
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007 705

NEMO: A New Implicit-Connection-Graph-Based
Gridless Router With Multilayer Planes and

Pseudo Tile Propagation
Yih-Lang Li, Member, IEEE, Hsin-Yu Chen, and Chih-Ta Lin

Abstract—The implicit-connection-graph-based router is supe-
rior to the tile-based router in terms of routing graph construction
and point querying. However, the implicit connection graph has
a higher degree of routing graph complexity. In this paper, a
new multilayer implicit-connection-graph-based gridless router
called NEMO is developed. Unlike the first implicit-connection–
graph-based router that embeds all routing layers onto a routing
plane, NEMO constructs a routing plane for each routing layer.
Additionally, each routing plane comprises tiles, not an array of
grid points with their connecting edges, and consequently, the
complexity of the routing problem decreases. Each grid point then
represents exactly one tile or its left-bottom corner such that a tile
query is equivalent to any point query inside the queried tile, and
a grid maze becomes tile propagation. Furthermore, to accelerate
path search, continuous space tiles are combined as a pseudo
maximum horizontally or vertically stripped tile. Experimental
results reveal that NEMO conducts a point-to-point path search
around ten times faster than the implicit-connection-graph-based
router. General-purpose routing by NEMO also improves routing
performance by approximately 1.69×–55.82×, as compared to
previously published works based on a set of commonly used
MCNC benchmark circuits.

Index Terms—Physical design, routing.

I. INTRODUCTION

IN THE ERA of deep-submicrometer (DSM) technology
and system-on-chip design methodology, very large-scale

integrated (VLSI) designs engender challenges in optimizing
layouts resulting from ongoing reductions in device size, wire
width, and wire space. Interconnection optimization is cru-
cial in minimizing delay and noise and optimizing reliability
of modern chip designs. Wire sizing and wire spacing have
been proposed as techniques in optimizing interconnectivity,
thus imposing variable-width and variable-space constraints on
detailed routers. Variable-rule routing raises the requirement
for a router other than a uniform-grid router. Nonuniform-grid
routers and tile-based routers, which are also called gridless
routers, are commonly employed in variable-rule routing [1]–
[12]. To accommodate variable-rule routing, gridless routers
require more complex data structures than do uniform-grid
routers to construct routing graphs quickly, as well as to verify

Manuscript received May 2, 2006; revised August 18, 2006. This work was
supported by the National Science Council of Taiwan under Grants NSC 94-
2220-E-009-043, NSC 95-2220-E-009-019, and NSC 95-2220-E-009-026. This
paper was recommended by Guest Editor P. H. Madden.

Y.-L. Li and C.-T. Lin are with National Chiao-Tung University, Hsinchu
300, Taiwan, R.O.C. (e-mail: ylli@cs.nctu.edu.tw; ctlin@cs.nctu.edu.tw).

H.-Y. Chen is with Faraday Technology Corporation, Hsinchu 300, Taiwan,
R.O.C. (e-mail: yorke_ch@faraday-tech.com).

Digital Object Identifier 10.1109/TCAD.2007.891381

Fig. 1. (a) Layout with two obstacles and two terminals. (b) Fine-uniform-grid
graph of the layout. (c) Connection graph of the layout. (d) Implicit connection
graph of the layout. (e) MHS tile plane for the case in (a). (f) MVS tile plane.

the design rule check legality of a move on a routing graph. In
the meantime, modern designs have substantially increased the
instance size of the routing problem to motivate novel routing
techniques and frameworks for high-performance gridless rout-
ing. Among these designs, multilevel design framework [13]–
[18] and routing graph reduction [20] have been extensively
investigated and have been successfully adopted to improve the
routing performance.

A. Variable-Width and Variable-Space Routing

Based on the flexibility of dealing with variable wire widths
and spacing rules, detailed routers can be categorized as either
grid or gridless routers; the former search for paths on a
uniform-grid graph, whereas the latter search nonuniform-grid
graphs or nongrid graphs such as a tile-based graph. A gridless
router can deal with variable-width and variable-space routing
more efficiently than a grid router can.

Direct realization of a gridless router makes use of fine
uniform grids or manufacturing grids. Fig. 1(a) presents a
layout containing two obstacles with two routing terminals S

0278-0070/$25.00 © 2007 IEEE

706 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 2. Example of a slit and interval tree. The figure on the right is the interval
tree of the bottom slice and is produced by three cut lines. Objects A and B are
intersected with cut lines I1 and I2, respectively, and objects C and D are
contained in the regions R3 and R4, respectively.

and T ; Fig. 1(b) presents the routing graph, realizing the fine-
uniform-grid model. The induced substantial routing graph for
a large design requires such substantial computing and memory
resources that fast path searching is infeasible. Different ap-
proaches have been explored to decrease the routing graph [1]–
[12], of which the connection graph and tile-based graph are the
most widely used. In [9], a connection graph is constructed by
extending the boundary lines of all obstacles until reaching the
boundary of other obstacles or the routing boundary [Fig. 1(c)].
The deficiency in this approach is the nonoptimal result in
multilayer routing and the expensive cost for representing the
connection graph. Cong et al. presented an implicit represen-
tation for a connection graph that allows borderlines of each
expanded obstacle to penetrate any other obstacle until routing
boundaries are reached [11], [12] [Fig. 1(d)]. The boundary
lines of all expanded obstacles on all layers are integrated into
a single routing plane. A grid point on an implicit connection
graph may be located inside a blockage, and then routing on a
newly visited grid point may not be legal. An efficient query
structure, called a slit and interval tree, has been proposed for
rapidly querying the legality of a grid point [11], [12]. The
routing region is first partitioned into several slices, each with
its own interval tree. Interval trees are generated by bisecting
a sliced region. Fig. 2 depicts an interval tree induced by three
cut lines. The cut line I1 corresponds to the root node of the
interval tree, and the cut lines I2 and I3 correspond to two
internal nodes in the second level of the interval tree. If an
obstacle intersects a cut line, it is attached to the node of that
cut line. For instance, cut lines I1 and I2 overlap objects A
and B, respectively. Therefore, objects A and B are attached to
the root node and the left internal node in the second level of
the interval tree. Four leaf nodes correspond to four intervals,
which are separated by the three cut lines, and all objects in
an interval that do not intersect any of the three cut lines are
attached to the leaf node of this interval. Although the implicit
representation has more graph nodes than in [9] and time must
be taken to check whether a move to an unvisited node is legal,
optimal multilayer routing, fast querying of the legality for a
move, and fast construction of an array in a nonuniform-grid
graph are the primary contributions of that study [11], [12].

The other well-known gridless approach is the tile-based
router [1]–[7] that partitions the entire routing region by ex-
isting obstacles into two tile types—space tiles and block

TABLE I
TIME COMPLEXITY ANALYSIS OF FIVE IMPORTANT OPERATIONS

FOR THE ROUTING GRAPHS OF THE TILE PLANE AND

IMPLICIT-CONNECTION-GRAPH-BASED ROUTERS

tiles—and organizes all tiles using a corner-stitching data struc-
ture [21]. The routing tile plane of a horizontal/vertical routing
layer is produced in a maximum horizontally/vertically stripped
(MHS/MVS) property by extending the horizontal/vertical bor-
der lines of all obstacles until any obstacle or routing boundary
is reached [Fig. 1(e) and (f)]. Both the implicit-connection-
graph and tile-plane approaches can find an optimal path in
point-to-point routing. Table I compares the time complexity
analyses of four important operations of tile-based and implicit-
connection-graph-based routers. The average number of visited
nodes on the slit and interval trees in a point-finding operation
is of the order of log(ns × ni), where ns is the number of slices
used to partition the routing region, and ni is the number of leaf
nodes in the interval tree. The average number of visited tiles
in a point-finding operation on a tile plane is of the order of√

nt, which is the mean number of tiles in a row or a column
for a tile plane that contains n1 tiles. Neighbors can be found by
both routers in constant time. The time complexity of checking
the legality of an unvisited grid point on an implicit connection
graph is O(no × log(ni)), where no is the average number of
objects attached to a node in the interval tree, whereas the tile-
based router requires only to check the type of a tile. no can be
held constant to reduce the complexity of the legality check at
the expense of increasing the need for more memory to store the
interval trees. Then, the time complexity of the legality check
for an implicit connection graph is O(log(ni)). The relationship
between ns and no can be formulated as

no =
⌊

H

ns × pitch

⌋
+ 1 (1)

where H is the height of the routing region, and pitch is the
routing pitch for this routing plane.

For single-object insertion, an implicit-connection-graph-
based router requires an array reconstruction operation with a
time complexity of O(n), where n is the average number of
objects in the point array; for the tile-based router, an object
must be inserted with a time complexity of O(

√
nt + m2),

where m is the average number of objects that overlap the
inserted tile. The former and latter terms refer to locating the
starting tile and beginning the splitting and merging of tiles
on a tile plane. The implicit connection graph outperforms the
corner-stitching plane in the querying operation, whereas the
corner-stitching tile plane has a substantial advantage over
the implicit connection graph in the insertion of a short wire,
which results in a small value of m.

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 707

B. Multilevel Design Framework for Routing

A new routing framework, multilevel design framework,
was introduced to enhance significantly the performance of a
routing system [13]–[18]. In the work of Cong et al. [13], [14],
a multilevel global routing was first proposed. After coarsening
the tiling routing region and estimating the routing resource, the
initial routing result is generated utilizing a multicommodity
flow algorithm in the coarsest level and a constrained maze
algorithm to refine the routing result for solving local conges-
tion during the uncoarsening stage. A gridless detailed router
then determines detailed routing paths for all nets following
the search region constraint, which consists of tile-to-tile global
paths for each net. In [15], global routing and detailed routing
algorithms are first fully integrated into a multilevel framework,
and a net is routed when it becomes a local net during the
coarsening stage, in which the local net concept is defined
using a different area-partitioning scale ranging from a finer
to a coarser level. Failed nets and routing solution refinement
are completed during uncoarsening. Chen et al. proposed a
two-pass bottom-up routing framework, which resembles a
multilevel framework, considering double-via insertion [19].
Global routing and detailed routing are performed level by level
in each coarsening stage, enabling local nets to be processed
first for routability and via optimization. The routing framework
in [19] outperforms all multilevel gridless routers.

C. Simplification of Routing Graph

Another strategy for meeting the challenge of the increasing
size of the circuit is to develop a new or enhanced routing
algorithm and routing model. For the tile-based router, rout-
ing graph reduction approaches, which involve redundant tile
removal and neighboring-tile alignment, have been discussed
[20]. Redundant tile removal changes to block tiles two types of
space tiles, namely: 1) one-conjunct tiles and 2) zero-conjunct
tiles, which have one and zero entry points from the neighbor-
ing space tile, respectively, and then provides no exit for further
propagation. The tile-based routing plane is then streamlined.
Neighboring-tile alignment follows shrinking rules to shrink
space tiles in an attempt to merge top/left and bottom/right
neighboring tiles on a horizontal/vertical routing plane without
reducing routability. Routing graph reduction guarantees the
production of an optimal path if each routing layer has a unique
cost in each routing direction; a halving of runtime in tile
propagation is achieved.

Although the implicit-connection-graph-based router has the
principal advantages of fast routing graph construction and
query operation, embedding all layer obstacles in a routing
plane requires a massive routing graph for a large design. Con-
sider a two-layer routing: many horizontal gridlines are induced
by existing expanded horizontal wires; similarly, many vertical
gridlines are induced by existing expanded vertical wires on a
vertical routing plane. If two routing planes are merged, then
a horizontal gridline, for instance, which is induced by an
expanded horizontal wire and does not overlap any border of all
of the expanded vertical wires, will yield numerous grid points
by crossing the vertical borders of all of the expanded vertical
wires. Fig. 3 displays an implicit connection graph for two-layer

Fig. 3. Implicit connection graph is produced by embedding a horizontal and
a vertical routing plane into a single routing plane. Each bolded gridline is
obtained from the borderlines of some expanded obstacles in a routing layer.
The complexity of an implicit connection graph increases as the number of
bolded gridline increases.

routing; each dotted gridline is obtained from only the border-
lines of some expanded obstacles in the same routing layer,
and intersects with all gridlines induced by the borderlines of
those expanded obstacles on all orthogonal layers. Accordingly,
an implicit connection graph tends to be large. For example,
in case D2, in which a chip design is employed in point-to-
point routing experiments, 1 650 704 metal-2 rectangles and
1 018 211 metal-3 rectangles are involved. The implicit connec-
tion routing graph for this design comprises 536 214 892 grid
points, and no fast path search can be expected to be performed
on such a large routing graph. Furthermore, the limitation on ar-
ray size also inhibits the application of the implicit-connection-
graph-based router. A single routing-plane scheme suffers from
unnecessary moving for a routing with at least three routing
layers. Since the routing pitch of a high routing layer generally
exceeds that of a low routing layer, for example, the obstacle
borders on two horizontal routing layers will probably not
align with each other, leading to unnecessary queries regarding
contiguous grid points on different nonadjacent layers. In [14],
a distributed grid graph has been proposed to simplify the
connection graph. A 2-D point array of the entire routing plane
is distributed into global cells (GCells), each of which consists
of its own 2-D point array, and the connection graph for a GCell
is influenced only by those obstacles that overlap the GCell. In
the connection graph of a global path, inside which the detailed
routing propagates, borders of the obstacles inside a GCell will
not reach the region of neighboring GCells, except in that the
global path includes the GCell and its neighbors.

D. Paper Contributions and Organization

This paper proposes a new and much-simplified implicit-
connection-graph-based router that combines fast pseudo tile
propagation and enhanced querying for a slit and interval tree
during point-to-point routing to result in a significant drop in
runtime. Herein, a novel implicit-connection-graph-based grid-
less router comprises a multiplane implicit connection graph,
a nonzero-width wire model, a projection array (PA), and a
pseudo MHS or MVS tile (PMT) extraction and propagation
technique. The connection graph of the proposed new implicit-
connection-graph-based router is of a similar scale to that of
the tiling routing plane, and the same constant-time query is
used for layer switching as that used in the implicit-connection-
graph-based router. Then, a point-to-point gridless router can
optimally run almost ten times faster than that in [11]. Based
on the proposed approach, a full-chip gridless router that out-
performs all well-known multilevel gridless routers, as well as

708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 4. NEMO design flow.

a multilevel grid-based router that outperforms in routing speed
and routing quality, was also developed.

The rest of this paper is organized as follows. Section II
outlines the design flow of NEMO. Section III presents the pro-
posed routing model, including the multiplane routing graph,
the nonzero-width wire model, and the efficient layer-switching
mechanism. Section IV presents the novel implicit-connection-
graph-based point-to-point routing scheme. Section V elu-
cidates approaches for implementing the full-chip gridless
router. Section VI presents the experimental results. Finally,
Section VII draws conclusions.

II. NEMO OVERVIEW

In this paper, a fast gridless detailed router, called NEMO,
is designed; hence, the full-chip routing is completed only
with global routing followed by detailed routing. The routing
area is first partitioned into several equal-sized GCells, and
the minimum spanning tree (MST) algorithm is applied to
each net to build its routing topology. This routing topology
decomposes each net into several two-pin routings. That is,
each point-to-point routing corresponds to an edge of the MST.
A congestion-driven global routing then determines the global
path for each two-pin connection. This global path comprises
a list of connected tiles. Finally, NEMO completes the detailed
routing.

The main features of NEMO for promoting routing per-
formance comprise a new implicit-connection-graph-based
routing model (F1), PMT extraction and propagation (F2),
gridline reduction (F3), and pseudoblockage insertion (F4).
Feature F1 enables the router, which is based on an implicit
connection graph, to behave as a tile-based router with a
constant-time layer-switching capability; feature F2 enhances
the queries on the slit and interval tree as well as path searching
on the routing graph; feature F3 constructs a simplified routing
graph for point-to-point routing; and feature F4 decreases the
pseudo tile extraction time and constrains detailed routing to
the global path.

Fig. 4 illustrates the NEMO design flow. NEMO first ini-
tializes the new global multiple-layer connection routing graph

Fig. 5. (a) Single-layer two-pin routing example guided by an L-shaped
global path. (b) Reduced local routing graph established based on all obstacles
overlapping the global path. (c) Pseudoblockages inserted around the global
path. (d) Path (tiles 1 → 2 → 3 → 4 → 5) found by connecting a series of
pseudo MVS space tiles.

(chip area) and the slit and interval tree (C1). NEMO builds
a simplified local routing graph in the range of the bounding
box of two routed pins through gridline reduction for current
two-pin routing. A constant-time layer-switching data structure
based on the simplified local routing graph is then established
(C2). Pseudoblockages are then inserted around the global
path, and routing is conducted (C3). If the current two-pin
routing is complete, the newly generated wire segments are
inserted into the global routing graph and the slit and interval
tree, and pseudoblockages for recently completed routing are
eliminated from the slit and interval tree (C4). If the previous
stage has any failed nets, then NEMO resolves the incomplete
routings with a rip-up and reroute process (C5). The con-
tributions of this paper are in the components C1, C2, and
C3. Fig. 5 illustrates a C2−C3 example of one-layer two-pin
routing guided by an L-shaped global path, where the GCells
are filled with a dotted pattern. The rectangle with bold borders
in Fig. 5(a) shows the range of a simplified local routing graph.
The local routing graph is rectangular instead of L-shaped since
an array must be built as a rectangular structure. Fig. 5(b)
depicts the reduced local routing graph derived from the borders
of those obstacles overlapping the L-shaped global path. The
reduced routing graph is fairly simple, even though the two-
pin bounding box contains many obstacles. The following two-
pin routing is conducted on the local routing graph instead of
on the global routing graph. Before starting two-pin routing,
pseudoblockages are inserted into the slit and interval tree to
isolate the global path such that no extracted pseudo space
tiles fall outside the global path. Fig. 5(c) shows the influence
of pseudoblockages. The grid maze is replaced by pseudo
tile propagation during routing. Fig. 5(d) displays all pseudo
MVS space tiles and one possible routing path, which starts
at tile 1, passes through tiles 2, 3, and 4, and finally reaches
target tile 5. Other works provide detailed tile propagation
examples [4], [7].

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 709

Fig. 6. (a) Example of three-layer routing. (b) Routing plane for the V 1 layer.
(c) Routing plane for the H1 layer. (d) Routing plane for the V 2 layer.

III. ROUTING MODEL

A. Multiplane Routing Graph

The implicit representation for the connection graph in [11]
stores in two arrays the sorted vertical and horizontal grid lines
generated by the boundaries of all expanded obstacles of all
routing layers. All obstacles are expanded in a size such that the
centerline of a new path can be placed along the borders of the
expanded obstacles and no design rule violation will occur. This
approach ensures that an optimal path is located; however, the
principal problem is that the underlying routing graph tends to
be too large for fast path searching. This difficulty is primarily
caused by the fact that different layers of the same preferred
routing direction frequently are subject to different space and
width rules such that the boundaries of the expanded obstacles
of these layers probably do not match. To resolve this problem,
a new implicit connection graph is constructed as a multiplane
graph in which each plane is responsible for one routing layer
and stores all expanded obstacles of that layer. Thus, a routing
problem of n routing layers contains n routing planes, and the
boundaries of an expanded obstacle are not superimposed on
the routing planes of other layers. Fig. 6(a) presents a three-
layer routing; Fig. 6(b)–(d) shows its associated three routing
planes.

An earlier work [11] regarded the connection graph as an
array of grid points and connected edges and, consequently,
completed routing by mazing over these nodes. After a routing
plane was configured into multiple routing planes, regarding a
routing plane as an array of grid points is inadequate since a grid
point on a layer likely has no adjacent grid point at the same
position on an adjacent layer, so the grids on adjacent layers are
misaligned. Fig. 7(a) shows an example of grid misalignment
at two points P1 and P2. Routing from layer 1/2 to layer
2/1 at the point P1/P2 is not feasible. Layer switching then
becomes unnatural and somewhat complex under this scenario.
If a routing plane is regarded as comprising tiles, each of which
is identified by its left-bottom corner, then each grid point
exactly represents one tile. The layer-switching problem caused
by misalignment of grids on adjacent layers can be solved by

Fig. 7. (a) Grid misalignment example. Grid point P1(P2) has no adjacent
grid point at the same position on the adjacent layer L2(L1). (b) Routing plane
considered to be a tile plane. The ith vertical gridline on layer 1 is denoted as
L1x(i).

Fig. 8. Example of two obstacles separated by a distance of 2 × ws + ww .
(a) Two expanded obstacles abut on one side for the zero-width wire model.
(b) Space tile of width of two times of vs that exists between two expanded
obstacles for the nonzero-width wire model.

layer switching on two overlapping tiles of adjacent layers and
postponing the determination of the exact via position. Another
benefit of the tile concept is that the tiles must be fewer than the
grid points. Therefore, the implicit connection graph herein is
considered to be a tiling structure rather than a grid array. The
ith vertical/horizontal grid line in the implicit connection graph
on layer 1 is denoted by Llx(i)/Lly(i) herein. Fig. 7(b) presents
a routing plane containing an expanded obstacle and its grid line
notation. The black tile is derived as T (L1x(2), L1y(2)).

B. Nonzero-Width Wire Model

Path searching for a gridless router can be a zero-width or
nonzero-width wire model. In the zero-width wire model, an
obstacle i is expanded by a contour of width ws + ww/2, say
ewi, where ww is the wire width of the routed net, and ws is
the spacing rule for the routed net to obstacle i. In the nonzero-
width wire model, the expanded region of ws + ww/2 is shrunk
by a value vs, such as a unit of width. For both models, the
identified position is the centerline of a path.

The primary difference between these two wire models
occurs when two obstacles are separated by a distance of
2 × ws + ww. The contours inserted into the two obstacles will
abut on one side for the zero-width wire model, whereas the
two contours will be separated by a distance of two times of
vs for the nonzero-width wire model [Fig. 8(b)]. The work in
[11] adopted a zero-width wire model since the routing plane
was regarded as an array of grid points; the path search can
then maze across the abutting line of two contours [Fig. 8(a)].
Conversely, since this study views a routing plane as a group
of tiles, applying the zero-width wire model would delete
an available routing path for the case presented in Fig. 8(a),

710 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 9. (a) New implicit connection graph for two-layer routing with two
obstacles. A projection from Layer 1 to Layer 2 identifies the reachable tiles on
Layer 2 from tile T (L1x(1), L1y(1)) on Layer 1. (b) Example of two adjacent
CAs and their related PAs.

because two contours abut with no space tile in between. The
nonzero-width wire model can leave a space tile of width of two
times of vs. Thus, the nonzero-width wire model is adopted in
this paper.

C. Multilayer Model

The grid lines of all layers are embedded in a single plane
in [11]; consequently, a layer-switching point between adjacent
layers can be determined in constant time. Fast layer switch-
ing is extremely important for an effective gridless router. To
accelerate layer switching on the proposed implicit connection
graph, additional arrays, called PAs, are used to record the
first reachable tiles on layers adjacent to each tile. Two arrays
are then available: a coordinate array (CA) and a PA. Each
CA stands for the left-bottom corner of a tile, and each PA
signifies the first reachable tiles from one tile on adjacent layers.
From the description above, the formal definition is stated as
follows: The ith element of a CA for layer l, say Llx(i), has a
related element in the PA, and it points to the jth element in the
CA of adjacent layer, say l + 1, when L(l+1)x(j) ≤ Llx(i) <
(L(l+1)x(j + 1). Notation of the ith horizontal element of the
PA from layer l to l + 1 is PA(l,l+1)x(i).

For instance, consider the case in Fig. 9(a) with two
blockage tiles T (L1x(2), L1y(2)) and T (L2x(2), L2y(2)). If
the tile propagation intends to switch from a Layer 1 tile
T (L1x(1), L1y(1)) to a Layer 2 tile, then the query concerning
reachable tiles on Layer 2 must be computed by projecting
the region of tile T (L1x(1), L1y(1)) on Layer 1 onto Layer 2.
All tiles on Layer 2 covering the projection region are the
reachable tiles on Layer 2 through the tile T (L1x(1), L1y(1)).
Through the PA, the project region can then be figured out
using the tile index of Layer 2 in constant time. Fig. 9(b)
depicts the assignment of the PAs on horizontal and vertical
directions for layers 1 and 2. For instance, L2x(3) < L1x(2) <
L2x(4) and L1x(1)L2x(2), L2x(3) < L1x(2), so PA(1,2)x(2)
equals 3, and PA(2,1)x(2) and PA(2,1)x(3) equal 1. To
identify which tiles on adjacent layers overlap the current
tile, say T (L1x(1), L1y(1)), PA(1,2)x(1) and PA(1,2)x(2)
can immediately infer the horizontal range of reachable tiles
on Layer 2, starting from L2x(1) to L2x(3). Similarly, the
vertical range of reachable tiles on Layer 2 from L2y(1)
to L2y(2) can be quickly identified through PA(1,2)y(1)
and PA(1,2)y(2). Finally, the tiles located inside the area

Fig. 10. Routing example with three obstacles. (a) Shortest path search from
A to B on an MHS plane that requires only two propagation steps. (b) Six steps
required for the same shortest path search on a grid plane.

enclosed by the horizontal and vertical ranges of reach-
able tiles are the tiles that tile T (L1x(1), L1y(1)) overlaps.
In this case, tiles T (L2x(1), L2y(1)), T (L2x(1), L2y(2)),
T (L2x(2), L2y(1)), T (L2x(2), L2y(2)), T (L2x(3), L2y(1)),
and T (L2x(3), L2y(2)) are candidates for layer switching.
Therefore, the query for layer switching utilizing the proposed
scheme also remains constant. On the other hand, construction
of a PA does not require additional computation time since the
required number of comparisons for constructing the PAs of
two adjacent CAs is the same as that needed to merge two CAs
into a single CA for constructing a unified routing plane for the
traditional implicit-connection-graph-based router.

IV. NEW IMPLICIT-CONNECTION-GRAPH-BASED

POINT-TO-POINT ROUTING

Implicit-connection-graph-based routing is superior to tile-
based routing when constructing a routing graph. However,
tile-based routing partitions a routing region to obtain the
MHS and MVS tiles such that the expansion over a tile likely
advances more farther than implicit-connection-graph-based
routing. Fig. 10 displays a routing example with three obstacles.
Shortest path search from A to B on an MHS plane only
requires two propagation steps, as shown in Fig. 10(a); six steps
are required for the same shortest path search on a grid plane.
Further grouping the tiles on the implicit connection graph to
form PMTs is inspired by the tile propagation scheme of tile-
based routing. Through the PMT propagation, NEMO acquires
considerable acceleration in routing speed. The following illus-
trates the method utilized to generate the PMT and propagate
PMTs on the new implicit connection graph.

A. Tile Query

In this paper, the slit tree and interval tree data structures,
which were reported in [11], are also employed to store existing
paths for querying the legality of each move. For a horizontal
routing layer, the plane is first split horizontally into several
equal-width slices. All obstacles overlapping a slice are stored
in an interval tree that is produced by imposing uniform vertical
lines on that slice. During path searching, a legality assessment
for an unvisited tile is the same as that for a grid point. The
legality check for a tile, say T (Lnx(i), Lny(i)), is performing
the legality check for any point inside a tile—for instance,
(Lnx(i) + 1, Lny(i) + 1). The legality check starts from the
root of the interval tree of the slice whose vertical range
contains the queried point and traverses the tree until a leaf node
is reached. If the queried point is not enclosed by any traversed

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 711

rectangles, the point is considered free, and the tile containing
the queried point is a space tile.

Since the slit and interval tree stores unexpanded obstacles
to prevent frequent updating of the tree structure owing to the
change of design rules, the local search around the queried
point must search for all rectangles within the largest expanded
distance maxi ewi to the point for design rule verification. If
the point, which is located in the middle of a tile, is selected
for the legality check, the number of obstacles with which the
point will be compared can be reduced. If the distance from
the four sides of a tile to its center equals maxi ewi, then the
local search is simplified to find the obstacles overlapping the
middle point.

B. PMT Extraction

Path search on the new connection graph has increased
efficiency when adjacent space tiles are organized as a PMT.
If a point query is found to be within any blockage, then the
query halts and the blocked tile is returned; otherwise, once a
tile is confirmed to be a space tile, the traversal of the interval
tree continues to identify the closest obstacles on the left and
the right, as well as the top and the bottom, of the space tile
for MHS and MVS tile extraction, respectively. For instance,
when the legality check for a tile is completed in a horizontal
routing layer, the traversal of the tree halts at a leaf node. PMT
extraction proceeds following the legality check. During the
process of legality check, the closest obstacles, whose vertical
ranges contain the y-coordinate of the queried point, to the
queried point are recorded. After the legality check, the borders
of two sides of the MHS tile are identified if two closest
obstacles to the queried point are stored on two sides; otherwise,
the traversal of the tree proceeds toward an undetermined
border to visit the leaf nodes and thus acquire the border of
the undetermined side. Whenever the parent of a currently
visited leaf node has not yet been visited during extraction,
the traversal of the tree proceeds upward to determine whether
other obstacles are present. The upward traversal is necessary
since a wire will be stored at an internal node of an interval
tree if it intersects any cut line. A long wire is probably stored
at a high-level internal node of an interval tree; therefore, the
upward traversal searches for those wires stored on high-level
unvisited internal nodes and has to terminate on the node whose
parent has been visited. The following operation for identifying
the level of the closest common internal node to two leaf nodes
is introduced to analyze the required number of visited internal
nodes in an upward traversal. Fig. 11 displays an interval tree
with n leaf nodes and log2 n-level internal nodes; the basic
properties of a balanced binary tree can thus be exploited. The
root node is at level 1, and each internal node has a level number
that is one larger than its parent, as revealed in Fig. 11. A
maximum-level common ancestor (MLCA) of two leaf nodes
is the common ancestor of two leaf nodes closest to the leaf
nodes; the level of the MLCA of leaf nodes i and j is defined as

max⋂
ancestor

(i, j) = max
{

k|k∈ level number�
⌊

i

2t

⌋
=

⌊
j

2t

⌋}

(2)

Fig. 11. Interval tree with n leaf nodes and log2 n-level internal nodes. The
internal nodes outlined by bold borders are the common ancestors of leaf nodes
0, 1, 2, and 3.

where t denotes the distance from level k to the leaf node (t =
log2 n − k + 1). For instance, in Fig. 11, leaf nodes 0, 1, 2, and
3 have no common ancestor on level log2 n(�1/21	
= �2/21),
and their common ancestor closest to them, or the MLCA, is
on level (log2 n) − 1(�0/22	 = �1/22	 = �2/22	 = �3/22).
The other common ancestors are outlined with bold circles
in Fig. 11. When a horizontal move is made on leaf nodes,
say from node i to node j, the internal nodes from node j’s
parent to the internal node next to the MLCA of nodes i and
j (MLCA’s child node) are the unvisited nodes and have to
be traversed by the upward traversal that starts at node j. A
traversal of the internal nodes from the MLCA of nodes i
and j to the root has been performed previously and is thus
unnecessary. For example, the MCLA of leaf nodes 2 and 3 is
their parent node, so no unvisited nodes exist for a move from
leaf node 3 to leaf node 2. The MCLA for a move from leaf
node 2 to leaf node 1 is on level log2 n − 1, which means that
the unvisited node is the parent of leaf node 1. The number
of unnecessary internal nodes to be traversed during PMT
extraction determines the efficiency of the proposed extraction
scheme. For a leftward/rightward move from leaf node i to
leaf node i − 1/i + 1, if i is odd/even, such that the MLCA
of nodes i and i − 1/i + 1 is their parent and is on level log2 n
(e.g., a leftward/rightward move from leaf node 3/2 to leaf node
2/3 in Fig. 11), then the parent of node i − 1/i + 1 must have
been visited during the upward traversal that starts at node
i and an upward traversal is unnecessary; otherwise, a path
of (log2 n − ⋂max

ancestor (i, i − 1/i + 1)) internal ancestor nodes
from level log2 n to level (

⋂max
ancestor (i, i − 1/i + 1) + 1) must

be traversed.
Lemma 1: The identification of the left border of a PMT

starts with leftward traversal at the leaf node m and ends at
leaf node n, where p even leaf nodes and q odd leaf nodes
are to be visited in m − n horizontal moves (p + q = m − n),
and the q odd leaf nodes are the nodes no1, no2, . . . , and noq.
The number of unnecessary internal nodes to be traversed
during the identification of the left border is p × log2 n +∑noq

i=no1

⋂max
ancestor(i, i + 1).

Proof: p moves are made from an odd leaf node to an
even leaf node and q moves are made from an even leaf
node to an odd leaf node during left-border identification.
Whenever a move is from an odd leaf node to an even leaf
node, upward traversal is unnecessary, and the advantage of
not visiting log2 n internal nodes is gained. p even nodes can

712 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 12. Example of PMT extraction. (a) Interval tree of a slice. (b) Legality
check process for a point that starts at the root and stops at leaf node 5;
the right border of the PMT is defined after the legality check. (c) Leftward
traversal of tree initiated to identify the PMT’s left border and upward traversal
performed if the current leaf node’s parent has not yet been visited; the left-
border identification process terminates at internal node I2. (d) Left-border
identification that ends on internal node I2; any of the obstacles that are
attached to node I2 and its right subtree can determine the left border.

eliminate p × log2 n internal nodes for the traversal of the tree.
However, whenever an odd leaf node, say i, is visited, its
log2 n − ⋂max

ancestor(i, i + 1) ancestors have to be traversed, and⋂max
ancestor(i, i + 1) internal nodes can then be eliminated for the

traversal of the tree.
Similarly, the number of unnecessary internal nodes to be

traversed for identifying the right border of a PMT can be
deduced.
Lemma 2: The identification of the right border of a PMT

starts with the rightward traversal at leaf node m and stops
at leaf node n, where p odd leaf nodes and q even leaf nodes
are visited in m − n horizontal moves (p + q = m − n), and
the q even leaf nodes are the nodes ne1, ne2, . . . , and neq.
The number of unnecessary internal nodes to be traversed
during the identification of the right border is p × log2 n +∑neq

i=ne1

⋂max
ancestor(i, i − 1).

Fig. 12 shows an example of interval tree traversal for PMT
extraction. In this case, the check of legality of point S is
initiated at the root and ends at leaf node 5, whose interval
contains point S [Fig. 12(b)]; simultaneously, the right border
of the PMT BR has been determined. The identification of the
left border for PMT extraction starts traversing toward the left.
Since leaf node 4 contains no obstacle and its parent has been
visited, the traversal moves to its left node, leaf node 3, which
includes the first obstacles in the leaf node. Since its ancestors
have not yet been visited, the traversal then proceeds upward,
finally ending at internal node I2; the left border of the PMT BL

is then identified. Fig. 12(c) displays the process of identifying
the left border during PMT extraction.
Lemma 3: If a new border is located during an upward

traversal, then the new border is identified, and the extraction
of the border terminates.

Proof: For a given internal node, in the identification of
the left border of a PMT, an obstacle that is stored in the
left subtree of the internal node must be farther from the
queried point than those obstacles that are stored at the internal
node or its right subtree; similarly, the obstacles stored at the
remaining leaf nodes left to the last visited leaf node must be
far from the queried point. For instance, Fig. 12(d) shows three
internal nodes, I2, I4, and I5; in addition, Fig. 12(c) shows their
associated cut lines. An upward traversal locates a PMT’s left
border at node I2; no obstacle attached to the subtree rooted at
node I4 can then be found closer to the queried point than the
obstacle on node I2, because any obstacle, say Oc, attached to
the subtree rooted at node I4 must not intersect the cut line L2;
otherwise, the obstacle Oc would be attached to node I2 rather
than to the subtree rooted at I4.

If the upward traversal does not find a new border of the
PMT, then the traversal for the unvisited leaf nodes and their
ancestors continues until a new border is located or the routing-
region boundary is reached. The two borders that are located
in the traversal of the interval tree then define a pseudo MHS
space tile. The entire tree traversal is through the index of each
node and is very fast since the interval tree is a balanced tree.

In [12], two caches are exploited to improve the efficiency
of queries. The blockage cache stores a fixed number of most
recently found blockages, and the space cache stores a fixed
number of most recently extracted maximum free rectangles.
Such a rectangle is defined as the largest free region that
encloses the queried point, as presented in Fig. 12(b). The
locality of point-finding operations can cause a hit in the caches
rather than in the interval tree. The issue that this scheme
raises is how to increase the hit ratio. During the search for
the path, the number of possible routing paths in the priority
queue easily exceeds millions. If the existing routing paths
appear over a wide area (e.g., for a point-to-path or path-to-
path routing), then the hit ratio will drop. A large maximum
free rectangle comprises more grid points than a small max-
imum free rectangle and potentially causes more hits in the
caches. Therefore, the slit tree that employs the cache scheme
tends to have large slices. However, large slices increase the
number of obstacles attached to a node and, thereby, the time
required to scan the obstacles when a node is being visited.
Instead, the proposed PMT extraction scheme exhibits a steady
performance improvement and precise improvement analysis.
Unlike the cache scheme, the proposed PMT extraction scheme
prefers small slices because the height of an extracted PMT is
probably equal to the width of a wire. Small slices correspond
to the need for only a few scanned obstacles in a node by PMT
extraction, and extraction is accelerated. However, small slices
increase the memory used to store interval trees. Experiments
conducted in this paper demonstrate that a slice size of under
ten routing pitches offers favorable query performance with
reasonable memory usage.

Fig. 13 displays a PMT extraction result for a vertical-layer
routing plane. A routing plane of 23 space tiles is reduced to
seven space tiles after PMT extraction. Notably, a PMT does
not likely form after a PMT extraction process. For example, if
the queried point is P1 (Fig. 13), the top and bottom borders for
PMT extraction are located at Z and Y , respectively; however,

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 713

Fig. 13. PMT extraction can reduce the number of space tiles on this vertical-
layer routing plane from 23 to 7. The labeling on each tile can be determined
by performing PMT extraction on neighboring regions of currently processed
tiles. The tiles of the same labels are grouped to form a PMT.

the tile bordered by the points (B, Y) and (C,Z) is not MVS.
That is, for a vertical (horizontal)-layer routing plane, PMT
extraction must be also conducted on the left and right (top and
bottom) neighboring space tiles to determine whether the top
and bottom (left and right) borders of the PMT are the same
as those of the currently processed space tile after the first PMT
extraction is completed. PMT extraction for PMT merging halts
once the borders of a newly produced PMT are different from
those of the currently processed space tile or a blockage is
found. In Fig. 13, after the first PMT extraction on P1 acquires
the top and bottom borders (Z and Y), PMT extractions on P2
and P3 are also performed on neighboring space tiles T (A, Y)
and T (C, Y). Since the top and bottom borders for T (A, Y)
are also Z and Y , these two PMTs are integrated into one PMT,
whereas another PMT, which ranges from (C,X) to (D,Z), is
formed. For a routing plane, PMT extraction and merging can
be repeatedly applied until all the space tiles of a routing plane
have been processed. In Fig. 13, P1 is assumed to be the first
queried point on the routing plane; the labeling number for each
PMT is its generation order during PMT extraction. After PMT
1 is produced, PMT extractions are performed on tiles T (B,X)
and T (D,X) to determine whether PMT 2 can merge with its
neighbors. This scheme is simple and complete yet takes only a
little time because not every tile is used in routing. One efficient
approach is to classify each tile as one of four types—unvisited,
incomplete, free, and blocked—and then to employ a 2-bit
array to determine the status of each tile. Each tile is initially
set to “unvisited.” Whenever an unvisited tile is queried, the
tile may be set to “incomplete,” “free,” or “blocked.” If the
queried point is located within a blockage, then the tile is set
to “blocked.” If no blockage contains the queried point when
the query operation reaches one leaf node from the root, PMT
extraction and PMT merging are repeated to yield a PMT. All
space tiles used in forming the newly extracted PMT are set to
“free,” and the space tiles that comprise the first extracted PMT
with different borders are set to “incomplete” to indicate that
the new PMT can potentially merge with its neighboring space
tiles to extend its region when it is queried again in routing. As
few PMTs as possible can then be extracted.

C. PMT Propagation

The process of PMT propagation is the same as that in
tile-based routing. During propagation, a tile legality query

Fig. 14. PMT propagation does not determine the positions of the wires and
vias of a routing path. A heuristic rule can be subsequently applied to optimize
resource utilization and then to increase completion rate.

must always precede the next move. If space PMTs abut the
current PMT, then path propagation on the same routing layer is
conducted. Path propagation to the routing plane of the adjacent
layer first involves the PA to identify all reachable tiles on the
adjacent layer from the current PMT and then performs PMT
extraction and merging to produce reachable PMTs on adjacent
layer. An overlap check to ensure that the overlapping region
can accommodate a new via is performed on the current PMT
and the newly generated PMTs.
Theorem 1: The new implicit-connection-graph-based

point-to-point routing can find an optimal solution.
Proof: Since routing planes are constructed using the

nonzero-width wire model—the same as that used by tile-based
routing—the expanded obstacles on routing planes are the same
as those on routing planes of tile-based routing. If the routing
planes of the new implicit connection graph are considered as
being composed of the expanded obstacles and PMTs, then
these obstacles and PMTs are exactly equivalent to the routing
planes in tile-based routing. By applying piecewise linear cost
propagation in [7], the PMT propagation on the new implicit
connection graph can also generate an optimal solution.

Since path propagation identifies only a series of connected
PMTs (that abut or overlap neighboring PMTs), the determi-
nation of the exact positions of the wires and the vias in a
routing path is postponed and finished in the path-construction
stage. The delay of the decision offers the flexibility of applying
simple heuristic rules to modulate the position or pattern of the
processed routing path for the purpose of crosstalk reduction
or the increase in resource utilization. For example, in the
construction of a sensitive wire within a long PMT, breaking
a straight wire into a staircase-shaped wire is preferable to a
straight wire, because it reduces the length of the wire that is
parallel to its neighboring wires. Fig. 14 displays an example of
increased resource utilization by the shifting of wires during
path construction. Path construction identifies a routing path
along three connected PMTs (two H-layer PMTs and one
V-layer PMT). The bold dotted rectangle is the legal region in
which the centers of all of the potential vias can be placed.
Two wiring patterns are available, as shown in Fig. 14. The
first aligns the top borders of a wire and a via, and the other
aligns the centers of a wire and a via. Based on a search for the
centerline path and the center via, the second is straightforward
but wastes space. If the first type is employed, the new wire
is held close to its top neighboring blockage according to the
minimum-space rule. Sometimes, such little space relaxation
can complete a hard routing in a congested region during rip-up

714 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

Fig. 15. Each grid line stores the endpoints of all borders by which the gridline
is induced.

and rerouting. The adjustment is preferably made in the path-
construction stage, rather than in the path-propagation stage.

V. FULL-CHIP ROUTING

A. Gridline Reduction and Pseudoblockage Insertion

The detailed routing adheres to the global path. The bound-
aries of all blockages that fall entirely outside the global path
potentially increase the number of gridlines inside the global
path. The blockages that overlap or are within the global path
are called active blockages, whereas the others are called idle
blockages. Fig. 5(a) illustrates vertical-layer routing paths with
a global path whose GCells are filled with a dotted pattern.
The figure also shows nine existing blockages. Fig. 5(b) plots
the simplified implicit connection graph, whose gridlines are
only derived from three active blockages. If the other six
idle blockages also induced gridlines, then the routing graph
would be very complicated. Furthermore, since the global path
boundary is surrounded by pseudoblockages, adjacent PMTs
induced by the gridline derived from the idle blockage are likely
to have the same height or width such that they can be merged;
that is, the result of PMT extraction will not be influenced by
the gridlines derived from the idle blockages. Consequently, the
gridlines from the idle blockages are redundant, and the result
of PMT extraction without gridline reduction is the same as that
with gridline reduction. Fig. 5(d) displays the results of PMT
extraction with and without considering idle blockages within
the global path.

Gridline reduction can be easily implemented. Each gridline
is induced by at least one border. When a connection graph is
constructed, each gridline records the endpoints of all borders
to induce the gridline. Given a global path, gridline reduction
involves scanning all gridlines inside the global path. For each
gridline, if the attached borders overlap the global path, this
gridline is reserved; otherwise, the gridline does not influence
the connection graph and is discarded. Fig. 15 presents an
illustrative example of the endpoint list. Gridline a is induced
by two borders (A,C) and (D,G), and therefore, a stores the
endpoints of these two borders.

NEMO adopts pseudoblockages to speed up pseudo tile
extraction and constrain the detailed routing. Since tile prop-
agation does not exceed the GCells in the global path, the
production of PMTs with borders outside the global path is

TABLE II
CIRCUIT STATISTICS FOR TWO-TERMINAL SINGLE-NET ROUTING

irrelevant. The extraction of a border outside the global path
requires the visiting of additional leaf nodes along the inter-
val tree and is time consuming. Hence, pseudoblockages can
reduce the number of visited nodes during PMT extraction,
produce PMTs all within the global path, and then forbid path
propagation from leaving the global path.

B. Variable-Rule Routing and DSM Design Rules

NEMO processes variable-rule routing by first partitioning
and grouping the nets with the same rule into a set, and then
performing detailed routing set by set. For each set, NEMO
follows the routing flow of the initial routing, which is followed
by rip-up and rerouting, to complete the routing of all of the
nets in the set. The routing of the next rule set is initiated after
the routing of a current set has been completed. Currently, the
rip-up strategy considers only the ripping up of the nets, which
blocks currently processed nets, to clean the region closest to
the target from the present routing result. The nets to be ripped
up do not have to be governed by the same design rule as that
of the current net. However, if more than one net block the
currently processed net, the net that is governed by the same
design rule as that of the current net will be chosen.

VI. EXPERIMENTAL RESULTS

A. Single-Net Routing Result

A point-to-point detailed router for two-terminal single-net
routing based on the new implicit connection graph with PMT
propagation was implemented with the C++ programming lan-
guage. Two-terminal single-net routings were performed using
only the detailed router on a 3.4-GHz Pentium IV PC with
1.7 Gb of random access memory, and two real and different
VLSI designs. Table II lists the statistics for two circuits,
including the number of rectangles of metal-2 and metal-3
layers and chip dimension.

To compare the point-to-point routing of NEMO with
other connection-graph-based gridless routers, the point-to-
point gridless detailed router in [11] was implemented with
the same basic slit and interval tree data structure as NEMO,
but without the enhanced PMT extraction method. Comparison
results are obtained by running two routers on the aforemen-
tioned platform (Tables III and IV). The point-to-point routings
performed on the two cases include short-distance routing,
long-distance routing, and hard-to-route routing (only D2),
in which pins are located in very congested region or which
requires numerous layer switches and detours. In Tables III
and IV, the second column lists the routing results of the
router in [11], whereas the third column lists NEMO results,
and the fourth column shows the runtime speedup achieved by

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 715

TABLE III
TWO-TERMINAL SINGLE-NET ROUTING RESULTS FOR CIRCUIT D1

TABLE IV
TWO-TERMINAL SINGLE-NET ROUTING RESULTS FOR CIRCUIT D2

NEMO when compared with that of the implicit-connection-
graph-based router in [11]. The routing qualities of two routers
for cases D1 and D2 are the same; however, NEMO obtains
average speedups of 9.04 and 10.45 for D1 and D2, respectively.

B. Full-Chip Routing

Full-chip routings are performed on a 1.2-GHz Sun Blade-
2000 workstation with 2 GB of memory. Table V lists the
statistics for eight circuits; the first six designs are benchmark
circuits, and the last two designs are of different types. In the
table, “#Lay” shows the number of available routing layers,
“# 2-pin nets” indicates the number of two-pin connections after
net decomposition, and “#GC” shows the number of rows and
columns after the chip is partitioned into GCells in the global
routing stage.

Table VI displays the routing comparison results for four
gridless detailed routers, a three-level routing system featuring
a performance-driven global router [22], a noise-constrained
wire spacing and track assignment algorithm [23], and, finally,
a gridless detailed routing algorithm with wire planning [12],
an enhanced multilevel routing system—MARS [14]—a two-
pass bottom-up router [19], and NEMO. The gridless detailed
routers of the first three routing systems are the implicit-
connection-graph-based gridless router. In Table VI, “Comp.”
denotes the average improvement of NEMO for the first two

TABLE V
BENCHMARK CIRCUITS STATISTICS FOR FULL-CHIP ROUTING

items and the total number of failed nets for the last item.
Four routers have performed routing on two different platforms,
so the runtimes of [12] and [14] require normalization. If
runtime is normalized by the clock rate ratio, such as a ratio
of 2 for two clock rates 1.2 GHz and 600 MHz, then the
runtimes of [12] and [14] needed to be divided by approx-
imately 2.73. Following normalization, NEMO ran at 55.82,
3.93, and 1.69 times faster than the routers in [12], [14], and
[19], respectively. The runtime for NEMO included the runtime
required for global routing. NEMO obtained a little longer
wire length than that of [19]. The spanning-tree-based point-
to-point routing in NEMO connects to the end pin and any
partially routed wires. The final routing path of a net may be
a spanning tree or a Steiner tree. NEMO does not refine the
routing result by transforming a spanning tree into a Steiner
tree or restructuring a poor-quality Steiner tree. The wire length
can be further reduced by refining those spanning-tree-based
or poor-Steiner-tree-based routing paths. Table VII compares
the routing results of a commercial graph-based router (GBR)
and NEMO. All optimization features of GBR, such as timing,
crosstalk, and antenna, are disabled. The routing time of GBR
increases gradually as the number of nets exceeds 100 000.
NEMO gains reduced vantage in routing speed while the circuit
size increases and spends 43% more runtime than GBR for the
largest case B2. For comparing routing quality, GBR equally
uses the routing resources of every routing layer, whereas
NEMO simply minimizes routing cost; consequently, NEMO
produces fewer vias. On the other hand, GBR is speculated
to be an area router and employs a window-based rip-up and
rerouting process to solve routing violations. Local rip-up and
rerouting has the superiority of rapidly removing violations but
may cause detours and vias. NEMO simply rips up and reroutes
an entire existing net. This is a simple rip-up and rerouting
scheme and may produce less detours and vias but at the cost
of increased runtime. Thus, as the circuit size increases, NEMO
has higher runtime rising rate than GBR. Substituting complex,
yet efficient window-based rip-up and rerouting for the present
simple scheme can improve the performance of NEMO by
an increasing factor in proportion to the size of the circuit,
overcoming the aforementioned shortcoming.

For variable-rule routing, the rules for designing the six
benchmark circuits are adapted as follows. The width of the
longest 10% of nets is doubled, that of the next 10% of nets
is multiplied by 1.5, and the others remain unchanged. Since
many pins on the first metal layer are aligned and separated in

716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

TABLE VI
COMPARISON OF ROUTING RESULTS AMONG FOUR GRIDLESS ROUTERS. (a) THREE-LEVEL ROUTING SYSTEM [12]. (b) ENHANCED MULTILEVEL

ROUTING SYSTEM [14]. (c) TWO-PASS BOTTOM-UP GRIDLESS ROUTER [19]. (d) NEMO

TABLE VII
COMPARISON OF ROUTING RESULTS BETWEEN A COMMERCIAL GBR AND NEMO

TABLE VIII
COMPARISON OF ROUTING RESULTS FROM UNIFORM DESIGN RULES AND VARIABLE DESIGN RULES OBTAINED USING NEMO

minimum-rule space, and enlarging the rule of the first metal
layer and its pins would violate the design rules, the rules of
the first metal layer remain unchanged. Table VIII compares the
routing results obtained using the uniform design rules and the
variable design rules. Variable-rule routing has less than double
(from 1.52 to 1.94 times) the runtime of uniform-rule routing.
Since the rules for enlarging the design rules yield the same

number of rule sets in all test cases, the numbers of reconstruc-
tion of routing graphs required in all test cases are the same.
The numbers of rip-ups and reroutings for fixed-rule routing
and variable-rule routing are similar. Accordingly, the factors
by which the runtime of variable-rule routing are increased in
all test cases are similar, ranging from 1.52 to 1.94. Variable-
rule routing always produced longer wires than uniform-rule

LI et al.: NEMO: NEW GRIDLESS ROUTER WITH MULTILAYER PLANES AND PSEUDO TILE PROPAGATION 717

TABLE IX
COMPARISON OF ROUTING RESULTS BETWEEN A MULTILEVEL GRID-BASED ROUTING SYSTEM [18] AND NEMO

routing, but using fewer vias. If the wires that intend to pass
through a GCell contain different wire widths, then the order
of routed nets from a global router influences the number of
nets that utilize this GCell. Because the global router does not
consider how to maximize routing-resource utilization, each
GCell might contain less congestion than uniform-rule routing,
possibly producing fewer vias and longer wire lengths for nets
that are forced to generate detoured global paths. Therefore,
variable-rule routing produced longer wires with fewer vias
than uniform-rule routing in all cases.

Table IX compares NEMO routing with a multilevel grid-
based router with antenna avoidance. The data used here are
for routing without antenna avoidance. NEMO has superior
routing results to that described in [18]—21.91× improvement
in routing speed and a 16% reduction rate in wire length.

VII. DISCUSSIONS

Routing with DSM design rules is an important issue but not
currently addressed by NEMO. The impact of DSM technology
on the routing problem engenders new routing problems, such
as optical proximity correction (OPC)-aware routing, and also
complicates conventional design rules. NEMO might be bur-
dened by the DSM rules since some tests on path realization
might be required in the early stage of tile propagation instead
of in-path construction. The spacing between a wire and its
vicinal wires varies according to the wire’s maximum parallel
length to all neighboring wires. Solving such a complex spacing
rule requires path verification during path propagation instead
of path construction. The largest spacing rule for contour
insertion lowers the available routing resource, but increases
the speed of path propagation and correct result discovery.
However, it is infeasible due to the low routing completion rate.
If the default spacing rule for contour insertion is employed, and
tests are then performed on the current tile using the associated
large spacing rule based on the possible run length (so that
abutting tiles or via regions can be reached) inside the tile, the
complex spacing rules can thus be addressed. This approach
undoubtedly reduces the routing speed. The minimum-jog rule
and the notch rule also require tests to be performed on the
path during path propagation. The minimum-jog rule prevents
the production of two perpendicularly consecutive wire borders
with lengths below a certain value, such as half the wire width.
The undesirable jog pattern disturbs the corner correction of the

OPC in the postrouting stage. The test on undesirable jogs dur-
ing tile propagation can prevent further unnecessary propaga-
tion. Notch filling is conventionally a postprocessing procedure
for removing an unforeseen notch but might cause another fat-
wire-space error. For instance, filling a notch generated by two
close vias might form a fat wire and then induce an unexpected
spacing error. This problem can be solved by avoiding the
occurrence of notches as far as possible or dynamically testing
notch filling and a fat-wire-spacing check on the current tile
and its neighboring space tiles. If these issues are disregarded
during tile propagation, then the identified tile list is likely to be
useless.

VIII. CONCLUSION

This paper proposed a new implicit-connection-graph-based
gridless detailed router, called NEMO, with a multilayer im-
plicit connection graph, a nonzero-width wire model, and PMT
extraction and propagation. For point-to-point routing, NEMO
offers the advantages of simple and fast routing-plane con-
struction, efficient PMT extraction, and faster PMT propagation
than a grid maze. Experimental results on point-to-point routing
indicate that NEMO runs almost ten times faster than the one
described in [11], while an optimal path is guaranteed. For
full-chip routing, NEMO employs pseudoblockage insertion
and gridline reduction to produce routing planes more effec-
tively than before. Integrated with a congestion-driven global
router, NEMO improves routing performance by a factor of
around 1.69×–55.82× over that obtained in previously pub-
lished works, based on a set of commonly used MCNC bench-
mark circuits. For a test case with over a hundred thousands
nets, NEMO performs more slowly than a commercial GBR
since NEMO presently employs a simple rip-up and rerouting
scheme. For variable-rule routing, NEMO obtains longer wires
and fewer vias than does the imposition of uniform rules
since the global router does not maximize the routing-resource
utilization. NEMO also outperforms a multilevel grid-based
routing system in routing speed and wirelength.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers,
whose detailed and valuable suggestions helped the authors
shape and clarify the paper.

718 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 4, APRIL 2007

REFERENCES

[1] M. Sato, J. Sakanaka, and T. Ohtsuki, “A fast line-search method based
on a tile plane,” in Proc. IEEE Int. Symp. Circuits and Syst., May 1987,
pp. 588–591.

[2] A. Margarino, A. Romano, A. De Gloria, F. Curatelli, and P. Antognetti,
“A tile-expansion router,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. CAD-6, no. 4, pp. 507–517, Jul. 1987.

[3] C.-C. Tsai, S. Chen, and W. Feng, “An H–V alternating router,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 8,
pp. 976–991, Aug. 1992.

[4] J. Dion and L. M. Monier, “Contour: A tile-based gridless router,”
Western Res. Lab., Palo Alto, CA, Western Research Laboratory Research
Rep. 95/3.

[5] L.-C. Liu, H.-P. Tseng, and C. Sechen, “Chip-level area routing,” in Proc.
Int. Symp. Phys. Des., Apr. 1998, pp. 197–204.

[6] H.-P. Tseng and C. Sechen, “A gridless multilayer router for standard
cell circuits using CTM cells,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 18, no. 10, pp. 1462–1479, Oct. 1999.

[7] Z. Xing and R. Kaog, “Shortest path search using tiles and piecewise lin-
ear cost propagation,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 21, no. 2, pp. 145–158, Feb. 2002.

[8] A. Hetzel, “A sequential detailed router for huge grid graphs,” in Proc.
IEEE Des. Autom. Test Eur., Feb. 1998, pp. 332–338.

[9] S. Q. Zheng, J. S. Lim, and S. Iyengar, “Finding obstacle-avoiding shortest
paths using implicit connection graphs,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 15, no. 1, pp. 103–110, Jan. 1996.

[10] J. Cong, M. Xie, and Y. Zhang, “An enhanced multilevel routing system,”
in Proc. IEEE Int. Conf. Comput.-Aided Des., Nov. 2002, pp. 51–58.

[11] J. Cong, J. Fang, and K. Khoo, “An implicit connection graph maze
routing algorithm for ECO routing,” in Proc. Int. Conf. Comput.-Aided
Des., Nov. 1999, pp. 163–167.

[12] ——, “DUNE: A multilayer gridless routing system,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 5, pp. 633–646,
May 2001.

[13] J. Cong, J. Fang, and Y. Zhang, “Multilevel approach to full-chip gridless
routing,” in Proc. IEEE Int. Conf. Comput.-Aided Des., San Jose, CA,
Nov. 2001, pp. 396–403.

[14] J. Cong, J. Fang, M. Xie, and Y. Zhang, “MARS—A multilevel full-
chip gridless routing system,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 24, no. 3, pp. 382–394, Mar. 2005.

[15] Y.-W. Chang and S.-P. Lin, “MR: A new framework for multilevel full-
chip routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 5, pp. 793–800, May 2004.

[16] T.-Y. Ho, Y.-W. Chang, S.-J. Chen, and D. T. Lee, “Crosstalk- and
performance-driven multilevel full-chip routing,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 24, no. 6, pp. 869–878, Jun. 2005.

[17] T.-C. Chen and Y.-W. Chang, “Multilevel full-chip gridless routing con-
sidering optical proximity correction,” in Proc. ACM/IEEE ASP-DAC,
Shanghai, China, Jan. 2005, pp. 1160–1163.

[18] T.-Y. Ho, Y.-W. Chang, and S.-J. Chen, “Multilevel routing with antenna
avoidance,” in Proc. Int. Symp. Phys. Des., Apr. 2004, pp. 34–40.

[19] H.-Y. Chen, M.-F. Chiang, Y.-W. Chang, L. Chen, and B. Han, “Novel
full-chip gridless routing considering double-via insertion,” in Proc. 43rd
Des. Autom. Conf., Jul. 2006, pp. 755–760.

[20] J.-Y. Li and Y.-L. Li, “An efficient tile-based ECO router with routing
graph reduction and enhanced global routing flow,” in Proc. ACM ISPD,
San Francisco, CA, Apr. 2005, pp. 7–13.

[21] J. Ousterhout, “Corner stitching: A data-structuring technique for VLSI
layout tools,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. CAD-3, no. 1, pp. 87–100, Jan. 1984.

[22] J. Cong and P. Madden, “Performance driven multilayer general area
routing for PCB/MCM designs,” in Proc. 35th Des. Autom. Conf.,
Jun. 1998, pp. 356–361.

[23] C. Chang and J. Cong, “Pseudo pin assignment with crosstalk noise con-
trol,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20,
no. 5, pp. 598–611, May 2001.

Yih-Lang Li (M’04) received the B.S. degree in nu-
clear engineering and the M.S. and the Ph.D. degrees
in computer science from the National Tsing-Hua
University, Hsinchu, Taiwan, R.O.C., in 1987, 1990,
and 1996, respectively.

In February 2003, he joined the faculty of the
Department of Computer Science, National Chiao-
Tung University (NCTU), where he is currently an
Assistant Professor. Prior to joining the faculty of
NCTU, from 1995 to 1996 and from 1998 to 2003,
he was a Software Engineer and an Associate Man-

ager at Springsoft Corporation, Hsinchu, where he was heavily involved in
the development of verification and synthesis tools for custom-based layout.
His research interests include physical synthesis, parallel architecture, and
VLSI testing.

Hsin-Yu Chen received the B.S. degree in computer
science and information engineering from Tunghai
University, Taichung, Taiwan, R.O.C., in 2002, and
the M.S. degree in computer and information science
from the National Chiao-Tung University, Hsinchu,
Taiwan, R.O.C., in 2005.

He is currently with Faraday Technology Corpo-
ration, Hsinchu.

Chih-Ta Lin received the B.S. degree in computer
and information science from the National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C., in 2004.
He is currently working toward the Ph.D. degree
at the Department of Computer Science, National
Chiao-Tung University.

His research interests include physical design
automation.

