

Channel 
Doping 

1x1017cm-3 1x1017cm-3 

Substrate 
doping 

1x1017cm-3 1x1019cm-3 

Source/Drain 
doping 

2x1020cm-3  2x1020cm-3  

Variation 
source  

PTS doping 
NPTS=1x1019cm-3  

Substrate doping 
Nsub=1x1019cm-3  
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Fig. 2.3 Total number of impurity atoms follows a Poisson distribution in the PTS 
region. 

 
Fig. 2.4 Impurity atoms space distribution in the PTS region. 
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Fig. 2.5 Body factor of Bulk tri-gate increases with doping concentration of the 
punch-through-stopper (PTS). 
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Fig. 2.6 Subthreshold characteristics of 150 samples of Bulk tri-gate and SOI tri-gate 
devices. 
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Fig. 2.7 Comparison of the Vth spread for Bulk tri-gate and SOI tri-gate devices. Vth is 
determined by the constant current I0=(Wtotal/L)*100nA with Wtotal=2*Hfin+Wfin. 
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Fig. 2.8 Dependence of Vth and σVth on substrate bias for Bulk tri-gate and SOI 
tri-gate devices. 
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Fig. 2.9 Comparison of the γ dispersion for Bulk tri-gate and SOI tri-gate deices under 
(a) high drain and (b) low drain bias. γ ≡|ΔVth|/|ΔVbs|. 
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Fig. 2.11The impact of the PTS depth on subthreshold swing (SS) and body factor 
(γ ). 
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Fig. 2.12 Dependence of SS and σSS on substrate bias for Bulk tri-gate and SOI 
tri-gate devices. 
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Fig. 2.13 Correlation plot between Vth and SS for Bulk tri-gate devices. The inset 
shows the correlation coefficient for Bulk tri-gate devices with various channel 
lengths. 
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Chapter 3 
Analytical Subthreshold Model 

For Tri-Gate SOI MOSFETs 
With Thin Buried Oxide 

 

3.1 Introduction 
 

Due to superior electrostatic control, tri-gate MOSFETs provide improved 

immunity to short-channel effects (SCE) and become a promising candidate to extend 

the CMOS scaling. In order to physically assess the electrostatic integrity and 

facilitate device design for tri-gate SOI MOSFETs, an analytical subthreshold model 

is important. Although [22] has provided a subthreshold model for multi-gate SOI 

MOSFETs, the BOX-thickness scalability of this model is not accurate. In this work, 

we provide an analytical subthreshold model for tri-gate SOI MOSFETs by improving 

the BOX-thickness scalability of the model in [22]. 

Due to the homogeneous dielectric approximation in the BOX region, the 

original model in [22] is only suitable for the SOI tri-gate with BOX thickness from 

10 to 30nm. When the BOX is thinner than 10nm, the discontinuity of the vertical 

electric field at BOX/channel interface becomes significant. We have considered this 

effect in our new model by making our potential solutions satisfy the boundary 
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condition (3.5). On the other hand, as the BOX thickness is larger than 30nm, the 

fringing field induced by the drain and source through the BOX leads to an increase in 

the channel potential. Since our potential solutions satisfy the boundary conditions 

(3.4b)-(3.4e) and (3.6) in the BOX region, the channel potential shift induced by the 

fringing field is well predicted by our model. 

3.2 Subthreshold Model for Tri-gate SOI MOSFETs 

with Thin BOX 
 

3.2.1 Poisson’s Equation and Boundary Conditions 
 

The schematic device structure of tri-gate SOI MOSFETs is shown in Fig. 2.1. 

The potential distribution in the subthreshold regime can be calculated by solving the 

3D Poisson equation (3.1) within the silicon channel 

2 2 2
ch ch ch ch

2 2 2
ch

( , , ) ( , , ) ( ,φφφqN
x

,
y zε

)x y z x y z x y z∂ ∂ ∂
+ + = −

∂ ∂ ∂
      (3.1) 

Where  and  are the dielectric constant and doping concentration of the 

silicon fin, respectively. 

In addition, the electrostatic potential in the buried oxide region can be described 

by 3D Laplace’s equation (3.2). 

2 2 2
box box box

2 2 2

φφ ( , , ) ( , , φ 0
x y

) ( , )
z

,x y z x y z x y z∂ ∂ ∂
+ + =

∂ ∂ ∂
      (3.2) 

 The required boundary conditions for ch ( , ,φ )x y z and box ( ,φ , )x y z can be 
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described as 

ch ch
ch gb fb ib

0ox

ε ( , , )( , ,0) φφt
εz z

x y zVx Vy
=

∂
= − −

∂
       (3.3a) 

ch ch
ch gf fb if

ox

εφ ( , , )( , ,φt
εz

)
fin

fin
z W

x y zx y V VW
=

∂
= − −

∂
       (3.3b) 

ch ch
ch gt fb it

ox

εφ (φ , , )( t,
x

, )
ε

fin

fin
x H

x y zH y V Vz
=

∂
= − −

∂
       (3.3c) 

ch ms s( ,0, )φφ x Vz = − +             (3.3d) 

ch ms d( , , )φφ x L z V= − +             (3.3e) 

box ox.u gu fb( , ,φ )t y Vz V− = −            (3.4a) 

( ) ( )ms s gu fb
box gu fb ox.u

ox.u

φ
( ,0, )

( )
φ( ) x t

t
x z

V V V
V V

− + − −
= − + +      (3.4b) 

( ) ( )ms d gu fb
box gu fb ox.u

ox.u

φ
( , , )

( )
φ( ) x t

t
V V V

z VL Vx
− + − −

= − + +     (3.4c) 

( ) ( )gb fb gu fb
box ib gu fb ox.u

ox.u

( )
φt ( ) x t(

t
, , )

V
x

V V
Vy

V
V

− − −
− = − + +     (3.4d) 

( ) ( )gf fb gu fb
box fin if gu fb ox.u

ox.u

( )
φW t ( ) x t

t
( , , )

V V V V
V Vx y

− − −
+ = − + +    (3.4e) 

 ch box
ch ox

0 0

φφεε (
x x
, , ) ( , , )

x x

x y z x y z

= =

∂ ∂
∂ ∂

⋅=⋅         (3.5) 

ch box

0 0

φφ
y y

( , , ) ( , , )

x x

x y z x y z

= =

∂ ∂
=

∂ ∂
          (3.6) 

Here chε  and oxε are the permittivity of channel material and oxide, respectively. 

finW , finH  and L  are defined as fin width, fin height, and channel length, 

respectively. ibt  , ift , itt  and ox.ut  are thickness of back gate dielectric, front gate 
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dielectric, top gate dielectric , and buried oxide, respectively. gbV , gfV , gtV , guV , sV , 

and dV  are the voltage biases of back gate, front gate, top gate, buried gate, source, 

and drain terminal, respectively. fbV  is the flat-band voltage for these gate 

terminals. msφ  is the built-in potential of the source/drain to the channel. 

 

3.2.2 Power Series Solution to Boundary Value Problems 
 

 To solve the potential solution in (3.1) using the above boundary conditions, we 

divide the 3D boundary value problems into three sub-problems, including 1-D 

Poisson equation, 2-D, and 3-D Laplace equation [22]. Using the superposition 

principle, the 3D Poisson equation can be solved sequentially by 1-D Poisson 

equation, 2-D and 3-D Laplace’s equation. So the complete channel potential solution 

is ch ch,1 ch,2 ch,3( , , ) ( ) ( , ) ( ,φφ , )φφx y z x x y x y z= + + , where ch,1φ ( )x , ch,2 (φ , )x y  and 

ch,3 ( ,φ , )x y z  are the solutions of 1-D, 2-D, and 3-D sub-problems in the channel, 

respectively. The 1-D solution can be expressed as 

2ch
ch,1

ch

qNφx Ax B
2ε

( )x = − + +            (3.7) 

2ch ch
gt fb gu fb fin fin it

ch ox

ch ch
fin it ox.u

ox ox

qNε( ) ( ) (H 2H t )
2εεA εεH t t

εε

V V V V− − − + +
=

+ +

⋅
      (3.8) 

ch
ox.u gu fb

ox

εB A t ( )
ε

V V= ⋅ + −             (3.9) 

 In solving the 2-D and 3-D sub-problems, the boundary conditions [(3.3a)-(3.3c)] 

of gate oxide/channel interface are simplified by converting the gate oxide dielectric 
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thickness to ch ox/(εε )  times and replacing the gate oxide region with an equivalent 

channel-material region. The electric field discontinuity across the gate oxide and 

channel interface can thus be eliminated. In other words, the channel region and the 

gate oxide region are treated as homogeneous cuboids with an effective width 

effW and an effective effH  defined by (3.10) and (3.11), respectively.  

ch
eff fin if ib

ox

εW W (t t
ε

)= + +            (3.10) 

ch
eff fin it

ox

εH H t
ε

= +              (3.11) 

The 2-D solution ch,2 (φ , )x y  can be calculated using the method of separation of 

variables 

( ) ( )ch,2 n n
n 1 eff eff eff

nπnπnπφ, B sinh E sinh L y sin x
H H H

x y y
∞

=

        = + − ⋅       
        

∑     (3.12a) 

where 

( )
( )

( )n
ch eff

n ms d3

2

ch

( 1) 11 ( 12qN 2AH 1 1 ( 1)B 2(φ)
επππ nπnπLsinh

) nn n
eff

eff

V B
n n n

H

H

   ⋅ − − −   = − + + − + −
       

−



−⋅ −




(3.12b) 

( )
( )

( )n
ch eff

n ms3

2

ch

( 1) 11 ( 12qN 2AH 1 1 ( 1)E 2(φ)
επππ nπnπLsinh

)
n n

eff

e

n

ff

sV B
n

H
n n

H   ⋅ − − −   = − + + − + −
      

− −⋅


 

−



(3.12c) 

 For the channel/buried oxide interface, both the potential distribution in the 

channel ch,3 ( ,φ , )x y z  and that in the buried oxide box,3 (φ , , )x y z have to be 
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considered to satisfy the boundary conditions (3.5) and (3.6). Similarly, the 3-D 

solution ch,3 ( ,φ , )x y z  can be obtained and expressed as 

2 2

,
1 1

2 2

,

c

1

h 3

1

, ( , , ) sinh sinh sin

sinh ( )

φ

sinh

n m
n m eff eff
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H L H L

n m nE W z x
H L H

π π π π

π π π

∞ ∞

= =

∞ ∞

= =
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1

2 2

,
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+∑∑

(3.13a) 

 The coefficients ,n mB , ,n mE  and ,i mH  in (3.13a) can be expressed as 

( )
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The coefficients nK , nP , n,mK and n,mP  in (3.13g) stem from the 2-D and 3-D 

potential solution in the buried oxide region, and they can be expressed as 
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Finally, analytical expressions for the potential in the channel and BOX region 

are shown as equation (3.14) and (3.15), respectively. 
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Based on the potential solution, the subthreshold current can be calculated by 

[22] 

 min

2
( / ) ( , , )/

0 0

11
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DS ch

H W
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ch

n kTI q e e dzdx
N q L

φµ − = − ⋅ ⋅  ∫ ∫  (3.16) 

where min( , , )ch x y zφ  is the minimum potential along the channel direction. 

 

3.3 Model Verification 

We verify our potential solution with the TCAD Silvaco ATLAS [28]. The 

schematic device structure is indicated in Fig. 3.1. In order to demonstrate the 

improvement of our model, we also compare our model with the model in [22] 

(dashed lines) which adopted a simpler boundary condition at the channel/BOX 

interface. Fig. 3.2 (a), (b), and (c) show the potential distribution in an undoped 

tri-gate SOI MOSFET. The discrepancy between the dashed lines and TCAD is 

significant because the homogeneous dielectric approximation in the BOX region 

does not consider the fringing field induced by the drain and source through the BOX. 

This longitudinal coupling causes an increase in channel potential near the substrate. 
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In other words, the channel potential shift induced by drain bias is similar to a positive 

substrate bias. It results in threshold voltage lowering and subthreshold swing 

degradation.  As indicated in Fig. 3.3, as channel length scaled down below 20nm, 

the model without considering drain to source coupling fails to match the TCAD 

result even for a low drain bias condition. 

Fig. 3.4 shows the potential distribution along the fin height direction for tri-gate 

devices with various BOX thicknesses. It is noted that our model shows good 

agreement with the TCAD simulation while the model in [22] (dashed line) fails to 

predict the potential profiles for the thin-BOX cases. Fig. 3.5 (a) shows the potential 

distribution along the fin height direction for long channel devices with various fin 

thicknesses. It is noted that the discrepancy of the model in [22] with TCAD increases 

with decreasing fin thickness. The potential barrier rise at the BOX/channel interface 

leads to a negligible impact on subthreshold current for devices with larger fin width. 

However, the same potential barrier perturbation introduces significant errors in the 

small dimension device. As indicated in Fig. 3.5 (b), it is difficult for the dashed lines 

to agree with TCAD results even for the devices with good electrostatic integrity. 

Fig. 3.6 (a) and (b) show the potential distribution along the fin height direction 

and the subthreshold current characteristics, respectively. It can be seen that the model 

in [22] fails to capture the impact of substrate bias on subthreshold characteristics, 
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while our new model shows satisfactory accuracy. The error of the model in [22] 

increases with the thickness of the BOX. Fig. 3.7 (a) and (b) show the potential and 

subthreshold characteristics for SOI tri-gate with a 30-nm thick BOX. Apparently, the 

potential distribution along the fin height direction for the model in [22] cannot 

faithfully respond to the substrate bias, and the subthreshold current shows wrong 

substrate-bias sensitivity. 

 

3.4 Summary 

 We have derived a subthreshold model for tri-gate SOI MOSFETs considering 

the fringing field induced by the drain and the source through the BOX. Our model is 

better than the model in [22] because the potential solution in the BOX region is 

exactly solved. Based on the BOX potential, the boundary conditions of the channel 

region are improved. With this improvement, our model has successfully predicted the 

SCEs and the substrate sensitivity for tri-gate SOI devices with various BOX 

thicknesses. This model enhancement is especially important for the multi-Vth scheme. 

Based on our new model, the device design of multiple-threshold voltage in tri-gate 

SOI devices will be investigated in the next chapter.



 

34 
 

fin body

Insulator

tit

tif

z=tif

Z

X

Y

(0,0,0)Wfin

L

tox,u

tib

Hfin

BOX
 

Fig. 3.1 Schematic tri-gate device structure and the coordinate definition of our 
potential model. 
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Fig. 3.2 Potential distribution of the undoped tri-gate device at 
(a)Y=L/2,Z=Wfin/2 ,(b)X=Hfin/2,Z=Wfin/2. 
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Fig. 3.2 (c) Potential distribution of the undoped tri-gate device at Y=L/2,X=Hfin/2. 

Original Model [22] 
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Fig. 3.3 Subthreshold characteristics of undoped tri-gate devices with various channel 
lengths. 

Original Model [22] 
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Fig. 3.4 Potential distribution along the fin height direction for tri-gate devices with 
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Fig. 3.5 (a)Potential distribution along the fin height direction for tri-gate devices with 
various fin thicknesses and (b)Subthreshold Ids-Vgs characteristics for tri-gate devices 
with various fin thicknesses. 

Original Model [22] 

Original Model [22] 



 

40 
 

0 2 4 6 8 10
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Vgs=0V,Vds=0.05V

Y=L/2,Z=Wfin/2

 

 

Po
te

nt
ia

l [
V]

Fin Height Direction, X [nm]

 Vbs = -1 V
 Vbs = 0  V
 Vbs = 1  V

Symbol:TCAD
Dashed Lines:Original Model [10]
Solid Lines:New Model

Undoped,L=20nm,EOT=0.8nm
Wfin=Hfin=10nm,Tbox=5nm

(a)

 

-0.1 0.0 0.1 0.2
1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

Vgs=0V,Vds=0.05V
Symbol:TCAD
Dashed Lines:Original Model [10]
Solid Lines:New Model

Undoped,L=20nm,EOT=0.8nm
Wfin=Hfin=10nm,Tbox=5nm

 

 

I ds
[A

]

Vgs[V]

 Vbs = -1V
 Vbs = 0 V
 Vbs = 1 V

(b)

 

Fig. 3.6 (a) Potential distribution along the fin height direction for tri-gate devices 
with 5nm Tbox under various substrate bias conditions, and (b) Subthreshold Ids-Vgs 
characteristics for tri-gate devices under various substrate bias conditions. 
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Fig. 3.7 (a)Potential distribution along the fin height direction for tri-gate devices with 
30nm Tbox under various substrate bias conditions ,and (b) Subthreshold Ids-Vgs 
characteristics for tri-gate devices under various substrate bias conditions. 
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Chapter 4 
Theoretical Investigation of 

Multi-Threshold Device Design for 
Tri-Gate SOI MOSFETs with Thin BOX 

 

4.1 Introduction 
 

To enable power/performance optimization in the tri-gate SOI MOSFETs, thin 

BOX structure has been proposed [24] to achieve multiple threshold voltage (Vth). 

Whether different tri-gate device designs will impact the efficiency in Vth modulation 

is an important question. In this chapter, we investigate the multi-Vth device design of 

tri-gate SOI MOSFETs by using the derived analytical model in chapter 3. Based on 

the contour of equal subthreshold swing (SS), the impacts of device design on the 

threshold voltage modulation through substrate bias and channel doping are 

investigated in section 4.2 and section 4.3, respectively. 

In this work, the Vth is determined by the constant current method: 

I0=(Wtotal/L)*100nA with Wtotal=2*Hfin+Wfin. The body factor γ  is used to assess the 

substrate sensitivity or body effect in the tri-gate devices. It is defined as the ratio of 

the Vth shift to the change in substrate bias. The fin aspect ratio (AR) is defined as the 

ratio of fin height (Hfin) to fin width (Wfin). 
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4.2 Multi-Vth by Substrate Bias 

After the potential profiles are calculated by our analytical model in chapter 3, 

the subthreshlold swing (SS) can be derived and the equi-SS contour map on the 

Wfin-Hfin plane can be efficiently constructed. To make a fair comparison among 

different fin geometries, the constant SS criterion is used. Fig. 4.1 (a) and (b) show an 

equi-SS contour map for undoped and doped (3x1018cm-3) devices under low/high 

drain bias. It is noted that the doped device shows a wider SS design space than that 

of the undoped one. Due to the suppressed SCE in the doped device, the relaxed SS 

design space can be expected for the doped device. 

Devices A, B, C and D in Fig. 4.1 have equi-SS and identical fin aspect ratio (AR) 

of 0.5. Fig. 4.2 shows the body factor dependence on AR under various channel 

doping. It can be seen that the undoped device has larger body factor than that of the 

doped device. Since the channel doping degrades the body factor for a given SS, the 

doped device needs a smaller AR to achieve the required body factor (γ ). 

Fig. 4.3 shows the electron distribution for device A, B, C and D. Under the low 

drain bias condition, in device A, the subthreshold carrier forms in the middle of the 

undoped channel. On the contrary, the surface inversion occurs in the doped device B. 

However, when the high drain bias is applied, the subthreshold carrier distributes 

closer to the substrate in either the undoped device C or the doped device D. 
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Fig. 4.4 shows the equi-SS contour map for tri-gate devices with L=20nm and 

L=40nm under the high drain bias condition. Fig. 4.5 shows the body factor versus 

AR for tri-gate devices with L=20nm (left figure) and L=40nm (right figure). In the 

left side of Fig. 4.5, the dashed line indicates the body factor of the tri-gate devices 

with a 5nm thick BOX. Since the substrate sensitivity degrades with the downscaling 

of channel length, the shorter channel device needs a smaller AR to maintain a given 

body factor. As indicated by the dashed line in Fig. 4.5, the shorter device (L=20nm) 

with 5nm thick BOX has comparable body factor with the longer channel device 

(L=40nm). Fig. 4.6 shows the contour map of SS=80mV/dec and its corresponding 

body factor versus aspect ratio for EOT=0.8nm and 1.5nm. The body factor decreases 

as EOT scales down because smaller EOT enhances the capacitive coupling between 

the gate and the channel. 

 

4.3 Multi-Vth by Channel Doping 

Recently, several works [29]-[30] have reported that the threshold voltage can be 

modulated by the fin doping of the tri-gate devices. In [29] and [30], the tri-gate 

devices were fabricated on thick SOI substrate (more than 40nm) without the 

capability of substrate-bias modulated Vth. On the other hand, reference [24] has 

proposed the multiple Vth control by thin BOX (20nm) in 10nm-diameter tri-gate 

devices. Although these two multiple Vth approaches seem to be applicable for the 
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tri-gate devices, whether there is any trade-offs between these two approaches has still 

not been clear and merits investigation. 

Since channel doping modulates both SS and Vth, we use the constant SS 

criterion to ensure the same SCE control among devices with different channel doping. 

Fig. 4.7 shows the contour map of SS=70mV/dec for devices with Tbox=10nm and 

various channel doping. It can be seen that the heavily doped device has more relaxed 

design space. Fig. 4.8 shows the Vth dependence on AR with various fin doping under 

the SS=70mV/dec criterion. As indicated in the Fig. 4.9, the tri-gate device with lower 

AR has smaller Vth shift as the channel doping varies from 1x1015cm-3 to 5x1018cm-3. 

In other words, the efficiency of Vth modulation by doping increases with AR. This is 

because as the tri-gate device has low AR and thin BOX, the channel potential is 

strongly controlled by the capacitive coupling between the substrate and the channel. 

Fig. 4.10 shows the SS contour map of the tri-gate devices with 30nm Tbox and 

various fin doping. The corresponding Vth dependence on AR is indicated in Fig. 4.11. 

It can be seen that the impact of AR on the Vth modulation efficiency by doping 

becomes weaker. Fig. 4.12 shows that the Vth dependence on channel doping for both 

the low AR and high AR devices is larger than that of the thin-BOX cases (Fig. 4.9). 

This is because the thicker BOX weakens the capacitive coupling between the 

substrate and the channel, and enhances the impact of doping on channel potential. 
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4.4 Summary 

Using the analytical model derived in chapter 3, we investigate multi-Vth device 

design in tri-gate SOI MOSFETs by exploring wide range of device design space. To 

enable the power/performance optimization, multiple Vth level can be achieved by 

substrate bias or channel doping. Based on constant SS criterion, we find that the 

tri-gate device with low AR and thin BOX is a promising structure to enable the Vth 

modulation by substrate bias. In addition, channel doping can modulate Vth for the 

tri-gate device with high AR. 



 

47 
 

 

0 5 10 15 20 25
5

10

15

20

25

L=20nm
EOT=0.8nm
Tbox=10nm

B
80

130

120
110

100
90

80

70

 

 

H fin
[n

m
]

Wfin[nm]

 Undoped
 3x1018cm-3

70

Vds=0.05V
Vbs=0V

AR=0.5A

(a)

 

0 5 10 15 20 25
5

10

15

20

25
(b)

D
C

AR=0.5

 

 

L=20nm
EOT=0.8nm
Tbox=10nm

Vds=1V
Vbs=0V

150
140

130
120

110
100

90
70

150
140

130
120

110
100

90

80
80

H fin
[n

m
]

Wfin[nm]

 3x1018cm-3

 Undoped 70

 
Fig. 4.1 Calculated contour of SS on a Wfin-Hfin plane under (a)low drain bias and 
(b)high drain bias. The dashed lines indicate the SS contour map of the doped devices 
while the solid lines indicate that of the undoped devices.  
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Fig. 4.2 Body factor (γ ) dependence on fin aspect ratio (AR) under the (a) low drain 
bias and (b) high drain bias. It is noted that γ  is derived by threshold voltage at 
Vbs=0V and Vbs=-1V. 
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Fig. 4.3 Calculated subthreshold carrier distribution on the cross section at the middle 
of the channel for (a) device A , (b)device B, (c) device C and (d)device D. The origin 
of the axis “Hfin“ starts from BOX/channel interface. In addition, the origin of axis 
“Wfin“ starts from gate oxide/channel interface. It is noted that the carrier profiles are 
all extracted at Vgs=Vth-0.1V and Vbs=0V. 
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Fig. 4.4 Calculated contour of SS on a Wfin-Hfin plane for the tri-gate devices with 
various channel lengths. 
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Fig. 4.5 Body factor dependence on fin aspect ratio for the tri-gate devices with 
L=20nm in the left figure and L=40nm in the right figure. It is noted that body factor 
is derived by threshold voltage at Vbs=1V and Vbs=-1V. 
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Fig. 4.7 Contour map of SS =70mV/dec for devices with various channel doping. The 
equi-SS contour for the undoped devices is indicated by the dashed curve. The buried 
oxide thickness (Tbox) is 10nm. 
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Fig. 4.8 Threshold voltage (Vth) versus aspect ratio (AR) for tri-gate devices with 
various channel doping. The buried oxide thickness (Tbox) is 10 nm. The undoped case 
is indicated by the dashed line. 
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Fig. 4.9 Threshold voltage (Vth) versus channel doping (Nch) for devices with AR=0.5 

and AR=3. The buried oxide thickness (Tbox) is 10nm. The threshold voltage 

modulation ( thV∆ ) by channel doping (from 1x1015cm-3 to 5x1018cm-3) is around 

0.055V and 0.086V in tri-gate devices with AR of 0.5 and 3, respectively 
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Fig. 4.10 Contour map of SS=70mV/dec for devices with various channel doping. The 
equi-SS contour for the undoped devices is indicated by the dashed curve. The buried 
oxide thickness (Tbox) is 30nm. 
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Fig. 4.11 Threshold voltage (Vth) versus aspect ratio (AR) for devices with various 
channel doping. The buried oxide thickness (Tbox) is 30nm. The undoped case is 
indicated by the dashed line. 
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Fig. 4.12 Threshold voltage (Vth) versus channel doping (Nch) for tri-gate devices with 

AR=0.5 and AR=3. The buried oxide thickness (Tbox) is 30nm. The threshold voltage 

modulation ( thV∆ ) by channel doping (from 1x1015cm-3 to 5x1018cm-3) is around 

0.083V and 0.106V in tri-gate devices with AR of 0.5 and 3, respectively. 
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Chapter 5 
Conclusions and Future Work 

 

In this thesis, we have investigated the body-effect induced variability in Bulk 

tri-gate MOSFETs [21]. Through 3-D atomistic simulation, the random dopant 

fluctuations (RDF) in the Punch-Through-Stopper (PTS) region of Bulk tri-gate 

devices are examined. Our study indicates that to achieve an efficient 

threshold-voltage modulation through substrate bias, the high-doping PTS region may 

introduce excess variation in Bulk tri-gate devices. It should be noted that the study in 

chapter 2 only considers the RDF in substrate and PTS regions for SOI tri-gate and 

Bulk tri-gate, respectively. However, in addition to RDF, other variation sources such 

as fin line edge roughness (fin LER) [10]-[11] and work function variation (WFV) 

[31]-[37] may also affect the threshold voltage variation for tri-gate devices. In 

addition, ultra-thin BOX may also introduce excess variation for SOI tri-gate devices. 

Therefore, a more comprehensive investigation considering all these effects can be 

conducted in the future. 

Because of the PTS-induced variability in bulk tri-gate, SOI tri-gate with 

substrate bias seems to be a better device structure to achieve multiple Vth. In order to 

facilitate multi-Vth device design, we have derived a subthreshold model for tri-gate 

SOI MOSFETs considering the fringing field induced by the drain and source 
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electrodes through the buried oxide (BOX). Our model is more accurate than [22] 

because the potential solution in the BOX region is exactly solved. In addition, the 

boundary conditions of the channel region are improved. With this improvement, our 

model can accurately predict the short channel effect (SCEs) and the substrate 

sensitivity for tri-gate SOI device with various BOX thicknesses. 

Using the enhanced subthreshold model, we have investigated multi-Vth device 

design in tri-gate SOI MOSFETs with wide range device design space. To enable the 

power/performance optimization, multi-Vth can be achieved by substrate bias or 

channel doping. Under constant subthreshold swing criterion, our study indicates that 

the tri-gate SOI device with low fin aspect ratio and thin BOX is a promising structure 

to enable the Vth modulation by substrate bias.  

In addition, we have found that channel doping can also be used to modulate Vth 

effectively for tri-gate SOI devices with high aspect ratio (AR). However, the scaled 

fin width of high-AR devices may result in a significant Vth variation due to fin line 

edge roughness (fin LER). In addition, high channel doping concentration may cause 

significant random dopant fluctuations. These random variations should also be 

considered in multi-Vth device design. 
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